/*************************************************************************/ /* math_2d.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "math_2d.h" real_t Vector2::angle() const { return Math::atan2(y, x); } real_t Vector2::length() const { return Math::sqrt(x * x + y * y); } real_t Vector2::length_squared() const { return x * x + y * y; } void Vector2::normalize() { real_t l = x * x + y * y; if (l != 0) { l = Math::sqrt(l); x /= l; y /= l; } } Vector2 Vector2::normalized() const { Vector2 v = *this; v.normalize(); return v; } bool Vector2::is_normalized() const { // use length_squared() instead of length() to avoid sqrt(), makes it more stringent. return Math::is_equal_approx(length_squared(), 1.0); } real_t Vector2::distance_to(const Vector2 &p_vector2) const { return Math::sqrt((x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y)); } real_t Vector2::distance_squared_to(const Vector2 &p_vector2) const { return (x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y); } real_t Vector2::angle_to(const Vector2 &p_vector2) const { return Math::atan2(cross(p_vector2), dot(p_vector2)); } real_t Vector2::angle_to_point(const Vector2 &p_vector2) const { return Math::atan2(y - p_vector2.y, x - p_vector2.x); } real_t Vector2::dot(const Vector2 &p_other) const { return x * p_other.x + y * p_other.y; } real_t Vector2::cross(const Vector2 &p_other) const { return x * p_other.y - y * p_other.x; } Vector2 Vector2::cross(real_t p_other) const { return Vector2(p_other * y, -p_other * x); } Vector2 Vector2::floor() const { return Vector2(Math::floor(x), Math::floor(y)); } Vector2 Vector2::ceil() const { return Vector2(Math::ceil(x), Math::ceil(y)); } Vector2 Vector2::round() const { return Vector2(Math::round(x), Math::round(y)); } Vector2 Vector2::rotated(real_t p_by) const { Vector2 v; v.set_rotation(angle() + p_by); v *= length(); return v; } Vector2 Vector2::project(const Vector2 &p_vec) const { Vector2 v1 = p_vec; Vector2 v2 = *this; return v2 * (v1.dot(v2) / v2.dot(v2)); } Vector2 Vector2::snapped(const Vector2 &p_by) const { return Vector2( Math::stepify(x, p_by.x), Math::stepify(y, p_by.y)); } Vector2 Vector2::clamped(real_t p_len) const { real_t l = length(); Vector2 v = *this; if (l > 0 && p_len < l) { v /= l; v *= p_len; } return v; } Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_t) const { Vector2 p0 = p_pre_a; Vector2 p1 = *this; Vector2 p2 = p_b; Vector2 p3 = p_post_b; real_t t = p_t; real_t t2 = t * t; real_t t3 = t2 * t; Vector2 out; out = 0.5 * ((p1 * 2.0) + (-p0 + p2) * t + (2.0 * p0 - 5.0 * p1 + 4 * p2 - p3) * t2 + (-p0 + 3.0 * p1 - 3.0 * p2 + p3) * t3); return out; } // slide returns the component of the vector along the given plane, specified by its normal vector. Vector2 Vector2::slide(const Vector2 &p_normal) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V(p_normal.is_normalized() == false, Vector2()); #endif return *this - p_normal * this->dot(p_normal); } Vector2 Vector2::bounce(const Vector2 &p_normal) const { return -reflect(p_normal); } Vector2 Vector2::reflect(const Vector2 &p_normal) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V(p_normal.is_normalized() == false, Vector2()); #endif return 2.0 * p_normal * this->dot(p_normal) - *this; } bool Rect2::intersects_segment(const Point2 &p_from, const Point2 &p_to, Point2 *r_pos, Point2 *r_normal) const { real_t min = 0, max = 1; int axis = 0; real_t sign = 0; for (int i = 0; i < 2; i++) { real_t seg_from = p_from[i]; real_t seg_to = p_to[i]; real_t box_begin = position[i]; real_t box_end = box_begin + size[i]; real_t cmin, cmax; real_t csign; if (seg_from < seg_to) { if (seg_from > box_end || seg_to < box_begin) return false; real_t length = seg_to - seg_from; cmin = (seg_from < box_begin) ? ((box_begin - seg_from) / length) : 0; cmax = (seg_to > box_end) ? ((box_end - seg_from) / length) : 1; csign = -1.0; } else { if (seg_to > box_end || seg_from < box_begin) return false; real_t length = seg_to - seg_from; cmin = (seg_from > box_end) ? (box_end - seg_from) / length : 0; cmax = (seg_to < box_begin) ? (box_begin - seg_from) / length : 1; csign = 1.0; } if (cmin > min) { min = cmin; axis = i; sign = csign; } if (cmax < max) max = cmax; if (max < min) return false; } Vector2 rel = p_to - p_from; if (r_normal) { Vector2 normal; normal[axis] = sign; *r_normal = normal; } if (r_pos) *r_pos = p_from + rel * min; return true; } /* Point2i */ Point2i Point2i::operator+(const Point2i &p_v) const { return Point2i(x + p_v.x, y + p_v.y); } void Point2i::operator+=(const Point2i &p_v) { x += p_v.x; y += p_v.y; } Point2i Point2i::operator-(const Point2i &p_v) const { return Point2i(x - p_v.x, y - p_v.y); } void Point2i::operator-=(const Point2i &p_v) { x -= p_v.x; y -= p_v.y; } Point2i Point2i::operator*(const Point2i &p_v1) const { return Point2i(x * p_v1.x, y * p_v1.y); }; Point2i Point2i::operator*(const int &rvalue) const { return Point2i(x * rvalue, y * rvalue); }; void Point2i::operator*=(const int &rvalue) { x *= rvalue; y *= rvalue; }; Point2i Point2i::operator/(const Point2i &p_v1) const { return Point2i(x / p_v1.x, y / p_v1.y); }; Point2i Point2i::operator/(const int &rvalue) const { return Point2i(x / rvalue, y / rvalue); }; void Point2i::operator/=(const int &rvalue) { x /= rvalue; y /= rvalue; }; Point2i Point2i::operator-() const { return Point2i(-x, -y); } bool Point2i::operator==(const Point2i &p_vec2) const { return x == p_vec2.x && y == p_vec2.y; } bool Point2i::operator!=(const Point2i &p_vec2) const { return x != p_vec2.x || y != p_vec2.y; } void Transform2D::invert() { // FIXME: this function assumes the basis is a rotation matrix, with no scaling. // Transform2D::affine_inverse can handle matrices with scaling, so GDScript should eventually use that. SWAP(elements[0][1], elements[1][0]); elements[2] = basis_xform(-elements[2]); } Transform2D Transform2D::inverse() const { Transform2D inv = *this; inv.invert(); return inv; } void Transform2D::affine_invert() { real_t det = basis_determinant(); #ifdef MATH_CHECKS ERR_FAIL_COND(det == 0); #endif real_t idet = 1.0 / det; SWAP(elements[0][0], elements[1][1]); elements[0] *= Vector2(idet, -idet); elements[1] *= Vector2(-idet, idet); elements[2] = basis_xform(-elements[2]); } Transform2D Transform2D::affine_inverse() const { Transform2D inv = *this; inv.affine_invert(); return inv; } void Transform2D::rotate(real_t p_phi) { *this = Transform2D(p_phi, Vector2()) * (*this); } real_t Transform2D::get_rotation() const { real_t det = basis_determinant(); Transform2D m = orthonormalized(); if (det < 0) { m.scale_basis(Size2(1, -1)); // convention to separate rotation and reflection for 2D is to absorb a flip along y into scaling. } return Math::atan2(m[0].y, m[0].x); } void Transform2D::set_rotation(real_t p_rot) { real_t cr = Math::cos(p_rot); real_t sr = Math::sin(p_rot); elements[0][0] = cr; elements[0][1] = sr; elements[1][0] = -sr; elements[1][1] = cr; } Transform2D::Transform2D(real_t p_rot, const Vector2 &p_pos) { real_t cr = Math::cos(p_rot); real_t sr = Math::sin(p_rot); elements[0][0] = cr; elements[0][1] = sr; elements[1][0] = -sr; elements[1][1] = cr; elements[2] = p_pos; } Size2 Transform2D::get_scale() const { real_t det_sign = basis_determinant() > 0 ? 