/*************************************************************************/ /* visual_server_raster.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "visual_server_raster.h" #include "default_mouse_cursor.xpm" #include "globals.h" #include "io/marshalls.h" #include "os/os.h" #include "sort.h" // careful, these may run in different threads than the visual server BalloonAllocator<> *VisualServerRaster::OctreeAllocator::allocator = NULL; #define VS_CHANGED \ changes++; // print_line(__FUNCTION__); RID VisualServerRaster::texture_create() { return rasterizer->texture_create(); } void VisualServerRaster::texture_allocate(RID p_texture, int p_width, int p_height, Image::Format p_format, uint32_t p_flags) { rasterizer->texture_allocate(p_texture, p_width, p_height, p_format, p_flags); } void VisualServerRaster::texture_set_flags(RID p_texture, uint32_t p_flags) { VS_CHANGED; rasterizer->texture_set_flags(p_texture, p_flags); } void VisualServerRaster::texture_set_data(RID p_texture, const Image &p_image, CubeMapSide p_cube_side) { VS_CHANGED; rasterizer->texture_set_data(p_texture, p_image, p_cube_side); } Image VisualServerRaster::texture_get_data(RID p_texture, CubeMapSide p_cube_side) const { return rasterizer->texture_get_data(p_texture, p_cube_side); } uint32_t VisualServerRaster::texture_get_flags(RID p_texture) const { return rasterizer->texture_get_flags(p_texture); } Image::Format VisualServerRaster::texture_get_format(RID p_texture) const { return rasterizer->texture_get_format(p_texture); } uint32_t VisualServerRaster::texture_get_width(RID p_texture) const { return rasterizer->texture_get_width(p_texture); } uint32_t VisualServerRaster::texture_get_height(RID p_texture) const { return rasterizer->texture_get_height(p_texture); } void VisualServerRaster::texture_set_size_override(RID p_texture, int p_width, int p_height) { rasterizer->texture_set_size_override(p_texture, p_width, p_height); } bool VisualServerRaster::texture_can_stream(RID p_texture) const { return false; } void VisualServerRaster::texture_set_reload_hook(RID p_texture, ObjectID p_owner, const StringName &p_function) const { rasterizer->texture_set_reload_hook(p_texture, p_owner, p_function); } void VisualServerRaster::texture_set_path(RID p_texture, const String &p_path) { rasterizer->texture_set_path(p_texture, p_path); } String VisualServerRaster::texture_get_path(RID p_texture) const { return rasterizer->texture_get_path(p_texture); } void VisualServerRaster::texture_debug_usage(List *r_info) { rasterizer->texture_debug_usage(r_info); } void VisualServerRaster::texture_set_shrink_all_x2_on_set_data(bool p_enable) { rasterizer->texture_set_shrink_all_x2_on_set_data(p_enable); } /* SHADER API */ RID VisualServerRaster::shader_create(ShaderMode p_mode) { return rasterizer->shader_create(p_mode); } void VisualServerRaster::shader_set_mode(RID p_shader, ShaderMode p_mode) { VS_CHANGED; rasterizer->shader_set_mode(p_shader, p_mode); } VisualServer::ShaderMode VisualServerRaster::shader_get_mode(RID p_shader) const { return rasterizer->shader_get_mode(p_shader); } void VisualServerRaster::shader_set_code(RID p_shader, const String &p_vertex, const String &p_fragment, const String &p_light, int p_vertex_ofs, int p_fragment_ofs, int p_light_ofs) { VS_CHANGED; rasterizer->shader_set_code(p_shader, p_vertex, p_fragment, p_light, p_vertex_ofs, p_fragment_ofs, p_light_ofs); } String VisualServerRaster::shader_get_vertex_code(RID p_shader) const { return rasterizer->shader_get_vertex_code(p_shader); } String VisualServerRaster::shader_get_fragment_code(RID p_shader) const { return rasterizer->shader_get_fragment_code(p_shader); } String VisualServerRaster::shader_get_light_code(RID p_shader) const { return rasterizer->shader_get_light_code(p_shader); } void VisualServerRaster::shader_get_param_list(RID p_shader, List *p_param_list) const { return rasterizer->shader_get_param_list(p_shader, p_param_list); } void VisualServerRaster::shader_set_default_texture_param(RID p_shader, const StringName &p_name, RID p_texture) { rasterizer->shader_set_default_texture_param(p_shader, p_name, p_texture); } RID VisualServerRaster::shader_get_default_texture_param(RID p_shader, const StringName &p_name) const { return rasterizer->shader_get_default_texture_param(p_shader, p_name); } /* Material */ RID VisualServerRaster::material_create() { return rasterizer->material_create(); } void VisualServerRaster::material_set_shader(RID p_material, RID p_shader) { VS_CHANGED; rasterizer->material_set_shader(p_material, p_shader); } RID VisualServerRaster::material_get_shader(RID p_material) const { return rasterizer->material_get_shader(p_material); } void VisualServerRaster::material_set_param(RID p_material, const StringName &p_param, const Variant &p_value) { VS_CHANGED; rasterizer->material_set_param(p_material, p_param, p_value); } Variant VisualServerRaster::material_get_param(RID p_material, const StringName &p_param) const { return rasterizer->material_get_param(p_material, p_param); } void VisualServerRaster::material_set_flag(RID p_material, MaterialFlag p_flag, bool p_enabled) { VS_CHANGED; rasterizer->material_set_flag(p_material, p_flag, p_enabled); } void VisualServerRaster::material_set_depth_draw_mode(RID p_material, MaterialDepthDrawMode p_mode) { VS_CHANGED; rasterizer->material_set_depth_draw_mode(p_material, p_mode); } VS::MaterialDepthDrawMode VisualServerRaster::material_get_depth_draw_mode(RID p_material) const { return rasterizer->material_get_depth_draw_mode(p_material); } bool VisualServerRaster::material_get_flag(RID p_material, MaterialFlag p_flag) const { return rasterizer->material_get_flag(p_material, p_flag); } void VisualServerRaster::material_set_blend_mode(RID p_material, MaterialBlendMode p_mode) { VS_CHANGED; rasterizer->material_set_blend_mode(p_material, p_mode); } VS::MaterialBlendMode VisualServerRaster::material_get_blend_mode(RID p_material) const { return rasterizer->material_get_blend_mode(p_material); } void VisualServerRaster::material_set_line_width(RID p_material, float p_line_width) { VS_CHANGED; rasterizer->material_set_line_width(p_material, p_line_width); } float VisualServerRaster::material_get_line_width(RID p_material) const { return rasterizer->material_get_line_width(p_material); } /* FIXED MATERIAL */ RID VisualServerRaster::fixed_material_create() { return rasterizer->fixed_material_create(); } void VisualServerRaster::fixed_material_set_flag(RID p_material, FixedMaterialFlags p_flag, bool p_enabled) { rasterizer->fixed_material_set_flag(p_material, p_flag, p_enabled); } bool VisualServerRaster::fixed_material_get_flag(RID p_material, FixedMaterialFlags p_flag) const { return rasterizer->fixed_material_get_flag(p_material, p_flag); } void VisualServerRaster::fixed_material_set_param(RID p_material, FixedMaterialParam p_parameter, const Variant &p_value) { VS_CHANGED; rasterizer->fixed_material_set_parameter(p_material, p_parameter, p_value); } Variant VisualServerRaster::fixed_material_get_param(RID p_material, FixedMaterialParam p_parameter) const { return rasterizer->fixed_material_get_parameter(p_material, p_parameter); } void VisualServerRaster::fixed_material_set_texture(RID p_material, FixedMaterialParam p_parameter, RID p_texture) { VS_CHANGED; rasterizer->fixed_material_set_texture(p_material, p_parameter, p_texture); } RID VisualServerRaster::fixed_material_get_texture(RID p_material, FixedMaterialParam p_parameter) const { return rasterizer->fixed_material_get_texture(p_material, p_parameter); } void VisualServerRaster::fixed_material_set_texcoord_mode(RID p_material, FixedMaterialParam p_parameter, FixedMaterialTexCoordMode p_mode) { VS_CHANGED; rasterizer->fixed_material_set_texcoord_mode(p_material, p_parameter, p_mode); } VS::FixedMaterialTexCoordMode VisualServerRaster::fixed_material_get_texcoord_mode(RID p_material, FixedMaterialParam p_parameter) const { return rasterizer->fixed_material_get_texcoord_mode(p_material, p_parameter); } void VisualServerRaster::fixed_material_set_point_size(RID p_material, float p_size) { VS_CHANGED rasterizer->fixed_material_set_point_size(p_material, p_size); } float VisualServerRaster::fixed_material_get_point_size(RID p_material) const { return rasterizer->fixed_material_get_point_size(p_material); } void VisualServerRaster::fixed_material_set_uv_transform(RID p_material, const Transform &p_transform) { VS_CHANGED; rasterizer->fixed_material_set_uv_transform(p_material, p_transform); } Transform VisualServerRaster::fixed_material_get_uv_transform(RID p_material) const { return rasterizer->fixed_material_get_uv_transform(p_material); } void VisualServerRaster::fixed_material_set_light_shader(RID p_material, FixedMaterialLightShader p_shader) { VS_CHANGED; rasterizer->fixed_material_set_light_shader(p_material, p_shader); } VisualServerRaster::FixedMaterialLightShader VisualServerRaster::fixed_material_get_light_shader(RID p_material) const { return rasterizer->fixed_material_get_light_shader(p_material); } /* MESH API */ RID VisualServerRaster::mesh_create() { return rasterizer->mesh_create(); } void VisualServerRaster::mesh_set_morph_target_count(RID p_mesh, int p_amount) { rasterizer->mesh_set_morph_target_count(p_mesh, p_amount); int amount = rasterizer->mesh_get_morph_target_count(p_mesh); Map >::Element *E = instance_dependency_map.find(p_mesh); if (!E) return; Set::Element *I = E->get().front(); while (I) { Instance *ins = instance_owner.get(I->get()); ins->data.morph_values.resize(amount); I = I->next(); } } int VisualServerRaster::mesh_get_morph_target_count(RID p_mesh) const { return rasterizer->mesh_get_morph_target_count(p_mesh); } void VisualServerRaster::mesh_set_morph_target_mode(RID p_mesh, MorphTargetMode p_mode) { rasterizer->mesh_set_morph_target_mode(p_mesh, p_mode); } VisualServer::MorphTargetMode VisualServerRaster::mesh_get_morph_target_mode(RID p_mesh) const { return rasterizer->mesh_get_morph_target_mode(p_mesh); } void VisualServerRaster::mesh_add_custom_surface(RID p_mesh, const Variant &p_dat) { } void VisualServerRaster::mesh_add_surface(RID p_mesh, PrimitiveType p_primitive, const Array &p_arrays, const Array &p_blend_shapes, bool p_alpha_sort) { VS_CHANGED; _dependency_queue_update(p_mesh, true, true); rasterizer->mesh_add_surface(p_mesh, p_primitive, p_arrays, p_blend_shapes, p_alpha_sort); } Array VisualServerRaster::mesh_get_surface_arrays(RID p_mesh, int p_surface) const { return rasterizer->mesh_get_surface_arrays(p_mesh, p_surface); } Array VisualServerRaster::mesh_get_surface_morph_arrays(RID p_mesh, int p_surface) const { return rasterizer->mesh_get_surface_morph_arrays(p_mesh, p_surface); } void VisualServerRaster::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material, bool p_owned) { VS_CHANGED; rasterizer->mesh_surface_set_material(p_mesh, p_surface, p_material, p_owned); } RID VisualServerRaster::mesh_surface_get_material(RID p_mesh, int p_surface) const { return rasterizer->mesh_surface_get_material(p_mesh, p_surface); } int VisualServerRaster::mesh_surface_get_array_len(RID p_mesh, int p_surface) const { return rasterizer->mesh_surface_get_array_len(p_mesh, p_surface); } int VisualServerRaster::mesh_surface_get_array_index_len(RID p_mesh, int p_surface) const { return rasterizer->mesh_surface_get_array_index_len(p_mesh, p_surface); } uint32_t VisualServerRaster::mesh_surface_get_format(RID p_mesh, int p_surface) const { return rasterizer->mesh_surface_get_format(p_mesh, p_surface); } VisualServer::PrimitiveType VisualServerRaster::mesh_surface_get_primitive_type(RID p_mesh, int p_surface) const { return rasterizer->mesh_surface_get_primitive_type(p_mesh, p_surface); } void VisualServerRaster::mesh_remove_surface(RID p_mesh, int p_surface) { rasterizer->mesh_remove_surface(p_mesh, p_surface); _dependency_queue_update(p_mesh, true, true); } int VisualServerRaster::mesh_get_surface_count(RID p_mesh) const { return rasterizer->mesh_get_surface_count(p_mesh); } void VisualServerRaster::mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) { VS_CHANGED; _dependency_queue_update(p_mesh, true); rasterizer->mesh_set_custom_aabb(p_mesh, p_aabb); } AABB VisualServerRaster::mesh_get_custom_aabb(RID p_mesh) const { return rasterizer->mesh_get_custom_aabb(p_mesh); } void VisualServerRaster::mesh_clear(RID p_mesh) { ERR_FAIL_COND(!rasterizer->is_mesh(p_mesh)); while (rasterizer->mesh_get_surface_count(p_mesh)) { rasterizer->mesh_remove_surface(p_mesh, 0); } _dependency_queue_update(p_mesh, true, true); } /* MULTIMESH */ RID VisualServerRaster::multimesh_create() { return rasterizer->multimesh_create(); } void VisualServerRaster::multimesh_set_instance_count(RID p_multimesh, int p_count) { VS_CHANGED; rasterizer->multimesh_set_instance_count(p_multimesh, p_count); } int VisualServerRaster::multimesh_get_instance_count(RID p_multimesh) const { return rasterizer->multimesh_get_instance_count(p_multimesh); } void VisualServerRaster::multimesh_set_mesh(RID p_multimesh, RID p_mesh) { VS_CHANGED; rasterizer->multimesh_set_mesh(p_multimesh, p_mesh); } void VisualServerRaster::multimesh_set_aabb(RID p_multimesh, const AABB &p_aabb) { VS_CHANGED; rasterizer->multimesh_set_aabb(p_multimesh, p_aabb); _dependency_queue_update(p_multimesh, true); } void VisualServerRaster::multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform &p_transform) { VS_CHANGED; rasterizer->multimesh_instance_set_transform(p_multimesh, p_index, p_transform); } void VisualServerRaster::multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) { VS_CHANGED; rasterizer->multimesh_instance_set_color(p_multimesh, p_index, p_color); } RID VisualServerRaster::multimesh_get_mesh(RID p_multimesh) const { return rasterizer->multimesh_get_mesh(p_multimesh); } AABB VisualServerRaster::multimesh_get_aabb(RID p_multimesh, const AABB &p_aabb) const { return rasterizer->multimesh_get_aabb(p_multimesh); } Transform VisualServerRaster::multimesh_instance_get_transform(RID p_multimesh, int p_index) const { return rasterizer->multimesh_instance_get_transform(p_multimesh, p_index); } Color VisualServerRaster::multimesh_instance_get_color(RID p_multimesh, int p_index) const { return rasterizer->multimesh_instance_get_color(p_multimesh, p_index); } void VisualServerRaster::multimesh_set_visible_instances(RID p_multimesh, int p_visible) { rasterizer->multimesh_set_visible_instances(p_multimesh, p_visible); } int VisualServerRaster::multimesh_get_visible_instances(RID p_multimesh) const { return rasterizer->multimesh_get_visible_instances(p_multimesh); } /* IMMEDIATE API */ RID VisualServerRaster::immediate_create() { return rasterizer->immediate_create(); } void VisualServerRaster::immediate_begin(RID p_immediate, PrimitiveType p_primitive, RID p_texture) { rasterizer->immediate_begin(p_immediate, p_primitive, p_texture); } void VisualServerRaster::immediate_vertex(RID p_immediate, const Vector3 &p_vertex) { rasterizer->immediate_vertex(p_immediate, p_vertex); } void VisualServerRaster::immediate_normal(RID p_immediate, const Vector3 &p_normal) { rasterizer->immediate_normal(p_immediate, p_normal); } void VisualServerRaster::immediate_tangent(RID p_immediate, const Plane &p_tangent) { rasterizer->immediate_tangent(p_immediate, p_tangent); } void VisualServerRaster::immediate_color(RID p_immediate, const Color &p_color) { rasterizer->immediate_color(p_immediate, p_color); } void VisualServerRaster::immediate_uv(RID p_immediate, const Vector2 &p_uv) { rasterizer->immediate_uv(p_immediate, p_uv); } void VisualServerRaster::immediate_uv2(RID p_immediate, const Vector2 &p_uv2) { rasterizer->immediate_uv2(p_immediate, p_uv2); } void VisualServerRaster::immediate_end(RID p_immediate) { VS_CHANGED; _dependency_queue_update(p_immediate, true); rasterizer->immediate_end(p_immediate); } void VisualServerRaster::immediate_clear(RID p_immediate) { VS_CHANGED; _dependency_queue_update(p_immediate, true); rasterizer->immediate_clear(p_immediate); } void VisualServerRaster::immediate_set_material(RID p_immediate, RID p_material) { rasterizer->immediate_set_material(p_immediate, p_material); } RID VisualServerRaster::immediate_get_material(RID p_immediate) const { return rasterizer->immediate_get_material(p_immediate); } /* PARTICLES API */ RID VisualServerRaster::particles_create() { return rasterizer->particles_create(); } void VisualServerRaster::particles_set_amount(RID p_particles, int p_amount) { VS_CHANGED; rasterizer->particles_set_amount(p_particles, p_amount); } int VisualServerRaster::particles_get_amount(RID p_particles) const { return rasterizer->particles_get_amount(p_particles); } void VisualServerRaster::particles_set_emitting(RID p_particles, bool p_emitting) { VS_CHANGED; rasterizer->particles_set_emitting(p_particles, p_emitting); } bool VisualServerRaster::particles_is_emitting(RID p_particles) const { return rasterizer->particles_is_emitting(p_particles); } void VisualServerRaster::particles_set_visibility_aabb(RID p_particles, const AABB &p_visibility) { VS_CHANGED; rasterizer->particles_set_visibility_aabb(p_particles, p_visibility); } AABB VisualServerRaster::particles_get_visibility_aabb(RID p_particles) const { return rasterizer->particles_get_visibility_aabb(p_particles); } void VisualServerRaster::particles_set_emission_half_extents(RID p_particles, const Vector3 &p_half_extents) { VS_CHANGED; rasterizer->particles_set_emission_half_extents(p_particles, p_half_extents); } Vector3 VisualServerRaster::particles_get_emission_half_extents(RID p_particles) const { return rasterizer->particles_get_emission_half_extents(p_particles); } void VisualServerRaster::particles_set_emission_base_velocity(RID p_particles, const Vector3 &p_base_velocity) { VS_CHANGED; rasterizer->particles_set_emission_base_velocity(p_particles, p_base_velocity); } Vector3 VisualServerRaster::particles_get_emission_base_velocity(RID p_particles) const { return rasterizer->particles_get_emission_base_velocity(p_particles); } void VisualServerRaster::particles_set_emission_points(RID p_particles, const DVector &p_points) { VS_CHANGED; rasterizer->particles_set_emission_points(p_particles, p_points); } DVector VisualServerRaster::particles_get_emission_points(RID p_particles) const { return rasterizer->particles_get_emission_points(p_particles); } void VisualServerRaster::particles_set_gravity_normal(RID p_particles, const Vector3 &p_normal) { VS_CHANGED; rasterizer->particles_set_gravity_normal(p_particles, p_normal); } Vector3 VisualServerRaster::particles_get_gravity_normal(RID p_particles) const { return rasterizer->particles_get_gravity_normal(p_particles); } void VisualServerRaster::particles_set_variable(RID p_particles, ParticleVariable p_variable, float p_value) { VS_CHANGED; rasterizer->particles_set_variable(p_particles, p_variable, p_value); } float VisualServerRaster::particles_get_variable(RID p_particles, ParticleVariable p_variable) const { return rasterizer->particles_get_variable(p_particles, p_variable); } void VisualServerRaster::particles_set_randomness(RID p_particles, ParticleVariable p_variable, float p_randomness) { VS_CHANGED; rasterizer->particles_set_randomness(p_particles, p_variable, p_randomness); } float VisualServerRaster::particles_get_randomness(RID p_particles, ParticleVariable p_variable) const { return rasterizer->particles_get_randomness(p_particles, p_variable); } void VisualServerRaster::particles_set_color_phases(RID p_particles, int p_phases) { VS_CHANGED; rasterizer->particles_set_color_phases(p_particles, p_phases); } int VisualServerRaster::particles_get_color_phases(RID p_particles) const { return rasterizer->particles_get_color_phases(p_particles); } void VisualServerRaster::particles_set_color_phase_pos(RID p_particles, int p_phase, float p_pos) { VS_CHANGED; rasterizer->particles_set_color_phase_pos(p_particles, p_phase, p_pos); } float VisualServerRaster::particles_get_color_phase_pos(RID p_particles, int p_phase) const { return rasterizer->particles_get_color_phase_pos(p_particles, p_phase); } void VisualServerRaster::particles_set_attractors(RID p_particles, int p_attractors) { VS_CHANGED; rasterizer->particles_set_attractors(p_particles, p_attractors); } int VisualServerRaster::particles_get_attractors(RID p_particles) const { return rasterizer->particles_get_attractors(p_particles); } void VisualServerRaster::particles_set_attractor_pos(RID p_particles, int p_attractor, const Vector3 &p_pos) { VS_CHANGED; rasterizer->particles_set_attractor_pos(p_particles, p_attractor, p_pos); } Vector3 VisualServerRaster::particles_get_attractor_pos(RID p_particles, int p_attractor) const { return rasterizer->particles_get_attractor_pos(p_particles, p_attractor); } void VisualServerRaster::particles_set_attractor_strength(RID p_particles, int p_attractor, float p_force) { VS_CHANGED; rasterizer->particles_set_attractor_strength(p_particles, p_attractor, p_force); } float VisualServerRaster::particles_get_attractor_strength(RID p_particles, int p_attractor) const { return rasterizer->particles_get_attractor_strength(p_particles, p_attractor); } void VisualServerRaster::particles_set_color_phase_color(RID p_particles, int p_phase, const Color &p_color) { VS_CHANGED; rasterizer->particles_set_color_phase_color(p_particles, p_phase, p_color); } Color VisualServerRaster::particles_get_color_phase_color(RID p_particles, int p_phase) const { return rasterizer->particles_get_color_phase_color(p_particles, p_phase); } void VisualServerRaster::particles_set_material(RID p_particles, RID p_material, bool p_owned) { VS_CHANGED; rasterizer->particles_set_material(p_particles, p_material, p_owned); } RID VisualServerRaster::particles_get_material(RID p_particles) const { return rasterizer->particles_get_material(p_particles); } void VisualServerRaster::particles_set_height_from_velocity(RID p_particles, bool p_enable) { VS_CHANGED; rasterizer->particles_set_height_from_velocity(p_particles, p_enable); } bool VisualServerRaster::particles_has_height_from_velocity(RID p_particles) const { return rasterizer->particles_has_height_from_velocity(p_particles); } void VisualServerRaster::particles_set_use_local_coordinates(RID p_particles, bool p_enable) { rasterizer->particles_set_use_local_coordinates(p_particles, p_enable); } bool VisualServerRaster::particles_is_using_local_coordinates(RID p_particles) const { return rasterizer->particles_is_using_local_coordinates(p_particles); } /* Light API */ RID VisualServerRaster::light_create(LightType p_type) { return rasterizer->light_create(p_type); } VisualServer::LightType VisualServerRaster::light_get_type(RID p_light) const { return rasterizer->light_get_type(p_light); } void VisualServerRaster::light_set_color(RID p_light, LightColor p_type, const Color &p_color) { VS_CHANGED; rasterizer->light_set_color(p_light, p_type, p_color); } Color VisualServerRaster::light_get_color(RID p_light, LightColor p_type) const { return rasterizer->light_get_color(p_light, p_type); } void VisualServerRaster::light_set_shadow(RID p_light, bool p_enabled) { VS_CHANGED; rasterizer->light_set_shadow(p_light, p_enabled); } bool VisualServerRaster::light_has_shadow(RID p_light) const { return rasterizer->light_has_shadow(p_light); } void VisualServerRaster::light_set_volumetric(RID p_light, bool p_enabled) { VS_CHANGED; rasterizer->light_set_volumetric(p_light, p_enabled); } bool VisualServerRaster::light_is_volumetric(RID p_light) const { return rasterizer->light_is_volumetric(p_light); } void VisualServerRaster::light_set_projector(RID p_light, RID p_texture) { VS_CHANGED; rasterizer->light_set_projector(p_light, p_texture); } RID VisualServerRaster::light_get_projector(RID p_light) const { return rasterizer->light_get_projector(p_light); } void VisualServerRaster::light_set_param(RID p_light, LightParam p_var, float p_value) { VS_CHANGED; rasterizer->light_set_var(p_light, p_var, p_value); _dependency_queue_update(p_light, true); } float VisualServerRaster::light_get_param(RID p_light, LightParam p_var) const { return rasterizer->light_get_var(p_light, p_var); } void VisualServerRaster::light_set_operator(RID p_light, LightOp p_op) { VS_CHANGED; rasterizer->light_set_operator(p_light, p_op); } VisualServerRaster::LightOp VisualServerRaster::light_get_operator(RID p_light) const { return rasterizer->light_get_operator(p_light); } void VisualServerRaster::light_omni_set_shadow_mode(RID p_light, LightOmniShadowMode p_mode) { VS_CHANGED; rasterizer->light_omni_set_shadow_mode(p_light, p_mode); } VisualServerRaster::LightOmniShadowMode VisualServerRaster::light_omni_get_shadow_mode(RID p_light) const { return rasterizer->light_omni_get_shadow_mode(p_light); } void VisualServerRaster::light_directional_set_shadow_mode(RID p_light, LightDirectionalShadowMode