#include "gi_probe.h" #include "mesh_instance.h" void GIProbeData::set_bounds(const AABB& p_bounds) { VS::get_singleton()->gi_probe_set_bounds(probe,p_bounds); } AABB GIProbeData::get_bounds() const{ return VS::get_singleton()->gi_probe_get_bounds(probe); } void GIProbeData::set_cell_size(float p_size) { VS::get_singleton()->gi_probe_set_cell_size(probe,p_size); } float GIProbeData::get_cell_size() const { return VS::get_singleton()->gi_probe_get_cell_size(probe); } void GIProbeData::set_to_cell_xform(const Transform& p_xform) { VS::get_singleton()->gi_probe_set_to_cell_xform(probe,p_xform); } Transform GIProbeData::get_to_cell_xform() const { return VS::get_singleton()->gi_probe_get_to_cell_xform(probe); } void GIProbeData::set_dynamic_data(const PoolVector& p_data){ VS::get_singleton()->gi_probe_set_dynamic_data(probe,p_data); } PoolVector GIProbeData::get_dynamic_data() const{ return VS::get_singleton()->gi_probe_get_dynamic_data(probe); } void GIProbeData::set_dynamic_range(int p_range){ VS::get_singleton()->gi_probe_set_dynamic_range(probe,p_range); } void GIProbeData::set_energy(float p_range) { VS::get_singleton()->gi_probe_set_energy(probe,p_range); } float GIProbeData::get_energy() const{ return VS::get_singleton()->gi_probe_get_energy(probe); } void GIProbeData::set_interior(bool p_enable) { VS::get_singleton()->gi_probe_set_interior(probe,p_enable); } bool GIProbeData::is_interior() const{ return VS::get_singleton()->gi_probe_is_interior(probe); } bool GIProbeData::is_compressed() const{ return VS::get_singleton()->gi_probe_is_compressed(probe); } void GIProbeData::set_compress(bool p_enable) { VS::get_singleton()->gi_probe_set_compress(probe,p_enable); } int GIProbeData::get_dynamic_range() const{ return VS::get_singleton()->gi_probe_get_dynamic_range(probe); } RID GIProbeData::get_rid() const { return probe; } void GIProbeData::_bind_methods() { ClassDB::bind_method(_MD("set_bounds","bounds"),&GIProbeData::set_bounds); ClassDB::bind_method(_MD("get_bounds"),&GIProbeData::get_bounds); ClassDB::bind_method(_MD("set_cell_size","cell_size"),&GIProbeData::set_cell_size); ClassDB::bind_method(_MD("get_cell_size"),&GIProbeData::get_cell_size); ClassDB::bind_method(_MD("set_to_cell_xform","to_cell_xform"),&GIProbeData::set_to_cell_xform); ClassDB::bind_method(_MD("get_to_cell_xform"),&GIProbeData::get_to_cell_xform); ClassDB::bind_method(_MD("set_dynamic_data","dynamic_data"),&GIProbeData::set_dynamic_data); ClassDB::bind_method(_MD("get_dynamic_data"),&GIProbeData::get_dynamic_data); ClassDB::bind_method(_MD("set_dynamic_range","dynamic_range"),&GIProbeData::set_dynamic_range); ClassDB::bind_method(_MD("get_dynamic_range"),&GIProbeData::get_dynamic_range); ClassDB::bind_method(_MD("set_energy","energy"),&GIProbeData::set_energy); ClassDB::bind_method(_MD("get_energy"),&GIProbeData::get_energy); ClassDB::bind_method(_MD("set_interior","interior"),&GIProbeData::set_interior); ClassDB::bind_method(_MD("is_interior"),&GIProbeData::is_interior); ClassDB::bind_method(_MD("set_compress","compress"),&GIProbeData::set_compress); ClassDB::bind_method(_MD("is_compressed"),&GIProbeData::is_compressed); ADD_PROPERTY(PropertyInfo(Variant::_AABB,"bounds",PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR),_SCS("set_bounds"),_SCS("get_bounds")); ADD_PROPERTY(PropertyInfo(Variant::REAL,"cell_size",PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR),_SCS("set_cell_size"),_SCS("get_cell_size")); ADD_PROPERTY(PropertyInfo(Variant::TRANSFORM,"to_cell_xform",PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR),_SCS("set_to_cell_xform"),_SCS("get_to_cell_xform")); ADD_PROPERTY(PropertyInfo(Variant::INT_ARRAY,"dynamic_data",PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR),_SCS("set_dynamic_data"),_SCS("get_dynamic_data")); ADD_PROPERTY(PropertyInfo(Variant::INT,"dynamic_range",PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR),_SCS("set_dynamic_range"),_SCS("get_dynamic_range")); ADD_PROPERTY(PropertyInfo(Variant::REAL,"energy",PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR),_SCS("set_energy"),_SCS("get_energy")); ADD_PROPERTY(PropertyInfo(Variant::BOOL,"interior",PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR),_SCS("set_interior"),_SCS("is_interior")); ADD_PROPERTY(PropertyInfo(Variant::BOOL,"compress",PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR),_SCS("set_compress"),_SCS("is_compressed")); } GIProbeData::GIProbeData() { probe=VS::get_singleton()->gi_probe_create(); } GIProbeData::~GIProbeData() { VS::get_singleton()->free(probe); } ////////////////////// ////////////////////// void GIProbe::set_probe_data(const Ref& p_data) { if (p_data.is_valid()) { VS::get_singleton()->instance_set_base(get_instance(),p_data->get_rid()); } else { VS::get_singleton()->instance_set_base(get_instance(),RID()); } probe_data=p_data; } Ref GIProbe::get_probe_data() const { return probe_data; } void GIProbe::set_subdiv(Subdiv p_subdiv) { ERR_FAIL_INDEX(p_subdiv,SUBDIV_MAX); subdiv=p_subdiv; update_gizmo(); } GIProbe::Subdiv GIProbe::get_subdiv() const { return subdiv; } void GIProbe::set_extents(const Vector3& p_extents) { extents=p_extents; update_gizmo(); } Vector3 GIProbe::get_extents() const { return extents; } void GIProbe::set_dynamic_range(int p_dynamic_range) { dynamic_range=p_dynamic_range; } int GIProbe::get_dynamic_range() const { return dynamic_range; } void GIProbe::set_energy(float p_energy) { energy=p_energy; if (probe_data.is_valid()) { probe_data->set_energy(energy); } } float GIProbe::get_energy() const { return energy; } void GIProbe::set_interior(bool p_enable) { interior=p_enable; if (probe_data.is_valid()) { probe_data->set_interior(p_enable); } } bool GIProbe::is_interior() const { return interior; } void GIProbe::set_compress(bool p_enable) { compress=p_enable; if (probe_data.is_valid()) { probe_data->set_compress(p_enable); } } bool GIProbe::is_compressed() const { return compress; } #include "math.h" #define FINDMINMAX(x0,x1,x2,min,max) \ min = max = x0; \ if(x1max) max=x1;\ if(x2max) max=x2; static bool planeBoxOverlap(Vector3 normal,float d, Vector3 maxbox) { int q; Vector3 vmin,vmax; for(q=0;q<=2;q++) { if(normal[q]>0.0f) { vmin[q]=-maxbox[q]; vmax[q]=maxbox[q]; } else { vmin[q]=maxbox[q]; vmax[q]=-maxbox[q]; } } if(normal.dot(vmin)+d>0.0f) return false; if(normal.dot(vmax)+d>=0.0f) return true; return false; } /*======================== X-tests ========================*/ #define AXISTEST_X01(a, b, fa, fb) \ p0 = a*v0.y - b*v0.z; \ p2 = a*v2.y - b*v2.z; \ if(p0rad || max<-rad) return false; #define AXISTEST_X2(a, b, fa, fb) \ p0 = a*v0.y - b*v0.z; \ p1 = a*v1.y - b*v1.z; \ if(p0rad || max<-rad) return false; /*======================== Y-tests ========================*/ #define AXISTEST_Y02(a, b, fa, fb) \ p0 = -a*v0.x + b*v0.z; \ p2 = -a*v2.x + b*v2.z; \ if(p0rad || max<-rad) return false; #define AXISTEST_Y1(a, b, fa, fb) \ p0 = -a*v0.x + b*v0.z; \ p1 = -a*v1.x + b*v1.z; \ if(p0rad || max<-rad) return false; /*======================== Z-tests ========================*/ #define AXISTEST_Z12(a, b, fa, fb) \ p1 = a*v1.x - b*v1.y; \ p2 = a*v2.x - b*v2.y; \ if(p2rad || max<-rad) return false; #define AXISTEST_Z0(a, b, fa, fb) \ p0 = a*v0.x - b*v0.y; \ p1 = a*v1.x - b*v1.y; \ if(p0rad || max<-rad) return false; static bool fast_tri_box_overlap(const Vector3& boxcenter,const Vector3 boxhalfsize,const Vector3 *triverts) { /* use separating axis theorem to test overlap between triangle and box */ /* need to test for overlap in these directions: */ /* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */ /* we do not even need to test these) */ /* 2) normal of the triangle */ /* 3) crossproduct(edge from tri, {x,y,z}-directin) */ /* this gives 3x3=9 more tests */ Vector3 v0,v1,v2; float min,max,d,p0,p1,p2,rad,fex,fey,fez; Vector3 normal,e0,e1,e2; /* This is the fastest branch on Sun */ /* move everything so that the boxcenter is in (0,0,0) */ v0=triverts[0]-boxcenter; v1=triverts[1]-boxcenter; v2=triverts[2]-boxcenter; /* compute triangle edges */ e0=v1-v0; /* tri edge 0 */ e1=v2-v1; /* tri edge 1 */ e2=v0-v2; /* tri edge 2 */ /* Bullet 3: */ /* test the 9 tests first (this was faster) */ fex = Math::abs(e0.x); fey = Math::abs(e0.y); fez = Math::abs(e0.z); AXISTEST_X01(e0.z, e0.y, fez, fey); AXISTEST_Y02(e0.z, e0.x, fez, fex); AXISTEST_Z12(e0.y, e0.x, fey, fex); fex = Math::abs(e1.x); fey = Math::abs(e1.y); fez = Math::abs(e1.z); AXISTEST_X01(e1.z, e1.y, fez, fey); AXISTEST_Y02(e1.z, e1.x, fez, fex); AXISTEST_Z0(e1.y, e1.x, fey, fex); fex = Math::abs(e2.x); fey = Math::abs(e2.y); fez = Math::abs(e2.z); AXISTEST_X2(e2.z, e2.y, fez, fey); AXISTEST_Y1(e2.z, e2.x, fez, fex); AXISTEST_Z12(e2.y, e2.x, fey, fex); /* Bullet 1: */ /* first test overlap in the {x,y,z}-directions */ /* find min, max of the triangle each direction, and test for overlap in */ /* that direction -- this is equivalent to testing a minimal AABB around */ /* the triangle against the AABB */ /* test in X-direction */ FINDMINMAX(v0.x,v1.x,v2.x,min,max); if(min>boxhalfsize.x || max<-boxhalfsize.x) return false; /* test in Y-direction */ FINDMINMAX(v0.y,v1.y,v2.y,min,max); if(min>boxhalfsize.y || max<-boxhalfsize.y) return false; /* test in Z-direction */ FINDMINMAX(v0.z,v1.z,v2.z,min,max); if(min>boxhalfsize.z || max<-boxhalfsize.z) return false; /* Bullet 2: */ /* test if the box intersects the plane of the triangle */ /* compute plane equation of triangle: normal*x+d=0 */ normal=e0.cross(e1); d=-normal.dot(v0); /* plane eq: normal.x+d=0 */ if(!planeBoxOverlap(normal,d,boxhalfsize)) return false; return true; /* box and triangle overlaps */ } static _FORCE_INLINE_ Vector2 get_uv(const Vector3& p_pos, const Vector3 *p_vtx, const Vector2* p_uv) { if (p_pos.distance_squared_to(p_vtx[0])cell_subdiv-1) { //plot the face by guessing it's albedo and emission value //find best axis to map to, for scanning values int closest_axis; float closest_dot; Vector3 normal = Plane(p_vtx[0],p_vtx[1],p_vtx[2]).normal; for(int i=0;i<3;i++) { Vector3 axis; axis[i]=1.0; float dot=ABS(normal.dot(axis)); if (i==0 || dot>closest_dot) { closest_axis=i; closest_dot=dot; } } Vector3 axis; axis[closest_axis]=1.0; Vector3 t1; t1[(closest_axis+1)%3]=1.0; Vector3 t2; t2[(closest_axis+2)%3]=1.0; t1*=p_aabb.size[(closest_axis+1)%3]/float(color_scan_cell_width); t2*=p_aabb.size[(closest_axis+2)%3]/float(color_scan_cell_width); Color albedo_accum; Color emission_accum; Vector3 normal_accum; float alpha=0.0; //map to a grid average in the best axis for this face for(int i=0;ibake_cells[p_idx].albedo[0]+=albedo_accum.r; p_baker->bake_cells[p_idx].albedo[1]+=albedo_accum.g; p_baker->bake_cells[p_idx].albedo[2]+=albedo_accum.b; p_baker->bake_cells[p_idx].emission[0]+=emission_accum.r; p_baker->bake_cells[p_idx].emission[1]+=emission_accum.g; p_baker->bake_cells[p_idx].emission[2]+=emission_accum.b; p_baker->bake_cells[p_idx].normal[0]+=normal_accum.x; p_baker->bake_cells[p_idx].normal[1]+=normal_accum.y; p_baker->bake_cells[p_idx].normal[2]+=normal_accum.z; p_baker->bake_cells[p_idx].alpha+=alpha; static const Vector3 side_normals[6]={ Vector3(-1, 0, 0), Vector3( 1, 0, 0), Vector3( 0,-1, 0), Vector3( 0, 1, 0), Vector3( 0, 0,-1), Vector3( 0, 0, 1), }; /* for(int i=0;i<6;i++) { if (normal.dot(side_normals[i])>CMP_EPSILON) { p_baker->bake_cells[p_idx].used_sides|=(1<cell_subdiv-1)) >> (p_level+1); for(int i=0;i<8;i++) { AABB aabb=p_aabb; aabb.size*=0.5; int nx=p_x; int ny=p_y; int nz=p_z; if (i&1) { aabb.pos.x+=aabb.size.x; nx+=half; } if (i&2) { aabb.pos.y+=aabb.size.y; ny+=half; } if (i&4) { aabb.pos.z+=aabb.size.z; nz+=half; } //make sure to not plot beyond limits if (nx<0 || nx>=p_baker->axis_cell_size[0] || ny<0 || ny>=p_baker->axis_cell_size[1] || nz<0 || nz>=p_baker->axis_cell_size[2]) continue; { AABB test_aabb=aabb; //test_aabb.grow_by(test_aabb.get_longest_axis_size()*0.05); //grow a bit to avoid numerical error in real-time Vector3 qsize = test_aabb.size*0.5; //quarter size, for fast aabb test if (!fast_tri_box_overlap(test_aabb.pos+qsize,qsize,p_vtx)) { //if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) { //does not fit in child, go on continue; } } if (p_baker->bake_cells[p_idx].childs[i]==Baker::CHILD_EMPTY) { //sub cell must be created uint32_t child_idx = p_baker->bake_cells.size(); p_baker->bake_cells[p_idx].childs[i]=child_idx; p_baker->bake_cells.resize( p_baker->bake_cells.size() + 1); p_baker->bake_cells[child_idx].level=p_level+1; } _plot_face(p_baker->bake_cells[p_idx].childs[i],p_level+1,nx,ny,nz,p_vtx,p_uv,p_material,aabb,p_baker); } } } void GIProbe::_fixup_plot(int p_idx, int p_level,int p_x,int p_y, int p_z,Baker *p_baker) { if (p_level==p_baker->cell_subdiv-1) { p_baker->leaf_voxel_count++; float alpha = p_baker->bake_cells[p_idx].alpha; p_baker->bake_cells[p_idx].albedo[0]/=alpha; p_baker->bake_cells[p_idx].albedo[1]/=alpha; p_baker->bake_cells[p_idx].albedo[2]/=alpha; //transfer emission to light p_baker->bake_cells[p_idx].emission[0]/=alpha; p_baker->bake_cells[p_idx].emission[1]/=alpha; p_baker->bake_cells[p_idx].emission[2]/=alpha; p_baker->bake_cells[p_idx].normal[0]/=alpha; p_baker->bake_cells[p_idx].normal[1]/=alpha; p_baker->bake_cells[p_idx].normal[2]/=alpha; Vector3 