/**************************************************************************/ /* worker_thread_pool.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "worker_thread_pool.h" #include "core/object/script_language.h" #include "core/os/os.h" #include "core/os/safe_binary_mutex.h" #include "core/os/thread_safe.h" WorkerThreadPool::Task *const WorkerThreadPool::ThreadData::YIELDING = (Task *)1; void WorkerThreadPool::Task::free_template_userdata() { ERR_FAIL_NULL(template_userdata); ERR_FAIL_NULL(native_func_userdata); BaseTemplateUserdata *btu = (BaseTemplateUserdata *)native_func_userdata; memdelete(btu); } WorkerThreadPool *WorkerThreadPool::singleton = nullptr; #ifdef THREADS_ENABLED thread_local WorkerThreadPool::UnlockableLocks WorkerThreadPool::unlockable_locks[MAX_UNLOCKABLE_LOCKS]; #endif void WorkerThreadPool::_process_task(Task *p_task) { #ifdef THREADS_ENABLED int pool_thread_index = thread_ids[Thread::get_caller_id()]; ThreadData &curr_thread = threads[pool_thread_index]; Task *prev_task = nullptr; // In case this is recursively called. bool safe_for_nodes_backup = is_current_thread_safe_for_nodes(); CallQueue *call_queue_backup = MessageQueue::get_singleton() != MessageQueue::get_main_singleton() ? MessageQueue::get_singleton() : nullptr; { // Tasks must start with these at default values. They are free to set-and-forget otherwise. set_current_thread_safe_for_nodes(false); MessageQueue::set_thread_singleton_override(nullptr); // Since the WorkerThreadPool is started before the script server, // its pre-created threads can't have ScriptServer::thread_enter() called on them early. // Therefore, we do it late at the first opportunity, so in case the task // about to be run uses scripting, guarantees are held. task_mutex.lock(); if (!curr_thread.ready_for_scripting && ScriptServer::are_languages_initialized()) { task_mutex.unlock(); ScriptServer::thread_enter(); task_mutex.lock(); curr_thread.ready_for_scripting = true; } p_task->pool_thread_index = pool_thread_index; prev_task = curr_thread.current_task; curr_thread.current_task = p_task; if (p_task->pending_notify_yield_over) { curr_thread.yield_is_over = true; } task_mutex.unlock(); } #endif #ifdef THREADS_ENABLED bool low_priority = p_task->low_priority; #endif if (p_task->group) { // Handling a group bool do_post = false; while (true) { uint32_t work_index = p_task->group->index.postincrement(); if (work_index >= p_task->group->max) { break; } if (p_task->native_group_func) { p_task->native_group_func(p_task->native_func_userdata, work_index); } else if (p_task->template_userdata) { p_task->template_userdata->callback_indexed(work_index); } else { p_task->callable.call(work_index); } // This is the only way to ensure posting is done when all tasks are really complete. uint32_t completed_amount = p_task->group->completed_index.increment(); if (completed_amount == p_task->group->max) { do_post = true; } } if (do_post && p_task->template_userdata) { memdelete(p_task->template_userdata); // This is no longer needed at this point, so get rid of it. } if (do_post) { p_task->group->done_semaphore.post(); p_task->group->completed.set_to(true); } uint32_t max_users = p_task->group->tasks_used + 1; // Add 1 because the thread waiting for it is also user. Read before to avoid another thread freeing task after increment. uint32_t finished_users = p_task->group->finished.increment(); if (finished_users == max_users) { // Get rid of the group, because nobody else is using it. MutexLock task_lock(task_mutex); group_allocator.free(p_task->group); } // For groups, tasks get rid of themselves. task_mutex.lock(); task_allocator.free(p_task); } else { if (p_task->native_func) { p_task->native_func(p_task->native_func_userdata); } else if (p_task->template_userdata) { p_task->template_userdata->callback(); memdelete(p_task->template_userdata); } else { p_task->callable.call(); } task_mutex.lock(); p_task->completed = true; p_task->pool_thread_index = -1; if (p_task->waiting_user) { p_task->done_semaphore.post(p_task->waiting_user); } // Let awaiters know. for (uint32_t i = 0; i < threads.size(); i++) { if (threads[i].awaited_task == p_task) { threads[i].cond_var.notify_one(); threads[i].signaled = true; } } } #ifdef THREADS_ENABLED { curr_thread.current_task = prev_task; if (low_priority) { low_priority_threads_used--; if (_try_promote_low_priority_task()) { if (prev_task) { // Otherwise, this thread will catch it. _notify_threads(&curr_thread, 1, 0); } } } task_mutex.unlock(); } set_current_thread_safe_for_nodes(safe_for_nodes_backup); MessageQueue::set_thread_singleton_override(call_queue_backup); #endif } void WorkerThreadPool::_thread_function(void *p_user) { ThreadData *thread_data = (ThreadData *)p_user; while (true) { Task *task_to_process = nullptr; { MutexLock lock(singleton->task_mutex); if (singleton->exit_threads) { return; } thread_data->signaled = false; if (singleton->task_queue.first()) { task_to_process = singleton->task_queue.first()->self(); singleton->task_queue.remove(singleton->task_queue.first()); } else { thread_data->cond_var.wait(lock); DEV_ASSERT(singleton->exit_threads || thread_data->signaled); } } if (task_to_process) { singleton->_process_task(task_to_process); } } } void WorkerThreadPool::_post_tasks_and_unlock(Task **p_tasks, uint32_t p_count, bool p_high_priority) { // Fall back to processing on the calling thread if there are no worker threads. // Separated into its own variable to make it easier to extend this logic // in custom builds. bool process_on_calling_thread = threads.size() == 0; if (process_on_calling_thread) { task_mutex.unlock(); for (uint32_t i = 0; i < p_count; i++) { _process_task(p_tasks[i]); } return; } uint32_t to_process = 0; uint32_t to_promote = 0; ThreadData *caller_pool_thread = thread_ids.has(Thread::get_caller_id()) ? &threads[thread_ids[Thread::get_caller_id()]] : nullptr; for (uint32_t i = 0; i < p_count; i++) { p_tasks[i]->low_priority = !p_high_priority; if (p_high_priority || low_priority_threads_used < max_low_priority_threads) { task_queue.add_last(&p_tasks[i]->task_elem); if (!p_high_priority) { low_priority_threads_used++; } to_process++; } else { // Too many threads using low priority, must go to queue. low_priority_task_queue.add_last(&p_tasks[i]->task_elem); to_promote++; } } _notify_threads(caller_pool_thread, to_process, to_promote); task_mutex.unlock(); } void WorkerThreadPool::_notify_threads(const ThreadData *p_current_thread_data, uint32_t p_process_count, uint32_t p_promote_count) { uint32_t to_process = p_process_count; uint32_t to_promote = p_promote_count; // This is where which threads are awaken is decided according to the workload. // Threads that will anyway have a chance to check the situation and process/promote tasks // are excluded from being notified. Others will be tried anyway to try to distribute load. // The current thread, if is a pool thread, is also excluded depending on the promoting/processing // needs because it will anyway loop again. However, it will contribute to decreasing the count, // which helps reducing sync traffic. uint32_t thread_count = threads.size(); // First round: // 1. For processing: notify threads that are not running tasks, to keep the stacks as shallow as possible. // 2. For promoting: since it's exclusive with processing, we fin threads able to promote low-prio tasks now. for (uint32_t i = 0; i < thread_count && (to_process || to_promote); i++, notify_index = (notify_index + 1) % thread_count) { ThreadData &th = threads[notify_index]; if (th.signaled) { continue; } if (th.current_task) { // Good thread for promoting low-prio? if (to_promote && th.awaited_task && th.current_task->low_priority) { if (likely(&th != p_current_thread_data)) { th.cond_var.notify_one(); } th.signaled = true; to_promote--; } } else { if (to_process) { if (likely(&th != p_current_thread_data)) { th.cond_var.notify_one(); } th.signaled = true; to_process--; } } } // Second round: // For processing: if the first round wasn't enough, let's try now with threads processing tasks but currently awaiting. for (uint32_t i = 0; i < thread_count && to_process; i++, notify_index = (notify_index + 1) % thread_count) { ThreadData &th = threads[notify_index]; if (th.signaled) { continue; } if (th.awaited_task) { if (likely(&th != p_current_thread_data)) { th.cond_var.notify_one(); } th.signaled = true; to_process--; } } } bool WorkerThreadPool::_try_promote_low_priority_task() { if (low_priority_task_queue.first()) { Task *low_prio_task = low_priority_task_queue.first()->self(); low_priority_task_queue.remove(low_priority_task_queue.first()); task_queue.add_last(&low_prio_task->task_elem); low_priority_threads_used++; return true; } else { return false; } } WorkerThreadPool::TaskID WorkerThreadPool::add_native_task(void (*p_func)(void *), void *p_userdata, bool p_high_priority, const String &p_description) { return _add_task(Callable(), p_func, p_userdata, nullptr, p_high_priority, p_description); } WorkerThreadPool::TaskID WorkerThreadPool::_add_task(const Callable &p_callable, void (*p_func)(void *), void *p_userdata, BaseTemplateUserdata *p_template_userdata, bool p_high_priority, const String &p_description) { task_mutex.lock(); // Get a free task Task *task = task_allocator.alloc(); TaskID id = last_task++; task->self = id; task->callable = p_callable; task->native_func = p_func; task->native_func_userdata = p_userdata; task->description = p_description; task->template_userdata = p_template_userdata; tasks.insert(id, task); _post_tasks_and_unlock(&task, 1, p_high_priority); return id; } WorkerThreadPool::TaskID WorkerThreadPool::add_task(const Callable &p_action, bool p_high_priority, const String &p_description) { return _add_task(p_action, nullptr, nullptr, nullptr, p_high_priority, p_description); } bool WorkerThreadPool::is_task_completed(TaskID p_task_id) const { MutexLock task_lock(task_mutex); const Task *const *taskp = tasks.getptr(p_task_id); if (!taskp) { ERR_FAIL_V_MSG(false, "Invalid Task ID"); // Invalid task } return (*taskp)->completed; } Error WorkerThreadPool::wait_for_task_completion(TaskID p_task_id) { task_mutex.lock(); Task **taskp = tasks.getptr(p_task_id); if (!taskp) { task_mutex.unlock(); ERR_FAIL_V_MSG(ERR_INVALID_PARAMETER, "Invalid Task ID"); // Invalid task } Task *task = *taskp; if (task->completed) { if (task->waiting_pool == 0 && task->waiting_user == 0) { tasks.erase(p_task_id); task_allocator.free(task); } task_mutex.unlock(); return OK; } ThreadData *caller_pool_thread = thread_ids.has(Thread::get_caller_id()) ? &threads[thread_ids[Thread::get_caller_id()]] : nullptr; if (caller_pool_thread && p_task_id <= caller_pool_thread->current_task->self) { // Deadlock prevention: // When a pool thread wants to wait for an older task, the following situations can happen: // 1. Awaited task is deep in the stack of the awaiter. // 2. A group of awaiter threads end up depending on some tasks buried in the stack // of their worker threads in such a way that progress can't be made. // Both would entail a deadlock. Some may be handled