p_mode) { VS_CHANGED; rasterizer->light_directional_set_shadow_mode(p_light, p_mode); } VS::LightDirectionalShadowMode VisualServerRaster::light_directional_get_shadow_mode(RID p_light) const { return rasterizer->light_directional_get_shadow_mode(p_light); } void VisualServerRaster::light_directional_set_shadow_param(RID p_light, LightDirectionalShadowParam p_param, float p_value) { VS_CHANGED; rasterizer->light_directional_set_shadow_param(p_light, p_param, p_value); } float VisualServerRaster::light_directional_get_shadow_param(RID p_light, LightDirectionalShadowParam p_param) const { return rasterizer->light_directional_get_shadow_param(p_light, p_param); } RID VisualServerRaster::skeleton_create() { return rasterizer->skeleton_create(); } void VisualServerRaster::skeleton_resize(RID p_skeleton, int p_bones) { VS_CHANGED; rasterizer->skeleton_resize(p_skeleton, p_bones); } int VisualServerRaster::skeleton_get_bone_count(RID p_skeleton) const { return rasterizer->skeleton_get_bone_count(p_skeleton); } void VisualServerRaster::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform &p_transform) { VS_CHANGED; rasterizer->skeleton_bone_set_transform(p_skeleton, p_bone, p_transform); Map >::Element *E = skeleton_dependency_map.find(p_skeleton); if (E) { //detach skeletons for (Set::Element *F = E->get().front(); F; F = F->next()) { _instance_queue_update(F->get(), true); } } } Transform VisualServerRaster::skeleton_bone_get_transform(RID p_skeleton, int p_bone) { return rasterizer->skeleton_bone_get_transform(p_skeleton, p_bone); } /* VISIBILITY API */ /* ROOM API */ RID VisualServerRaster::room_create() { Room *room = memnew(Room); ERR_FAIL_COND_V(!room, RID()); return room_owner.make_rid(room); } void VisualServerRaster::room_set_bounds(RID p_room, const BSP_Tree &p_bounds) { VS_CHANGED; Room *room = room_owner.get(p_room); ERR_FAIL_COND(!room); room->bounds = p_bounds; _dependency_queue_update(p_room, true); } BSP_Tree VisualServerRaster::room_get_bounds(RID p_room) const { Room *room = room_owner.get(p_room); ERR_FAIL_COND_V(!room, BSP_Tree()); return room->bounds; } /* PORTAL API */ RID VisualServerRaster::portal_create() { VS_CHANGED; Portal *portal = memnew(Portal); ERR_FAIL_COND_V(!portal, RID()); return portal_owner.make_rid(portal); } void VisualServerRaster::portal_set_shape(RID p_portal, const Vector &p_shape) { VS_CHANGED; Portal *portal = portal_owner.get(p_portal); ERR_FAIL_COND(!portal); portal->shape = p_shape; portal->bounds = Rect2(); for (int i = 0; i < p_shape.size(); i++) { if (i == 0) portal->bounds.pos = p_shape[i]; else portal->bounds.expand_to(p_shape[i]); } _dependency_queue_update(p_portal, true); } Vector VisualServerRaster::portal_get_shape(RID p_portal) const { Portal *portal = portal_owner.get(p_portal); ERR_FAIL_COND_V(!portal, Vector()); return portal->shape; } void VisualServerRaster::portal_set_enabled(RID p_portal, bool p_enabled) { VS_CHANGED; Portal *portal = portal_owner.get(p_portal); ERR_FAIL_COND(!portal); portal->enabled = p_enabled; } bool VisualServerRaster::portal_is_enabled(RID p_portal) const { Portal *portal = portal_owner.get(p_portal); ERR_FAIL_COND_V(!portal, false); return portal->enabled; } void VisualServerRaster::portal_set_disable_distance(RID p_portal, float p_distance) { VS_CHANGED; Portal *portal = portal_owner.get(p_portal); ERR_FAIL_COND(!portal); portal->disable_distance = p_distance; } float VisualServerRaster::portal_get_disable_distance(RID p_portal) const { Portal *portal = portal_owner.get(p_portal); ERR_FAIL_COND_V(!portal, -1); return portal->disable_distance; } void VisualServerRaster::portal_set_disabled_color(RID p_portal, const Color &p_color) { VS_CHANGED; Portal *portal = portal_owner.get(p_portal); ERR_FAIL_COND(!portal); portal->disable_color = p_color; } Color VisualServerRaster::portal_get_disabled_color(RID p_portal) const { Portal *portal = portal_owner.get(p_portal); ERR_FAIL_COND_V(!portal, Color()); return portal->disable_color; } void VisualServerRaster::portal_set_connect_range(RID p_portal, float p_range) { VS_CHANGED; Portal *portal = portal_owner.get(p_portal); ERR_FAIL_COND(!portal); portal->connect_range = p_range; _dependency_queue_update(p_portal, true); } float VisualServerRaster::portal_get_connect_range(RID p_portal) const { Portal *portal = portal_owner.get(p_portal); ERR_FAIL_COND_V(!portal, 0); return portal->connect_range; } RID VisualServerRaster::baked_light_create() { BakedLight *baked_light = memnew(BakedLight); ERR_FAIL_COND_V(!baked_light, RID()); baked_light->data.mode = BAKED_LIGHT_OCTREE; baked_light->data.octree_lattice_size = 0; baked_light->data.octree_lattice_divide = 0; baked_light->data.octree_steps = 1; baked_light->data.lightmap_multiplier = 1.0; baked_light->data.realtime_color_enabled = false; baked_light->data.realtime_color = Color(1.0, 1.0, 1.0); baked_light->data.realtime_energy = 1.0; return baked_light_owner.make_rid(baked_light); } void VisualServerRaster::baked_light_set_mode(RID p_baked_light, BakedLightMode p_mode) { VS_CHANGED; BakedLight *baked_light = baked_light_owner.get(p_baked_light); ERR_FAIL_COND(!baked_light); baked_light->data.mode = p_mode; baked_light->data.color_multiplier = 1.0; _dependency_queue_update(p_baked_light, true); } VisualServer::BakedLightMode VisualServerRaster::baked_light_get_mode(RID p_baked_light) const { const BakedLight *baked_light = baked_light_owner.get(p_baked_light); ERR_FAIL_COND_V(!baked_light, BAKED_LIGHT_OCTREE); return baked_light->data.mode; } void VisualServerRaster::baked_light_set_lightmap_multiplier(RID p_baked_light, float p_multiplier) { VS_CHANGED; BakedLight *baked_light = baked_light_owner.get(p_baked_light); ERR_FAIL_COND(!baked_light); baked_light->data.lightmap_multiplier = p_multiplier; } float VisualServerRaster::baked_light_get_lightmap_multiplier(RID p_baked_light) const { const BakedLight *baked_light = baked_light_owner.get(p_baked_light); ERR_FAIL_COND_V(!baked_light, 0); return baked_light->data.lightmap_multiplier; } void VisualServerRaster::baked_light_set_octree(RID p_baked_light, const DVector p_octree) { VS_CHANGED; BakedLight *baked_light = baked_light_owner.get(p_baked_light); ERR_FAIL_COND(!baked_light); if (p_octree.size() == 0) { if (baked_light->data.octree_texture.is_valid()) rasterizer->free(baked_light->data.octree_texture); baked_light->data.octree_texture = RID(); baked_light->octree_aabb = AABB(); baked_light->octree_tex_size = Size2(); } else { int tex_w; int tex_h; int light_tex_w; int light_tex_h; bool is16; bool has_light_tex = false; { DVector::Read r = p_octree.read(); tex_w = decode_uint32(&r[0]); tex_h = decode_uint32(&r[4]); print_line("TEX W: " + itos(tex_w) + " TEX H:" + itos(tex_h) + " LEN: " + itos(p_octree.size())); is16 = decode_uint32(&r[8]); baked_light->data.octree_lattice_size = decode_float(&r[12]); baked_light->data.octree_lattice_divide = tex_w / 4.0; print_line("LATTICE SIZE: " + rtos(baked_light->data.octree_lattice_size)); print_line("LATTICE DIVIDE: " + rtos(baked_light->data.octree_lattice_divide)); baked_light->data.octree_steps = decode_uint32(&r[16]); baked_light->data.octree_tex_pixel_size.x = 1.0 / tex_w; baked_light->data.octree_tex_pixel_size.y = 1.0 / tex_h; baked_light->data.texture_multiplier = decode_uint32(&r[20]); light_tex_w = decode_uint16(&r[24]); light_tex_h = decode_uint16(&r[26]); print_line("ltexw " + itos(light_tex_w)); print_line("ltexh " + itos(light_tex_h)); if (light_tex_w > 0 && light_tex_h > 0) { baked_light->data.light_tex_pixel_size.x = 1.0 / light_tex_w; baked_light->data.light_tex_pixel_size.y = 1.0 / light_tex_h; has_light_tex = true; } else { baked_light->data.light_tex_pixel_size = baked_light->data.octree_tex_pixel_size; } baked_light->octree_aabb.pos.x = decode_float(&r[32]); baked_light->octree_aabb.pos.y = decode_float(&r[36]); baked_light->octree_aabb.pos.z = decode_float(&r[40]); baked_light->octree_aabb.size.x = decode_float(&r[44]); baked_light->octree_aabb.size.y = decode_float(&r[48]); baked_light->octree_aabb.size.z = decode_float(&r[52]); } if (baked_light->data.octree_texture.is_valid()) { if (tex_w != baked_light->octree_tex_size.x || tex_h != baked_light->octree_tex_size.y) { rasterizer->free(baked_light->data.octree_texture); baked_light->data.octree_texture = RID(); baked_light->octree_tex_size.x = 0; baked_light->octree_tex_size.y = 0; } } if (baked_light->data.light_texture.is_valid()) { if (!has_light_tex || light_tex_w != baked_light->light_tex_size.x || light_tex_h != baked_light->light_tex_size.y) { rasterizer->free(baked_light->data.light_texture); baked_light->data.light_texture = RID(); baked_light->light_tex_size.x = 0; baked_light->light_tex_size.y = 0; } } if (!baked_light->data.octree_texture.is_valid()) { baked_light->data.octree_texture = rasterizer->texture_create(); rasterizer->texture_allocate(baked_light->data.octree_texture, tex_w, tex_h, Image::FORMAT_RGBA, TEXTURE_FLAG_FILTER); baked_light->octree_tex_size.x = tex_w; baked_light->octree_tex_size.y = tex_h; } if (!baked_light->data.light_texture.is_valid() && has_light_tex) { baked_light->data.light_texture = rasterizer->texture_create(); rasterizer->texture_allocate(baked_light->data.light_texture, light_tex_w, light_tex_h, Image::FORMAT_RGBA, TEXTURE_FLAG_FILTER); baked_light->light_tex_size.x = light_tex_w; baked_light->light_tex_size.y = light_tex_h; } Image img(tex_w, tex_h, 0, Image::FORMAT_RGBA, p_octree); rasterizer->texture_set_data(baked_light->data.octree_texture, img); } _dependency_queue_update(p_baked_light, true); } DVector VisualServerRaster::baked_light_get_octree(RID p_baked_light) const { BakedLight *baked_light = baked_light_owner.get(p_baked_light); ERR_FAIL_COND_V(!baked_light, DVector()); if (rasterizer->is_texture(baked_light->data.octree_texture)) { Image img = rasterizer->texture_get_data(baked_light->data.octree_texture); return img.get_data(); } else { return DVector(); } } void VisualServerRaster::baked_light_set_light(RID p_baked_light, const DVector p_light) { VS_CHANGED; BakedLight *baked_light = baked_light_owner.get(p_baked_light); ERR_FAIL_COND(!baked_light); ERR_FAIL_COND(p_light.size() == 0); int tex_w = baked_light->light_tex_size.x; int tex_h = baked_light->light_tex_size.y; ERR_FAIL_COND(tex_w == 0 && tex_h == 0); ERR_FAIL_COND(!baked_light->data.light_texture.is_valid()); print_line("w: " + itos(tex_w) + " h: " + itos(tex_h) + " lightsize: " + itos(p_light.size())); Image img(tex_w, tex_h, 0, Image::FORMAT_RGBA, p_light); rasterizer->texture_set_data(baked_light->data.light_texture, img); } DVector VisualServerRaster::baked_light_get_light(RID p_baked_light) const { BakedLight *baked_light = baked_light_owner.get(p_baked_light); ERR_FAIL_COND_V(!baked_light, DVector()); if (rasterizer->is_texture(baked_light->data.light_texture)) { Image img = rasterizer->texture_get_data(baked_light->data.light_texture); return img.get_data(); } else { return DVector(); } } void VisualServerRaster::baked_light_set_sampler_octree(RID p_baked_light, const DVector &p_sampler) { BakedLight *baked_light = baked_light_owner.get(p_baked_light); ERR_FAIL_COND(!baked_light); baked_light->sampler = p_sampler; } DVector VisualServerRaster::baked_light_get_sampler_octree(RID p_baked_light) const { BakedLight *baked_light = baked_light_owner.get(p_baked_light); ERR_FAIL_COND_V(!baked_light, DVector()); return baked_light->sampler; } void VisualServerRaster::baked_light_add_lightmap(RID p_baked_light, const RID p_texture, int p_id) { VS_CHANGED; BakedLight *baked_light = baked_light_owner.get(p_baked_light); ERR_FAIL_COND(!baked_light); baked_light->data.lightmaps.insert(p_id, p_texture); } void VisualServerRaster::baked_light_clear_lightmaps(RID p_baked_light) { VS_CHANGED; BakedLight *baked_light = baked_light_owner.get(p_baked_light); ERR_FAIL_COND(!baked_light); baked_light->data.lightmaps.clear(); } void VisualServerRaster::baked_light_set_realtime_color_enabled(RID p_baked_light, const bool p_enabled) { VS_CHANGED; BakedLight *baked_light = baked_light_owner.get(p_baked_light); ERR_FAIL_COND(!baked_light); baked_light->data.realtime_color_enabled = p_enabled; } bool VisualServerRaster::baked_light_get_realtime_color_enabled(RID p_baked_light) const { const BakedLight *baked_light = baked_light_owner.get(p_baked_light); ERR_FAIL_COND_V(!baked_light, false); return baked_light->data.realtime_color_enabled; } void VisualServerRaster::baked_light_set_realtime_color(RID p_baked_light, const Color &p_color) { VS_CHANGED; BakedLight *baked_light = baked_light_owner.get(p_baked_light); ERR_FAIL_COND(!baked_light); baked_light->data.realtime_color = p_color; } Color VisualServerRaster::baked_light_get_realtime_color(RID p_baked_light) const { const BakedLight *baked_light = baked_light_owner.get(p_baked_light); ERR_FAIL_COND_V(!baked_light, Color(1.0, 1.0, 1.0)); return baked_light->data.realtime_color; } void VisualServerRaster::baked_light_set_realtime_energy(RID p_baked_light, const float p_energy) { VS_CHANGED; BakedLight *baked_light = baked_light_owner.get(p_baked_light); ERR_FAIL_COND(!baked_light); baked_light->data.realtime_energy = p_energy; } float VisualServerRaster::baked_light_get_realtime_energy(RID p_baked_light) const { const BakedLight *baked_light = baked_light_owner.get(p_baked_light); ERR_FAIL_COND_V(!baked_light, 1.0f); return baked_light->data.realtime_energy; } /* BAKED LIGHT SAMPLER */ RID VisualServerRaster::baked_light_sampler_create() { BakedLightSampler *blsamp = memnew(BakedLightSampler); RID rid = baked_light_sampler_owner.make_rid(blsamp); _update_baked_light_sampler_dp_cache(blsamp); return rid; } void VisualServerRaster::baked_light_sampler_set_param(RID p_baked_light_sampler, BakedLightSamplerParam p_param, float p_value) { VS_CHANGED; BakedLightSampler *blsamp = baked_light_sampler_owner.get(p_baked_light_sampler); ERR_FAIL_COND(!blsamp); ERR_FAIL_INDEX(p_param, BAKED_LIGHT_SAMPLER_MAX); blsamp->params[p_param] = p_value; _dependency_queue_update(p_baked_light_sampler, true); } float VisualServerRaster::baked_light_sampler_get_param(RID p_baked_light_sampler, BakedLightSamplerParam p_param) const { BakedLightSampler *blsamp = baked_light_sampler_owner.get(p_baked_light_sampler); ERR_FAIL_COND_V(!blsamp, 0); ERR_FAIL_INDEX_V(p_param, BAKED_LIGHT_SAMPLER_MAX, 0); return blsamp->params[p_param]; } void VisualServerRaster::_update_baked_light_sampler_dp_cache(BakedLightSampler *blsamp) { int res = blsamp->resolution; blsamp->dp_cache.resize(res * res * 2); Vector3 *dp_normals = blsamp->dp_cache.ptr(); for (int p = 0; p < 2; p++) { float sign = p == 0 ? 1 : -1; int ofs = res * res * p; for (int i = 0; i < res; i++) { for (int j = 0; j < res; j++) { Vector2 v( (i / float(res)) * 2.0 - 1.0, (j / float(res)) * 2.0 - 1.0); float l = v.length(); if (l > 1.0) { v /= l; l = 1.0; //clamp to avoid imaginary } v *= (2 * l) / (l * l + 1); //inverse of the dual paraboloid function Vector3 n = Vector3(v.x, v.y, sign * sqrtf(MAX(1 - v.dot(v), 0))); //reconstruction of z n.y *= sign; dp_normals[j * res + i + ofs] = n; } } } } void VisualServerRaster::baked_light_sampler_set_resolution(RID p_baked_light_sampler, int p_resolution) { ERR_FAIL_COND(p_resolution < 4 || p_resolution > 64); VS_CHANGED; BakedLightSampler *blsamp = baked_light_sampler_owner.get(p_baked_light_sampler); ERR_FAIL_COND(!blsamp); blsamp->resolution = p_resolution; _update_baked_light_sampler_dp_cache(blsamp); } int VisualServerRaster::baked_light_sampler_get_resolution(RID p_baked_light_sampler) const { BakedLightSampler *blsamp = baked_light_sampler_owner.get(p_baked_light_sampler); ERR_FAIL_COND_V(!blsamp, 0); return blsamp->resolution; } /* CAMERA API */ RID VisualServerRaster::camera_create() { Camera *camera = memnew(Camera); return camera_owner.make_rid(camera); } void VisualServerRaster::camera_set_perspective(RID p_camera, float p_fovy_degrees, float p_z_near, float p_z_far) { VS_CHANGED Camera *camera = camera_owner.get(p_camera); ERR_FAIL_COND(!camera); camera->type = Camera::PERSPECTIVE; camera->fov = p_fovy_degrees; camera->znear = p_z_near; camera->zfar = p_z_far; } void VisualServerRaster::camera_set_orthogonal(RID p_camera, float p_size, float p_z_near, float p_z_far) { VS_CHANGED; Camera *camera = camera_owner.get(p_camera); ERR_FAIL_COND(!camera); camera->type = Camera::ORTHOGONAL; camera->size = p_size; camera->znear = p_z_near; camera->zfar = p_z_far; } void VisualServerRaster::camera_set_transform(RID p_camera, const Transform &p_transform) { VS_CHANGED; Camera *camera = camera_owner.get(p_camera); ERR_FAIL_COND(!camera); camera->transform = p_transform.orthonormalized(); } void VisualServerRaster::camera_set_visible_layers(RID p_camera, uint32_t p_layers) { VS_CHANGED; Camera *camera = camera_owner.get(p_camera); ERR_FAIL_COND(!camera); camera->visible_layers = p_layers; } uint32_t VisualServerRaster::camera_get_visible_layers(RID p_camera) const { const Camera *camera = camera_owner.get(p_camera); ERR_FAIL_COND_V(!camera, 0); return camera->visible_layers; } void VisualServerRaster::camera_set_environment(RID p_camera, RID p_env) { Camera *camera = camera_owner.get(p_camera); ERR_FAIL_COND(!camera); camera->env = p_env; } RID VisualServerRaster::camera_get_environment(RID p_camera) const { const Camera *camera = camera_owner.get(p_camera); ERR_FAIL_COND_V(!camera, RID()); return camera->env; } void VisualServerRaster::camera_set_use_vertical_aspect(RID p_camera, bool p_enable) { Camera *camera = camera_owner.get(p_camera); ERR_FAIL_COND(!camera); camera->vaspect = p_enable; } bool VisualServerRaster::camera_is_using_vertical_aspect(RID p_camera, bool p_enable) const { const Camera *camera = camera_owner.get(p_camera); ERR_FAIL_COND_V(!camera, false); return camera->vaspect; } /* VIEWPORT API */ RID VisualServerRaster::viewport_create() { Viewport *viewport = memnew(Viewport); RID rid = viewport_owner.make_rid(viewport); ERR_FAIL_COND_V(!rid.is_valid(), rid); viewport->self = rid; viewport->hide_scenario = false; viewport->hide_canvas = false; viewport->viewport_data = rasterizer->viewport_data_create(); return rid; } void VisualServerRaster::viewport_attach_to_screen(RID p_viewport, int p_screen) { VS_CHANGED; Viewport *viewport = viewport_owner.get(p_viewport); ERR_FAIL_COND(!viewport); screen_viewports[p_viewport] = p_screen; } void VisualServerRaster::viewport_detach(RID p_viewport) { VS_CHANGED; Viewport *viewport = viewport_owner.get(p_viewport); ERR_FAIL_COND(!viewport); ERR_FAIL_COND(!screen_viewports.has(p_viewport)); screen_viewports.erase(p_viewport); } void VisualServerRaster::viewport_set_as_render_target(RID p_viewport, bool p_enable) { VS_CHANGED; Viewport *viewport = viewport_owner.get(p_viewport); ERR_FAIL_COND(!viewport); if (viewport->render_target.is_valid() == p_enable) return; if (!p_enable) { rasterizer->free(viewport->render_target); viewport->render_target = RID(); viewport->render_target_texture = RID(); if (viewport->update_list.in_list()) viewport_update_list.remove(&viewport->update_list); } else { viewport->render_target = rasterizer->render_target_create(); rasterizer->render_target_set_size(viewport->render_target, viewport->rect.width, viewport->rect.height); viewport->render_target_texture = rasterizer->render_target_get_texture(viewport->render_target); if (viewport->render_target_update_mode != RENDER_TARGET_UPDATE_DISABLED) viewport_update_list.add(&viewport->update_list); } } void VisualServerRaster::viewport_set_render_target_update_mode(RID p_viewport, RenderTargetUpdateMode p_mode) { VS_CHANGED; Viewport *viewport = viewport_owner.get(p_viewport); ERR_FAIL_COND(!viewport); if (viewport->render_target.is_valid() && viewport->update_list.in_list()) viewport_update_list.remove(&viewport->update_list); viewport->render_target_update_mode = p_mode; if (viewport->render_target.is_valid() && viewport->render_target_update_mode != RENDER_TARGET_UPDATE_DISABLED) viewport_update_list.add(&viewport->update_list); } VisualServer::RenderTargetUpdateMode VisualServerRaster::viewport_get_render_target_update_mode(RID p_viewport) const { const Viewport *viewport = viewport_owner.get(p_viewport); ERR_FAIL_COND_V(!viewport, RENDER_TARGET_UPDATE_DISABLED); return viewport->render_target_update_mode; } RID VisualServerRaster::viewport_get_render_target_texture(RID p_viewport) const { Viewport *viewport = viewport_owner.get(p_viewport); ERR_FAIL_COND_V(!viewport, RID()); return viewport->render_target_texture; } void VisualServerRaster::viewport_set_render_target_vflip(RID p_viewport, bool p_enable) { Viewport *viewport = viewport_owner.get(p_viewport); ERR_FAIL_COND(!viewport); viewport->render_target_vflip = p_enable; } void VisualServerRaster::viewport_set_render_target_clear_on_new_frame(RID p_viewport, bool p_enable) { Viewport *viewport = viewport_owner.get(p_viewport); ERR_FAIL_COND(!viewport); viewport->render_target_clear_on_new_frame = p_enable; } void VisualServerRaster::viewport_set_render_target_to_screen_rect(RID p_viewport, const Rect2 &p_rect) { Viewport *viewport = viewport_owner.get(p_viewport); ERR_FAIL_COND(!viewport); viewport->rt_to_screen_rect = p_rect; } bool VisualServerRaster::viewport_get_render_target_vflip(RID p_viewport) const { const Viewport *viewport = viewport_owner.get(p_viewport); ERR_FAIL_COND_V(!viewport, false); return viewport->render_target_vflip; } bool VisualServerRaster::viewport_get_render_target_clear_on_new_frame(RID p_viewport) const { const Viewport *viewport = viewport_owner.get(p_viewport); ERR_FAIL_COND_V(!viewport, false); return viewport->render_target_clear_on_new_frame; } void VisualServerRaster::viewport_render_target_clear(RID p_viewport) { Viewport *viewport = viewport_owner.get(p_viewport); ERR_FAIL_COND(!viewport); viewport->render_target_clear = true; } void VisualServerRaster::viewport_queue_screen_capture(RID p_viewport) { VS_CHANGED; Viewport *viewport = viewport_owner.get(p_viewport); ERR_FAIL_COND(!viewport); viewport->queue_capture = true; } Image VisualServerRaster::viewport_get_screen_capture(RID p_viewport) const { Viewport *viewport = (Viewport *)viewport_owner.get(p_viewport); ERR_FAIL_COND_V(!viewport, Image()); Image ret = viewport->capture; viewport->capture = Image(); return ret; } void VisualServerRaster::viewport_set_rect(RID p_viewport, const ViewportRect &p_rect) { VS_CHANGED; Viewport *viewport = NULL; viewport = viewport_owner.get(p_viewport); ERR_FAIL_COND(!viewport); viewport->rect = p_rect; if (viewport->render_target.is_valid()) { rasterizer->render_target_set_size(viewport->render_target, viewport->rect.width, viewport->rect.height); } } VisualServer::ViewportRect VisualServerRaster::viewport_get_rect(RID p_viewport) const { const Viewport *viewport = NULL; viewport = viewport_owner.get(p_viewport); ERR_FAIL_COND_V(!viewport, ViewportRect()); return viewport->rect; } void VisualServerRaster::viewport_set_hide_scenario(RID p_viewport, bool p_hide) { VS_CHANGED; Viewport *viewport = NULL; viewport = viewport_owner.get(p_viewport); ERR_FAIL_COND(!viewport); viewport->hide_scenario = p_hide; } void VisualServerRaster::viewport_set_hide_canvas(RID p_viewport, bool p_hide) { VS_CHANGED; Viewport *viewport = NULL; viewport = viewport_owner.get(p_viewport); ERR_FAIL_COND(!viewport); viewport->hide_canvas = p_hide; } void VisualServerRaster::viewport_set_disable_environment(RID p_viewport, bool p_disable) { VS_CHANGED; Viewport *viewport = NULL; viewport = viewport_owner.get(p_viewport); ERR_FAIL_COND(!viewport); viewport->disable_environment = p_disable; } void VisualServerRaster::viewport_attach_camera(RID p_viewport, RID p_camera) { VS_CHANGED; Viewport *viewport = NULL; viewport = viewport_owner.get(p_viewport); ERR_FAIL_COND(!viewport); if (p_camera.is_valid()) { ERR_FAIL_COND(!camera_owner.owns(p_camera)); // a camera viewport->camera = p_camera; } else { viewport->camera = RID(); } } void VisualServerRaster::viewport_set_scenario(RID p_viewport, RID p_scenario) { VS_CHANGED; Viewport *viewport = NULL; viewport = viewport_owner.get(p_viewport); ERR_FAIL_COND(!viewport); if (p_scenario.is_valid()) { ERR_FAIL_COND(!scenario_owner.owns(p_scenario)); // a camera viewport->scenario = p_scenario; } else { viewport->scenario = RID(); } } RID VisualServerRaster::viewport_get_attached_camera(RID p_viewport) const { const Viewport *viewport = NULL; viewport = viewport_owner.get(p_viewport); ERR_FAIL_COND_V(!viewport, RID()); return viewport->camera; } void VisualServerRaster::viewport_attach_canvas(RID p_viewport, RID p_canvas) { VS_CHANGED; Viewport *viewport = NULL; viewport = viewport_owner.get(p_viewport); ERR_FAIL_COND(!viewport); Canvas *canvas = canvas_owner.get(p_canvas); ERR_FAIL_COND(!canvas); ERR_EXPLAIN("Canvas already attached."); ERR_FAIL_COND(viewport->canvas_map.has(p_canvas)); Viewport::CanvasData