n(p_baker->bake_cells[p_idx].normal[0],p_baker->bake_cells[p_idx].normal[1],p_baker->bake_cells[p_idx].normal[2]); if (n.length()<0.01) { //too much fight over normal, zero it p_baker->bake_cells[p_idx].normal[0]=0; p_baker->bake_cells[p_idx].normal[1]=0; p_baker->bake_cells[p_idx].normal[2]=0; } else { n.normalize(); p_baker->bake_cells[p_idx].normal[0]=n.x; p_baker->bake_cells[p_idx].normal[1]=n.y; p_baker->bake_cells[p_idx].normal[2]=n.z; } p_baker->bake_cells[p_idx].alpha=1.0; /* //remove neighbours from used sides for(int n=0;n<6;n++) { int ofs[3]={0,0,0}; ofs[n/2]=(n&1)?1:-1; //convert to x,y,z on this level int x=p_x; int y=p_y; int z=p_z; x+=ofs[0]; y+=ofs[1]; z+=ofs[2]; int ofs_x=0; int ofs_y=0; int ofs_z=0; int size = 1<=size || y<0 || y>=size || z<0 || z>=size) { //neighbour is out, can't use it p_baker->bake_cells[p_idx].used_sides&=~(1<cell_subdiv-1;i++) { Baker::Cell *bc = &p_baker->bake_cells[neighbour]; int child = 0; if (x >= ofs_x + half) { child|=1; ofs_x+=half; } if (y >= ofs_y + half) { child|=2; ofs_y+=half; } if (z >= ofs_z + half) { child|=4; ofs_z+=half; } neighbour = bc->childs[child]; if (neighbour==Baker::CHILD_EMPTY) { break; } half>>=1; } if (neighbour!=Baker::CHILD_EMPTY) { p_baker->bake_cells[p_idx].used_sides&=~(1<cell_subdiv-1)) >> (p_level+1); for(int i=0;i<8;i++) { uint32_t child = p_baker->bake_cells[p_idx].childs[i]; if (child==Baker::CHILD_EMPTY) continue; int nx=p_x; int ny=p_y; int nz=p_z; if (i&1) nx+=half; if (i&2) ny+=half; if (i&4) nz+=half; _fixup_plot(child,p_level+1,nx,ny,nz,p_baker); alpha_average+=p_baker->bake_cells[child].alpha; } p_baker->bake_cells[p_idx].alpha=alpha_average/8.0; p_baker->bake_cells[p_idx].emission[0]=0; p_baker->bake_cells[p_idx].emission[1]=0; p_baker->bake_cells[p_idx].emission[2]=0; p_baker->bake_cells[p_idx].normal[0]=0; p_baker->bake_cells[p_idx].normal[1]=0; p_baker->bake_cells[p_idx].normal[2]=0; p_baker->bake_cells[p_idx].albedo[0]=0; p_baker->bake_cells[p_idx].albedo[1]=0; p_baker->bake_cells[p_idx].albedo[2]=0; } } Vector GIProbe::_get_bake_texture(Image &p_image,const Color& p_color) { Vector ret; if (p_image.empty()) { ret.resize(bake_texture_size*bake_texture_size); for(int i=0;i::Read r = p_image.get_data().read(); ret.resize(bake_texture_size*bake_texture_size); for(int i=0;i p_material,Baker *p_baker) { //this way of obtaining materials is inaccurate and also does not support some compressed formats very well Ref mat = p_material; Ref material = mat; //hack for now if (p_baker->material_cache.has(material)) { return p_baker->material_cache[material]; } Baker::MaterialCache mc; if (mat.is_valid()) { Ref albedo_tex = mat->get_texture(FixedSpatialMaterial::TEXTURE_ALBEDO); Image img_albedo; if (albedo_tex.is_valid()) { img_albedo = albedo_tex->get_data(); } mc.albedo=_get_bake_texture(img_albedo,mat->get_albedo()); Ref emission_tex = mat->get_texture(FixedSpatialMaterial::TEXTURE_EMISSION); Color emission_col = mat->get_emission(); emission_col.r*=mat->get_emission_energy(); emission_col.g*=mat->get_emission_energy(); emission_col.b*=mat->get_emission_energy(); Image img_emission; if (emission_tex.is_valid()) { img_emission = emission_tex->get_data(); } mc.emission=_get_bake_texture(img_emission,emission_col); } else { Image empty; mc.albedo=_get_bake_texture(empty,Color(0.7,0.7,0.7)); mc.emission=_get_bake_texture(empty,Color(0,0,0)); } p_baker->material_cache[p_material]=mc; return mc; } void GIProbe::_plot_mesh(const Transform& p_xform, Ref& p_mesh, Baker *p_baker) { for(int i=0;iget_surface_count();i++) { if (p_mesh->surface_get_primitive_type(i)!