/**************************************************************************/ /* skin_tool.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "skin_tool.h" SkinNodeIndex SkinTool::_find_highest_node(Vector<Ref<GLTFNode>> &r_nodes, const Vector<GLTFNodeIndex> &p_subset) { int highest = -1; SkinNodeIndex best_node = -1; for (int i = 0; i < p_subset.size(); ++i) { const SkinNodeIndex node_i = p_subset[i]; const Ref<GLTFNode> node = r_nodes[node_i]; if (highest == -1 || node->height < highest) { highest = node->height; best_node = node_i; } } return best_node; } bool SkinTool::_capture_nodes_in_skin(const Vector<Ref<GLTFNode>> &nodes, Ref<GLTFSkin> p_skin, const SkinNodeIndex p_node_index) { bool found_joint = false; Ref<GLTFNode> current_node = nodes[p_node_index]; for (int i = 0; i < current_node->children.size(); ++i) { found_joint |= _capture_nodes_in_skin(nodes, p_skin, current_node->children[i]); } if (found_joint) { // Mark it if we happen to find another skins joint... if (current_node->joint && !p_skin->joints.has(p_node_index)) { p_skin->joints.push_back(p_node_index); } else if (!p_skin->non_joints.has(p_node_index)) { p_skin->non_joints.push_back(p_node_index); } } if (p_skin->joints.find(p_node_index) > 0) { return true; } return false; } void SkinTool::_capture_nodes_for_multirooted_skin(Vector<Ref<GLTFNode>> &r_nodes, Ref<GLTFSkin> p_skin) { DisjointSet<SkinNodeIndex> disjoint_set; for (int i = 0; i < p_skin->joints.size(); ++i) { const SkinNodeIndex node_index = p_skin->joints[i]; const SkinNodeIndex parent = r_nodes[node_index]->parent; disjoint_set.insert(node_index); if (p_skin->joints.has(parent)) { disjoint_set.create_union(parent, node_index); } } Vector<SkinNodeIndex> roots; disjoint_set.get_representatives(roots); if (roots.size() <= 1) { return; } int maxHeight = -1; // Determine the max height rooted tree for (int i = 0; i < roots.size(); ++i) { const SkinNodeIndex root = roots[i]; if (maxHeight == -1 || r_nodes[root]->height < maxHeight) { maxHeight = r_nodes[root]->height; } } // Go up the tree till all of the multiple roots of the skin are at the same hierarchy level. // This sucks, but 99% of all game engines (not just Godot) would have this same issue. for (int i = 0; i < roots.size(); ++i) { SkinNodeIndex current_node = roots[i]; while (r_nodes[current_node]->height > maxHeight) { SkinNodeIndex parent = r_nodes[current_node]->parent; if (r_nodes[parent]->joint && !p_skin->joints.has(parent)) { p_skin->joints.push_back(parent); } else if (!p_skin->non_joints.has(parent)) { p_skin->non_joints.push_back(parent); } current_node = parent; } // replace the roots roots.write[i] = current_node; } // Climb up the tree until they all have the same parent bool all_same; do { all_same = true; const SkinNodeIndex first_parent = r_nodes[roots[0]]->parent; for (int i = 1; i < roots.size(); ++i) { all_same &= (first_parent == r_nodes[roots[i]]->parent); } if (!all_same) { for (int i = 0; i < roots.size(); ++i) { const SkinNodeIndex current_node = roots[i]; const SkinNodeIndex parent = r_nodes[current_node]->parent; if (r_nodes[parent]->joint && !p_skin->joints.has(parent)) { p_skin->joints.push_back(parent); } else if (!p_skin->non_joints.has(parent)) { p_skin->non_joints.push_back(parent); } roots.write[i] = parent; } } } while (!all_same); } Error SkinTool::_expand_skin(Vector<Ref<GLTFNode>> &r_nodes, Ref<GLTFSkin> p_skin) { _capture_nodes_for_multirooted_skin(r_nodes, p_skin); // Grab all nodes that lay in between skin joints/nodes DisjointSet<GLTFNodeIndex> disjoint_set; Vector<SkinNodeIndex> all_skin_nodes; all_skin_nodes.append_array(p_skin->joints); all_skin_nodes.append_array(p_skin->non_joints); for (int i = 0; i < all_skin_nodes.size(); ++i) { const SkinNodeIndex node_index = all_skin_nodes[i]; const SkinNodeIndex parent = r_nodes[node_index]->parent; disjoint_set.insert(node_index); if (all_skin_nodes.has(parent)) { disjoint_set.create_union(parent, node_index); } } Vector<SkinNodeIndex> out_owners; disjoint_set.get_representatives(out_owners); Vector<SkinNodeIndex> out_roots; for (int i = 0; i < out_owners.size(); ++i) { Vector<SkinNodeIndex> set; disjoint_set.get_members(set, out_owners[i]); const SkinNodeIndex root = _find_highest_node(r_nodes, set); ERR_FAIL_COND_V(root < 0, FAILED); out_roots.push_back(root); } out_roots.sort(); for (int i = 0; i < out_roots.size(); ++i) { _capture_nodes_in_skin(r_nodes, p_skin, out_roots[i]); } p_skin->roots = out_roots; return OK; } Error SkinTool::_verify_skin(Vector<Ref<GLTFNode>> &r_nodes, Ref<GLTFSkin> p_skin) { // This may seem duplicated from expand_skins, but this is really a sanity check! (so it kinda is) // In case additional interpolating logic is added to the skins, this will help ensure that you // do not cause it to self implode into a fiery blaze // We are going to re-calculate the root nodes and compare them to the ones saved in the skin, // then ensure the multiple trees (if they exist) are on the same sublevel // Grab all nodes that lay in between skin joints/nodes DisjointSet<GLTFNodeIndex> disjoint_set; Vector<SkinNodeIndex> all_skin_nodes; all_skin_nodes.append_array(p_skin->joints); all_skin_nodes.append_array(p_skin->non_joints); for (int i = 0; i < all_skin_nodes.size(); ++i) { const SkinNodeIndex node_index = all_skin_nodes[i]; const SkinNodeIndex parent = r_nodes[node_index]->parent; disjoint_set.insert(node_index); if (all_skin_nodes.has(parent)) { disjoint_set.create_union(parent, node_index); } } Vector<SkinNodeIndex> out_owners; disjoint_set.get_representatives(out_owners); Vector<SkinNodeIndex> out_roots; for (int i = 0; i < out_owners.size(); ++i) { Vector<SkinNodeIndex> set; disjoint_set.get_members(set, out_owners[i]); const SkinNodeIndex root = _find_highest_node(r_nodes, set); ERR_FAIL_COND_V(root < 0, FAILED); out_roots.push_back(root); } out_roots.sort(); ERR_FAIL_COND_V(out_roots.is_empty(), FAILED); // Make sure the roots are the exact same (they better be) ERR_FAIL_COND_V(out_roots.size() != p_skin->roots.size(), FAILED); for (int i = 0; i < out_roots.size(); ++i) { ERR_FAIL_COND_V(out_roots[i] != p_skin->roots[i], FAILED); } // Single rooted skin? Perfectly ok! if (out_roots.size() == 1) { return OK; } // Make sure all parents of a multi-rooted skin are the SAME const SkinNodeIndex parent = r_nodes[out_roots[0]]->parent; for (int i = 1; i < out_roots.size(); ++i) { if (r_nodes[out_roots[i]]->parent != parent) { return FAILED; } } return OK; } void SkinTool::_recurse_children( Vector<Ref<GLTFNode>> &nodes, const SkinNodeIndex p_node_index, RBSet<GLTFNodeIndex> &p_all_skin_nodes, HashSet<GLTFNodeIndex> &p_child_visited_set) { if (p_child_visited_set.has(p_node_index)) { return; } p_child_visited_set.insert(p_node_index); Ref<GLTFNode> current_node = nodes[p_node_index]; for (int i = 0; i < current_node->children.size(); ++i) { _recurse_children(nodes, current_node->children[i], p_all_skin_nodes, p_child_visited_set); } // Continue to use 'current_node' for clarity and direct access. if (current_node->skin < 0 || current_node->mesh < 0 || !current_node->children.is_empty()) { p_all_skin_nodes.insert(p_node_index); } } Error SkinTool::_determine_skeletons( Vector<Ref<GLTFSkin>> &skins, Vector<Ref<GLTFNode>> &nodes, Vector<Ref<GLTFSkeleton>> &skeletons, const