cd; cd.canvas = canvas; cd.layer = 0; viewport->canvas_map[p_canvas] = cd; canvas->viewports.insert(p_viewport); } void VisualServerRaster::viewport_set_canvas_transform(RID p_viewport, RID p_canvas, const Matrix32 &p_transform) { VS_CHANGED; Viewport *viewport = NULL; viewport = viewport_owner.get(p_viewport); ERR_FAIL_COND(!viewport); Map::Element *E = viewport->canvas_map.find(p_canvas); if (!E) { ERR_EXPLAIN("Viewport does not contain the canvas"); ERR_FAIL_COND(!E); } E->get().transform = p_transform; } Matrix32 VisualServerRaster::viewport_get_canvas_transform(RID p_viewport, RID p_canvas) const { Viewport *viewport = NULL; viewport = viewport_owner.get(p_viewport); ERR_FAIL_COND_V(!viewport, Matrix32()); Map::Element *E = viewport->canvas_map.find(p_canvas); if (!E) { ERR_EXPLAIN("Viewport does not contain the canvas"); ERR_FAIL_COND_V(!E, Matrix32()); } return E->get().transform; } void VisualServerRaster::viewport_set_global_canvas_transform(RID p_viewport, const Matrix32 &p_transform) { VS_CHANGED Viewport *viewport = NULL; viewport = viewport_owner.get(p_viewport); ERR_FAIL_COND(!viewport); viewport->global_transform = p_transform; } Matrix32 VisualServerRaster::viewport_get_global_canvas_transform(RID p_viewport) const { Viewport *viewport = NULL; viewport = viewport_owner.get(p_viewport); ERR_FAIL_COND_V(!viewport, Matrix32()); return viewport->global_transform; } void VisualServerRaster::viewport_remove_canvas(RID p_viewport, RID p_canvas) { VS_CHANGED; Viewport *viewport = NULL; viewport = viewport_owner.get(p_viewport); ERR_FAIL_COND(!viewport); Canvas *canvas = canvas_owner.get(p_canvas); ERR_FAIL_COND(!canvas); Map::Element *E = viewport->canvas_map.find(p_canvas); if (!E) { ERR_EXPLAIN("Viewport does not contain the canvas"); ERR_FAIL_COND(!E); } canvas->viewports.erase(p_viewport); viewport->canvas_map.erase(E); } void VisualServerRaster::viewport_set_canvas_layer(RID p_viewport, RID p_canvas, int p_layer) { VS_CHANGED; Viewport *viewport = NULL; viewport = viewport_owner.get(p_viewport); ERR_FAIL_COND(!viewport); Map::Element *E = viewport->canvas_map.find(p_canvas); if (!E) { ERR_EXPLAIN("Viewport does not contain the canvas"); ERR_FAIL_COND(!E); } E->get().layer = p_layer; } void VisualServerRaster::viewport_set_transparent_background(RID p_viewport, bool p_enabled) { VS_CHANGED; Viewport *viewport = viewport_owner.get(p_viewport); ERR_FAIL_COND(!viewport); viewport->transparent_bg = p_enabled; } bool VisualServerRaster::viewport_has_transparent_background(RID p_viewport) const { Viewport *viewport = viewport_owner.get(p_viewport); ERR_FAIL_COND_V(!viewport, false); return viewport->transparent_bg; } RID VisualServerRaster::viewport_get_scenario(RID p_viewport) const { const Viewport *viewport = NULL; viewport = viewport_owner.get(p_viewport); ERR_FAIL_COND_V(!viewport, RID()); return viewport->scenario; } RID VisualServerRaster::environment_create() { return rasterizer->environment_create(); } void VisualServerRaster::environment_set_background(RID p_env, EnvironmentBG p_bg) { rasterizer->environment_set_background(p_env, p_bg); } VisualServer::EnvironmentBG VisualServerRaster::environment_get_background(RID p_env) const { return rasterizer->environment_get_background(p_env); } void VisualServerRaster::environment_set_background_param(RID p_env, EnvironmentBGParam p_param, const Variant &p_value) { rasterizer->environment_set_background_param(p_env, p_param, p_value); } Variant VisualServerRaster::environment_get_background_param(RID p_env, EnvironmentBGParam p_param) const { return rasterizer->environment_get_background_param(p_env, p_param); } void VisualServerRaster::environment_set_enable_fx(RID p_env, EnvironmentFx p_effect, bool p_enabled) { rasterizer->environment_set_enable_fx(p_env, p_effect, p_enabled); } bool VisualServerRaster::environment_is_fx_enabled(RID p_env, EnvironmentFx p_effect) const { return rasterizer->environment_is_fx_enabled(p_env, p_effect); } void VisualServerRaster::environment_fx_set_param(RID p_env, EnvironmentFxParam p_param, const Variant &p_value) { rasterizer->environment_fx_set_param(p_env, p_param, p_value); } Variant VisualServerRaster::environment_fx_get_param(RID p_env, EnvironmentFxParam p_param) const { return environment_fx_get_param(p_env, p_param); } /* SCENARIO API */ void VisualServerRaster::_dependency_queue_update(RID p_rid, bool p_update_aabb, bool p_update_materials) { Map >::Element *E = instance_dependency_map.find(p_rid); if (!E) return; Set::Element *I = E->get().front(); while (I) { Instance *ins = instance_owner.get(I->get()); _instance_queue_update(ins, p_update_aabb, p_update_materials); I = I->next(); } } void VisualServerRaster::_instance_queue_update(Instance *p_instance, bool p_update_aabb, bool p_update_materials) { if (p_update_aabb) p_instance->update_aabb = true; if (p_update_materials) p_instance->update_materials = true; if (p_instance->update) return; p_instance->update_next = instance_update_list; instance_update_list = p_instance; p_instance->update = true; } RID VisualServerRaster::scenario_create() { Scenario *scenario = memnew(Scenario); ERR_FAIL_COND_V(!scenario, RID()); RID scenario_rid = scenario_owner.make_rid(scenario); scenario->self = scenario_rid; scenario->octree.set_pair_callback(instance_pair, this); scenario->octree.set_unpair_callback(instance_unpair, this); return scenario_rid; } void VisualServerRaster::scenario_set_debug(RID p_scenario, ScenarioDebugMode p_debug_mode) { VS_CHANGED; Scenario *scenario = scenario_owner.get(p_scenario); ERR_FAIL_COND(!scenario); scenario->debug = p_debug_mode; } void VisualServerRaster::scenario_set_environment(RID p_scenario, RID p_environment) { VS_CHANGED; Scenario *scenario = scenario_owner.get(p_scenario); ERR_FAIL_COND(!scenario); scenario->environment = p_environment; } void VisualServerRaster::scenario_set_fallback_environment(RID p_scenario, RID p_environment) { VS_CHANGED; Scenario *scenario = scenario_owner.get(p_scenario); ERR_FAIL_COND(!scenario); scenario->fallback_environment = p_environment; } RID VisualServerRaster::scenario_get_environment(RID p_scenario, RID p_environment) const { const Scenario *scenario = scenario_owner.get(p_scenario); ERR_FAIL_COND_V(!scenario, RID()); return scenario->environment; } /* INSTANCING API */ RID VisualServerRaster::instance_create() { Instance *instance = memnew(Instance); ERR_FAIL_COND_V(!instance, RID()); RID instance_rid = instance_owner.make_rid(instance); instance->self = instance_rid; instance->base_type = INSTANCE_NONE; instance->scenario = NULL; return instance_rid; } void VisualServerRaster::instance_set_base(RID p_instance, RID p_base) { VS_CHANGED; Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND(!instance); if (instance->base_type != INSTANCE_NONE) { //free anything related to that base Map >::Element *E = instance_dependency_map.find(instance->base_rid); if (E) { // wtf, no E? E->get().erase(instance->self); } else { ERR_PRINT("no base E? Bug?"); } if (instance->room) { instance_set_room(p_instance, RID()); /* if((1<base_type)&INSTANCE_GEOMETRY_MASK) instance->room->room_info->owned_geometry_instances.erase(instance->RE); else if (instance->base_type==INSTANCE_PORTAL) { print_line("freeing portal, is it there? "+itos(instance->room->room_info->owned_portal_instances.(instance->RE))); instance->room->room_info->owned_portal_instances.erase(instance->RE); } else if (instance->base_type==INSTANCE_ROOM) instance->room->room_info->owned_room_instances.erase(instance->RE); else if (instance->base_type==INSTANCE_LIGHT) instance->room->room_info->owned_light_instances.erase(instance->RE); instance->RE=NULL;*/ } if (instance->light_info) { if (instance->scenario && instance->light_info->D) instance->scenario->directional_lights.erase(instance->light_info->D); rasterizer->free(instance->light_info->instance); memdelete(instance->light_info); instance->light_info = NULL; } if (instance->portal_info) { _portal_disconnect(instance, true); memdelete(instance->portal_info); instance->portal_info = NULL; } if (instance->baked_light_info) { while (instance->baked_light_info->owned_instances.size()) { Instance *owned = instance->baked_light_info->owned_instances.front()->get(); owned->baked_light = NULL; owned->data.baked_light = NULL; owned->data.baked_light_octree_xform = NULL; owned->BLE = NULL; instance->baked_light_info->owned_instances.pop_front(); } memdelete(instance->baked_light_info); instance->baked_light_info = NULL; } if (instance->scenario && instance->octree_id) { instance->scenario->octree.erase(instance->octree_id); instance->octree_id = 0; } if (instance->room_info) { for (List::Element *E = instance->room_info->owned_geometry_instances.front(); E; E = E->next()) { Instance *owned = E->get(); owned->room = NULL; owned->RE = NULL; } for (List::Element *E = instance->room_info->owned_portal_instances.front(); E; E = E->next()) { _portal_disconnect(E->get(), true); Instance *owned = E->get(); owned->room = NULL; owned->RE = NULL; } for (List::Element *E = instance->room_info->owned_room_instances.front(); E; E = E->next()) { Instance *owned = E->get(); owned->room = NULL; owned->RE = NULL; } if (instance->room_info->disconnected_child_portals.size()) { ERR_PRINT("BUG: Disconnected portals remain!"); } memdelete(instance->room_info); instance->room_info = NULL; } if (instance->particles_info) { rasterizer->free(instance->particles_info->instance); memdelete(instance->particles_info); instance->particles_info = NULL; } if (instance->baked_light_sampler_info) { while (instance->baked_light_sampler_info->owned_instances.size()) { instance_geometry_set_baked_light_sampler(instance->baked_light_sampler_info->owned_instances.front()->get()->self, RID()); } if (instance->baked_light_sampler_info->sampled_light.is_valid()) { rasterizer->free(instance->baked_light_sampler_info->sampled_light); } memdelete(instance->baked_light_sampler_info); instance->baked_light_sampler_info = NULL; } instance->data.morph_values.clear(); instance->data.materials.clear(); } instance->base_type = INSTANCE_NONE; instance->base_rid = RID(); if (p_base.is_valid()) { if (rasterizer->is_mesh(p_base)) { instance->base_type = INSTANCE_MESH; instance->data.morph_values.resize(rasterizer->mesh_get_morph_target_count(p_base)); instance->data.materials.resize(rasterizer->mesh_get_surface_count(p_base)); } else if (rasterizer->is_multimesh(p_base)) { instance->base_type = INSTANCE_MULTIMESH; } else if (rasterizer->is_immediate(p_base)) { instance->base_type = INSTANCE_IMMEDIATE; } else if (rasterizer->is_particles(p_base)) { instance->base_type = INSTANCE_PARTICLES; instance->particles_info = memnew(Instance::ParticlesInfo); instance->particles_info->instance = rasterizer->particles_instance_create(p_base); } else if (rasterizer->is_light(p_base)) { instance->base_type = INSTANCE_LIGHT; instance->light_info = memnew(Instance::LightInfo); instance->light_info->instance = rasterizer->light_instance_create(p_base); if (instance->scenario && rasterizer->light_get_type(p_base) == LIGHT_DIRECTIONAL) { instance->light_info->D = instance->scenario->directional_lights.push_back(instance->self); } } else if (room_owner.owns(p_base)) { instance->base_type = INSTANCE_ROOM; instance->room_info = memnew(Instance::RoomInfo); instance->room_info->room = room_owner.get(p_base); } else if (portal_owner.owns(p_base)) { instance->base_type = INSTANCE_PORTAL; instance->portal_info = memnew(Instance::PortalInfo); instance->portal_info->portal = portal_owner.get(p_base); } else if (baked_light_owner.owns(p_base)) { instance->base_type = INSTANCE_BAKED_LIGHT; instance->baked_light_info = memnew(Instance::BakedLightInfo); instance->baked_light_info->baked_light = baked_light_owner.get(p_base); //instance->portal_info = memnew(Instance::PortalInfo); //instance->portal_info->portal=portal_owner.get(p_base); } else if (baked_light_sampler_owner.owns(p_base)) { instance->base_type = INSTANCE_BAKED_LIGHT_SAMPLER; instance->baked_light_sampler_info = memnew(Instance::BakedLightSamplerInfo); instance->baked_light_sampler_info->sampler = baked_light_sampler_owner.get(p_base); //instance->portal_info = memnew(Instance::PortalInfo); //instance->portal_info->portal=portal_owner.get(p_base); } else { ERR_EXPLAIN("Invalid base RID for instance!") ERR_FAIL(); } instance_dependency_map[p_base].insert(instance->self); instance->base_rid = p_base; if (instance->scenario) _instance_queue_update(instance, true); } } RID VisualServerRaster::instance_get_base(RID p_instance) const { Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND_V(!instance, RID()); return instance->base_rid; } void VisualServerRaster::instance_set_scenario(RID p_instance, RID p_scenario) { VS_CHANGED; Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND(!instance); if (instance->scenario) { Map >::Element *E = instance_dependency_map.find(instance->scenario->self); if (E) { // wtf, no E? E->get().erase(instance->self); } else { ERR_PRINT("no scenario E? Bug?"); } if (instance->light_info) { if (instance->light_info->D) instance->scenario->directional_lights.erase(instance->light_info->D); } if (instance->portal_info) { _portal_disconnect(instance, true); } if (instance->octree_id) { instance->scenario->octree.erase(instance->octree_id); instance->octree_id = 0; } instance->scenario = NULL; } if (p_scenario.is_valid()) { Scenario *scenario = scenario_owner.get(p_scenario); ERR_FAIL_COND(!scenario); instance->scenario = scenario; instance_dependency_map[p_scenario].insert(instance->self); instance->scenario = scenario; if (instance->base_type == INSTANCE_LIGHT && rasterizer->light_get_type(instance->base_rid) == LIGHT_DIRECTIONAL) { instance->light_info->D = instance->scenario->directional_lights.push_back(instance->self); } _instance_queue_update(instance, true); } } RID VisualServerRaster::instance_get_scenario(RID p_instance) const { Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND_V(!instance, RID()); if (instance->scenario) return instance->scenario->self; else return RID(); } void VisualServerRaster::instance_set_layer_mask(RID p_instance, uint32_t p_mask) { VS_CHANGED; Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND(!instance); instance->layer_mask = p_mask; } uint32_t VisualServerRaster::instance_get_layer_mask(RID p_instance) const { Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND_V(!instance, 0); return instance->layer_mask; } AABB VisualServerRaster::instance_get_base_aabb(RID p_instance) const { Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND_V(!instance, AABB()); return instance->aabb; } void VisualServerRaster::instance_attach_object_instance_ID(RID p_instance, uint32_t p_ID) { VS_CHANGED; Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND(!instance); instance->object_ID = p_ID; } uint32_t VisualServerRaster::instance_get_object_instance_ID(RID p_instance) const { Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND_V(!instance, 0); return instance->object_ID; } void VisualServerRaster::instance_attach_skeleton(RID p_instance, RID p_skeleton) { VS_CHANGED; Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND(!instance); if (instance->data.skeleton.is_valid()) { skeleton_dependency_map[instance->data.skeleton].erase(instance); } instance->data.skeleton = p_skeleton; if (instance->data.skeleton.is_valid()) { skeleton_dependency_map[instance->data.skeleton].insert(instance); } } RID VisualServerRaster::instance_get_skeleton(RID p_instance) const { Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND_V(!instance, RID()); return instance->data.skeleton; } void VisualServerRaster::instance_set_morph_target_weight(RID p_instance, int p_shape, float p_weight) { VS_CHANGED; Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND(!instance); ERR_FAIL_INDEX(p_shape, instance->data.morph_values.size()); instance->data.morph_values[p_shape] = p_weight; } float VisualServerRaster::instance_get_morph_target_weight(RID p_instance, int p_shape) const { Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND_V(!instance, 0); ERR_FAIL_INDEX_V(p_shape, instance->data.morph_values.size(), 0); return instance->data.morph_values[p_shape]; } void VisualServerRaster::instance_set_surface_material(RID p_instance, int p_surface, RID p_material) { VS_CHANGED; Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND(!instance); ERR_FAIL_INDEX(p_surface, instance->data.materials.size()); instance->data.materials[p_surface] = p_material; } void VisualServerRaster::instance_set_transform(RID p_instance, const Transform &p_transform) { VS_CHANGED; Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND(!instance); if (p_transform == instance->data.transform) // must improve somehow return; instance->data.transform = p_transform; if (instance->base_type == INSTANCE_LIGHT) instance->data.transform.orthonormalize(); _instance_queue_update(instance); } Transform VisualServerRaster::instance_get_transform(RID p_instance) const { Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND_V(!instance, Transform()); return instance->data.transform; } void VisualServerRaster::instance_set_exterior(RID p_instance, bool p_enabled) { VS_CHANGED; Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND(!instance); ERR_EXPLAIN("Portals can't be assigned to be exterior"); ERR_FAIL_COND(instance->base_type == INSTANCE_PORTAL); if (instance->exterior == p_enabled) return; instance->exterior = p_enabled; _instance_queue_update(instance); } bool VisualServerRaster::instance_is_exterior(RID p_instance) const { Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND_V(!instance, false); return instance->exterior; } void VisualServerRaster::instance_set_room(RID p_instance, RID p_room) { VS_CHANGED; Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND(!instance); if (instance->room && instance->RE) { //instance already havs a room, remove it from there if ((1 << instance->base_type) & INSTANCE_GEOMETRY_MASK) { instance->room->room_info->owned_geometry_instances.erase(instance->RE); if (!p_room.is_valid() && instance->octree_id) { //remove from the octree, so it's re-added with different flags instance->scenario->octree.erase(instance->octree_id); instance->octree_id = 0; _instance_queue_update(instance, true); } } else if (instance->base_type == INSTANCE_ROOM) { instance->room->room_info->owned_room_instances.erase(instance->RE); for (List::Element *E = instance->room_info->owned_portal_instances.front(); E; E = E->next()) { _portal_disconnect(E->get()); _instance_queue_update(E->get(), false); } } else if (instance->base_type == INSTANCE_PORTAL) { _portal_disconnect(instance, true); bool ss = instance->room->room_info->owned_portal_instances.erase(instance->RE); } else if (instance->base_type == INSTANCE_LIGHT) { instance->room->room_info->owned_light_instances.erase(instance->RE); } else { ERR_FAIL(); } instance->RE = NULL; instance->room = NULL; } else { if (p_room.is_valid() && instance->octree_id) { //remove from the octree, so it's re-added with different flags instance->scenario->octree.erase(instance->octree_id); instance->octree_id = 0; _instance_queue_update(instance, true); } } if (!p_room.is_valid()) return; // just clearning the room Instance *room = instance_owner.get(p_room); ERR_FAIL_COND(!room); ERR_FAIL_COND(room->base_type != INSTANCE_ROOM); if (instance->base_type == INSTANCE_ROOM) { //perform cycle test Instance *parent = instance; while (parent) { ERR_EXPLAIN("Cycle in room assignment"); ERR_FAIL_COND(parent == room); parent = parent->room; } } if ((1 << instance->base_type) & INSTANCE_GEOMETRY_MASK) { instance->RE = room->room_info->owned_geometry_instances.push_back(instance); } else if (instance->base_type == INSTANCE_ROOM) { instance->RE = room->room_info->owned_room_instances.push_back(instance); for (List::Element *E = instance->room_info->owned_portal_instances.front(); E; E = E->next()) _instance_queue_update(E->get(), false); } else if (instance->base_type == INSTANCE_PORTAL) { instance->RE = room->room_info->owned_portal_instances.push_back(instance); } else if (instance->base_type == INSTANCE_LIGHT) { instance->RE = room->room_info->owned_light_instances.push_back(instance); } else { ERR_FAIL(); } instance->room = room; } RID VisualServerRaster::instance_get_room(RID p_instance) const { Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND_V(!instance, RID()); if (instance->room) return instance->room->self; else return RID(); } void VisualServerRaster::instance_set_extra_visibility_margin(RID p_instance, real_t p_margin) { VS_CHANGED; Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND(!instance); instance->extra_margin = p_margin; } real_t VisualServerRaster::instance_get_extra_visibility_margin(RID p_instance) const { Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND_V(!instance, 0); return instance->extra_margin; } Vector VisualServerRaster::instances_cull_aabb(const AABB &p_aabb, RID p_scenario) const { Vector instances; Scenario *scenario = scenario_owner.get(p_scenario); ERR_FAIL_COND_V(!scenario, instances); const_cast(this)->_update_instances(); // check dirty instances before culling int culled = 0; Instance *cull[1024]; culled = scenario->octree.cull_AABB(p_aabb, cull, 1024); for (int i = 0; i < culled; i++) { Instance *instance = cull[i]; ERR_CONTINUE(!instance); instances.push_back(instance->self); } return instances; } Vector VisualServerRaster::instances_cull_ray(const Vector3 &p_from, const Vector3 &p_to, RID p_scenario) const { Vector instances; Scenario *scenario = scenario_owner.get(p_scenario); ERR_FAIL_COND_V(!scenario, instances); const_cast(this)->_update_instances(); // check dirty instances before culling int culled = 0; Instance *cull[1024]; culled = scenario->octree.cull_segment(p_from, p_to * 10000, cull, 1024); for (int i = 0; i < culled; i++) { Instance *instance = cull[i]; ERR_CONTINUE(!instance); instances.push_back(instance->self); } return instances; } Vector VisualServerRaster::instances_cull_convex(const Vector &p_convex, RID p_scenario) const { Vector instances; Scenario *scenario = scenario_owner.get(p_scenario); ERR_FAIL_COND_V(!scenario, instances); const_cast(this)->_update_instances(); // check dirty instances before culling int culled = 0; Instance *cull[1024]; culled = scenario->octree.cull_convex(p_convex, cull, 1024); for (int i = 0; i < culled; i++) { Instance *instance = cull[i]; ERR_CONTINUE(!instance); instances.push_back(instance->self); } return instances; } void VisualServerRaster::instance_geometry_set_flag(RID p_instance, InstanceFlags p_flags, bool p_enabled) { Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND(!instance); // ERR_FAIL_COND( ! ( (1<base_type) & INSTANCE_GEOMETRY_MASK) ); switch (p_flags) { case INSTANCE_FLAG_VISIBLE: { instance->visible = p_enabled; } break; case INSTANCE_FLAG_BILLBOARD: { instance->data.billboard = p_enabled; } break; case INSTANCE_FLAG_BILLBOARD_FIX_Y: { instance->data.billboard_y = p_enabled; } break; case INSTANCE_FLAG_CAST_SHADOW: { if (p_enabled == true) { instance->data.cast_shadows = SHADOW_CASTING_SETTING_ON; } else { instance->data.cast_shadows = SHADOW_CASTING_SETTING_OFF; } } break; case INSTANCE_FLAG_RECEIVE_SHADOWS: { instance->data.receive_shadows = p_enabled; } break; case INSTANCE_FLAG_DEPH_SCALE: { instance->data.depth_scale = p_enabled; } break; case INSTANCE_FLAG_VISIBLE_IN_ALL_ROOMS: { instance->visible_in_all_rooms = p_enabled; } break; } } bool VisualServerRaster::instance_geometry_get_flag(RID p_instance, InstanceFlags p_flags) const { const Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND_V(!instance, false); // ERR_FAIL_COND_V( ! ( (1<base_type) & INSTANCE_GEOMETRY_MASK), false ); switch (p_flags) { case INSTANCE_FLAG_VISIBLE: { return instance->visible; } break; case INSTANCE_FLAG_BILLBOARD: { return instance->data.billboard; } break; case INSTANCE_FLAG_BILLBOARD_FIX_Y: { return instance->data.billboard_y; } break; case INSTANCE_FLAG_CAST_SHADOW: { if (instance->data.cast_shadows == SHADOW_CASTING_SETTING_OFF) { return false; } else { return true; } } break; case INSTANCE_FLAG_RECEIVE_SHADOWS: { return instance->data.receive_shadows; } break; case INSTANCE_FLAG_DEPH_SCALE: { return instance->data.depth_scale; } break; case INSTANCE_FLAG_VISIBLE_IN_ALL_ROOMS: { return instance->visible_in_all_rooms; } break; } return false; } void VisualServerRaster::instance_geometry_set_cast_shadows_setting(RID p_instance, VS::ShadowCastingSetting p_shadow_casting_setting) { Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND(!instance); instance->data.cast_shadows = p_shadow_casting_setting; } VS::ShadowCastingSetting VisualServerRaster::instance_geometry_get_cast_shadows_setting(RID p_instance) const { const Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND_V(!instance, SHADOW_CASTING_SETTING_OFF); return instance->data.cast_shadows; } void VisualServerRaster::instance_geometry_set_material_override(RID p_instance, RID p_material) { VS_CHANGED; Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND(!instance); instance->data.material_override = p_material; } RID VisualServerRaster::instance_geometry_get_material_override(RID p_instance) const { Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND_V(!instance, RID()); return instance->data.material_override; } void VisualServerRaster::instance_geometry_set_draw_range(RID p_instance, float p_min, float p_max) { VS_CHANGED; Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND(!instance); instance->draw_range_begin = p_min; instance->draw_range_end = p_max; } float VisualServerRaster::instance_geometry_get_draw_range_min(RID p_instance) const { const Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND_V(!instance, 0); return instance->draw_range_begin; } float VisualServerRaster::instance_geometry_get_draw_range_max(RID p_instance) const { const Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND_V(!instance, 0); return instance->draw_range_end; } void VisualServerRaster::instance_geometry_set_baked_light(RID p_instance, RID p_baked_light) { VS_CHANGED; Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND(!instance); if (instance->baked_light) { instance->baked_light->baked_light_info->owned_instances.erase(instance->BLE); instance->BLE = NULL; instance->baked_light = NULL; instance->data.baked_light = NULL; instance->data.baked_light_octree_xform = NULL; } if (!p_baked_light.is_valid()) return; Instance *bl_instance = instance_owner.get(p_baked_light); ERR_FAIL_COND(!bl_instance); ERR_FAIL_COND(bl_instance->base_type != INSTANCE_BAKED_LIGHT); instance->baked_light = bl_instance; instance->BLE = bl_instance->baked_light_info->owned_instances.push_back(instance); instance->data.baked_light = &bl_instance->baked_light_info->baked_light->data; instance->data.baked_light_octree_xform = &bl_instance->baked_light_info->affine_inverse; } RID VisualServerRaster::instance_geometry_get_baked_light(RID p_instance) const { const Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND_V(!instance, RID()); if (instance->baked_light) return instance->baked_light->self; return RID(); } void VisualServerRaster::instance_geometry_set_baked_light_sampler(RID p_instance, RID p_baked_light_sampler) { VS_CHANGED; Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND(!instance); if (instance->sampled_light) { instance->sampled_light->baked_light_sampler_info->owned_instances.erase(instance); instance->data.sampled_light = RID(); } if (p_baked_light_sampler.is_valid()) { Instance *sampler_instance = instance_owner.get(p_baked_light_sampler); ERR_FAIL_COND(!sampler_instance); ERR_FAIL_COND(sampler_instance->base_type != INSTANCE_BAKED_LIGHT_SAMPLER); instance->sampled_light = sampler_instance; instance->sampled_light->baked_light_sampler_info->owned_instances.insert(instance); } else { instance->sampled_light = NULL; } instance->data.sampled_light = RID(); } RID VisualServerRaster::instance_geometry_get_baked_light_sampler(RID p_instance) const { Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND_V(!instance, RID()); if (instance->sampled_light) return instance->sampled_light->self; else return RID(); } void VisualServerRaster::instance_geometry_set_baked_light_texture_index(RID p_instance, int p_tex_id) { VS_CHANGED; Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND(!instance); instance->data.baked_lightmap_id = p_tex_id; } int VisualServerRaster::instance_geometry_get_baked_light_texture_index(RID p_instance) const { const Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND_V(!instance, 0); return instance->data.baked_lightmap_id; } void VisualServerRaster::_update_instance(Instance *p_instance) { p_instance->version++; if (p_instance->base_type == INSTANCE_LIGHT) { rasterizer->light_instance_set_transform(p_instance->light_info->instance, p_instance->data.transform); } if (p_instance->aabb.has_no_surface()) return; if (p_instance->base_type == INSTANCE_PARTICLES) { rasterizer->particles_instance_set_transform(p_instance->particles_info->instance, p_instance->data.transform); } if ((1 << p_instance->base_type) & INSTANCE_GEOMETRY_MASK) { //make sure lights are updated InstanceSet::Element *E = p_instance->lights.front(); while (E) { E->get()->version++; E = E->next(); } } else if (p_instance->base_type == INSTANCE_ROOM) { p_instance->room_info->affine_inverse = p_instance->data.transform.affine_inverse(); } else if (p_instance->base_type == INSTANCE_BAKED_LIGHT) { Transform scale; scale.basis.scale(p_instance->baked_light_info->baked_light->octree_aabb.size); scale.origin = p_instance->baked_light_info->baked_light->octree_aabb.pos; //print_line("scale: "+scale); p_instance->baked_light_info->affine_inverse = (p_instance->data.transform * scale).affine_inverse(); } p_instance->data.mirror = p_instance->data.transform.basis.determinant() < 0.0; AABB new_aabb; if (p_instance->base_type == INSTANCE_PORTAL) { //portals need to be transformed in a special way, so they don't become too wide if they have scale.. Transform portal_xform = p_instance->data.transform; portal_xform.basis.set_axis(2, portal_xform.basis.get_axis(2).normalized()); p_instance->portal_info->plane_cache = Plane(p_instance->data.transform.origin, portal_xform.basis.get_axis(2)); int point_count = p_instance->portal_info->portal->shape.size(); p_instance->portal_info->transformed_point_cache.resize(point_count); AABB portal_aabb; for (int i = 0; i < point_count; i++) { Point2 src = p_instance->portal_info->portal->shape[i]; Vector3 point = portal_xform.xform(Vector3(src.x, src.y, 0)); p_instance->portal_info->transformed_point_cache[i] = point; if (i == 0) portal_aabb.pos = point; else portal_aabb.expand_to(point); } portal_aabb.grow_by(p_instance->portal_info->portal->connect_range); new_aabb = portal_aabb; } else { new_aabb = p_instance->data.transform.xform(p_instance->aabb); } for (InstanceSet::Element *E = p_instance->lights.front(); E; E = E->next()) { Instance *light = E->get(); light->version++; } p_instance->transformed_aabb = new_aabb; if (!p_instance->scenario) { return; } if (p_instance->octree_id == 0) { uint32_t base_type = 1 << p_instance->base_type; uint32_t pairable_mask = 0; bool pairable = false; if (p_instance->base_type == INSTANCE_LIGHT) { pairable_mask = p_instance->light_info->enabled ? INSTANCE_GEOMETRY_MASK : 0; pairable = true; } if (p_instance->base_type == INSTANCE_PORTAL) { pairable_mask = (1 << INSTANCE_PORTAL); pairable = true; } if (p_instance->base_type == INSTANCE_BAKED_LIGHT_SAMPLER) { pairable_mask = (1 << INSTANCE_BAKED_LIGHT); pairable = true; } if (!p_instance->room && (1 << p_instance->base_type) & INSTANCE_GEOMETRY_MASK) { base_type |= INSTANCE_ROOMLESS_MASK; } if (p_instance->base_type == INSTANCE_ROOM) { pairable_mask = INSTANCE_ROOMLESS_MASK; pairable = true; } // not inside octree p_instance->octree_id = p_instance->scenario->octree.create(p_instance, new_aabb, 0, pairable, base_type, pairable_mask); } else { // if (new_aabb==p_instance->data.transformed_aabb) // return; p_instance->scenario->octree.move(p_instance->octree_id, new_aabb); } if (p_instance->base_type == INSTANCE_PORTAL) { _portal_attempt_connect(p_instance); } if (!p_instance->room && (1 << p_instance->base_type) & INSTANCE_GEOMETRY_MASK) { _instance_validate_autorooms(p_instance); } if (p_instance->base_type == INSTANCE_ROOM) { for (Set::Element *E = p_instance->room_info->owned_autoroom_geometry.front(); E; E = E->next()) _instance_validate_autorooms(E->get()); } } void VisualServerRaster::_update_instance_aabb(Instance *p_instance) { AABB new_aabb; ERR_FAIL_COND(p_instance->base_type != INSTANCE_NONE && !p_instance->base_rid.is_valid()); switch (p_instance->base_type) { case VisualServer::INSTANCE_NONE: { // do nothing } break; case VisualServer::INSTANCE_MESH: { new_aabb = rasterizer->mesh_get_aabb(p_instance->base_rid, p_instance->data.skeleton); } break; case VisualServer::INSTANCE_MULTIMESH: { new_aabb = rasterizer->multimesh_get_aabb(p_instance->base_rid); } break; case VisualServer::INSTANCE_IMMEDIATE: { new_aabb = rasterizer->immediate_get_aabb(p_instance->base_rid); } break; case VisualServer::INSTANCE_PARTICLES: { new_aabb = rasterizer->particles_get_aabb(p_instance->base_rid); } break; case VisualServer::INSTANCE_LIGHT: { new_aabb = rasterizer->light_get_aabb(p_instance->base_rid); } break; case VisualServer::INSTANCE_ROOM: { Room *room = room_owner.get(p_instance->base_rid); ERR_FAIL_COND(!room); new_aabb = room->bounds.get_aabb(); } break; case VisualServer::INSTANCE_PORTAL: { Portal *portal = portal_owner.get(p_instance->base_rid); ERR_FAIL_COND(!portal); for (int i = 0; i < portal->shape.size(); i++) { Vector3 point(portal->shape[i].x, portal->shape[i].y, 0); if (i == 0) { new_aabb.pos = point; new_aabb.size.z = 0.01; // make it not flat for octree } else { new_aabb.expand_to(point); } } } break; case VisualServer::INSTANCE_BAKED_LIGHT: { BakedLight *baked_light = baked_light_owner.get(p_instance->base_rid); ERR_FAIL_COND(!baked_light); new_aabb = baked_light->octree_aabb; } break; case VisualServer::INSTANCE_BAKED_LIGHT_SAMPLER: { BakedLightSampler *baked_light_sampler = baked_light_sampler_owner.get(p_instance->base_rid); ERR_FAIL_COND(!baked_light_sampler); float radius = baked_light_sampler->params[VS::BAKED_LIGHT_SAMPLER_RADIUS]; new_aabb = AABB(Vector3(-radius, -radius, -radius), Vector3(radius * 2, radius * 2, radius * 2)); } break; default: {} } if (p_instance->extra_margin) new_aabb.grow_by(p_instance->extra_margin); p_instance->aabb = new_aabb; } void VisualServerRaster::_update_instances() { while (instance_update_list) { Instance *instance = instance_update_list; instance_update_list = instance_update_list->update_next; if (instance->update_aabb) _update_instance_aabb(instance); if (instance->update_materials) { if (instance->base_type == INSTANCE_MESH) { instance->data.materials.resize(rasterizer->mesh_get_surface_count(instance->base_rid)); } } _update_instance(instance); instance->update = false; instance->update_aabb = false; instance->update_materials = false; instance->update_next = 0; } } void VisualServerRaster::instance_light_set_enabled(RID p_instance, bool p_enabled) { VS_CHANGED; Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND(!instance); ERR_FAIL_COND(instance->base_type != INSTANCE_LIGHT); if (p_enabled == instance->light_info->enabled) return; instance->light_info->enabled = p_enabled; if (light_get_type(instance->base_rid) != VS::LIGHT_DIRECTIONAL && instance->octree_id && instance->scenario) instance->scenario->octree.set_pairable(instance->octree_id, p_enabled, 1 << INSTANCE_LIGHT, p_enabled ? INSTANCE_GEOMETRY_MASK : 0); //_instance_queue_update( instance , true ); } bool VisualServerRaster::instance_light_is_enabled(RID p_instance) const { const Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND_V(!instance, false); ERR_FAIL_COND_V(instance->base_type != INSTANCE_LIGHT, false); return instance->light_info->enabled; } /****** CANVAS *********/ RID VisualServerRaster::canvas_create() { Canvas *canvas = memnew(Canvas); ERR_FAIL_COND_V(!canvas, RID()); RID rid = canvas_owner.make_rid(canvas); return rid; } void VisualServerRaster::canvas_set_item_mirroring(RID p_canvas, RID p_item, const Point2 &p_mirroring) { Canvas *canvas = canvas_owner.get(p_canvas); ERR_FAIL_COND(!canvas); CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND(!canvas_item); int idx = canvas->find_item(canvas_item); ERR_FAIL_COND(idx == -1); canvas->child_items[idx].mirror = p_mirroring; } Point2 VisualServerRaster::canvas_get_item_mirroring(RID p_canvas, RID p_item) const { Canvas *canvas = canvas_owner.get(p_canvas); ERR_FAIL_COND_V(!canvas, Point2()); CanvasItem *canvas_item = memnew(CanvasItem); ERR_FAIL_COND_V(!canvas_item, Point2()); int idx = canvas->find_item(canvas_item); ERR_FAIL_COND_V(idx == -1, Point2()); return canvas->child_items[idx].mirror; } void VisualServerRaster::canvas_set_modulate(RID p_canvas, const Color &p_color) { Canvas *canvas = canvas_owner.get(p_canvas); ERR_FAIL_COND(!canvas); canvas->modulate = p_color; } RID VisualServerRaster::canvas_item_create() { CanvasItem *canvas_item = memnew(CanvasItem); ERR_FAIL_COND_V(!canvas_item, RID()); return canvas_item_owner.make_rid(canvas_item); } void VisualServerRaster::canvas_item_set_parent(RID p_item, RID p_parent) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND(!canvas_item); if (canvas_item->parent.is_valid()) { if (canvas_owner.owns(canvas_item->parent)) { Canvas *canvas = canvas_owner.get(canvas_item->parent); canvas->erase_item(canvas_item); } else if (canvas_item_owner.owns(canvas_item->parent)) { CanvasItem *item_owner = canvas_item_owner.get(canvas_item->parent); item_owner->child_items.erase(canvas_item); } canvas_item->parent = RID(); } if (p_parent.is_valid()) { if (canvas_owner.owns(p_parent)) { Canvas *canvas = canvas_owner.get(p_parent); Canvas::ChildItem ci; ci.item = canvas_item; canvas->child_items.push_back(ci); } else if (canvas_item_owner.owns(p_parent)) { CanvasItem *item_owner = canvas_item_owner.get(p_parent); item_owner->child_items.push_back(canvas_item); } else { ERR_EXPLAIN("Invalid parent"); ERR_FAIL(); } } canvas_item->parent = p_parent; } RID VisualServerRaster::canvas_item_get_parent(RID p_canvas_item) const { CanvasItem *canvas_item = canvas_item_owner.get(p_canvas_item); ERR_FAIL_COND_V(!canvas_item, RID()); return canvas_item->parent; } void VisualServerRaster::canvas_item_set_visible(RID p_item, bool p_visible) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND(!canvas_item); canvas_item->visible = p_visible; } bool VisualServerRaster::canvas_item_is_visible(RID p_item) const { CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND_V(!canvas_item, RID()); return canvas_item->visible; } void VisualServerRaster::canvas_item_set_light_mask(RID p_canvas_item, int p_mask) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get(p_canvas_item); ERR_FAIL_COND(!canvas_item); if (canvas_item->light_mask == p_mask) return; VS_CHANGED; canvas_item->light_mask = p_mask; } void VisualServerRaster::canvas_item_set_blend_mode(RID p_canvas_item, MaterialBlendMode p_blend) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get(p_canvas_item); ERR_FAIL_COND(!canvas_item); if (canvas_item->blend_mode == p_blend) return; VS_CHANGED; canvas_item->blend_mode = p_blend; } void VisualServerRaster::canvas_item_attach_viewport(RID p_canvas_item, RID p_viewport) { CanvasItem *canvas_item = canvas_item_owner.get(p_canvas_item); ERR_FAIL_COND(!canvas_item); VS_CHANGED; canvas_item->viewport = p_viewport; } /* void VisualServerRaster::canvas_item_set_rect(RID p_item, const Rect2& p_rect) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get( p_item ); ERR_FAIL_COND(!canvas_item); canvas_item->rect=p_rect; }*/ void VisualServerRaster::canvas_item_set_clip(RID p_item, bool p_clip) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND(!canvas_item); canvas_item->clip = p_clip; } void VisualServerRaster::canvas_item_set_distance_field_mode(RID p_item, bool p_distance_field) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND(!canvas_item); canvas_item->distance_field = p_distance_field; } void VisualServerRaster::canvas_item_set_transform(RID p_item, const Matrix32 &p_transform) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND(!canvas_item); canvas_item->xform = p_transform; } void VisualServerRaster::canvas_item_set_custom_rect(RID p_item, bool p_custom_rect, const Rect2 &p_rect) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND(!canvas_item); canvas_item->custom_rect = p_custom_rect; if (p_custom_rect) canvas_item->rect = p_rect; } void VisualServerRaster::canvas_item_set_opacity(RID p_item, float p_opacity) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND(!canvas_item); canvas_item->opacity = p_opacity; } float VisualServerRaster::canvas_item_get_opacity(RID p_item, float p_opacity) const { CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND_V(!canvas_item, -1); return canvas_item->opacity; } void VisualServerRaster::canvas_item_set_on_top(RID p_item, bool p_on_top) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND(!canvas_item); canvas_item->ontop = p_on_top; } bool VisualServerRaster::canvas_item_is_on_top(RID p_item) const { const CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND_V(!canvas_item, false); return canvas_item->ontop; } void VisualServerRaster::canvas_item_set_self_opacity(RID p_item, float p_self_opacity) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND(!canvas_item); canvas_item->self_opacity = p_self_opacity; } float VisualServerRaster::canvas_item_get_self_opacity(RID p_item, float p_self_opacity) const { CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND_V(!canvas_item, -1); return canvas_item->self_opacity; } void VisualServerRaster::canvas_item_add_line(RID p_item, const Point2 &p_from, const Point2 &p_to, const Color &p_color, float p_width) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND(!canvas_item); CanvasItem::CommandLine *line = memnew(CanvasItem::CommandLine); ERR_FAIL_COND(!line); line->color = p_color; line->from = p_from; line->to = p_to; line->width = p_width; canvas_item->rect_dirty = true; canvas_item->commands.push_back(line); } void VisualServerRaster::canvas_item_add_rect(RID p_item, const Rect2 &p_rect, const Color &p_color) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND(!canvas_item); CanvasItem::CommandRect *rect = memnew(CanvasItem::CommandRect); ERR_FAIL_COND(!rect); rect->modulate = p_color; rect->rect = p_rect; canvas_item->rect_dirty = true; canvas_item->commands.push_back(rect); } void VisualServerRaster::canvas_item_add_circle(RID p_item, const Point2 &p_pos, float p_radius, const Color &p_color) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND(!canvas_item); CanvasItem::CommandCircle *circle = memnew(CanvasItem::CommandCircle); ERR_FAIL_COND(!circle); circle->color = p_color; circle->pos = p_pos; circle->radius = p_radius; canvas_item->commands.push_back(circle); } void VisualServerRaster::canvas_item_add_texture_rect(RID p_item, const Rect2 &p_rect, RID p_texture, bool p_tile, const Color &p_modulate, bool p_transpose) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND(!canvas_item); CanvasItem::CommandRect *rect = memnew(CanvasItem::CommandRect); ERR_FAIL_COND(!rect); rect->modulate = p_modulate; rect->rect = p_rect; rect->flags = 0; if (p_tile) { rect->flags |= Rasterizer::CANVAS_RECT_TILE; rect->flags |= Rasterizer::CANVAS_RECT_REGION; rect->source = Rect2(0, 0, p_rect.size.width, p_rect.size.height); } if (p_rect.size.x < 0) { rect->flags |= Rasterizer::CANVAS_RECT_FLIP_H; rect->rect.size.x = -rect->rect.size.x; } if (p_rect.size.y < 0) { rect->flags |= Rasterizer::CANVAS_RECT_FLIP_V; rect->rect.size.y = -rect->rect.size.y; } if (p_transpose) { rect->flags |= Rasterizer::CANVAS_RECT_TRANSPOSE; SWAP(rect->rect.size.x, rect->rect.size.y); } rect->texture = p_texture; canvas_item->rect_dirty = true; canvas_item->commands.push_back(rect); } void VisualServerRaster::canvas_item_add_texture_rect_region(RID p_item, const Rect2 &p_rect, RID p_texture, const Rect2 &p_src_rect, const Color &p_modulate, bool p_transpose) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND(!canvas_item); CanvasItem::CommandRect *rect = memnew(CanvasItem::CommandRect); ERR_FAIL_COND(!rect); rect->modulate = p_modulate; rect->rect = p_rect; rect->texture = p_texture; rect->source = p_src_rect; rect->flags = Rasterizer::CANVAS_RECT_REGION; if (p_rect.size.x < 0) { rect->flags |= Rasterizer::CANVAS_RECT_FLIP_H; rect->rect.size.x = -rect->rect.size.x; } if (p_rect.size.y < 0) { rect->flags |= Rasterizer::CANVAS_RECT_FLIP_V; rect->rect.size.y = -rect->rect.size.y; } if (p_transpose) { rect->flags |= Rasterizer::CANVAS_RECT_TRANSPOSE; SWAP(rect->rect.size.x, rect->rect.size.y); } canvas_item->rect_dirty = true; canvas_item->commands.push_back(rect); } void VisualServerRaster::canvas_item_add_style_box(RID p_item, const Rect2 &p_rect, const Rect2 &p_source, RID p_texture, const Vector2 &p_topleft, const Vector2 &p_bottomright, bool p_draw_center, const Color &p_modulate) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND(!canvas_item); CanvasItem::CommandStyle *style = memnew(CanvasItem::CommandStyle); ERR_FAIL_COND(!style); style->texture = p_texture; style->rect = p_rect; style->source = p_source; style->draw_center = p_draw_center; style->color = p_modulate; style->margin[MARGIN_LEFT] = p_topleft.x; style->margin[MARGIN_TOP] = p_topleft.y; style->margin[MARGIN_RIGHT] = p_bottomright.x; style->margin[MARGIN_BOTTOM] = p_bottomright.y; canvas_item->rect_dirty = true; canvas_item->commands.push_back(style); } void VisualServerRaster::canvas_item_add_primitive(RID p_item, const Vector &p_points, const Vector &p_colors, const Vector &p_uvs, RID p_texture, float p_width) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND(!canvas_item); CanvasItem::CommandPrimitive *prim = memnew(CanvasItem::CommandPrimitive); ERR_FAIL_COND(!prim); prim->texture = p_texture; prim->points = p_points; prim->uvs = p_uvs; prim->colors = p_colors; prim->width = p_width; canvas_item->rect_dirty = true; canvas_item->commands.push_back(prim); } void VisualServerRaster::canvas_item_add_polygon(RID p_item, const Vector &p_points, const Vector &p_colors, const Vector &p_uvs, RID p_texture) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND(!canvas_item); #ifdef DEBUG_ENABLED int pointcount = p_points.size(); ERR_FAIL_COND(pointcount < 3); int color_size = p_colors.size(); int uv_size = p_uvs.size(); ERR_FAIL_COND(color_size != 0 && color_size != 1 && color_size != pointcount); ERR_FAIL_COND(uv_size != 0 && (uv_size != pointcount || !p_texture.is_valid())); #endif Vector indices = Geometry::triangulate_polygon(p_points); if (indices.empty()) { ERR_EXPLAIN("Bad Polygon!"); ERR_FAIL_V(); } CanvasItem::CommandPolygon *polygon = memnew(CanvasItem::CommandPolygon); ERR_FAIL_COND(!polygon); polygon->texture = p_texture; polygon->points = p_points; polygon->uvs = p_uvs; polygon->colors = p_colors; polygon->indices = indices; polygon->count = indices.size(); canvas_item->rect_dirty = true; canvas_item->commands.push_back(polygon); } void VisualServerRaster::canvas_item_add_triangle_array_ptr(RID p_item, int p_count, const int *p_indices, const Point2 *p_points, const Color *p_colors, const Point2 *p_uvs, RID p_texture) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND(!canvas_item); ERR_FAIL_COND(p_count <= 0); ERR_FAIL_COND(p_points == NULL); CanvasItem::CommandPolygonPtr *polygon = memnew(CanvasItem::CommandPolygonPtr); ERR_FAIL_COND(!polygon); polygon->texture = p_texture; polygon->points = p_points; polygon->uvs = p_uvs; polygon->colors = p_colors; polygon->indices = p_indices; polygon->count = p_count * 3; canvas_item->rect_dirty = true; canvas_item->commands.push_back(polygon); }; void VisualServerRaster::canvas_item_add_triangle_array(RID p_item, const Vector &p_indices, const Vector &p_points, const Vector &p_colors, const Vector &p_uvs, RID p_texture, int p_count) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND(!canvas_item); int ps = p_points.size(); ERR_FAIL_COND(!p_colors.empty() && p_colors.size() != ps && p_colors.size() != 1); ERR_FAIL_COND(!p_uvs.empty() && p_uvs.size() != ps); Vector indices = p_indices; int count = p_count * 3; if (indices.empty()) { ERR_FAIL_COND(ps % 3 != 0); if (p_count == -1) count = ps; } else { ERR_FAIL_COND(indices.size() % 3 != 0); if (p_count == -1) count = indices.size(); } CanvasItem::CommandPolygon *polygon = memnew(CanvasItem::CommandPolygon); ERR_FAIL_COND(!polygon); polygon->texture = p_texture; polygon->points = p_points; polygon->uvs = p_uvs; polygon->colors = p_colors; polygon->indices = indices; polygon->count = count; canvas_item->rect_dirty = true; canvas_item->commands.push_back(polygon); } void VisualServerRaster::canvas_item_add_set_transform(RID p_item, const Matrix32 &p_transform) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND(!canvas_item); CanvasItem::CommandTransform *tr = memnew(CanvasItem::CommandTransform); ERR_FAIL_COND(!tr); tr->xform = p_transform; canvas_item->commands.push_back(tr); } void VisualServerRaster::canvas_item_add_set_blend_mode(RID p_item, MaterialBlendMode p_blend) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND(!canvas_item); CanvasItem::CommandBlendMode *bm = memnew(CanvasItem::CommandBlendMode); ERR_FAIL_COND(!bm); bm->blend_mode = p_blend; canvas_item->commands.push_back(bm); }; void VisualServerRaster::canvas_item_set_z(RID p_item, int