=Mesh::PRIMITIVE_TRIANGLES) continue; //only triangles Baker::MaterialCache material = _get_material_cache(p_mesh->surface_get_material(i),p_baker); Array a = p_mesh->surface_get_arrays(i); PoolVector vertices = a[Mesh::ARRAY_VERTEX]; PoolVector::Read vr=vertices.read(); PoolVector uv = a[Mesh::ARRAY_TEX_UV]; PoolVector::Read uvr; PoolVector index = a[Mesh::ARRAY_INDEX]; bool read_uv=false; if (uv.size()) { uvr=uv.read(); read_uv=true; } if (index.size()) { int facecount = index.size()/3; PoolVector::Read ir=index.read(); for(int j=0;jpo2_bounds,p_baker); } } else { int facecount = vertices.size()/3; for(int j=0;jpo2_bounds,p_baker); } } } } void GIProbe::_find_meshes(Node *p_at_node,Baker *p_baker){ MeshInstance *mi = p_at_node->cast_to(); if (mi && mi->get_flag(GeometryInstance::FLAG_USE_BAKED_LIGHT)) { Ref mesh = mi->get_mesh(); if (mesh.is_valid()) { AABB aabb = mesh->get_aabb(); Transform xf = get_global_transform().affine_inverse() * mi->get_global_transform(); if (AABB(-extents,extents*2).intersects(xf.xform(aabb))) { Baker::PlotMesh pm; pm.local_xform=xf; pm.mesh=mesh; p_baker->mesh_list.push_back(pm); } } } for(int i=0;iget_child_count();i++) { Node *child = p_at_node->get_child(i); if (!child->get_owner()) continue; //maybe a helper _find_meshes(child,p_baker); } } void GIProbe::bake(Node *p_from_node, bool p_create_visual_debug){ Baker baker; static const int subdiv_value[SUBDIV_MAX]={7,8,9,10}; baker.cell_subdiv=subdiv_value[subdiv]; baker.bake_cells.resize(1); //find out the actual real bounds, power of 2, which gets the highest subdivision baker.po2_bounds=AABB(-extents,extents*2.0); int longest_axis = baker.po2_bounds.get_longest_axis_index(); baker.axis_cell_size[longest_axis]=(1<<(baker.cell_subdiv-1)); baker.leaf_voxel_count=0; for(int i=0;i<3;i++) { if (i==longest_axis) continue; baker.axis_cell_size[i]=baker.axis_cell_size[longest_axis]; float axis_size = baker.po2_bounds.size[longest_axis]; //shrink until fit subdiv while (axis_size/2.0 >= baker.po2_bounds.size[i]) { axis_size/=2.0; baker.axis_cell_size[i]>>=1; } baker.po2_bounds.size[i]=baker.po2_bounds.size[longest_axis]; } Transform to_bounds; to_bounds.basis.scale(Vector3(baker.po2_bounds.size[longest_axis],baker.po2_bounds.size[longest_axis],baker.po2_bounds.size[longest_axis])); to_bounds.origin=baker.po2_bounds.pos; Transform to_grid; to_grid.basis.scale(Vector3(baker.axis_cell_size[longest_axis],baker.axis_cell_size[longest_axis],baker.axis_cell_size[longest_axis])); baker.to_cell_space = to_grid * to_bounds.affine_inverse(); _find_meshes(p_from_node?p_from_node:get_parent(),&baker); int pmc=0; for(List::Element *E=baker.mesh_list.front();E;E=E->next()) { print_line("plotting mesh "+itos(pmc++)+"/"+itos(baker.mesh_list.size())); _plot_mesh(E->get().local_xform,E->get().mesh,&baker); } _fixup_plot(0,0,0,0,0,&baker); //create the data for visual server PoolVector data; data.resize( 16+(8+1+1+1+1)*baker.bake_cells.size() ); //4 for header, rest for rest. { PoolVector::Write w = data.write(); uint32_t * w32 = (uint32_t*)w.ptr(); w32[0]=0;//version