here in the WorkerThreadPool // with some extra logic and bookkeeping. However, there would still be unavoidable // cases of deadlock because of the way waiting threads process outstanding tasks. // Taking into account there's no feasible solution for every possible case // with the current design, we just simply reject attempts to await on older tasks, // with a specific error code that signals the situation so the caller can handle it. task_mutex.unlock(); return ERR_BUSY; } if (caller_pool_thread) { task->waiting_pool++; } else { task->waiting_user++; } if (caller_pool_thread) { task_mutex.unlock(); _wait_collaboratively(caller_pool_thread, task); task_mutex.lock(); task->waiting_pool--; if (task->waiting_pool == 0 && task->waiting_user == 0) { tasks.erase(p_task_id); task_allocator.free(task); } } else { task_mutex.unlock(); task->done_semaphore.wait(); task_mutex.lock(); task->waiting_user--; if (task->waiting_pool == 0 && task->waiting_user == 0) { tasks.erase(p_task_id); task_allocator.free(task); } } task_mutex.unlock(); return OK; } void WorkerThreadPool::_lock_unlockable_mutexes() { #ifdef THREADS_ENABLED for (uint32_t i = 0; i < MAX_UNLOCKABLE_LOCKS; i++) { if (unlockable_locks[i].ulock) { unlockable_locks[i].ulock->lock(); } } #endif } void WorkerThreadPool::_unlock_unlockable_mutexes() { #ifdef THREADS_ENABLED for (uint32_t i = 0; i < MAX_UNLOCKABLE_LOCKS; i++) { if (unlockable_locks[i].ulock) { unlockable_locks[i].ulock->unlock(); } } #endif } void WorkerThreadPool::_wait_collaboratively(ThreadData *p_caller_pool_thread, Task *p_task) { // Keep processing tasks until the condition to stop waiting is met. #define IS_WAIT_OVER (unlikely(p_task == ThreadData::YIELDING) ? p_caller_pool_thread->yield_is_over : p_task->completed) while (true) { Task *task_to_process = nullptr; bool relock_unlockables = false; { MutexLock lock(task_mutex); bool was_signaled = p_caller_pool_thread->signaled; p_caller_pool_thread->signaled = false; if (IS_WAIT_OVER) { if (unlikely(p_task == ThreadData::YIELDING)) { p_caller_pool_thread->yield_is_over = false; } if (!exit_threads && was_signaled) { // This thread was awaken for some additional reason, but it's about to exit. // Let's find out what may be pending and forward the requests. uint32_t to_process = task_queue.first() ? 1 : 0; uint32_t to_promote = p_caller_pool_thread->current_task->low_priority && low_priority_task_queue.first() ? 1 : 0; if (to_process || to_promote) { // This thread must be left alone since it won't loop again. p_caller_pool_thread->signaled = true; _notify_threads(p_caller_pool_thread, to_process, to_promote); } } break; } if (!exit_threads) { if (p_caller_pool_thread->current_task->low_priority && low_priority_task_queue.first()) { if (_try_promote_low_priority_task()) { _notify_threads(p_caller_pool_thread, 1, 0); } } if (singleton->task_queue.first()) { task_to_process = task_queue.first()->self(); task_queue.remove(task_queue.first()); } if (!task_to_process) { p_caller_pool_thread->awaited_task = p_task; _unlock_unlockable_mutexes(); relock_unlockables = true; p_caller_pool_thread->cond_var.wait(lock); DEV_ASSERT(exit_threads || p_caller_pool_thread->signaled || IS_WAIT_OVER); p_caller_pool_thread->awaited_task = nullptr; } } } if (relock_unlockables) { _lock_unlockable_mutexes(); } if (task_to_process) { _process_task(task_to_process); } } } void WorkerThreadPool::yield() { int th_index = get_thread_index(); ERR_FAIL_COND_MSG(th_index == -1, "This function can only be called from a worker thread."); _wait_collaboratively(&threads[th_index], ThreadData::YIELDING); } void WorkerThreadPool::notify_yield_over(TaskID p_task_id) { MutexLock task_lock(task_mutex); Task **taskp = tasks.getptr(p_task_id); if (!taskp) { ERR_FAIL_MSG("Invalid Task ID."); } Task *task = *taskp; if (task->pool_thread_index == -1) { // Completed or not started yet. if (!task->completed) { // This avoids a race condition where a task is created and yield-over called before it's processed. task->pending_notify_yield_over = true; } return; } ThreadData &td = threads[task->pool_thread_index]; td.yield_is_over = true; td.signaled = true; td.cond_var.notify_one(); } WorkerThreadPool::GroupID WorkerThreadPool::_add_group_task(const Callable &p_callable, void (*p_func)(void *, uint32_t), void *p_userdata, BaseTemplateUserdata *p_template_userdata, int p_elements, int p_tasks, bool p_high_priority, const String &p_description) { ERR_FAIL_COND_V(p_elements < 0, INVALID_TASK_ID); if (p_tasks < 0) { p_tasks = MAX(1u, threads.size()); } task_mutex.lock(); Group *group = group_allocator.alloc(); GroupID id = last_task++; group->max = p_elements; group->self = id; Task **tasks_posted = nullptr; if (p_elements == 0) { // Should really not call it with zero Elements, but at least it should work. group->completed.set_to(true); group->done_semaphore.post(); group->tasks_used = 0; p_tasks = 0; if (p_template_userdata) { memdelete(p_template_userdata); } } else { group->tasks_used = p_tasks; tasks_posted = (Task **)alloca(sizeof(Task *) * p_tasks); for (int i = 0; i < p_tasks; i++) { Task *task = task_allocator.alloc(); task->native_group_func = p_func; task->native_func_userdata = p_userdata; task->description = p_description; task->group = group; task->callable = p_callable; task->template_userdata = p_template_userdata; tasks_posted[i] = task; // No task ID is used. } } groups[id] = group; _post_tasks_and_unlock(tasks_posted, p_tasks, p_high_priority); return id; } WorkerThreadPool::GroupID WorkerThreadPool::add_native_group_task(void (*p_func)(void *, uint32_t), void *p_userdata, int p_elements, int p_tasks, bool p_high_priority, const String &p_description) { return _add_group_task(Callable(), p_func, p_userdata, nullptr, p_elements, p_tasks, p_high_priority, p_description); } WorkerThreadPool::GroupID WorkerThreadPool::add_group_task(const Callable &p_action, int p_elements, int p_tasks, bool p_high_priority, const String &p_description) { return _add_group_task(p_action, nullptr, nullptr, nullptr, p_elements, p_tasks, p_high_priority, p_description); } uint32_t WorkerThreadPool::get_group_processed_element_count(GroupID p_group) const { MutexLock task_lock(task_mutex); const Group *const *groupp = groups.getptr(p_group); if (!groupp) { ERR_FAIL_V_MSG(0, "Invalid Group ID"); } return (*groupp)->completed_index.get(); } bool WorkerThreadPool::is_group_task_completed(GroupID p_group) const { MutexLock task_lock(task_mutex); const Group *const *groupp = groups.getptr(p_group); if (!groupp) { ERR_FAIL_V_MSG(false, "Invalid Group ID"); } return (*groupp)->completed.is_set(); } void WorkerThreadPool::wait_for_group_task_completion(GroupID p_group) { #ifdef THREADS_ENABLED task_mutex.lock(); Group **groupp = groups.getptr(p_group); task_mutex.unlock(); if (!groupp) { ERR_FAIL_MSG("Invalid Group ID."); } { Group *group = *groupp; _unlock_unlockable_mutexes(); group->done_semaphore.wait(); _lock_unlockable_mutexes(); uint32_t max_users = group->tasks_used + 1; // Add 1 because the thread waiting for it is also user. Read before to avoid another thread freeing task after increment. uint32_t finished_users = group->finished.increment(); // fetch happens before inc, so increment later. if (finished_users == max_users) { // All tasks using this group are gone (finished before the group), so clear the group too. MutexLock