p_z) { ERR_FAIL_COND(p_z < CANVAS_ITEM_Z_MIN || p_z > CANVAS_ITEM_Z_MAX); VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND(!canvas_item); canvas_item->z = p_z; } void VisualServerRaster::canvas_item_set_z_as_relative_to_parent(RID p_item, bool p_enable) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND(!canvas_item); canvas_item->z_relative = p_enable; } void VisualServerRaster::canvas_item_set_copy_to_backbuffer(RID p_item, bool p_enable, const Rect2 &p_rect) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND(!canvas_item); if (bool(canvas_item->copy_back_buffer != NULL) != p_enable) { if (p_enable) { canvas_item->copy_back_buffer = memnew(Rasterizer::CanvasItem::CopyBackBuffer); } else { memdelete(canvas_item->copy_back_buffer); canvas_item->copy_back_buffer = NULL; } } if (p_enable) { canvas_item->copy_back_buffer->rect = p_rect; canvas_item->copy_back_buffer->full = p_rect == Rect2(); } } void VisualServerRaster::canvas_item_set_use_parent_material(RID p_item, bool p_enable) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND(!canvas_item); canvas_item->use_parent_material = p_enable; } void VisualServerRaster::canvas_item_set_material(RID p_item, RID p_material) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND(!canvas_item); if (canvas_item->material) canvas_item->material->owners.erase(canvas_item); canvas_item->material = NULL; if (canvas_item_material_owner.owns(p_material)) { canvas_item->material = canvas_item_material_owner.get(p_material); canvas_item->material->owners.insert(canvas_item); } } void VisualServerRaster::canvas_item_set_sort_children_by_y(RID p_item, bool p_enable) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND(!canvas_item); canvas_item->sort_y = p_enable; } void VisualServerRaster::canvas_item_add_clip_ignore(RID p_item, bool p_ignore) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND(!canvas_item); CanvasItem::CommandClipIgnore *ci = memnew(CanvasItem::CommandClipIgnore); ERR_FAIL_COND(!ci); ci->ignore = p_ignore; canvas_item->commands.push_back(ci); } void VisualServerRaster::canvas_item_clear(RID p_item) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND(!canvas_item); canvas_item->clear(); } void VisualServerRaster::canvas_item_raise(RID p_item) { VS_CHANGED; CanvasItem *canvas_item = canvas_item_owner.get(p_item); ERR_FAIL_COND(!canvas_item); if (canvas_item->parent.is_valid()) { if (canvas_owner.owns(canvas_item->parent)) { Canvas *canvas = canvas_owner.get(canvas_item->parent); int idx = canvas->find_item(canvas_item); ERR_FAIL_COND(idx < 0); Canvas::ChildItem ci = canvas->child_items[idx]; canvas->child_items.remove(idx); canvas->child_items.push_back(ci); } else if (canvas_item_owner.owns(canvas_item->parent)) { CanvasItem *item_owner = canvas_item_owner.get(canvas_item->parent); int idx = item_owner->child_items.find(canvas_item); ERR_FAIL_COND(idx < 0); item_owner->child_items.remove(idx); item_owner->child_items.push_back(canvas_item); } } } /***** CANVAS LIGHT *******/ RID VisualServerRaster::canvas_light_create() { Rasterizer::CanvasLight *clight = memnew(Rasterizer::CanvasLight); return canvas_light_owner.make_rid(clight); } void VisualServerRaster::canvas_light_attach_to_canvas(RID p_light, RID p_canvas) { Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light); ERR_FAIL_COND(!clight); if (clight->canvas.is_valid()) { Canvas *canvas = canvas_owner.get(clight->canvas); canvas->lights.erase(clight); } if (!canvas_owner.owns(p_canvas)) p_canvas = RID(); clight->canvas = p_canvas; if (clight->canvas.is_valid()) { Canvas *canvas = canvas_owner.get(clight->canvas); canvas->lights.insert(clight); } } void VisualServerRaster::canvas_light_set_enabled(RID p_light, bool p_enabled) { Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light); ERR_FAIL_COND(!clight); clight->enabled = p_enabled; } void VisualServerRaster::canvas_light_set_transform(RID p_light, const Matrix32 &p_transform) { Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light); ERR_FAIL_COND(!clight); clight->xform = p_transform; } void VisualServerRaster::canvas_light_set_scale(RID p_light, float p_scale) { Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light); ERR_FAIL_COND(!clight); clight->scale = p_scale; } void VisualServerRaster::canvas_light_set_texture(RID p_light, RID p_texture) { Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light); ERR_FAIL_COND(!clight); clight->texture = p_texture; } void VisualServerRaster::canvas_light_set_texture_offset(RID p_light, const Vector2 &p_offset) { Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light); ERR_FAIL_COND(!clight); clight->texture_offset = p_offset; } void VisualServerRaster::canvas_light_set_color(RID p_light, const Color &p_color) { Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light); ERR_FAIL_COND(!clight); clight->color = p_color; } void VisualServerRaster::canvas_light_set_height(RID p_light, float p_height) { Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light); ERR_FAIL_COND(!clight); clight->height = p_height; } void VisualServerRaster::canvas_light_set_energy(RID p_light, float p_energy) { Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light); ERR_FAIL_COND(!clight); clight->energy = p_energy; } void VisualServerRaster::canvas_light_set_z_range(RID p_light, int p_min_z, int p_max_z) { Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light); ERR_FAIL_COND(!clight); clight->z_min = p_min_z; clight->z_max = p_max_z; } void VisualServerRaster::canvas_light_set_layer_range(RID p_light, int p_min_layer, int p_max_layer) { Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light); ERR_FAIL_COND(!clight); clight->layer_min = p_min_layer; clight->layer_max = p_max_layer; } void VisualServerRaster::canvas_light_set_item_mask(RID p_light, int p_mask) { Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light); ERR_FAIL_COND(!clight); clight->item_mask = p_mask; } void VisualServerRaster::canvas_light_set_item_shadow_mask(RID p_light, int p_mask) { Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light); ERR_FAIL_COND(!clight); clight->item_shadow_mask = p_mask; } void VisualServerRaster::canvas_light_set_mode(RID p_light, CanvasLightMode p_mode) { Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light); ERR_FAIL_COND(!clight); clight->mode = p_mode; } void VisualServerRaster::canvas_light_set_shadow_enabled(RID p_light, bool p_enabled) { Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light); ERR_FAIL_COND(!clight); if (clight->shadow_buffer.is_valid() == p_enabled) return; if (p_enabled) { clight->shadow_buffer = rasterizer->canvas_light_shadow_buffer_create(clight->shadow_buffer_size); } else { rasterizer->free(clight->shadow_buffer); clight->shadow_buffer = RID(); } } void VisualServerRaster::canvas_light_set_shadow_buffer_size(RID p_light, int p_size) { Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light); ERR_FAIL_COND(!clight); ERR_FAIL_COND(p_size < 32 || p_size > 16384); clight->shadow_buffer_size = next_power_of_2(p_size); if (clight->shadow_buffer.is_valid()) { rasterizer->free(clight->shadow_buffer); clight->shadow_buffer = rasterizer->canvas_light_shadow_buffer_create(clight->shadow_buffer_size); } } void VisualServerRaster::canvas_light_set_shadow_esm_multiplier(RID p_light, float p_multiplier) { Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light); ERR_FAIL_COND(!clight); clight->shadow_esm_mult = p_multiplier; } void VisualServerRaster::canvas_light_set_shadow_color(RID p_light, const Color &p_color) { Rasterizer::CanvasLight *clight = canvas_light_owner.get(p_light); ERR_FAIL_COND(!clight); clight->shadow_color = p_color; } /****** CANVAS LIGHT OCCLUDER ******/ RID VisualServerRaster::canvas_light_occluder_create() { Rasterizer::CanvasLightOccluderInstance *occluder = memnew(Rasterizer::CanvasLightOccluderInstance); return canvas_light_occluder_owner.make_rid(occluder); } void VisualServerRaster::canvas_light_occluder_attach_to_canvas(RID p_occluder, RID p_canvas) { Rasterizer::CanvasLightOccluderInstance *occluder = canvas_light_occluder_owner.get(p_occluder); ERR_FAIL_COND(!occluder); if (occluder->canvas.is_valid()) { Canvas *canvas = canvas_owner.get(occluder->canvas); canvas->occluders.erase(occluder); } if (!canvas_owner.owns(p_canvas)) p_canvas = RID(); occluder->canvas = p_canvas; if (occluder->canvas.is_valid()) { Canvas *canvas = canvas_owner.get(occluder->canvas); canvas->occluders.insert(occluder); } } void VisualServerRaster::canvas_light_occluder_set_enabled(RID p_occluder, bool p_enabled) { Rasterizer::CanvasLightOccluderInstance *occluder = canvas_light_occluder_owner.get(p_occluder); ERR_FAIL_COND(!occluder); occluder->enabled = p_enabled; } void VisualServerRaster::canvas_light_occluder_set_polygon(RID p_occluder, RID p_polygon) { Rasterizer::CanvasLightOccluderInstance *occluder = canvas_light_occluder_owner.get(p_occluder); ERR_FAIL_COND(!occluder); if (occluder->polygon.is_valid()) { CanvasLightOccluderPolygon *occluder_poly = canvas_light_occluder_polygon_owner.get(p_polygon); if (occluder_poly) { occluder_poly->owners.erase(occluder); } } occluder->polygon = p_polygon; occluder->polygon_buffer = RID(); if (occluder->polygon.is_valid()) { CanvasLightOccluderPolygon *occluder_poly = canvas_light_occluder_polygon_owner.get(p_polygon); if (!occluder_poly) occluder->polygon = RID(); ERR_FAIL_COND(!occluder_poly); occluder_poly->owners.insert(occluder); occluder->polygon_buffer = occluder_poly->occluder; occluder->aabb_cache = occluder_poly->aabb; occluder->cull_cache = occluder_poly->cull_mode; } } void VisualServerRaster::canvas_light_occluder_set_transform(RID p_occluder, const Matrix32 &p_xform) { Rasterizer::CanvasLightOccluderInstance *occluder = canvas_light_occluder_owner.get(p_occluder); ERR_FAIL_COND(!occluder); occluder->xform = p_xform; } void VisualServerRaster::canvas_light_occluder_set_light_mask(RID p_occluder, int p_mask) { Rasterizer::CanvasLightOccluderInstance *occluder = canvas_light_occluder_owner.get(p_occluder); ERR_FAIL_COND(!occluder); occluder->light_mask = p_mask; } RID VisualServerRaster::canvas_occluder_polygon_create() { CanvasLightOccluderPolygon *occluder_poly = memnew(CanvasLightOccluderPolygon); occluder_poly->occluder = rasterizer->canvas_light_occluder_create(); return canvas_light_occluder_polygon_owner.make_rid(occluder_poly); } void VisualServerRaster::canvas_occluder_polygon_set_shape(RID p_occluder_polygon, const DVector &p_shape, bool p_close) { if (p_shape.size() < 3) { canvas_occluder_polygon_set_shape_as_lines(p_occluder_polygon, p_shape); return; } DVector lines; int lc = p_shape.size() * 2; lines.resize(lc - (p_close ? 0 : 2)); { DVector::Write w = lines.write(); DVector::Read r = p_shape.read(); int max = lc / 2; if (!p_close) { max--; } for (int i = 0; i < max; i++) { Vector2 a = r[i]; Vector2 b = r[(i + 1) % (lc / 2)]; w[i * 2 + 0] = a; w[i * 2 + 1] = b; } } canvas_occluder_polygon_set_shape_as_lines(p_occluder_polygon, lines); } void VisualServerRaster::canvas_occluder_polygon_set_shape_as_lines(RID p_occluder_polygon, const DVector &p_shape) { CanvasLightOccluderPolygon *occluder_poly = canvas_light_occluder_polygon_owner.get(p_occluder_polygon); ERR_FAIL_COND(!occluder_poly); ERR_FAIL_COND(p_shape.size() & 1); int lc = p_shape.size(); occluder_poly->aabb = Rect2(); { DVector::Read r = p_shape.read(); for (int i = 0; i < lc; i++) { if (i == 0) occluder_poly->aabb.pos = r[i]; else occluder_poly->aabb.expand_to(r[i]); } } rasterizer->canvas_light_occluder_set_polylines(occluder_poly->occluder, p_shape); for (Set::Element *E = occluder_poly->owners.front(); E; E = E->next()) { E->get()->aabb_cache = occluder_poly->aabb; } } void VisualServerRaster::canvas_occluder_polygon_set_cull_mode(RID p_occluder_polygon, CanvasOccluderPolygonCullMode p_mode) { CanvasLightOccluderPolygon *occluder_poly = canvas_light_occluder_polygon_owner.get(p_occluder_polygon); ERR_FAIL_COND(!occluder_poly); occluder_poly->cull_mode = p_mode; for (Set::Element *E = occluder_poly->owners.front(); E; E = E->next()) { E->get()->cull_cache = p_mode; } } RID VisualServerRaster::canvas_item_material_create() { Rasterizer::CanvasItemMaterial *material = memnew(Rasterizer::CanvasItemMaterial); return canvas_item_material_owner.make_rid(material); } void VisualServerRaster::canvas_item_material_set_shader(RID p_material, RID p_shader) { VS_CHANGED; Rasterizer::CanvasItemMaterial *material = canvas_item_material_owner.get(p_material); ERR_FAIL_COND(!material); material->shader = p_shader; } void VisualServerRaster::canvas_item_material_set_shader_param(RID p_material, const StringName &p_param, const Variant &p_value) { VS_CHANGED; Rasterizer::CanvasItemMaterial *material = canvas_item_material_owner.get(p_material); ERR_FAIL_COND(!material); if (p_value.get_type() == Variant::NIL) material->shader_param.erase(p_param); else material->shader_param[p_param] = p_value; } Variant VisualServerRaster::canvas_item_material_get_shader_param(RID p_material, const StringName &p_param) const { Rasterizer::CanvasItemMaterial *material = canvas_item_material_owner.get(p_material); ERR_FAIL_COND_V(!material, Variant()); if (!material->shader_param.has(p_param)) { ERR_FAIL_COND_V(!material->shader.is_valid(), Variant()); return rasterizer->shader_get_default_param(material->shader, p_param); } return material->shader_param[p_param]; } void VisualServerRaster::canvas_item_material_set_shading_mode(RID p_material, CanvasItemShadingMode p_mode) { VS_CHANGED; Rasterizer::CanvasItemMaterial *material = canvas_item_material_owner.get(p_material); ERR_FAIL_COND(!material); material->shading_mode = p_mode; } /******** CANVAS *********/ void VisualServerRaster::cursor_set_rotation(float p_rotation, int p_cursor) { VS_CHANGED; ERR_FAIL_INDEX(p_cursor, MAX_CURSORS); cursors[p_cursor].rot = p_rotation; }; void VisualServerRaster::cursor_set_texture(RID p_texture, const Point2 &p_center_offset, int p_cursor, const Rect2 &p_region) { VS_CHANGED; ERR_FAIL_INDEX(p_cursor, MAX_CURSORS); cursors[p_cursor].texture = p_texture; cursors[p_cursor].center = p_center_offset; cursors[p_cursor].region = p_region; }; void VisualServerRaster::cursor_set_visible(bool p_visible, int p_cursor) { VS_CHANGED; ERR_FAIL_INDEX(p_cursor, MAX_CURSORS); cursors[p_cursor].visible = p_visible; }; void VisualServerRaster::cursor_set_pos(const Point2 &p_pos, int p_cursor) { ERR_FAIL_INDEX(p_cursor, MAX_CURSORS); if (cursors[p_cursor].pos == p_pos) return; VS_CHANGED; cursors[p_cursor].pos = p_pos; }; void VisualServerRaster::black_bars_set_margins(int p_left, int p_top, int p_right, int p_bottom) { black_margin[MARGIN_LEFT] = p_left; black_margin[MARGIN_TOP] = p_top; black_margin[MARGIN_RIGHT] = p_right; black_margin[MARGIN_BOTTOM] = p_bottom; } void VisualServerRaster::black_bars_set_images(RID p_left, RID p_top, RID p_right, RID p_bottom) { black_image[MARGIN_LEFT] = p_left; black_image[MARGIN_TOP] = p_top; black_image[MARGIN_RIGHT] = p_right; black_image[MARGIN_BOTTOM] = p_bottom; } void VisualServerRaster::_free_attached_instances(RID p_rid, bool p_free_scenario) { Map >::Element *E = instance_dependency_map.find(p_rid); if (E) { // has instances while (E->get().size()) { // erase all attached instances if (p_free_scenario) instance_set_scenario(E->get().front()->get(), RID()); else instance_set_base(E->get().front()->get(), RID()); } } instance_dependency_map.erase(p_rid); } void VisualServerRaster::custom_shade_model_set_shader(int p_model, RID p_shader) { VS_CHANGED; // rasterizer->custom_shade_model_set_shader(p_model,p_shader); } RID VisualServerRaster::custom_shade_model_get_shader(int p_model) const { //return rasterizer->custom_shade_model_get_shader(p_model); return RID(); } void VisualServerRaster::custom_shade_model_set_name(int p_model, const String &p_name) { //rasterizer->custom_shade_model_set_name(p_model,p_name); } String VisualServerRaster::custom_shade_model_get_name(int p_model) const { //return rasterizer->custom_shade_model_get_name(p_model); return ""; } void VisualServerRaster::custom_shade_model_set_param_info(int p_model, const List &p_info) { VS_CHANGED; //rasterizer->custom_shade_model_set_param_info(p_model,p_info); } void VisualServerRaster::custom_shade_model_get_param_info(int p_model, List *p_info) const { //rasterizer->custom_shade_model_get_param_info(p_model,p_info); } void VisualServerRaster::free(RID p_rid) { VS_CHANGED; if (rasterizer->is_texture(p_rid) || rasterizer->is_material(p_rid) || rasterizer->is_shader(p_rid) || rasterizer->is_environment(p_rid)) { rasterizer->free(p_rid); } else if (rasterizer->is_skeleton(p_rid)) { Map >::Element *E = skeleton_dependency_map.find(p_rid); if (E) { //detach skeletons for (Set::Element *F = E->get().front(); F; F = F->next()) { F->get()->data.skeleton = RID(); } skeleton_dependency_map.erase(E); } rasterizer->free(p_rid); } else if (rasterizer->is_mesh(p_rid) || rasterizer->is_multimesh(p_rid) || rasterizer->is_light(p_rid) || rasterizer->is_particles(p_rid) || rasterizer->is_immediate(p_rid)) { //delete the resource _free_attached_instances(p_rid); rasterizer->free(p_rid); } else if (room_owner.owns(p_rid)) { _free_attached_instances(p_rid); Room *room = room_owner.get(p_rid); ERR_FAIL_COND(!room); room_owner.free(p_rid); memdelete(room); } else if (portal_owner.owns(p_rid)) { _free_attached_instances(p_rid); Portal *portal = portal_owner.get(p_rid); ERR_FAIL_COND(!portal); portal_owner.free(p_rid); memdelete(portal); } else if (baked_light_owner.owns(p_rid)) { _free_attached_instances(p_rid); BakedLight *baked_light = baked_light_owner.get(p_rid); ERR_FAIL_COND(!baked_light); if (baked_light->data.octree_texture.is_valid()) rasterizer->free(baked_light->data.octree_texture); baked_light_owner.free(p_rid); memdelete(baked_light); } else if (baked_light_sampler_owner.owns(p_rid)) { _free_attached_instances(p_rid); BakedLightSampler *baked_light_sampler = baked_light_sampler_owner.get(p_rid); ERR_FAIL_COND(!baked_light_sampler); //if (baked_light->data.octree_texture.is_valid()) // rasterizer->free(baked_light->data.octree_texture); baked_light_sampler_owner.free(p_rid); memdelete(baked_light_sampler); } else if (camera_owner.owns(p_rid)) { // delete te camera Camera *camera = camera_owner.get(p_rid); ERR_FAIL_COND(!camera); camera_owner.free(p_rid); memdelete(camera); } else if (viewport_owner.owns(p_rid)) { // delete the viewport Viewport *viewport = viewport_owner.get(p_rid); ERR_FAIL_COND(!viewport); // Viewport *parent=NULL; rasterizer->free(viewport->viewport_data); if (viewport->render_target.is_valid()) { rasterizer->free(viewport->render_target); } if (viewport->update_list.in_list()) viewport_update_list.remove(&viewport->update_list); if (screen_viewports.has(p_rid)) screen_viewports.erase(p_rid); while (viewport->canvas_map.size()) { Canvas *c = viewport->canvas_map.front()->get().canvas; c->viewports.erase(p_rid); viewport->canvas_map.erase(viewport->canvas_map.front()); } viewport_owner.free(p_rid); memdelete(viewport); } else if (instance_owner.owns(p_rid)) { // delete the instance _update_instances(); // be sure Instance *instance = instance_owner.get(p_rid); ERR_FAIL_COND(!instance); instance_set_room(p_rid, RID()); instance_set_scenario(p_rid, RID()); instance_geometry_set_baked_light(p_rid, RID()); instance_geometry_set_baked_light_sampler(p_rid, RID()); instance_set_base(p_rid, RID()); if (instance->data.skeleton.is_valid()) instance_attach_skeleton(p_rid, RID()); instance_owner.free(p_rid); memdelete(instance); } else if (canvas_owner.owns(p_rid)) { Canvas *canvas = canvas_owner.get(p_rid); ERR_FAIL_COND(!canvas); while (canvas->viewports.size()) { Viewport *vp = viewport_owner.get(canvas->viewports.front()->get()); ERR_FAIL_COND(!vp); Map::Element *E = vp->canvas_map.find(p_rid); ERR_FAIL_COND(!E); vp->canvas_map.erase(p_rid); canvas->viewports.erase(canvas->viewports.front()); } for (int i = 0; i < canvas->child_items.size(); i++) { canvas->child_items[i].item->parent = RID(); } for (Set::Element *E = canvas->lights.front(); E; E = E->next()) { E->get()->canvas = RID(); } for (Set::Element *E = canvas->occluders.front(); E; E = E->next()) { E->get()->canvas = RID(); } canvas_owner.free(p_rid); memdelete(canvas); } else if (canvas_item_owner.owns(p_rid)) { CanvasItem *canvas_item = canvas_item_owner.get(p_rid); ERR_FAIL_COND(!canvas_item); if (canvas_item->parent.is_valid()) { if (canvas_owner.owns(canvas_item->parent)) { Canvas *canvas = canvas_owner.get(canvas_item->parent); canvas->erase_item(canvas_item); } else if (canvas_item_owner.owns(canvas_item->parent)) { CanvasItem *item_owner = canvas_item_owner.get(canvas_item->parent); item_owner->child_items.erase(canvas_item); } } for (int i = 0; i < canvas_item->child_items.size(); i++) { canvas_item->child_items[i]->parent = RID(); } if (canvas_item->material) { canvas_item->material->owners.erase(canvas_item); } canvas_item_owner.free(p_rid); memdelete(canvas_item); } else if (canvas_item_material_owner.owns(p_rid)) { Rasterizer::CanvasItemMaterial *material = canvas_item_material_owner.get(p_rid); ERR_FAIL_COND(!material); for (Set::Element *E = material->owners.front(); E; E = E->next()) { E->get()->material = NULL; } canvas_item_material_owner.free(p_rid); memdelete(material); } else if (canvas_light_owner.owns(p_rid)) { Rasterizer::CanvasLight *canvas_light = canvas_light_owner.get(p_rid); ERR_FAIL_COND(!canvas_light); if (canvas_light->canvas.is_valid()) { Canvas *canvas = canvas_owner.get(canvas_light->canvas); if (canvas) canvas->lights.erase(canvas_light); } if (canvas_light->shadow_buffer.is_valid()) rasterizer->free(canvas_light->shadow_buffer); canvas_light_owner.free(p_rid); memdelete(canvas_light); } else if (canvas_light_occluder_owner.owns(p_rid)) { Rasterizer::CanvasLightOccluderInstance *occluder = canvas_light_occluder_owner.get(p_rid); ERR_FAIL_COND(!occluder); if (occluder->polygon.is_valid()) { CanvasLightOccluderPolygon *occluder_poly = canvas_light_occluder_polygon_owner.get(occluder->polygon); if (occluder_poly) { occluder_poly->owners.erase(occluder); } } if (occluder->canvas.is_valid() && canvas_owner.owns(occluder->canvas)) { Canvas *canvas = canvas_owner.get(occluder->canvas); canvas->occluders.erase(occluder); } canvas_light_occluder_owner.free(p_rid); memdelete(occluder); } else if (canvas_light_occluder_polygon_owner.owns(p_rid)) { CanvasLightOccluderPolygon *occluder_poly = canvas_light_occluder_polygon_owner.get(p_rid); ERR_FAIL_COND(!occluder_poly); rasterizer->free(occluder_poly->occluder); while (occluder_poly->owners.size()) { occluder_poly->owners.front()->get()->polygon = RID(); occluder_poly->owners.erase(occluder_poly->owners.front()); } canvas_light_occluder_polygon_owner.free(p_rid); memdelete(occluder_poly); } else if (scenario_owner.owns(p_rid)) { Scenario *scenario = scenario_owner.get(p_rid); ERR_FAIL_COND(!scenario); _update_instances(); // be sure _free_attached_instances(p_rid, true); //rasterizer->free( scenario->environment ); scenario_owner.free(p_rid); memdelete(scenario); } else { ERR_FAIL(); } } void VisualServerRaster::_instance_draw(Instance *p_instance) { if (p_instance->light_cache_dirty) { int l = 0; //add positional lights InstanceSet::Element *LE = p_instance->lights.front(); p_instance->data.light_instances.resize(p_instance->lights.size()); while (LE) { p_instance->data.light_instances[l++] = LE->get()->light_info->instance; LE = LE->next(); } p_instance->light_cache_dirty = false; } switch (p_instance->base_type) { case INSTANCE_MESH: { rasterizer->add_mesh(p_instance->base_rid, &p_instance->data); } break; case INSTANCE_MULTIMESH: { rasterizer->add_multimesh(p_instance->base_rid, &p_instance->data); } break; case INSTANCE_IMMEDIATE: { rasterizer->add_immediate(p_instance->base_rid, &p_instance->data); } break; case INSTANCE_PARTICLES: { rasterizer->add_particles(p_instance->particles_info->instance, &p_instance->data); } break; default: {}; } } Vector VisualServerRaster::_camera_generate_endpoints(Instance *p_light, Camera *p_camera, float p_range_min, float p_range_max) { // setup a camera matrix for that range! CameraMatrix camera_matrix; switch (p_camera->type) { case Camera::ORTHOGONAL: { camera_matrix.set_orthogonal(p_camera->size, viewport_rect.width / (float)viewport_rect.height, p_range_min, p_range_max, p_camera->vaspect); } break; case Camera::PERSPECTIVE: { camera_matrix.set_perspective( p_camera->fov, viewport_rect.width / (float)viewport_rect.height, p_range_min, p_range_max, p_camera->vaspect); } break; } //obtain the frustum endpoints Vector endpoints; endpoints.resize(8); bool res = camera_matrix.get_endpoints(p_camera->transform, &endpoints[0]); ERR_FAIL_COND_V(!res, Vector()); return endpoints; } Vector VisualServerRaster::_camera_generate_orthogonal_planes(Instance *p_light, Camera *p_camera, float p_range_min, float p_range_max) { Vector endpoints = _camera_generate_endpoints(p_light, p_camera, p_range_min, p_range_max); // frustum plane endpoints ERR_FAIL_COND_V(endpoints.empty(), Vector()); // obtain the light frustm ranges (given endpoints) Vector3 x_vec = p_light->data.transform.basis.get_axis(Vector3::AXIS_X).normalized(); Vector3 y_vec = p_light->data.transform.basis.get_axis(Vector3::AXIS_Y).normalized(); Vector3 z_vec = p_light->data.transform.basis.get_axis(Vector3::AXIS_Z).normalized(); float x_min, x_max; float y_min, y_max; float z_min, z_max; for (int j = 0; j < 8; j++) { float d_x = x_vec.dot(endpoints[j]); float d_y = y_vec.dot(endpoints[j]); float d_z = z_vec.dot(endpoints[j]); if (j == 0 || d_x < x_min) x_min = d_x; if (j == 0 || d_x > x_max) x_max = d_x; if (j == 0 || d_y < y_min) y_min = d_y; if (j == 0 || d_y > y_max) y_max = d_y; if (j == 0 || d_z < z_min) z_min = d_z; if (j == 0 || d_z > z_max) z_max = d_z; } //now that we now all ranges, we can proceed to make the light frustum planes, for culling octree Vector light_frustum_planes; light_frustum_planes.resize(6); //right/left light_frustum_planes[0] = Plane(x_vec, x_max); light_frustum_planes[1] = Plane(-x_vec, -x_min); //top/bottom light_frustum_planes[2] = Plane(y_vec, y_max); light_frustum_planes[3] = Plane(-y_vec, -y_min); //near/far light_frustum_planes[4] = Plane(z_vec, z_max + 1e6); light_frustum_planes[5] = Plane(-z_vec, -z_min); // z_min is ok, since casters further than far-light plane are not needed //TODO@ add more actual frustum planes to minimize get return light_frustum_planes; } void VisualServerRaster::_light_instance_update_pssm_shadow(Instance *p_light, Scenario *p_scenario, Camera *p_camera, const CullRange &p_cull_range) { int splits = rasterizer->light_instance_get_shadow_passes(p_light->light_info->instance); float split_weight = rasterizer->light_directional_get_shadow_param(p_light->base_rid, LIGHT_DIRECTIONAL_SHADOW_PARAM_PSSM_SPLIT_WEIGHT); float distances[5]; float texsize = rasterizer->light_instance_get_shadow_size(p_light->light_info->instance); // float cull_min=p_cull_range.min; //float cull_max=p_cull_range.max; bool overlap = rasterizer->light_instance_get_pssm_shadow_overlap(p_light->light_info->instance); float cull_min = p_camera->znear; float cull_max = p_camera->zfar; float max_dist = rasterizer->light_directional_get_shadow_param(p_light->base_rid, VS::LIGHT_DIRECTIONAL_SHADOW_PARAM_MAX_DISTANCE); if (max_dist > 0.0) cull_max = MIN(cull_max, max_dist); for (int i = 0; i < splits; i++) { float idm = i / (float)splits; float lg = cull_min * Math::pow(cull_max / cull_min, idm); float uniform = cull_min + (cull_max - cull_min) * idm; distances[i] = lg * split_weight + uniform * (1.0 - split_weight); } distances[0] = cull_min; distances[splits] = cull_max; for (int i = 0; i < splits; i++) { // setup a camera matrix for that range! CameraMatrix camera_matrix; switch (p_camera->type) { case Camera::ORTHOGONAL: { camera_matrix.set_orthogonal( p_camera->size, viewport_rect.width / (float)viewport_rect.height, distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], p_camera->vaspect ); } break; case Camera::PERSPECTIVE: { camera_matrix.set_perspective( p_camera->fov, viewport_rect.width / (float)viewport_rect.height, distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], p_camera->vaspect ); } break; } //obtain the frustum endpoints Vector3 endpoints[8]; // frustum plane endpoints bool res = camera_matrix.get_endpoints(p_camera->transform, endpoints); ERR_CONTINUE(!res); // obtain the light frustm ranges (given endpoints) Vector3 x_vec = p_light->data.transform.basis.get_axis(Vector3::AXIS_X).normalized(); Vector3 y_vec = p_light->data.transform.basis.get_axis(Vector3::AXIS_Y).normalized(); Vector3 z_vec = p_light->data.transform.basis.get_axis(Vector3::AXIS_Z).normalized(); //z_vec points agsint the camera, like in default opengl float x_min, x_max; float y_min, y_max; float z_min, z_max; float x_min_cam, x_max_cam; float y_min_cam, y_max_cam; float z_min_cam, z_max_cam; //used for culling for (int j = 0; j < 8; j++) { float d_x = x_vec.dot(endpoints[j]); float d_y = y_vec.dot(endpoints[j]); float d_z = z_vec.dot(endpoints[j]); if (j == 0 || d_x < x_min) x_min = d_x; if (j == 0 || d_x > x_max) x_max = d_x; if (j == 0 || d_y < y_min) y_min = d_y; if (j == 0 || d_y > y_max) y_max = d_y; if (j == 0 || d_z < z_min) z_min = d_z; if (j == 0 || d_z > z_max) z_max = d_z; } { //camera viewport stuff //this trick here is what stabilizes the shadow (make potential jaggies to not move) //at the cost of some wasted resolution. Still the quality increase is very well worth it Vector3 center; for (int j = 0; j < 8; j++) { center += endpoints[j]; } center /= 8.0; //center=x_vec*(x_max-x_min)*0.5 + y_vec*(y_max-y_min)*0.5 + z_vec*(z_max-z_min)*0.5; float radius = 0; for (int j = 0; j < 8; j++) { float d = center.distance_to(endpoints[j]); if (d > radius) radius = d; } radius *= texsize / (texsize - 2.0); //add a texel by each side, so stepified texture will always fit x_max_cam = x_vec.dot(center) + radius; x_min_cam = x_vec.dot(center) - radius; y_max_cam = y_vec.dot(center) + radius; y_min_cam = y_vec.dot(center) - radius; z_max_cam = z_vec.dot(center) + radius; z_min_cam = z_vec.dot(center) - radius; float unit = radius * 2.0 / texsize; x_max_cam = Math::stepify(x_max_cam, unit); x_min_cam = Math::stepify(x_min_cam, unit); y_max_cam = Math::stepify(y_max_cam, unit); y_min_cam = Math::stepify(y_min_cam, unit); } //now that we now all ranges, we can proceed to make the light frustum planes, for culling octree Vector light_frustum_planes; light_frustum_planes.resize(6); //right/left light_frustum_planes[0] = Plane(x_vec, x_max); light_frustum_planes[1] = Plane(-x_vec, -x_min); //top/bottom light_frustum_planes[2] = Plane(y_vec, y_max); light_frustum_planes[3] = Plane(-y_vec, -y_min); //near/far light_frustum_planes[4] = Plane(z_vec, z_max + 1e6); light_frustum_planes[5] = Plane(-z_vec, -z_min); // z_min is ok, since casters further than far-light plane are not needed int caster_cull_count = p_scenario->octree.cull_convex(light_frustum_planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, INSTANCE_GEOMETRY_MASK); // a pre pass will need to be needed to determine the actual z-near to be used for (int j = 0; j < caster_cull_count; j++) { float min, max; Instance *ins = instance_shadow_cull_result[j]; if (!ins->visible || ins->data.cast_shadows == VS::SHADOW_CASTING_SETTING_OFF) continue; ins->transformed_aabb.project_range_in_plane(Plane(z_vec, 0), min, max); if (max > z_max) z_max = max; } { CameraMatrix ortho_camera; real_t half_x = (x_max_cam - x_min_cam) * 0.5; real_t half_y = (y_max_cam - y_min_cam) * 0.5; ortho_camera.set_orthogonal(-half_x, half_x, -half_y, half_y, 0, (z_max - z_min_cam)); Transform ortho_transform; ortho_transform.basis = p_light->data.transform.basis; ortho_transform.origin = x_vec * (x_min_cam + half_x) + y_vec * (y_min_cam + half_y) + z_vec * z_max; rasterizer->light_instance_set_shadow_transform(p_light->light_info->instance, i, ortho_camera, ortho_transform, distances[i], distances[i + 1]); } rasterizer->begin_shadow_map(p_light->light_info->instance, i); for (int j = 0; j < caster_cull_count; j++) { Instance *instance = instance_shadow_cull_result[j]; if (!instance->visible || instance->data.cast_shadows == VS::SHADOW_CASTING_SETTING_OFF) continue; _instance_draw(instance); } rasterizer->end_shadow_map(); } } CameraMatrix _lispm_look(const Vector3 pos, const Vector3 dir, const Vector3 up) { Vector3 dirN; Vector3 upN; Vector3 lftN; lftN = dir.cross(up); lftN.normalize(); upN = lftN.cross(dir); upN.normalize(); dirN = dir.normalized(); CameraMatrix cmout; float *output = &cmout.matrix[0][0]; output[0] = lftN[0]; output[1] = upN[0]; output[2] = -dirN[0]; output[3] = 0.0; output[4] = lftN[1]; output[5] = upN[1]; output[6] = -dirN[1]; output[7] = 0.0; output[8] = lftN[2]; output[9] = upN[2]; output[10] = -dirN[2]; output[11] = 0.0; output[12] = -lftN.dot(pos); output[13] = -upN.dot(pos); output[14] = dirN.dot(pos); output[15] = 1.0; return cmout; } #if 1 void VisualServerRaster::_light_instance_update_lispsm_shadow(Instance *p_light, Scenario *p_scenario, Camera *p_camera, const CullRange &p_cull_range) { Vector3 light_vec = -p_light->data.transform.basis.get_axis(2); Vector3 view_vec = -p_camera->transform.basis.get_axis(2); float near_dist = 1; Vector light_frustum_planes = _camera_generate_orthogonal_planes(p_light, p_camera, p_cull_range.min, p_cull_range.max); int caster_count = p_scenario->octree.cull_convex(light_frustum_planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, INSTANCE_GEOMETRY_MASK); // this could be faster by just getting supports from the AABBs.. // but, safer to do as the original implementation explains for now.. Vector caster_pointcloud; caster_pointcloud.resize(caster_count * 8); int caster_pointcloud_size = 0; { //fill pointcloud Vector3 *caster_pointcloud_ptr = &caster_pointcloud[0]; for (int i = 0; i < caster_count; i++) { Instance *ins = instance_shadow_cull_result[i]; if (!ins->visible || ins->data.cast_shadows == VS::SHADOW_CASTING_SETTING_OFF) continue; for (int j = 0; j < 8; j++) { Vector3 v = ins->aabb.get_endpoint(j); v = ins->data.transform.xform(v); caster_pointcloud_ptr[caster_pointcloud_size + j] = v; } caster_pointcloud_size += 8; } } // now generate a pointcloud that contains the maximum bound (camera extruded by light) Vector camera_pointcloud = _camera_generate_endpoints(p_light, p_camera, p_cull_range.min, p_cull_range.max); int cpcsize = camera_pointcloud.size(); camera_pointcloud.resize(cpcsize * 2); for (int i = 0; i < cpcsize; i++) { camera_pointcloud[i + cpcsize] = camera_pointcloud[i] - light_vec * 1000; } // Vector frustum_points=_camera_generate_endpoints(p_light,p_camera,p_cull_range.min,p_cull_range.max); // compute the "light-space" basis, using the algorithm described in the paper // note: since bodyB is defined in eye space, all of these vectors should also be defined in eye space Vector3 eye = p_camera->transform.origin; Vector3 up = light_vec.cross(view_vec).cross(light_vec).normalized(); CameraMatrix light_space_basis = _lispm_look(eye, light_vec, up); AABB light_space_aabb; { //create an optimal AABB from both the camera pointcloud and the objects pointcloud AABB light_space_pointcloud_aabb; AABB light_space_camera_aabb; //xform pointcloud const Vector3 *caster_pointcloud_ptr = &caster_pointcloud[0]; for (int i = 0; i < caster_pointcloud_size; i++) { Vector3 p = light_space_basis.xform(caster_pointcloud_ptr[i]); if (i == 0) { light_space_pointcloud_aabb.pos = p; } else { light_space_pointcloud_aabb.expand_to(p); } } for (int i = 0; i < camera_pointcloud.size(); i++) { Vector3 p = light_space_basis.xform(camera_pointcloud[i]); if (i == 0) { light_space_camera_aabb.pos = p; } else { light_space_camera_aabb.expand_to(p); } } light_space_aabb = light_space_pointcloud_aabb.intersection(light_space_camera_aabb); } float lvdp = light_vec.dot(view_vec); float sin_gamma = Math::sqrt(1.0 - lvdp * lvdp); //use the formulas of the paper to get n (and f) float factor = 1.0 / sin_gamma; float z_n = factor * near_dist; //often 1 float d = Math::abs(light_space_aabb.size.y); //perspective transform depth //light space y extents float z_f = z_n + d * sin_gamma; float n = (z_n + Math::sqrt(z_f * z_n)) / sin_gamma; float f = n + d; Vector3 pos = eye - up * (n - near_dist); CameraMatrix light_space_basis2 = _lispm_look(pos, light_vec, up); //Transform light_space_basis2; //light_space_basis2.set_look_at(pos,light_vec-pos,up); //light_space_basis2.affine_invert(); //one possibility for a simple perspective transformation matrix //with the two parameters n(near) and f(far) in y direction CameraMatrix lisp_matrix; lisp_matrix.matrix[1][1] = (f + n) / (f - n); lisp_matrix.matrix[3][1] = -2 * f * n / (f - n); lisp_matrix.matrix[1][3] = 1; lisp_matrix.matrix[3][3] = 0; CameraMatrix projection = lisp_matrix * light_space_basis2; //CameraMatrix projection = light_space_basis2 * lisp_matrix; AABB proj_space_aabb; { AABB proj_space_pointcloud_aabb; AABB proj_space_camera_aabb; //xform pointcloud Vector3 *caster_pointcloud_ptr = &caster_pointcloud[0]; for (int i = 0; i < caster_pointcloud_size; i++) { Vector3 p = projection.xform(caster_pointcloud_ptr[i]); if (i == 0) { proj_space_pointcloud_aabb.pos = p; } else { proj_space_pointcloud_aabb.expand_to(p); } } for (int i = 0; i < camera_pointcloud.size(); i++) { Vector3 p = projection.xform(camera_pointcloud[i]); if (i == 0) { proj_space_camera_aabb.pos = p; } else { proj_space_camera_aabb.expand_to(p); } } //proj_space_aabb=proj_space_pointcloud_aabb.intersection_with(proj_space_camera_aabb); proj_space_aabb = proj_space_pointcloud_aabb; } projection.scale_translate_to_fit(proj_space_aabb); projection = projection * lisp_matrix; CameraMatrix scale; scale.make_scale(Vector3(1.0, 1.0, -1.0)); // transform to left handed projection = scale * projection; rasterizer->light_instance_set_shadow_transform(p_light->light_info->instance, 0, projection, light_space_basis2.inverse()); rasterizer->begin_shadow_map(p_light->light_info->instance, 0); for (int i = 0; i < caster_count; i++) { Instance *instance = instance_shadow_cull_result[i]; if (!instance->visible || instance->data.cast_shadows == VS::SHADOW_CASTING_SETTING_OFF) continue; _instance_draw(instance); } rasterizer->end_shadow_map(); } #else void VisualServerRaster::_light_instance_update_lispsm_shadow(Instance *p_light, Scenario *p_scenario, Camera *p_camera, const CullRange &p_cull_range) { /* STEP 1: GENERATE LIGHT TRANSFORM */ Vector3 light_vec = -p_light->data.transform.basis.get_axis(2); Vector3 view_vec = -p_camera->transform.basis.get_axis(2); float viewdot = Math::absf(light_vec.dot(view_vec)); Vector3 up = light_vec.cross(view_vec).cross(light_vec).normalized(); Transform light_transform; light_transform.set_look_at(Vector3(), light_vec, up); /* STEP 2: GENERATE WORDLSPACE PLANES AND VECTORS*/ float range_min = 0.01; //p_cull_range.min float range_max = 20; //p_cull_range.max; Vector camera_endpoints = _camera_generate_endpoints(p_light, p_camera, range_min, range_max); // frustum plane endpoints ERR_FAIL_COND(camera_endpoints.empty()); // obtain the light frustm ranges (given endpoints) Vector3 light_x_vec = light_transform.basis.get_axis(Vector3::AXIS_X).normalized(); Vector3 light_y_vec = light_transform.basis.get_axis(Vector3::AXIS_Y).normalized(); Vector3 light_z_vec = light_transform.basis.get_axis(Vector3::AXIS_Z).normalized(); Vector3 light_axis_max; Vector3 light_axis_min; for (int j = 0; j < 8; j++) { float d_x = light_x_vec.dot(camera_endpoints[j]); float d_y = light_y_vec.dot(camera_endpoints[j]); float d_z = light_z_vec.dot(camera_endpoints[j]); if (j == 0 || d_x < light_axis_min.x) light_axis_min.x = d_x; if (j == 0 || d_x > light_axis_max.x) light_axis_max.x = d_x; if (j == 0 || d_y < light_axis_min.y) light_axis_min.y = d_y; if (j == 0 || d_y > light_axis_max.y) light_axis_max.y = d_y; if (j == 0 || d_z < light_axis_min.z) light_axis_min.z = d_z; if (j == 0 || d_z > light_axis_max.z) light_axis_max.z = d_z; } //now that we now all ranges, we can proceed to make the light frustum planes, for culling octree Vector light_cull_planes; light_cull_planes.resize(6); //right/left light_cull_planes[0] = Plane(light_x_vec, light_axis_max.x); light_cull_planes[1] = Plane(-light_x_vec, -light_axis_min.x); //top/bottom light_cull_planes[2] = Plane(light_y_vec, light_axis_max.y); light_cull_planes[3] = Plane(-light_y_vec, -light_axis_min.y); //near/far light_cull_planes[4] = Plane(light_z_vec, light_axis_max.z + 1e6); light_cull_planes[5] = Plane(-light_z_vec, -light_axis_min.z); // z_min is ok, since casters further than far-light plane are not needed /* STEP 3: CULL CASTERS */ int caster_count = p_scenario->octree.cull_convex(light_cull_planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, INSTANCE_GEOMETRY_MASK); /* STEP 4: ADJUST FAR Z PLANE */ float caster_max_z = 1e-1; for (int i = 0; i < caster_count; i++) { Instance *ins = instance_shadow_cull_result[i]; if (!ins->visible || ins->cast_shadows == VS::SHADOW_CASTING_SETTING_OFF) continue; //@TODO optimize using support mapping for (int j = 0; j < 8; j++) { Vector3 v = ins->data.transform.xform(ins->aabb.get_endpoint(j)); float d = light_z_vec.dot(v); if (d > caster_max_z) caster_max_z = d; } } float expand = caster_max_z - light_axis_max.z; if (expand < 0) expand = 0; light_axis_max.z = MAX(caster_max_z, light_axis_max.z); /* STEP 5: CREATE ORTHOGONAL PROJECTION */ CameraMatrix light_projection; real_t half_x = (light_axis_max.x - light_axis_min.x) * 0.5; real_t half_y = (light_axis_max.y - light_axis_min.y) * 0.5; light_projection.set_orthogonal(-half_x, half_x, half_y, -half_y, 0, (light_axis_max.z - light_axis_min.z)); light_transform.origin = light_x_vec * (light_axis_min.x + half_x) + light_y_vec * (light_axis_min.y + half_y) + light_z_vec * light_axis_max.z; if (/*false &&*/ viewdot < 0.96) { float lvdp = light_vec.dot(view_vec); float near_dist = 1.0; float sin_gamma = Math::sqrt(1.0 - lvdp * lvdp); //use the formulas of the paper to get n (and f) float factor = 1.0 / sin_gamma; float z_n = factor * near_dist; //often 1 float d = Math::abs(light_axis_max.y - light_axis_min.y); //perspective transform depth //light space y extents float z_f = z_n + d * sin_gamma; float n = (z_n + Math::sqrt(z_f * z_n)) / sin_gamma; float f = n + d; CameraMatrix lisp_matrix; lisp_matrix.matrix[1][1] = (f + n) / (f - n); lisp_matrix.matrix[3][1] = -2 * f * n / (f - n); lisp_matrix.matrix[1][3] = 1; lisp_matrix.matrix[3][3] = 0; Vector3 pos = p_camera->transform.origin - up * (n - near_dist); CameraMatrix world2light = _lispm_look(pos, light_vec, up); CameraMatrix projection = lisp_matrix * world2light; AABB projection_bounds; for (int i = 0; i < camera_endpoints.size(); i++) { Vector3 p = camera_endpoints[i]; if (i == 0) projection_bounds.pos = projection.xform(p); else projection_bounds.expand_to(projection.xform(p)); projection_bounds.expand_to(projection.xform(p + light_vec * -expand)); } CameraMatrix scaletrans; scaletrans.scale_translate_to_fit(projection_bounds); projection = scaletrans * lisp_matrix; CameraMatrix scale; scale.make_scale(Vector3(1.0, 1.0, -1.0)); // transform to left handed projection = scale * projection; rasterizer->light_instance_set_shadow_transform(p_light->light_info->instance, 0, projection, world2light.inverse(), viewdot); } else { //orthogonal rasterizer->light_instance_set_shadow_transform(p_light->light_info->instance, 0, light_projection, light_transform, viewdot); } rasterizer->begin_shadow_map(p_light->light_info->instance, 0); for (int i = 0; i < caster_count; i++) { Instance *instance = instance_shadow_cull_result[i]; if (!instance->visible || instance->cast_shadows == VS::SHADOW_CASTING_SETTING_OFF) continue; _instance_draw(instance); } rasterizer->end_shadow_map(); } #endif void VisualServerRaster::_light_instance_update_shadow(Instance *p_light, Scenario *p_scenario, Camera *p_camera, const CullRange &p_cull_range) { if (!rasterizer->shadow_allocate_near(p_light->light_info->instance)) return; // shadow could not be updated /* VisualServerRaster supports for many shadow techniques, using the one the rasterizer requests */ Rasterizer::ShadowType shadow_type = rasterizer->light_instance_get_shadow_type(p_light->light_info->instance); switch (shadow_type) { case Rasterizer::SHADOW_SIMPLE: { /* SPOT SHADOW */ rasterizer->begin_shadow_map(p_light->light_info->instance, 0); //using this one ensures that raster deferred will have it float far = rasterizer->light_get_var(p_light->base_rid, VS::LIGHT_PARAM_RADIUS); float angle = rasterizer->light_get_var(p_light->base_rid, VS::LIGHT_PARAM_SPOT_ANGLE); CameraMatrix cm; cm.set_perspective(angle * 2.0, 1.0, 0.001, far); Vector planes = cm.get_projection_planes(p_light->data.transform); int cull_count = p_scenario->octree.cull_convex(planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, INSTANCE_GEOMETRY_MASK); for (int i = 0; i < cull_count; i++) { Instance *instance = instance_shadow_cull_result[i]; if (!instance->visible || instance->data.cast_shadows == VS::SHADOW_CASTING_SETTING_OFF) continue; _instance_draw(instance); } rasterizer->end_shadow_map(); } break; case Rasterizer::SHADOW_DUAL_PARABOLOID: { /* OMNI SHADOW */ int passes = rasterizer->light_instance_get_shadow_passes(p_light->light_info->instance); if (passes == 2) { for (int i = 0; i < 2; i++) { rasterizer->begin_shadow_map(p_light->light_info->instance, i); //using this one ensures that raster deferred will have it float radius = rasterizer->light_get_var(p_light->base_rid, VS::LIGHT_PARAM_RADIUS); float z = i == 0 ? -1 : 1; Vector planes; planes.resize(5); planes[0] = p_light->data.transform.xform(Plane(Vector3(0, 0, z), radius)); planes[1] = p_light->data.transform.xform(Plane(Vector3(1, 0, z).normalized(), radius)); planes[2] = p_light->data.transform.xform(Plane(Vector3(-1, 0, z).normalized(), radius)); planes[3] = p_light->data.transform.xform(Plane(Vector3(0, 1, z).normalized(), radius)); planes[4] = p_light->data.transform.xform(Plane(Vector3(0, -1, z).normalized(), radius)); int cull_count = p_scenario->octree.cull_convex(planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, INSTANCE_GEOMETRY_MASK); for (int j = 0; j < cull_count; j++) { Instance *instance = instance_shadow_cull_result[j]; if (!instance->visible || instance->data.cast_shadows == VS::SHADOW_CASTING_SETTING_OFF) continue; _instance_draw(instance); } rasterizer->end_shadow_map(); } } else if (passes == 1) { //one go } } break; case Rasterizer::SHADOW_CUBE: { // todo } break; case Rasterizer::SHADOW_ORTHOGONAL: { _light_instance_update_pssm_shadow(p_light, p_scenario, p_camera, p_cull_range); } break; case Rasterizer::SHADOW_PSSM: { _light_instance_update_pssm_shadow(p_light, p_scenario, p_camera, p_cull_range); } break; case Rasterizer::SHADOW_PSM: { _light_instance_update_lispsm_shadow(p_light, p_scenario, p_camera, p_cull_range); // todo } break; default: {} } } void VisualServerRaster::_portal_disconnect(Instance *p_portal, bool p_cleanup) { if (p_portal->portal_info->connected) { //disconnect first p_portal->portal_info->connected->portal_info->connected = NULL; p_portal->portal_info->connected = NULL; } if (p_portal->room && p_portal->room->room) { if (p_cleanup) { p_portal->room->room->room_info->disconnected_child_portals.erase(p_portal); //p_portal->room->room->room_info->disconnected_child_portals.erase(p_portal); } else { p_portal->room->room->room_info->disconnected_child_portals.insert(p_portal); } } } void VisualServerRaster::_instance_validate_autorooms(Instance *p_geometry) { if (p_geometry->auto_rooms.size() == 0) return; p_geometry->valid_auto_rooms.clear(); int point_count = aabb_random_points.size(); const Vector3 *src_points = &aabb_random_points[0]; for (Set::Element *E = p_geometry->valid_auto_rooms.front(); E; E = E->next()) { Instance *room = E->get(); Vector3 *dst_points = &transformed_aabb_random_points[0]; //generate points for (int i = 0; i < point_count; i++) { dst_points[i] = room->room_info->affine_inverse.xform(p_geometry->data.transform.xform((src_points[i] * p_geometry->transformed_aabb.size) + p_geometry->transformed_aabb.pos)); } int pass = room->room_info->room->bounds.get_points_inside(dst_points, point_count); float ratio = pass; if (point_count != 0) { ratio /= (float)point_count; } if (ratio > 0.5) // should make some constant p_geometry->valid_auto_rooms.insert(room); } } void VisualServerRaster::_portal_attempt_connect(Instance *p_portal) { _portal_disconnect(p_portal); Vector3 A_norm = p_portal->data.transform.basis.get_axis(Vector3::AXIS_Z).normalized(); Plane A_plane(p_portal->data.transform.origin, A_norm); float A_surface = p_portal->portal_info->portal->bounds.get_area(); if (A_surface == 0) return; //wtf Instance *found = NULL; Transform affine_inverse = p_portal->data.transform.affine_inverse(); for (Set::Element *E = p_portal->portal_info->candidate_set.front(); E; E = E->next()) { Instance *B = E->get(); if (B->portal_info->connected) continue; // in use Vector3 B_norm = B->data.transform.basis.get_axis(Vector3::AXIS_Z).normalized(); // check that they are in front of another float dot = A_norm.dot(-B_norm); if (dot < 0.707) // 45 degrees, TODO unharcode this continue; // check the max distance to the other portal bool valid = true; Rect2 local_bounds; for (int i = 0; i < B->portal_info->portal->shape.size(); i++) { Point2 point2 = B->portal_info->portal->shape[i]; Vector3 point = B->data.transform.xform(Vector3(point2.x, point2.y, 0)); float dist = Math::abs(A_plane.distance_to(point)); if ( dist > p_portal->portal_info->portal->connect_range || dist > B->portal_info->portal->connect_range) { valid = false; break; } Vector3 point_local = affine_inverse.xform(A_plane.project(point)); point2 = Point2(point_local.x, point_local.y); if (i == 0) local_bounds.pos = point2; else local_bounds.expand_to(point2); } if (!valid) continue; float B_surface = B->portal_info->portal->bounds.get_area(); if (B_surface == 0) continue; //wtf float clip_area = p_portal->portal_info->portal->bounds.clip(local_bounds).get_area(); //check that most of the area is shared if ((clip_area / A_surface) < 0.5 || (clip_area / B_surface) < 0.5) // TODO change for something else continue; found = B; break; } if (!found) { if (p_portal->room && p_portal->room->room) { p_portal->room->room->room_info->disconnected_child_portals.insert(p_portal); } return; } p_portal->portal_info->connected = found; found->portal_info->connected = p_portal; } void *VisualServerRaster::instance_pair(void *p_self, OctreeElementID, Instance *p_A, int, OctreeElementID, Instance *p_B, int) { VisualServerRaster *self = (VisualServerRaster *)p_self; Instance *A = p_A; Instance *B = p_B; if (A->base_type == INSTANCE_PORTAL) { ERR_FAIL_COND_V(B->base_type != INSTANCE_PORTAL, NULL); A->portal_info->candidate_set.insert(B); B->portal_info->candidate_set.insert(A); self->_portal_attempt_connect(A); //attempt to conncet portal A (will go through B anyway) //this is a little hackish, but works fine in practice } else if (A->base_type == INSTANCE_BAKED_LIGHT || B->base_type == INSTANCE_BAKED_LIGHT) { if (B->base_type == INSTANCE_BAKED_LIGHT) { SWAP(A, B); } ERR_FAIL_COND_V(B->base_type != INSTANCE_BAKED_LIGHT_SAMPLER, NULL); B->baked_light_sampler_info->baked_lights.insert(A); } else if (A->base_type == INSTANCE_ROOM || B->base_type == INSTANCE_ROOM) { if (B->base_type == INSTANCE_ROOM) SWAP(A, B); ERR_FAIL_COND_V(!