Vector<GLTFNodeIndex> &p_single_skeleton_roots) { if (!p_single_skeleton_roots.is_empty()) { Ref<GLTFSkin> skin; skin.instantiate(); skin->set_name("godot_single_skeleton_root"); for (GLTFNodeIndex i = 0; i < p_single_skeleton_roots.size(); i++) { skin->joints.push_back(p_single_skeleton_roots[i]); } skins.push_back(skin); } // Using a disjoint set, we are going to potentially combine all skins that are actually branches // of a main skeleton, or treat skins defining the same set of nodes as ONE skeleton. // This is another unclear issue caused by the current glTF specification. DisjointSet<GLTFNodeIndex> skeleton_sets; for (GLTFSkinIndex skin_i = 0; skin_i < skins.size(); ++skin_i) { const Ref<GLTFSkin> skin = skins[skin_i]; ERR_CONTINUE(skin.is_null()); HashSet<GLTFNodeIndex> child_visited_set; RBSet<GLTFNodeIndex> all_skin_nodes; for (int i = 0; i < skin->joints.size(); ++i) { all_skin_nodes.insert(skin->joints[i]); SkinTool::_recurse_children(nodes, skin->joints[i], all_skin_nodes, child_visited_set); } for (int i = 0; i < skin->non_joints.size(); ++i) { all_skin_nodes.insert(skin->non_joints[i]); SkinTool::_recurse_children(nodes, skin->non_joints[i], all_skin_nodes, child_visited_set); } for (GLTFNodeIndex node_index : all_skin_nodes) { const GLTFNodeIndex parent = nodes[node_index]->parent; skeleton_sets.insert(node_index); if (all_skin_nodes.has(parent)) { skeleton_sets.create_union(parent, node_index); } } // We are going to connect the separate skin subtrees in each skin together // so that the final roots are entire sets of valid skin trees for (int i = 1; i < skin->roots.size(); ++i) { skeleton_sets.create_union(skin->roots[0], skin->roots[i]); } } { // attempt to joint all touching subsets (siblings/parent are part of another skin) Vector<SkinNodeIndex> groups_representatives; skeleton_sets.get_representatives(groups_representatives); Vector<SkinNodeIndex> highest_group_members; Vector<Vector<SkinNodeIndex>> groups; for (int i = 0; i < groups_representatives.size(); ++i) { Vector<SkinNodeIndex> group; skeleton_sets.get_members(group, groups_representatives[i]); highest_group_members.push_back(SkinTool::_find_highest_node(nodes, group)); groups.push_back(group); } for (int i = 0; i < highest_group_members.size(); ++i) { const SkinNodeIndex node_i = highest_group_members[i]; // Attach any siblings together (this needs to be done n^2/2 times) for (int j = i + 1; j < highest_group_members.size(); ++j) { const SkinNodeIndex node_j = highest_group_members[j]; // Even if they are siblings under the root! :) if (nodes[node_i]->parent == nodes[node_j]->parent) { skeleton_sets.create_union(node_i, node_j); } } // Attach any parenting going on together (we need to do this n^2 times) const SkinNodeIndex node_i_parent = nodes[node_i]->parent; if (node_i_parent >= 0) { for (int j = 0; j < groups.size() && i != j; ++j) { const Vector<SkinNodeIndex> &group = groups[j]; if (group.has(node_i_parent)) { const SkinNodeIndex node_j = highest_group_members[j]; skeleton_sets.create_union(node_i, node_j); } } } } } // At this point, the skeleton groups should be finalized Vector<SkinNodeIndex> skeleton_owners; skeleton_sets.get_representatives(skeleton_owners); // Mark all the skins actual skeletons, after we have merged them for (SkinSkeletonIndex skel_i = 0; skel_i < skeleton_owners.size(); ++skel_i) { const SkinNodeIndex skeleton_owner = skeleton_owners[skel_i]; Ref<GLTFSkeleton> skeleton; skeleton.instantiate(); Vector<SkinNodeIndex> skeleton_nodes; skeleton_sets.get_members(skeleton_nodes, skeleton_owner); for (GLTFSkinIndex skin_i = 0; skin_i < skins.size(); ++skin_i) { Ref<GLTFSkin> skin = skins.write[skin_i]; // If