task_lock(task_mutex); group_allocator.free(group); } } MutexLock task_lock(task_mutex); // This mutex is needed when Physics 2D and/or 3D is selected to run on a separate thread. groups.erase(p_group); #endif } int WorkerThreadPool::get_thread_index() { Thread::ID tid = Thread::get_caller_id(); return singleton->thread_ids.has(tid) ? singleton->thread_ids[tid] : -1; } WorkerThreadPool::TaskID WorkerThreadPool::get_caller_task_id() { int th_index = get_thread_index(); if (th_index != -1 && singleton->threads[th_index].current_task) { return singleton->threads[th_index].current_task->self; } else { return INVALID_TASK_ID; } } #ifdef THREADS_ENABLED uint32_t WorkerThreadPool::_thread_enter_unlock_allowance_zone(THREADING_NAMESPACE::unique_lock &p_ulock) { for (uint32_t i = 0; i < MAX_UNLOCKABLE_LOCKS; i++) { DEV_ASSERT((bool)unlockable_locks[i].ulock == (bool)unlockable_locks[i].rc); if (unlockable_locks[i].ulock == &p_ulock) { // Already registered in the current thread. unlockable_locks[i].rc++; return i; } else if (!unlockable_locks[i].ulock) { unlockable_locks[i].ulock = &p_ulock; unlockable_locks[i].rc = 1; return i; } } ERR_FAIL_V_MSG(UINT32_MAX, "No more unlockable lock slots available. Engine bug."); } void WorkerThreadPool::thread_exit_unlock_allowance_zone(uint32_t p_zone_id) { DEV_ASSERT(unlockable_locks[p_zone_id].ulock && unlockable_locks[p_zone_id].rc); unlockable_locks[p_zone_id].rc--; if (unlockable_locks[p_zone_id].rc == 0) { unlockable_locks[p_zone_id].ulock = nullptr; } } #endif void WorkerThreadPool::init(int p_thread_count, float p_low_priority_task_ratio) { ERR_FAIL_COND(threads.size() > 0); if (p_thread_count < 0) { p_thread_count = OS::get_singleton()->get_default_thread_pool_size(); } max_low_priority_threads = CLAMP(p_thread_count * p_low_priority_task_ratio, 1, p_thread_count - 1); threads.resize(p_thread_count); for (uint32_t i = 0; i < threads.size(); i++) { threads[i].index = i; threads[i].thread.start(&WorkerThreadPool::_thread_function, &threads[i]); thread_ids.insert(threads[i].thread.get_id(), i); } } void WorkerThreadPool::finish() { if (threads.size() == 0) { return; } { MutexLock lock(task_mutex); SelfList *E = low_priority_task_queue.first(); while (E) { print_error("Task waiting was never re-claimed: " + E->self()->description); E = E->next(); } } { MutexLock lock(task_mutex); exit_threads = true; } for (ThreadData &data : threads) { data.cond_var.notify_one(); } for (ThreadData &data : threads) { data.thread.wait_to_finish(); } { MutexLock lock(task_mutex); for (KeyValue &E : tasks) { task_allocator.free(E.value); } } threads.clear(); } void WorkerThreadPool::_bind_methods() { ClassDB::bind_method(D_METHOD("add_task", "action", "high_priority", "description"), &WorkerThreadPool::add_task, DEFVAL(false), DEFVAL(String())); ClassDB::bind_method(D_METHOD("is_task_completed", "task_id"), &WorkerThreadPool::is_task_completed); ClassDB::bind_method(D_METHOD("wait_for_task_completion", "task_id"), &WorkerThreadPool::wait_for_task_completion); ClassDB::bind_method(D_METHOD("add_group_task", "action", "elements", "tasks_needed", "high_priority", "description"), &WorkerThreadPool::add_group_task, DEFVAL(-1), DEFVAL(false), DEFVAL(String())); ClassDB::bind_method(D_METHOD("is_group_task_completed", "group_id"), &WorkerThreadPool::is_group_task_completed); ClassDB::bind_method(D_METHOD("get_group_processed_element_count", "group_id"), &WorkerThreadPool::get_group_processed_element_count); ClassDB::bind_method(D_METHOD("wait_for_group_task_completion", "group_id"), &WorkerThreadPool::wait_for_group_task_completion); } WorkerThreadPool::WorkerThreadPool() { singleton = this; } WorkerThreadPool::~WorkerThreadPool() { finish(); }