((1 << B->base_type) & INSTANCE_GEOMETRY_MASK), NULL); B->auto_rooms.insert(A); A->room_info->owned_autoroom_geometry.insert(B); self->_instance_validate_autorooms(B); } else { if (B->base_type == INSTANCE_LIGHT) { SWAP(A, B); } else if (A->base_type != INSTANCE_LIGHT) { return NULL; } A->light_info->affected.insert(B); B->lights.insert(A); B->light_cache_dirty = true; } return NULL; } void VisualServerRaster::instance_unpair(void *p_self, OctreeElementID, Instance *p_A, int, OctreeElementID, Instance *p_B, int, void *) { VisualServerRaster *self = (VisualServerRaster *)p_self; Instance *A = p_A; Instance *B = p_B; if (A->base_type == INSTANCE_PORTAL) { ERR_FAIL_COND(B->base_type != INSTANCE_PORTAL); A->portal_info->candidate_set.erase(B); B->portal_info->candidate_set.erase(A); //after disconnecting them, see if they can connect again self->_portal_attempt_connect(A); self->_portal_attempt_connect(B); } else if (A->base_type == INSTANCE_BAKED_LIGHT || B->base_type == INSTANCE_BAKED_LIGHT) { if (B->base_type == INSTANCE_BAKED_LIGHT) { SWAP(A, B); } ERR_FAIL_COND(B->base_type != INSTANCE_BAKED_LIGHT_SAMPLER); B->baked_light_sampler_info->baked_lights.erase(A); } else if (A->base_type == INSTANCE_ROOM || B->base_type == INSTANCE_ROOM) { if (B->base_type == INSTANCE_ROOM) SWAP(A, B); ERR_FAIL_COND(!((1 << B->base_type) & INSTANCE_GEOMETRY_MASK)); B->auto_rooms.erase(A); B->valid_auto_rooms.erase(A); A->room_info->owned_autoroom_geometry.erase(B); } else { if (B->base_type == INSTANCE_LIGHT) { SWAP(A, B); } else if (A->base_type != INSTANCE_LIGHT) { return; } A->light_info->affected.erase(B); B->lights.erase(A); B->light_cache_dirty = true; } } bool VisualServerRaster::_test_portal_cull(Camera *p_camera, Instance *p_from_portal, Instance *p_to_portal) { int src_point_count = p_from_portal->portal_info->transformed_point_cache.size(); int dst_point_count = p_to_portal->portal_info->transformed_point_cache.size(); if (src_point_count < 2 || dst_point_count < 2) return false; const Vector3 *src_points = &p_from_portal->portal_info->transformed_point_cache[0]; const Vector3 *dst_points = &p_to_portal->portal_info->transformed_point_cache[0]; bool outside = false; bool clockwise = !p_from_portal->portal_info->plane_cache.is_point_over(p_camera->transform.origin); for (int i = 0; i < src_point_count; i++) { const Vector3 &point_prev = src_points[i ? (i - 1) : (src_point_count - 1)]; const Vector3 &point = src_points[i]; Plane p = clockwise ? Plane(p_camera->transform.origin, point, point_prev) : Plane(p_camera->transform.origin, point_prev, point); bool all_over = true; for (int j = 0; j < dst_point_count; j++) { if (!p.is_point_over(dst_points[j])) { all_over = false; break; } } if (all_over) { outside = true; break; } } return !outside; } void VisualServerRaster::_cull_portal(Camera *p_camera, Instance *p_portal, Instance *p_from_portal) { ERR_FAIL_COND(!p_portal->scenario); //scenario outside Instance *portal = p_portal; if (!portal->room) { return; //portals need all to belong to a room, it may be unconfigured yet } else if (portal->last_render_pass != render_pass) { return; //invalid portal, ignore } else if (portal->portal_info->last_visited_pass == render_pass) { return; //portal already visited } else if (portal == p_from_portal) { return; // came from this portal, don't even bother testing } /* TEST DISABLE DISTANCE */ float disable_distance = p_portal->portal_info->portal->disable_distance; if (disable_distance) { //has disable distance.. float distance = p_camera->transform.origin.distance_to(portal->data.transform.origin); if (disable_distance < distance) { return; } } /* TEST PORTAL NOT FACING OPTIMIZATION */ if (p_portal->portal_info->connected) { //connected portal means, it must face against the camera to be seen if (p_portal->portal_info->plane_cache.is_point_over(p_camera->transform.origin)) { //portal facing against camera (exterior) return; } } else { //disconencted portals (go from room to parent room or exterior) must face towards the canera if (!p_portal->portal_info->plane_cache.is_point_over(p_camera->transform.origin)) { //portal facing against camera (exterior) return; } } if (p_from_portal && !_test_portal_cull(p_camera, p_from_portal, portal)) { return; // portal not visible (culled) } portal->portal_info->last_visited_pass = render_pass; if (portal->portal_info->connected) { //interior<->interior portal Instance *to_room = portal->portal_info->connected->room; if (!to_room) { return; //wtf.. oh well, connected to a roomless (invalid) portal } _cull_room(p_camera, to_room, portal->portal_info->connected); } else { //to exterior/to parent roomportal Instance *parent_room = portal->room->room; _cull_room(p_camera, parent_room, portal); } } void VisualServerRaster::_cull_room(Camera *p_camera, Instance *p_room, Instance *p_from_portal) { if (p_room == NULL) { //exterior exterior_visited = true; for (int i = 0; i < exterior_portal_cull_count; i++) { _cull_portal(p_camera, exterior_portal_cull_result[i], p_from_portal); } } else { ERR_FAIL_COND(!p_room->scenario); if (p_room->last_render_pass != render_pass) return; //this room is invalid //interior //first of all, validate the room p_room->room_info->last_visited_pass = render_pass; //see about going around portals if (!p_room->room_info->room->occlude_exterior) exterior_visited = true; for (List::Element *E = p_room->room_info->owned_portal_instances.front(); E; E = E->next()) { _cull_portal(p_camera, E->get(), p_from_portal); } for (Set::Element *E = p_room->room_info->disconnected_child_portals.front(); E; E = E->next()) { _cull_portal(p_camera, E->get(), p_from_portal); } } } void VisualServerRaster::_process_sampled_light(const Transform &p_camera, Instance *p_sampled_light, bool p_linear_colorspace) { BakedLightSampler *sampler_opts = p_sampled_light->baked_light_sampler_info->sampler; int res = sampler_opts->resolution; int dp_size = res * res * 2; Color *dp_map = (Color *)alloca(sizeof(Color) * dp_size); //allocate the dual parabolloid colors Vector3 *dp_normals = (Vector3 *)alloca(sizeof(Vector3) * dp_size); //allocate the dual parabolloid normals const Vector3 *dp_src_normals = p_sampled_light->baked_light_sampler_info->sampler->dp_cache.ptr(); if (!p_sampled_light->baked_light_sampler_info->sampled_light.is_valid() || p_sampled_light->baked_light_sampler_info->resolution != sampler_opts->resolution) { if (p_sampled_light->baked_light_sampler_info->sampled_light.is_valid()) { rasterizer->free(p_sampled_light->baked_light_sampler_info->sampled_light); } p_sampled_light->baked_light_sampler_info->resolution = sampler_opts->resolution; p_sampled_light->baked_light_sampler_info->sampled_light = rasterizer->sampled_light_dp_create(sampler_opts->resolution, sampler_opts->resolution * 2); } zeromem(dp_map, sizeof(Color) * dp_size); bool valid = false; int samples = 0; for (Set::Element *E = p_sampled_light->baked_light_sampler_info->baked_lights.front(); E; E = E->next()) { Instance *bl = E->get(); if (bl->baked_light_info->baked_light->sampler.size() == 0) continue; //not usable Matrix3 norm_xform = bl->baked_light_info->affine_inverse.basis; //.inverse(); for (int i = 0; i < dp_size; i++) { dp_normals[i] = norm_xform.xform(dp_src_normals[i]).normalized(); } //normals in place //sample octree float r = sampler_opts->params[VS::BAKED_LIGHT_SAMPLER_RADIUS]; float att = sampler_opts->params[VS::BAKED_LIGHT_SAMPLER_ATTENUATION]; float str = sampler_opts->params[VS::BAKED_LIGHT_SAMPLER_STRENGTH]; Vector3 s = p_sampled_light->data.transform.basis.get_scale(); r *= MAX(MAX(s.x, s.y), s.z); AABB sample_aabb = bl->data.transform.affine_inverse().xform(AABB(Vector3(-r, -r, -r) + p_sampled_light->data.transform.origin, Vector3(r * 2, r * 2, r * 2))); //ok got octree local AABB DVector::Read rp = bl->baked_light_info->baked_light->sampler.read(); const int *rptr = rp.ptr(); int first = rptr[1]; int depth = rptr[2]; bool islinear = rptr[3] & 1; depth += 1; AABB aabb; aabb.pos.x = decode_float((const uint8_t *)&rptr[4]); aabb.pos.y = decode_float((const uint8_t *)&rptr[5]); aabb.pos.z = decode_float((const uint8_t *)&rptr[6]); aabb.size.x = decode_float((const uint8_t *)&rptr[7]); aabb.size.y = decode_float((const uint8_t *)&rptr[8]); aabb.size.z = decode_float((const uint8_t *)&rptr[9]); uint32_t *stack = (uint32_t *)alloca(depth * sizeof(uint32_t)); int *stack_ptr = (int *)alloca(depth * sizeof(int)); AABB *aabb_stack = (AABB *)alloca(depth * sizeof(AABB)); stack[0] = 0; stack_ptr[0] = first; aabb_stack[0] = aabb; Vector3 center = sample_aabb.pos + sample_aabb.size * 0.5; int stack_pos = 0; Color max_col; //int reso = sampler_opts->params[VS::BAKED_LIGHT_SAMPLER_DETAIL_RATIO]; int lalimit = sample_aabb.get_longest_axis_index(); float limit = sampler_opts->params[VS::BAKED_LIGHT_SAMPLER_DETAIL_RATIO] * sample_aabb.size[lalimit]; while (true) { bool leaf = (rptr[stack_ptr[stack_pos]] >> 16) == 0; if (aabb_stack[stack_pos].size[lalimit] < limit) { leaf = true; } if (leaf) { Vector3 from = aabb_stack[stack_pos].pos + aabb_stack[stack_pos].size * 0.5; Vector3 norm = (from - center).normalized(); Color col; col.r = ((rptr[stack_ptr[stack_pos]] & 0xFFFF) / 256.0); col.g = ((rptr[stack_ptr[stack_pos] + 1] >> 16) / 256.0); col.b = ((rptr[stack_ptr[stack_pos] + 1] & 0xFFFF) / 256.0); max_col.r = MAX(max_col.r, col.r); max_col.g = MAX(max_col.g, col.g); max_col.b = MAX(max_col.b, col.b); if (!islinear && p_linear_colorspace) { col = col.to_linear(); } float distance; if (aabb_stack[stack_pos].has_point(center)) { distance = 0; } else { Vector3 support = aabb_stack[stack_pos].get_support(norm); distance = Math::absf(norm.dot(support) - norm.dot(center)); } if (distance > r) distance = r; float mult = Math::pow(1.0 - distance / r, att) * str; if (mult > 0) { col.r *= mult; col.g *= mult; col.b *= mult; for (int i = 0; i < dp_size; i++) { float mult2 = norm.dot(dp_normals[i]); if (mult2 < 0) mult2 = 0; Color col2(col.r * mult2, col.g * mult2, col.b * mult2, 1.0); dp_map[i].r = MAX(dp_map[i].r, col2.r); dp_map[i].g = MAX(dp_map[i].g, col2.g); dp_map[i].b = MAX(dp_map[i].b, col2.b); } } samples++; //nothing is valid unless you hit a leaf valid = true; stack_pos--; } else if ((stack[stack_pos] & 0xFF) < 8) { int i = stack[stack_pos] & 0xFF; int base = (stack[stack_pos] >> 8); if (!((rptr[stack_ptr[stack_pos]] >> 16) & (1 << i))) { //no bit, no test stack[stack_pos] = (base << 8) + (i + 1); continue; } stack[stack_pos] = ((base + 1) << 8) + (i + 1); AABB child_aabb = aabb_stack[stack_pos]; child_aabb.size *= 0.5; if (i & 1) child_aabb.pos.x += child_aabb.size.x; if (i & 2) child_aabb.pos.y += child_aabb.size.y; if (i & 4) child_aabb.pos.z += child_aabb.size.z; if (!child_aabb.intersects(sample_aabb)) { continue; } if (child_aabb.encloses(sample_aabb)) { stack[stack_pos] = (base << 8) | 8; //don't test the rest } stack_pos++; ERR_FAIL_COND(stack_pos >= depth); stack[stack_pos] = 0; stack_ptr[stack_pos] = rptr[stack_ptr[stack_pos - 1] + 2 + base]; aabb_stack[stack_pos] = child_aabb; } else { stack_pos--; if (stack_pos < 0) break; } } } //print_line("samples "+itos(samples) ); if (valid) { for (int i = 0; i < res; i++) { //average seams to avoid aliasing { //top int ofs1 = i; int ofs2 = dp_size - res + i; Color avg( (dp_map[ofs1].r + dp_map[ofs2].r) * 0.5, (dp_map[ofs1].g + dp_map[ofs2].g) * 0.5, (dp_map[ofs1].b + dp_map[ofs2].b) * 0.5, 1.0); dp_map[ofs1] = avg; dp_map[ofs2] = avg; } { //bottom int ofs1 = res * res - res + i; int ofs2 = res * res + i; Color avg( (dp_map[ofs1].r + dp_map[ofs2].r) * 0.5, (dp_map[ofs1].g + dp_map[ofs2].g) * 0.5, (dp_map[ofs1].b + dp_map[ofs2].b) * 0.5, 1.0); dp_map[ofs1] = avg; dp_map[ofs2] = avg; } { //left int ofs1 = i * res; int ofs2 = res * res + (res - i - 1) * res; Color avg( (dp_map[ofs1].r + dp_map[ofs2].r) * 0.5, (dp_map[ofs1].g + dp_map[ofs2].g) * 0.5, (dp_map[ofs1].b + dp_map[ofs2].b) * 0.5, 1.0); dp_map[ofs1] = avg; dp_map[ofs2] = avg; } { //right int ofs1 = i * res + (res - 1); int ofs2 = res * res + (res - i - 1) * res + (res - 1); Color avg( (dp_map[ofs1].r + dp_map[ofs2].r) * 0.5, (dp_map[ofs1].g + dp_map[ofs2].g) * 0.5, (dp_map[ofs1].b + dp_map[ofs2].b) * 0.5, 1.0); dp_map[ofs1] = avg; dp_map[ofs2] = avg; } } rasterizer->sampled_light_dp_update(p_sampled_light->baked_light_sampler_info->sampled_light, dp_map, 1.0); for (Set::Element *F = p_sampled_light->baked_light_sampler_info->owned_instances.front(); F; F = F->next()) { F->get()->data.sampled_light = p_sampled_light->baked_light_sampler_info->sampled_light; } } else { for (Set::Element *F = p_sampled_light->baked_light_sampler_info->owned_instances.front(); F; F = F->next()) { F->get()->data.sampled_light = RID(); //do not use because nothing close } } /* highp vec3 vtx = vertex_interp; vtx.z*=dual_paraboloid.y; //side to affect vtx.z+=0.01; dp_clip=vtx.z; highp float len=length( vtx ); vtx=normalize(vtx); vtx.xy/=1.0+vtx.z; vtx.z = len*dual_paraboloid.x; // it's a reciprocal(len - z_near) / (z_far - z_near); vtx+=normalize(vtx)*0.025; vtx.z = vtx.z * 2.0 - 1.0; // fit to clipspace vertex_interp=vtx; */ } void VisualServerRaster::_render_no_camera(Viewport *p_viewport, Camera *p_camera, Scenario *p_scenario) { RID environment; if (p_scenario->environment.is_valid()) environment = p_scenario->environment; else environment = p_scenario->fallback_environment; rasterizer->set_camera(Transform(), CameraMatrix(), false); rasterizer->begin_scene(p_viewport->viewport_data, environment, p_scenario->debug); rasterizer->set_viewport(viewport_rect); rasterizer->end_scene(); } void VisualServerRaster::_render_camera(Viewport *p_viewport, Camera *p_camera, Scenario *p_scenario) { render_pass++; uint32_t camera_layer_mask = p_camera->visible_layers; /* STEP 1 - SETUP CAMERA */ CameraMatrix camera_matrix; bool ortho = false; switch (p_camera->type) { case Camera::ORTHOGONAL: { camera_matrix.set_orthogonal( p_camera->size, viewport_rect.width / (float)viewport_rect.height, p_camera->znear, p_camera->zfar, p_camera->vaspect ); ortho = true; } break; case Camera::PERSPECTIVE: { camera_matrix.set_perspective( p_camera->fov, viewport_rect.width / (float)viewport_rect.height, p_camera->znear, p_camera->zfar, p_camera->vaspect ); ortho = false; } break; } rasterizer->set_camera(p_camera->transform, camera_matrix, ortho); Vector planes = camera_matrix.get_projection_planes(p_camera->transform); CullRange cull_range; // cull range is used for PSSM, and having an idea of the rendering depth cull_range.nearp = Plane(p_camera->transform.origin, -p_camera->transform.basis.get_axis(2).normalized()); cull_range.z_near = camera_matrix.get_z_near(); cull_range.z_far = camera_matrix.get_z_far(); cull_range.min = cull_range.z_far; cull_range.max = cull_range.z_near; /* STEP 2 - CULL */ int cull_count = p_scenario->octree.cull_convex(planes, instance_cull_result, MAX_INSTANCE_CULL); light_cull_count = 0; light_samplers_culled = 0; /* print_line("OT: "+rtos( (OS::get_singleton()->get_ticks_usec()-t)/1000.0)); print_line("OTO: "+itos(p_scenario->octree.get_octant_count())); // print_line("OTE: "+itos(p_scenario->octree.get_elem_count())); print_line("OTP: "+itos(p_scenario->octree.get_pair_count())); */ /* STEP 3 - PROCESS PORTALS, VALIDATE ROOMS */ // compute portals exterior_visited = false; exterior_portal_cull_count = 0; if (room_cull_enabled) { for (int i = 0; i < cull_count; i++) { Instance *ins = instance_cull_result[i]; ins->last_render_pass = render_pass; if (ins->base_type != INSTANCE_PORTAL) continue; if (ins->room) continue; ERR_CONTINUE(exterior_portal_cull_count >= MAX_EXTERIOR_PORTALS); exterior_portal_cull_result[exterior_portal_cull_count++] = ins; } room_cull_count = p_scenario->octree.cull_point(p_camera->transform.origin, room_cull_result, MAX_ROOM_CULL, NULL, (1 << INSTANCE_ROOM) | (1 << INSTANCE_PORTAL)); Set current_rooms; Set portal_rooms; //add to set for (int i = 0; i < room_cull_count; i++) { if (room_cull_result[i]->base_type == INSTANCE_ROOM) { current_rooms.insert(room_cull_result[i]); } if (room_cull_result[i]->base_type == INSTANCE_PORTAL) { //assume inside that room if also inside the portal.. if (room_cull_result[i]->room) { portal_rooms.insert(room_cull_result[i]->room); } SWAP(room_cull_result[i], room_cull_result[room_cull_count - 1]); room_cull_count--; i--; } } //remove from set if it has a parent room or BSP doesn't contain for (int i = 0; i < room_cull_count; i++) { Instance *r = room_cull_result[i]; //check inside BSP Vector3 room_local_point = r->room_info->affine_inverse.xform(p_camera->transform.origin); if (!portal_rooms.has(r) && !r->room_info->room->bounds.point_is_inside(room_local_point)) { current_rooms.erase(r); continue; } //check parent while (r->room) { // has parent room current_rooms.erase(r); r = r->room; } } if (current_rooms.size()) { //camera is inside a room // go through rooms for (Set::Element *E = current_rooms.front(); E; E = E->next()) { _cull_room(p_camera, E->get()); } } else { //start from exterior _cull_room(p_camera, NULL); } } /* STEP 4 - REMOVE FURTHER CULLED OBJECTS, ADD LIGHTS */ for (int i = 0; i < cull_count; i++) { Instance *ins = instance_cull_result[i]; bool keep = false; if ((camera_layer_mask & ins->layer_mask) == 0) { //failure } else if (ins->base_type == INSTANCE_LIGHT) { if (light_cull_count < MAX_LIGHTS_CULLED) { light_cull_result[light_cull_count++] = ins; // rasterizer->light_instance_set_active_hint(ins->light_info->instance); { //compute distance to camera using aabb support Vector3 n = ins->data.transform.basis.xform_inv(cull_range.nearp.normal).normalized(); Vector3 s = ins->data.transform.xform(ins->aabb.get_support(n)); ins->light_info->dtc = cull_range.nearp.distance_to(s); } } } else if ((1 << ins->base_type) & INSTANCE_GEOMETRY_MASK && ins->visible && ins->data.cast_shadows != VS::SHADOW_CASTING_SETTING_SHADOWS_ONLY) { bool discarded = false; if (ins->draw_range_end > 0) { float d = cull_range.nearp.distance_to(ins->data.transform.origin); if (d < 0) d = 0; discarded = (d < ins->draw_range_begin || d >= ins->draw_range_end); } if (!discarded) { // test if this geometry should be visible if (room_cull_enabled) { if (ins->visible_in_all_rooms) { keep = true; } else if (ins->room) { if (ins->room->room_info->last_visited_pass == render_pass) keep = true; } else if (ins->auto_rooms.size()) { for (Set::Element *E = ins->auto_rooms.front(); E; E = E->next()) { if (E->get()->room_info->last_visited_pass == render_pass) { keep = true; break; } } } else if (exterior_visited) keep = true; } else { keep = true; } } if (keep) { // update cull range float min, max; ins->transformed_aabb.project_range_in_plane(cull_range.nearp, min, max); if (min < cull_range.min) cull_range.min = min; if (max > cull_range.max) cull_range.max = max; if (ins->sampled_light && ins->sampled_light->baked_light_sampler_info->last_pass != render_pass) { if (light_samplers_culled < MAX_LIGHT_SAMPLERS) { light_sampler_cull_result[light_samplers_culled++] = ins->sampled_light; ins->sampled_light->baked_light_sampler_info->last_pass = render_pass; } } } } if (!keep) { // remove, no reason to keep cull_count--; SWAP(instance_cull_result[i], instance_cull_result[cull_count]); i--; ins->last_render_pass = 0; // make invalid } else { ins->last_render_pass = render_pass; } } if (cull_range.max > cull_range.z_far) cull_range.max = cull_range.z_far; if (cull_range.min < cull_range.z_near) cull_range.min = cull_range.z_near; /* STEP 5 - PROCESS LIGHTS */ rasterizer->shadow_clear_near(); //clear near shadows, will be recreated // directional lights { List::Element *E = p_scenario->directional_lights.front(); while (E) { Instance *light = E->get().is_valid() ? instance_owner.get(E->get()) : NULL; if (light && light->light_info->enabled && rasterizer->light_has_shadow(light->base_rid)) { //rasterizer->light_instance_set_active_hint(light->light_info->instance); _light_instance_update_shadow(light, p_scenario, p_camera, cull_range); } E = E->next(); } } //discard lights not affecting anything (useful for deferred rendering, shadowmaps, etc) for (int i = 0; i < light_cull_count; i++) { Instance *ins = light_cull_result[i]; if (light_discard_enabled) { //see if the light should be pre discarded because no one is seeing it //this test may seem expensive, but in reality, it shouldn't be //because of early out condition. It will only go through everything //if it's being discarded. bool valid = false; InstanceSet::Element *E = ins->light_info->affected.front(); while (E) { if (E->get()->last_render_pass == render_pass) { valid = true; // early out. break; } E = E->next(); } if (!valid) { light_cull_count--; SWAP(light_cull_result[i], light_cull_result[light_cull_count]); i--; } } } { //this should eventually change to //assign shadows by distance to camera SortArray sorter; sorter.sort(light_cull_result, light_cull_count); for (int i = 0; i < light_cull_count; i++) { Instance *ins = light_cull_result[i]; if (!rasterizer->light_has_shadow(ins->base_rid) || !shadows_enabled) continue; /* for far shadows? if (ins->version == ins->light_info->last_version && rasterizer->light_instance_has_far_shadow(ins->light_info->instance)) continue; // didn't change */ _light_instance_update_shadow(ins, p_scenario, p_camera, cull_range); ins->light_info->last_version = ins->version; } } /* ENVIRONMENT */ RID environment; if (p_camera->env.is_valid()) //camera has more environment priority environment = p_camera->env; else if (p_scenario->environment.is_valid()) environment = p_scenario->environment; else environment = p_scenario->fallback_environment; /* STEP 6 - SAMPLE BAKED LIGHT */ bool islinear = false; if (environment.is_valid()) { islinear = rasterizer->environment_is_fx_enabled(environment, VS::ENV_FX_SRGB); } for (int i = 0; i < light_samplers_culled; i++) { _process_sampled_light(p_camera->transform, light_sampler_cull_result[i], islinear); } /* STEP 7 - PROCESS GEOMETRY AND DRAW SCENE*/ rasterizer->begin_scene(p_viewport->viewport_data, environment, p_scenario->debug); rasterizer->set_viewport(viewport_rect); // add lights { List::Element *E = p_scenario->directional_lights.front(); for (; E; E = E->next()) { Instance *light = E->get().is_valid() ? instance_owner.get(E->get()) : NULL; ERR_CONTINUE(!light); if (!light->light_info->enabled) continue; rasterizer->add_light(light->light_info->instance); light->light_info->last_add_pass = render_pass; } for (int i = 0; i < light_cull_count; i++) { Instance *ins = light_cull_result[i]; rasterizer->add_light(ins->light_info->instance); ins->light_info->last_add_pass = render_pass; } } // add geometry for (int i = 0; i < cull_count; i++) { Instance *ins = instance_cull_result[i]; ERR_CONTINUE(!