1 : -1; return Size2(elements[0].length(), det_sign * elements[1].length()); } void Transform2D::scale(const Size2 &p_scale) { scale_basis(p_scale); elements[2] *= p_scale; } void Transform2D::scale_basis(const Size2 &p_scale) { elements[0][0] *= p_scale.x; elements[0][1] *= p_scale.y; elements[1][0] *= p_scale.x; elements[1][1] *= p_scale.y; } void Transform2D::translate(real_t p_tx, real_t p_ty) { translate(Vector2(p_tx, p_ty)); } void Transform2D::translate(const Vector2 &p_translation) { elements[2] += basis_xform(p_translation); } void Transform2D::orthonormalize() { // Gram-Schmidt Process Vector2 x = elements[0]; Vector2 y = elements[1]; x.normalize(); y = (y - x * (x.dot(y))); y.normalize(); elements[0] = x; elements[1] = y; } Transform2D Transform2D::orthonormalized() const { Transform2D on = *this; on.orthonormalize(); return on; } bool Transform2D::operator==(const Transform2D &p_transform) const { for (int i = 0; i < 3; i++) { if (elements[i] != p_transform.elements[i]) return false; } return true; } bool Transform2D::operator!=(const Transform2D &p_transform) const { for (int i = 0; i < 3; i++) { if (elements[i] != p_transform.elements[i]) return true; } return false; } void Transform2D::operator*=(const Transform2D &p_transform) { elements[2] = xform(p_transform.elements[2]); real_t x0, x1, y0, y1; x0 = tdotx(p_transform.elements[0]); x1 = tdoty(p_transform.elements[0]); y0 = tdotx(p_transform.elements[1]); y1 = tdoty(p_transform.elements[1]); elements[0][0] = x0; elements[0][1] = x1; elements[1][0] = y0; elements[1][1] = y1; } Transform2D Transform2D::operator*(const Transform2D &p_transform) const { Transform2D t = *this; t *= p_transform; return t; } Transform2D Transform2D::scaled(const Size2 &p_scale) const { Transform2D copy = *this; copy.scale(p_scale); return copy; } Transform2D Transform2D::basis_scaled(const Size2 &p_scale) const { Transform2D copy = *this; copy.scale_basis(p_scale); return copy; } Transform2D Transform2D::untranslated() const { Transform2D copy = *this; copy.elements[2] = Vector2(); return copy; } Transform2D Transform2D::translated(const Vector2 &p_offset) const { Transform2D copy = *this; copy.translate(p_offset); return copy; } Transform2D Transform2D::rotated(real_t p_phi) const { Transform2D copy = *this; copy.rotate(p_phi); return copy; } real_t Transform2D::basis_determinant() const { return elements[0].x * elements[1].y - elements[0].y * elements[1].x; } Transform2D Transform2D::interpolate_with(const Transform2D &p_transform, real_t p_c) const { //extract parameters Vector2 p1 = get_origin(); Vector2 p2 = p_transform.get_origin(); real_t r1 = get_rotation(); real_t r2 = p_transform.get_rotation(); Size2 s1 = get_scale(); Size2 s2 = p_transform.get_scale(); //slerp rotation Vector2 v1(Math::cos(r1), Math::sin(r1)); Vector2 v2(Math::cos(r2), Math::sin(r2)); real_t dot = v1.dot(v2); dot = (dot < -1.0) ? -1.0 : ((dot > 1.0) ? 1.0 : dot); //clamp dot to [-1,1] Vector2 v; if (dot > 0.9995) { v = Vector2::linear_interpolate(v1, v2, p_c).normalized(); //linearly interpolate to avoid numerical precision issues } else { real_t angle = p_c * Math::acos(dot); Vector2 v3 = (v2 - v1 * dot).normalized(); v = v1 * Math::cos(angle) + v3 * Math::sin(angle); } //construct matrix Transform2D res(Math::atan2(v.y, v.x), Vector2::linear_interpolate(p1, p2, p_c)); res.scale_basis(Vector2::linear_interpolate(s1, s2, p_c)); return res; } Transform2D::operator String() const { return String(String() + elements[0] + ", " + elements[1] + ", " + elements[2]); }