w32[1]=baker.cell_subdiv; //subdiv w32[2]=baker.axis_cell_size[0]; w32[3]=baker.axis_cell_size[1]; w32[4]=baker.axis_cell_size[2]; w32[5]=baker.bake_cells.size(); w32[6]=baker.leaf_voxel_count; int ofs=16; for(int i=0;i0) { e.normalize(); l=CLAMP(l/8.0,0,1.0); } uint32_t em=uint32_t(CLAMP(e[0]*255,0,255))<<24; em|=uint32_t(CLAMP(e[1]*255,0,255))<<16; em|=uint32_t(CLAMP(e[2]*255,0,255))<<8; em|=uint32_t(CLAMP(l*255,0,255)); w32[ofs++]=em; } //w32[ofs++]=baker.bake_cells[i].used_sides; { //normal Vector3 n(baker.bake_cells[i].normal[0],baker.bake_cells[i].normal[1],baker.bake_cells[i].normal[2]); n=n*Vector3(0.5,0.5,0.5)+Vector3(0.5,0.5,0.5); uint32_t norm=0; norm|=uint32_t(CLAMP( n.x*255.0, 0, 255))<<16; norm|=uint32_t(CLAMP( n.y*255.0, 0, 255))<<8; norm|=uint32_t(CLAMP( n.z*255.0, 0, 255))<<0; w32[ofs++]=norm; } { uint16_t alpha = CLAMP(uint32_t(baker.bake_cells[i].alpha*65535.0),0,65535); uint16_t level = baker.bake_cells[i].level; w32[ofs++] = (uint32_t(level)<<16)|uint32_t(alpha); } } } Ref probe_data; probe_data.instance(); probe_data->set_bounds(AABB(-extents,extents*2.0)); probe_data->set_cell_size(baker.po2_bounds.size[longest_axis]/baker.axis_cell_size[longest_axis]); probe_data->set_dynamic_data(data); probe_data->set_dynamic_range(dynamic_range); probe_data->set_energy(energy); probe_data->set_interior(interior); probe_data->set_compress(compress); probe_data->set_to_cell_xform(baker.to_cell_space); set_probe_data(probe_data); if (p_create_visual_debug) { // _create_debug_mesh(&baker); } } void GIProbe::_debug_mesh(int p_idx, int p_level, const AABB &p_aabb,Ref &p_multimesh,int &idx,Baker *p_baker) { if (p_level==p_baker->cell_subdiv-1) { Vector3 center = p_aabb.pos+p_aabb.size*0.5; Transform xform; xform.origin=center; xform.basis.scale(p_aabb.size*0.5); p_multimesh->set_instance_transform(idx,xform); Color col=Color(p_baker->bake_cells[p_idx].albedo[0],p_baker->bake_cells[p_idx].albedo[1],p_baker->bake_cells[p_idx].albedo[2]); p_multimesh->set_instance_color(idx,col); idx++; } else { for(int i=0;i<8;i++) { if (p_baker->bake_cells[p_idx].childs[i]==Baker::CHILD_EMPTY) continue; AABB aabb=p_aabb; aabb.size*=0.5; if (i&1) aabb.pos.x+=aabb.size.x; if (i&2) aabb.pos.y+=aabb.size.y; if (i&4) aabb.pos.z+=aabb.size.z; _debug_mesh(p_baker->bake_cells[p_idx].childs[i],p_level+1,aabb,p_multimesh,idx,p_baker); } } } void GIProbe::_create_debug_mesh(Baker *p_baker) { Ref mm; mm.instance(); mm->set_transform_format(MultiMesh::TRANSFORM_3D); mm->set_color_format(MultiMesh::COLOR_8BIT); print_line("leaf voxels: "+itos(p_baker->leaf_voxel_count)); mm->set_instance_count(p_baker->leaf_voxel_count); Ref mesh; mesh.instance(); { Array arr; arr.resize(Mesh::ARRAY_MAX); PoolVector vertices; PoolVector colors; int vtx_idx=0; #define ADD_VTX(m_idx);\ vertices.push_back( face_points[m_idx] );\ colors.push_back( Color(1,1,1,1) );\ vtx_idx++;\ for (int i=0;i<6;i++) { Vector3 face_points[4]; for (int j=0;j<4;j++) { float v[3]; v[0]=1.0; v[1]=1-2*((j>>1)&1); v[2]=v[1]*(1-2*(j&1)); for (int k=0;k<3;k++) { if (i<3) face_points[j][(i+k)%3]=v[k]*(i>=3?-1:1); else face_points[3-j][(i+k)%3]=v[k]*(i>=3?