((1 << ins->base_type) & INSTANCE_GEOMETRY_MASK)); _instance_draw(ins); } rasterizer->end_scene(); } void VisualServerRaster::_render_canvas_item_tree(CanvasItem *p_canvas_item, const Matrix32 &p_transform, const Rect2 &p_clip_rect, const Color &p_modulate, Rasterizer::CanvasLight *p_lights) { static const int z_range = CANVAS_ITEM_Z_MAX - CANVAS_ITEM_Z_MIN + 1; Rasterizer::CanvasItem *z_list[z_range]; Rasterizer::CanvasItem *z_last_list[z_range]; for (int i = 0; i < z_range; i++) { z_list[i] = NULL; z_last_list[i] = NULL; } _render_canvas_item(p_canvas_item, p_transform, p_clip_rect, 1.0, 0, z_list, z_last_list, NULL, NULL); for (int i = 0; i < z_range; i++) { if (!z_list[i]) continue; rasterizer->canvas_render_items(z_list[i], CANVAS_ITEM_Z_MIN + i, p_modulate, p_lights); } } void VisualServerRaster::_render_canvas_item_viewport(VisualServer *p_self, void *p_vp, const Rect2 &p_rect) { VisualServerRaster *self = (VisualServerRaster *)(p_self); Viewport *vp = (Viewport *)p_vp; self->_draw_viewport(vp, p_rect.pos.x, p_rect.pos.y, p_rect.size.x, p_rect.size.y); self->rasterizer->canvas_begin(); } void VisualServerRaster::_render_canvas_item(CanvasItem *p_canvas_item, const Matrix32 &p_transform, const Rect2 &p_clip_rect, float p_opacity, int p_z, Rasterizer::CanvasItem **z_list, Rasterizer::CanvasItem **z_last_list, CanvasItem *p_canvas_clip, CanvasItem *p_material_owner) { CanvasItem *ci = p_canvas_item; if (!ci->visible) return; if (p_opacity < 0.007) return; Rect2 rect = ci->get_rect(); Matrix32 xform = p_transform * ci->xform; Rect2 global_rect = xform.xform(rect); global_rect.pos += p_clip_rect.pos; if (global_rect.intersects(p_clip_rect) && ci->viewport.is_valid() && viewport_owner.owns(ci->viewport)) { Viewport *vp = viewport_owner.get(ci->viewport); Point2i from = xform.get_origin() + Point2(viewport_rect.x, viewport_rect.y); Point2i size = rect.size; size.x *= xform[0].length(); size.y *= xform[1].length(); ci->vp_render = memnew(Rasterizer::CanvasItem::ViewportRender); ci->vp_render->owner = this; ci->vp_render->udata = vp; ci->vp_render->rect = Rect2(from.x, from.y, size.x, size.y); /* _draw_viewport(vp, from.x, from.y, size.x, size.y); */ //rasterizer->canvas_begin(); } else { ci->vp_render = NULL; } if (ci->use_parent_material && p_material_owner) ci->material_owner = p_material_owner; else { p_material_owner = ci; ci->material_owner = NULL; } float opacity = ci->opacity * p_opacity; int child_item_count = ci->child_items.size(); CanvasItem **child_items = (CanvasItem **)alloca(child_item_count * sizeof(CanvasItem *)); copymem(child_items, ci->child_items.ptr(), child_item_count * sizeof(CanvasItem *)); if (ci->clip) { if (p_canvas_clip != NULL) { ci->final_clip_rect = p_canvas_clip->final_clip_rect.clip(global_rect); } else { ci->final_clip_rect = global_rect; } ci->final_clip_owner = ci; } else { ci->final_clip_owner = p_canvas_clip; } if (ci->sort_y) { SortArray sorter; sorter.sort(child_items, child_item_count); } if (ci->z_relative) p_z = CLAMP(p_z + ci->z, CANVAS_ITEM_Z_MIN, CANVAS_ITEM_Z_MAX); else p_z = ci->z; for (int i = 0; i < child_item_count; i++) { if (child_items[i]->ontop) continue; _render_canvas_item(child_items[i], xform, p_clip_rect, opacity, p_z, z_list, z_last_list, (CanvasItem *)ci->final_clip_owner, p_material_owner); } if (ci->copy_back_buffer) { ci->copy_back_buffer->screen_rect = xform.xform(ci->copy_back_buffer->rect).clip(p_clip_rect); } if ((!ci->commands.empty() && p_clip_rect.intersects(global_rect)) || ci->vp_render || ci->copy_back_buffer) { //something to draw? ci->final_transform = xform; ci->final_opacity = opacity * ci->self_opacity; ci->global_rect_cache = global_rect; ci->global_rect_cache.pos -= p_clip_rect.pos; ci->light_masked = false; int zidx = p_z - CANVAS_ITEM_Z_MIN; if (z_last_list[zidx]) { z_last_list[zidx]->next = ci; z_last_list[zidx] = ci; } else { z_list[zidx] = ci; z_last_list[zidx] = ci; } ci->next = NULL; } for (int i = 0; i < child_item_count; i++) { if (!child_items[i]->ontop) continue; _render_canvas_item(child_items[i], xform, p_clip_rect, opacity, p_z, z_list, z_last_list, (CanvasItem *)ci->final_clip_owner, p_material_owner); } } void VisualServerRaster::_light_mask_canvas_items(int p_z, Rasterizer::CanvasItem *p_canvas_item, Rasterizer::CanvasLight *p_masked_lights) { if (!p_masked_lights) return; Rasterizer::CanvasItem *ci = p_canvas_item; while (ci) { Rasterizer::CanvasLight *light = p_masked_lights; while (light) { if (ci->light_mask & light->item_mask && p_z >= light->z_min && p_z <= light->z_max && ci->global_rect_cache.intersects_transformed(light->xform_cache, light->rect_cache)) { ci->light_masked = true; } light = light->mask_next_ptr; } ci = ci->next; } } void VisualServerRaster::_render_canvas(Canvas *p_canvas, const Matrix32 &p_transform, Rasterizer::CanvasLight *p_lights, Rasterizer::CanvasLight *p_masked_lights) { rasterizer->canvas_begin(); int l = p_canvas->child_items.size(); Canvas::ChildItem *ci = p_canvas->child_items.ptr(); bool has_mirror = false; for (int i = 0; i < l; i++) { if (ci[i].mirror.x || ci[i].mirror.y) { has_mirror = true; break; } } Rect2 clip_rect(viewport_rect.x, viewport_rect.y, viewport_rect.width, viewport_rect.height); if (!has_mirror) { static const int z_range = CANVAS_ITEM_Z_MAX - CANVAS_ITEM_Z_MIN + 1; Rasterizer::CanvasItem *z_list[z_range]; Rasterizer::CanvasItem *z_last_list[z_range]; for (int i = 0; i < z_range; i++) { z_list[i] = NULL; z_last_list[i] = NULL; } for (int i = 0; i < l; i++) { _render_canvas_item(ci[i].item, p_transform, clip_rect, 1.0, 0, z_list, z_last_list, NULL, NULL); } for (int i = 0; i < z_range; i++) { if (!z_list[i]) continue; if (p_masked_lights) { _light_mask_canvas_items(CANVAS_ITEM_Z_MIN + i, z_list[i], p_masked_lights); } rasterizer->canvas_render_items(z_list[i], CANVAS_ITEM_Z_MIN + i, p_canvas->modulate, p_lights); } } else { for (int i = 0; i < l; i++) { Canvas::ChildItem &ci = p_canvas->child_items[i]; _render_canvas_item_tree(ci.item, p_transform, clip_rect, p_canvas->modulate, p_lights); //mirroring (useful for scrolling backgrounds) if (ci.mirror.x != 0) { Matrix32 xform2 = p_transform * Matrix32(0, Vector2(ci.mirror.x, 0)); _render_canvas_item_tree(ci.item, xform2, clip_rect, p_canvas->modulate, p_lights); } if (ci.mirror.y != 0) { Matrix32 xform2 = p_transform * Matrix32(0, Vector2(0, ci.mirror.y)); _render_canvas_item_tree(ci.item, xform2, clip_rect, p_canvas->modulate, p_lights); } if (ci.mirror.y != 0 && ci.mirror.x != 0) { Matrix32 xform2 = p_transform * Matrix32(0, ci.mirror); _render_canvas_item_tree(ci.item, xform2, clip_rect, p_canvas->modulate, p_lights); } } } } void VisualServerRaster::_draw_viewport_camera(Viewport *p_viewport, bool p_ignore_camera) { Camera *camera = NULL; if (camera_owner.owns(p_viewport->camera)) camera = camera_owner.get(p_viewport->camera); Scenario *scenario = scenario_owner.get(p_viewport->scenario); _update_instances(); // check dirty instances before rendering if (p_ignore_camera) _render_no_camera(p_viewport, camera, scenario); else _render_camera(p_viewport, camera, scenario); } void VisualServerRaster::_draw_viewport(Viewport *p_viewport, int p_ofs_x, int p_ofs_y, int p_parent_w, int p_parent_h) { ViewportRect desired_rect = p_viewport->rect; ViewportRect old_rect = viewport_rect; // bool vpchanged=false; // convert default expanding viewports to actual size //if (desired_rect.x==0 && desired_rect.y==0 && desired_rect.width==0 && desired_rect.height==0) { if (p_parent_w != 0 && p_parent_h != 0) { desired_rect.width = p_parent_w; desired_rect.height = p_parent_h; } ERR_FAIL_COND(desired_rect.width <= 0 || desired_rect.height <= 0); desired_rect.x += p_ofs_x; desired_rect.y += p_ofs_y; // if the viewport is different than the actual one, change it if (p_viewport->render_target.is_valid() || viewport_rect.x != desired_rect.x || viewport_rect.y != desired_rect.y || viewport_rect.width != desired_rect.width || viewport_rect.height != desired_rect.height) { viewport_rect = desired_rect; rasterizer->set_viewport(viewport_rect); } /* Camera should always be BEFORE any other 3D */ bool scenario_draw_canvas_bg = false; int scenario_canvas_max_layer = 0; if (!p_viewport->hide_canvas && !p_viewport->disable_environment && scenario_owner.owns(p_viewport->scenario)) { Scenario *scenario = scenario_owner.get(p_viewport->scenario); if (scenario->environment.is_valid()) { if (rasterizer->is_environment(scenario->environment)) { scenario_draw_canvas_bg = rasterizer->environment_get_background(scenario->environment) == VS::ENV_BG_CANVAS; scenario_canvas_max_layer = rasterizer->environment_get_background_param(scenario->environment, VS::ENV_BG_PARAM_CANVAS_MAX_LAYER); } } } bool can_draw_3d = !p_viewport->hide_scenario && camera_owner.owns(p_viewport->camera) && scenario_owner.owns(p_viewport->scenario); if (scenario_draw_canvas_bg) { rasterizer->begin_canvas_bg(); } if (!scenario_draw_canvas_bg && can_draw_3d) { _draw_viewport_camera(p_viewport, false); } else if (true /*|| !p_viewport->canvas_list.empty()*/) { //clear the viewport black because of no camera? i seriously should.. if (p_viewport->render_target_clear_on_new_frame || p_viewport->render_target_clear) { if (p_viewport->transparent_bg) { rasterizer->clear_viewport(Color(0, 0, 0, 0)); } else { Color cc = clear_color; if (scenario_draw_canvas_bg) cc.a = 0; rasterizer->clear_viewport(cc); } p_viewport->render_target_clear = false; } } if (!p_viewport->hide_canvas) { int i = 0; Map canvas_map; Rect2 clip_rect(0, 0, viewport_rect.width, viewport_rect.height); Rasterizer::CanvasLight *lights = NULL; Rasterizer::CanvasLight *lights_with_shadow = NULL; Rasterizer::CanvasLight *lights_with_mask = NULL; Rect2 shadow_rect; int light_count = 0; for (Map::Element *E = p_viewport->canvas_map.front(); E; E = E->next()) { Matrix32 xf = p_viewport->global_transform * E->get().transform; //find lights in canvas for (Set::Element *F = E->get().canvas->lights.front(); F; F = F->next()) { Rasterizer::CanvasLight *cl = F->get(); if (cl->enabled && cl->texture.is_valid()) { //not super efficient.. Size2 tsize(rasterizer->texture_get_width(cl->texture), rasterizer->texture_get_height(cl->texture)); tsize *= cl->scale; Vector2 offset = tsize / 2.0; cl->rect_cache = Rect2(-offset + cl->texture_offset, tsize); cl->xform_cache = xf * cl->xform; if (clip_rect.intersects_transformed(cl->xform_cache, cl->rect_cache)) { cl->filter_next_ptr = lights; lights = cl; cl->texture_cache = NULL; Matrix32 scale; scale.scale(cl->rect_cache.size); scale.elements[2] = cl->rect_cache.pos; cl->light_shader_xform = (cl->xform_cache * scale).affine_inverse(); cl->light_shader_pos = cl->xform_cache[2]; if (cl->shadow_buffer.is_valid()) { cl->shadows_next_ptr = lights_with_shadow; if (lights_with_shadow == NULL) { shadow_rect = cl->xform_cache.xform(cl->rect_cache); } else { shadow_rect = shadow_rect.merge(cl->xform_cache.xform(cl->rect_cache)); } lights_with_shadow = cl; cl->radius_cache = cl->rect_cache.size.length(); } if (cl->mode == CANVAS_LIGHT_MODE_MASK) { cl->mask_next_ptr = lights_with_mask; lights_with_mask = cl; } light_count++; } } } //print_line("lights: "+itos(light_count)); canvas_map[Viewport::CanvasKey(E->key(), E->get().layer)] = &E->get(); } if (lights_with_shadow) { //update shadows if any Rasterizer::CanvasLightOccluderInstance *occluders = NULL; //make list of occluders for (Map::Element *E = p_viewport->canvas_map.front(); E; E = E->next()) { Matrix32 xf = p_viewport->global_transform * E->get().transform; for (Set::Element *F = E->get().canvas->occluders.front(); F; F = F->next()) { if (!F->get()->enabled) continue; F->get()->xform_cache = xf * F->get()->xform; if (shadow_rect.intersects_transformed(F->get()->xform_cache, F->get()->aabb_cache)) { F->get()->next = occluders; occluders = F->get(); } } } //update the light shadowmaps with them Rasterizer::CanvasLight *light = lights_with_shadow; while (light) { rasterizer->canvas_light_shadow_buffer_update(light->shadow_buffer, light->xform_cache.affine_inverse(), light->item_mask, light->radius_cache / 1000.0, light->radius_cache * 1.1, occluders, &light->shadow_matrix_cache); light = light->shadows_next_ptr; } rasterizer->set_viewport(viewport_rect); //must reset viewport afterwards } if (scenario_draw_canvas_bg && canvas_map.front() && canvas_map.front()->key().layer > scenario_canvas_max_layer) { _draw_viewport_camera(p_viewport, !can_draw_3d); scenario_draw_canvas_bg = false; } for (Map::Element *E = canvas_map.front(); E; E = E->next()) { // print_line("canvas "+itos(i)+" size: "+itos(I->get()->canvas->child_items.size())); //print_line("GT "+p_viewport->global_transform+". CT: "+E->get()->transform); Matrix32 xform = p_viewport->global_transform * E->get()->transform; Rasterizer::CanvasLight *canvas_lights = NULL; Rasterizer::CanvasLight *ptr = lights; while (ptr) { if (E->get()->layer >= ptr->layer_min && E->get()->layer <= ptr->layer_max) { ptr->next_ptr = canvas_lights; canvas_lights = ptr; } ptr = ptr->filter_next_ptr; } _render_canvas(E->get()->canvas, xform, canvas_lights, lights_with_mask); i++; if (scenario_draw_canvas_bg && E->key().layer >= scenario_canvas_max_layer) { _draw_viewport_camera(p_viewport, !can_draw_3d); scenario_draw_canvas_bg = false; } } if (scenario_draw_canvas_bg) { _draw_viewport_camera(p_viewport, !can_draw_3d); scenario_draw_canvas_bg = false; } // rasterizer->canvas_debug_viewport_shadows(lights_with_shadow); } //capture if (p_viewport->queue_capture) { rasterizer->capture_viewport(&p_viewport->capture); p_viewport->queue_capture = false; } //restore if (viewport_rect.x != old_rect.x || viewport_rect.y != old_rect.y || viewport_rect.width != old_rect.width || viewport_rect.height != old_rect.height) { viewport_rect = old_rect; rasterizer->set_viewport(viewport_rect); } } void VisualServerRaster::_draw_viewports() { //draw viewports for render targets List to_blit; List to_disable; for (SelfList *E = viewport_update_list.first(); E; E = E->next()) { Viewport *vp = E->self(); ERR_CONTINUE(!vp); if ( vp->render_target_update_mode == RENDER_TARGET_UPDATE_WHEN_VISIBLE && !vp->rendered_in_prev_frame && !vp->queue_capture) { continue; } if (vp->rt_to_screen_rect != Rect2()) to_blit.push_back(vp); rasterizer->set_render_target(vp->render_target, vp->transparent_bg, vp->render_target_vflip); _draw_viewport(vp, 0, 0, vp->rect.width, vp->rect.height); if ((vp->queue_capture && vp->render_target_update_mode == RENDER_TARGET_UPDATE_DISABLED) || vp->render_target_update_mode == RENDER_TARGET_UPDATE_ONCE) { //was only enabled for capture to_disable.push_back(vp); vp->render_target_update_mode = RENDER_TARGET_UPDATE_DISABLED; } } rasterizer->set_render_target(RID()); while (to_disable.size()) { //disable again because it was only for capture viewport_update_list.remove(&to_disable.front()->get()->update_list); to_disable.pop_front(); } //draw RTs directly to screen when requested for (List::Element *E = to_blit.front(); E; E = E->next()) { int window_w = OS::get_singleton()->get_video_mode().width; int window_h = OS::get_singleton()->get_video_mode().height; ViewportRect desired_rect; desired_rect.x = desired_rect.y = 0; desired_rect.width = window_w; desired_rect.height = window_h; if (viewport_rect.x != desired_rect.x || viewport_rect.y != desired_rect.y || viewport_rect.width != desired_rect.width || viewport_rect.height != desired_rect.height) { viewport_rect = desired_rect; rasterizer->set_viewport(viewport_rect); } rasterizer->canvas_begin(); rasterizer->canvas_disable_blending(); rasterizer->canvas_begin_rect(Matrix32()); rasterizer->canvas_draw_rect(E->get()->rt_to_screen_rect, 0, Rect2(Point2(), E->get()->rt_to_screen_rect.size), E->get()->render_target_texture, Color(1, 1, 1)); } //draw viewports attached to screen for (Map::Element *E = screen_viewports.front(); E; E = E->next()) { Viewport *vp = viewport_owner.get(E->key()); ERR_CONTINUE(!vp); int window_w = OS::get_singleton()->get_video_mode(E->get()).width; int window_h = OS::get_singleton()->get_video_mode(E->get()).height; Rect2 r(0, 0, vp->rect.width, vp->rect.height); if (r.size.width == 0) r.size.width = window_w; if (r.size.height == 0) r.size.height = window_h; _draw_viewport(vp, r.pos.x, r.pos.y, r.size.width, r.size.height); } //check when a viewport associated to a render target was drawn for (SelfList *E = viewport_update_list.first(); E; E = E->next()) { Viewport *vp = E->self(); ERR_CONTINUE(!vp); if (vp->render_target_update_mode != RENDER_TARGET_UPDATE_WHEN_VISIBLE) continue; vp->rendered_in_prev_frame = rasterizer->render_target_renedered_in_frame(vp->render_target); } } void VisualServerRaster::_draw_cursors_and_margins() { int window_w = OS::get_singleton()->get_video_mode().width; int window_h = OS::get_singleton()->get_video_mode().height; ViewportRect desired_rect; desired_rect.x = desired_rect.y = 0; desired_rect.width = window_w; desired_rect.height = window_h; if (viewport_rect.x != desired_rect.x || viewport_rect.y != desired_rect.y || viewport_rect.width != desired_rect.width || viewport_rect.height != desired_rect.height) { viewport_rect = desired_rect; rasterizer->set_viewport(viewport_rect); } rasterizer->canvas_begin(); rasterizer->canvas_begin_rect(Matrix32()); for (int i = 0; i < MAX_CURSORS; i++) { if (!cursors[i].visible) { continue; }; RID tex = cursors[i].texture ? cursors[i].texture : default_cursor_texture; ERR_CONTINUE(!tex); if (cursors[i].region.has_no_area()) { Point2 size(texture_get_width(tex), texture_get_height(tex)); rasterizer->canvas_draw_rect(Rect2(cursors[i].pos - cursors[i].center, size), 0, Rect2(), tex, Color(1, 1, 1, 1)); } else { Point2 size = cursors[i].region.size; rasterizer->canvas_draw_rect(Rect2(cursors[i].pos - cursors[i].center, size), Rasterizer::CANVAS_RECT_REGION, cursors[i].region, tex, Color(1, 1, 1, 1)); } }; if (black_image[MARGIN_LEFT].is_valid()) { Size2 sz(rasterizer->texture_get_width(black_image[MARGIN_LEFT]), rasterizer->texture_get_height(black_image[MARGIN_LEFT])); rasterizer->canvas_draw_rect(Rect2(0, 0, black_margin[MARGIN_LEFT], window_h), 0, Rect2(0, 0, sz.x, sz.y), black_image[MARGIN_LEFT], Color(1, 1, 1)); } else if (black_margin[MARGIN_LEFT]) rasterizer->canvas_draw_rect(Rect2(0, 0, black_margin[MARGIN_LEFT], window_h), 0, Rect2(0, 0, 1, 1), RID(), Color(0, 0, 0)); if (black_image[MARGIN_RIGHT].is_valid()) { Size2 sz(rasterizer->texture_get_width(black_image[MARGIN_RIGHT]), rasterizer->texture_get_height(black_image[MARGIN_RIGHT])); rasterizer->canvas_draw_rect(Rect2(window_w - black_margin[MARGIN_RIGHT], 0, black_margin[MARGIN_RIGHT], window_h), 0, Rect2(0, 0, sz.x, sz.y), black_image[MARGIN_RIGHT], Color(1, 1, 1)); } else if (black_margin[MARGIN_RIGHT]) rasterizer->canvas_draw_rect(Rect2(window_w - black_margin[MARGIN_RIGHT], 0, black_margin[MARGIN_RIGHT], window_h), 0, Rect2(0, 0, 1, 1), RID(), Color(0, 0, 0)); if (black_image[MARGIN_TOP].is_valid()) { Size2 sz(rasterizer->texture_get_width(black_image[MARGIN_TOP]), rasterizer->texture_get_height(black_image[MARGIN_TOP])); rasterizer->canvas_draw_rect(Rect2(0, 0, window_w, black_margin[MARGIN_TOP]), 0, Rect2(0, 0, sz.x, sz.y), black_image[MARGIN_TOP], Color(1, 1, 1)); } else if (black_margin[MARGIN_TOP]) { rasterizer->canvas_draw_rect(Rect2(0, 0, window_w, black_margin[MARGIN_TOP]), 0, Rect2(0, 0, 1, 1), RID(), Color(0, 0, 0)); } if (black_image[MARGIN_BOTTOM].is_valid()) { Size2 sz(rasterizer->texture_get_width(black_image[MARGIN_BOTTOM]), rasterizer->texture_get_height(black_image[MARGIN_BOTTOM])); rasterizer->canvas_draw_rect(Rect2(0, window_h - black_margin[MARGIN_BOTTOM], window_w, black_margin[MARGIN_BOTTOM]), 0, Rect2(0, 0, sz.x, sz.y), black_image[MARGIN_BOTTOM], Color(1, 1, 1)); } else if (black_margin[MARGIN_BOTTOM]) { rasterizer->canvas_draw_rect(Rect2(0, window_h - black_margin[MARGIN_BOTTOM], window_w, black_margin[MARGIN_BOTTOM]), 0, Rect2(0, 0, 1, 1), RID(), Color(0, 0, 0)); } rasterizer->canvas_end_rect(); }; void VisualServerRaster::sync() { //do none } void VisualServerRaster::draw() { //if (changes) // print_line("changes: "+itos(changes)); changes = 0; shadows_enabled = GLOBAL_DEF("render/shadows_enabled", true); room_cull_enabled = GLOBAL_DEF("render/room_cull_enabled", true); light_discard_enabled = GLOBAL_DEF("render/light_discard_enabled", true); rasterizer->begin_frame(); _draw_viewports(); _draw_cursors_and_margins(); rasterizer->end_frame(); draw_extra_frame = rasterizer->needs_to_draw_next_frame(); } bool VisualServerRaster::has_changed() const { return changes > 0 || draw_extra_frame; } int VisualServerRaster::get_render_info(RenderInfo p_info) { return rasterizer->get_render_info(p_info); } bool VisualServerRaster::has_feature(Features p_feature) const { return rasterizer->has_feature(p_feature); // lies for now } void VisualServerRaster::set_default_clear_color(const Color &p_color) { clear_color = p_color; } Color VisualServerRaster::get_default_clear_color() const { return clear_color; } void VisualServerRaster::set_time_scale(float p_scale) { rasterizer->set_time_scale(p_scale); } void VisualServerRaster::set_boot_image(const Image &p_image, const Color &p_color, bool p_scale) { if (p_image.empty()) return; rasterizer->restore_framebuffer(); rasterizer->begin_frame(); int window_w = OS::get_singleton()->get_video_mode(0).width; int window_h = OS::get_singleton()->get_video_mode(0).height; ViewportRect vr; vr.x = 0; vr.y = 0; vr.width = OS::get_singleton()->get_video_mode(0).width; vr.height = OS::get_singleton()->get_video_mode(0).height; rasterizer->set_viewport(vr); rasterizer->clear_viewport(p_color); rasterizer->canvas_begin(); RID texture = texture_create(); texture_allocate(texture, p_image.get_width(), p_image.get_height(), p_image.get_format(), TEXTURE_FLAG_FILTER); texture_set_data(texture, p_image); rasterizer->canvas_begin_rect(Matrix32()); Rect2 imgrect(0, 0, p_image.get_width(), p_image.get_height()); Rect2 screenrect; if (p_scale) { if (window_w > window_h) { //scale horizontally screenrect.size.y = window_h; screenrect.size.x = imgrect.size.x * window_h / imgrect.size.y; screenrect.pos.x = (window_w - screenrect.size.x) / 2; } else { //scale vertically screenrect.size.x = window_w; screenrect.size.y = imgrect.size.y * window_w / imgrect.size.x; screenrect.pos.y = (window_h - screenrect.size.y) / 2; } } else { screenrect = imgrect; screenrect.pos += ((Size2(vr.width, vr.height) - screenrect.size) / 2.0).floor(); } rasterizer->canvas_draw_rect(screenrect, 0, imgrect, texture, Color(1, 1, 1, 1)); rasterizer->canvas_end_rect(); rasterizer->end_frame(); rasterizer->flush_frame(); free(texture); // free since it's only one frame that stays there } void VisualServerRaster::init() { rasterizer->init(); shadows_enabled = GLOBAL_DEF("render/shadows_enabled", true); //default_scenario = scenario_create(); //default_viewport = viewport_create(); for (int i = 0; i < 4; i++) black_margin[i] = 0; Image img; img.create(default_mouse_cursor_xpm); //img.convert(Image::FORMAT_RGB); default_cursor_texture = texture_create_from_image(img, 0); aabb_random_points.resize(GLOBAL_DEF("render/aabb_random_points", 16)); for (int i = 0; i < aabb_random_points.size(); i++) aabb_random_points[i] = Vector3(Math::random(0, 1), Math::random(0, 1), Math::random(0, 1)); transformed_aabb_random_points.resize(aabb_random_points.size()); changes = 0; } void VisualServerRaster::_clean_up_owner(RID_OwnerBase *p_owner, String p_type) { List rids; p_owner->get_owned_list(&rids); int lost = 0; for (List::Element *I = rids.front(); I; I = I->next()) { if (OS::get_singleton()->is_stdout_verbose()) { lost++; } free(I->get()); } if (lost) print_line("VisualServerRaster: WARNING: Lost " + itos(lost) + " RIDs of type " + p_type); } void VisualServerRaster::finish() { free(default_cursor_texture); if (test_cube.is_valid()) free(test_cube); _free_internal_rids(); _clean_up_owner(&room_owner, "Room"); _clean_up_owner(&portal_owner, "Portal"); _clean_up_owner(&camera_owner, "Camera"); _clean_up_owner(&viewport_owner, "Viewport"); _clean_up_owner(&scenario_owner, "Scenario"); _clean_up_owner(&instance_owner, "Instance"); _clean_up_owner(&canvas_owner, "Canvas"); _clean_up_owner(&canvas_item_owner, "CanvasItem"); rasterizer->finish(); octree_allocator.clear(); if (instance_dependency_map.size()) { print_line("Base resources missing amount: " + itos(instance_dependency_map.size())); } ERR_FAIL_COND(instance_dependency_map.size()); } RID VisualServerRaster::get_test_cube() { if (test_cube.is_valid()) return test_cube; test_cube = _make_test_cube(); return test_cube; } VisualServerRaster::VisualServerRaster(Rasterizer *p_rasterizer) { rasterizer = p_rasterizer; rasterizer->draw_viewport_func = _render_canvas_item_viewport; instance_update_list = NULL; render_pass = 0; clear_color = Color(0.3, 0.3, 0.3, 1.0); OctreeAllocator::allocator = &octree_allocator; draw_extra_frame = false; } VisualServerRaster::~VisualServerRaster() { }