-1:1); } } //tri 1 ADD_VTX(0); ADD_VTX(1); ADD_VTX(2); //tri 2 ADD_VTX(2); ADD_VTX(3); ADD_VTX(0); } arr[Mesh::ARRAY_VERTEX]=vertices; arr[Mesh::ARRAY_COLOR]=colors; mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES,arr); } { Ref fsm; fsm.instance(); fsm->set_flag(FixedSpatialMaterial::FLAG_SRGB_VERTEX_COLOR,true); fsm->set_flag(FixedSpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR,true); fsm->set_flag(FixedSpatialMaterial::FLAG_UNSHADED,true); fsm->set_albedo(Color(1,1,1,1)); mesh->surface_set_material(0,fsm); } mm->set_mesh(mesh); int idx=0; _debug_mesh(0,0,p_baker->po2_bounds,mm,idx,p_baker); MultiMeshInstance *mmi = memnew( MultiMeshInstance ); mmi->set_multimesh(mm); add_child(mmi); if (get_tree()->get_edited_scene_root()==this){ mmi->set_owner(this); } else { mmi->set_owner(get_owner()); } } void GIProbe::_debug_bake() { bake(NULL,true); } AABB GIProbe::get_aabb() const { return AABB(-extents,extents*2); } PoolVector GIProbe::get_faces(uint32_t p_usage_flags) const { return PoolVector(); } void GIProbe::_bind_methods() { ClassDB::bind_method(_MD("set_probe_data","data"),&GIProbe::set_probe_data); ClassDB::bind_method(_MD("get_probe_data"),&GIProbe::get_probe_data); ClassDB::bind_method(_MD("set_subdiv","subdiv"),&GIProbe::set_subdiv); ClassDB::bind_method(_MD("get_subdiv"),&GIProbe::get_subdiv); ClassDB::bind_method(_MD("set_extents","extents"),&GIProbe::set_extents); ClassDB::bind_method(_MD("get_extents"),&GIProbe::get_extents); ClassDB::bind_method(_MD("set_dynamic_range","max"),&GIProbe::set_dynamic_range); ClassDB::bind_method(_MD("get_dynamic_range"),&GIProbe::get_dynamic_range); ClassDB::bind_method(_MD("set_energy","max"),&GIProbe::set_energy); ClassDB::bind_method(_MD("get_energy"),&GIProbe::get_energy); ClassDB::bind_method(_MD("set_interior","enable"),&GIProbe::set_interior); ClassDB::bind_method(_MD("is_interior"),&GIProbe::is_interior); ClassDB::bind_method(_MD("set_compress","enable"),&GIProbe::set_compress); ClassDB::bind_method(_MD("is_compressed"),&GIProbe::is_compressed); ClassDB::bind_method(_MD("bake","from_node","create_visual_debug"),&GIProbe::bake,DEFVAL(Variant()),DEFVAL(false)); ClassDB::bind_method(_MD("debug_bake"),&GIProbe::_debug_bake); ClassDB::set_method_flags(get_class_static(),_SCS("debug_bake"),METHOD_FLAGS_DEFAULT|METHOD_FLAG_EDITOR); ADD_PROPERTY( PropertyInfo(Variant::INT,"subdiv",PROPERTY_HINT_ENUM,"64,128,256,512"),_SCS("set_subdiv"),_SCS("get_subdiv")); ADD_PROPERTY( PropertyInfo(Variant::VECTOR3,"extents"),_SCS("set_extents"),_SCS("get_extents")); ADD_PROPERTY( PropertyInfo(Variant::INT,"dynamic_range",PROPERTY_HINT_RANGE,"1,16,1"),_SCS("set_dynamic_range"),_SCS("get_dynamic_range")); ADD_PROPERTY( PropertyInfo(Variant::REAL,"energy",PROPERTY_HINT_RANGE,"0,16,0.01"),_SCS("set_energy"),_SCS("get_energy")); ADD_PROPERTY( PropertyInfo(Variant::BOOL,"interior"),_SCS("set_interior"),_SCS("is_interior")); ADD_PROPERTY( PropertyInfo(Variant::BOOL,"compress"),_SCS("set_compress"),_SCS("is_compressed")); ADD_PROPERTY( PropertyInfo(Variant::OBJECT,"data",PROPERTY_HINT_RESOURCE_TYPE,"GIProbeData"),_SCS("set_probe_data"),_SCS("get_probe_data")); BIND_CONSTANT( SUBDIV_64 ); BIND_CONSTANT( SUBDIV_128 ); BIND_CONSTANT( SUBDIV_256 ); BIND_CONSTANT( SUBDIV_MAX ); } GIProbe::GIProbe() { subdiv=SUBDIV_128; dynamic_range=4; energy=1.0; extents=Vector3(10,10,10); color_scan_cell_width=4; bake_texture_size=128; interior=false; compress=false; gi_probe = VS::get_singleton()->gi_probe_create(); } GIProbe::~GIProbe() { }