any of the the skeletons nodes exist in a skin, that skin now maps to the skeleton for (int i = 0; i < skeleton_nodes.size(); ++i) { SkinNodeIndex skel_node_i = skeleton_nodes[i]; if (skin->joints.has(skel_node_i) || skin->non_joints.has(skel_node_i)) { skin->skeleton = skel_i; continue; } } } Vector<SkinNodeIndex> non_joints; for (int i = 0; i < skeleton_nodes.size(); ++i) { const SkinNodeIndex node_i = skeleton_nodes[i]; if (nodes[node_i]->joint) { skeleton->joints.push_back(node_i); } else { non_joints.push_back(node_i); } } skeletons.push_back(skeleton); SkinTool::_reparent_non_joint_skeleton_subtrees(nodes, skeletons.write[skel_i], non_joints); } for (SkinSkeletonIndex skel_i = 0; skel_i < skeletons.size(); ++skel_i) { Ref<GLTFSkeleton> skeleton = skeletons.write[skel_i]; for (int i = 0; i < skeleton->joints.size(); ++i) { const SkinNodeIndex node_i = skeleton->joints[i]; Ref<GLTFNode> node = nodes[node_i]; ERR_FAIL_COND_V(!node->joint, ERR_PARSE_ERROR); ERR_FAIL_COND_V(node->skeleton >= 0, ERR_PARSE_ERROR); node->skeleton = skel_i; } ERR_FAIL_COND_V(SkinTool::_determine_skeleton_roots(nodes, skeletons, skel_i), ERR_PARSE_ERROR); } return OK; } Error SkinTool::_reparent_non_joint_skeleton_subtrees( Vector<Ref<GLTFNode>> &nodes, Ref<GLTFSkeleton> p_skeleton, const Vector<SkinNodeIndex> &p_non_joints) { DisjointSet<GLTFNodeIndex> subtree_set; // Populate the disjoint set with ONLY non joints that are in the skeleton hierarchy (non_joints vector) // This way we can find any joints that lie in between joints, as the current glTF specification // mentions nothing about non-joints being in between joints of the same skin. Hopefully one day we // can remove this code. // skinD depicted here explains this issue: // https://github.com/KhronosGroup/glTF-Asset-Generator/blob/master/Output/Positive/Animation_Skin for (int i = 0; i < p_non_joints.size(); ++i) { const SkinNodeIndex node_i = p_non_joints[i]; subtree_set.insert(node_i); const SkinNodeIndex parent_i = nodes[node_i]->parent; if (parent_i >= 0 && p_non_joints.has(parent_i) && !nodes[parent_i]->joint) { subtree_set.create_union(parent_i, node_i); } } // Find all the non joint subtrees and re-parent them to a new "fake" joint Vector<SkinNodeIndex> non_joint_subtree_roots; subtree_set.get_representatives(non_joint_subtree_roots); for (int root_i = 0; root_i < non_joint_subtree_roots.size(); ++root_i) { const SkinNodeIndex subtree_root = non_joint_subtree_roots[root_i]; Vector<SkinNodeIndex> subtree_nodes; subtree_set.get_members(subtree_nodes, subtree_root); for (int subtree_i = 0; subtree_i < subtree_nodes.size(); ++subtree_i) { Ref<GLTFNode> node = nodes[subtree_nodes[subtree_i]]; node->joint = true; // Add the joint to the skeletons joints p_skeleton->joints.push_back(subtree_nodes[subtree_i]); } } return OK; } Error SkinTool::_determine_skeleton_roots( Vector<Ref<GLTFNode>> &nodes, Vector<Ref<GLTFSkeleton>> &skeletons, const SkinSkeletonIndex p_skel_i) { DisjointSet<GLTFNodeIndex> disjoint_set; for (SkinNodeIndex i = 0; i < nodes.size(); ++i) { const Ref<GLTFNode> node = nodes[i]; if (node->skeleton != p_skel_i) { continue; } disjoint_set.insert(i); if (node->parent >= 0 && nodes[node->parent]->skeleton == p_skel_i) { disjoint_set.create_union(node->parent, i); } } Ref<GLTFSkeleton> skeleton = skeletons.write[p_skel_i]; Vector<SkinNodeIndex> representatives; disjoint_set.get_representatives(representatives); Vector<SkinNodeIndex> roots; for (int i = 0; i < representatives.size(); ++i) { Vector<SkinNodeIndex> set; disjoint_set.get_members(set, representatives[i]); const SkinNodeIndex root = _find_highest_node(nodes, set); ERR_FAIL_COND_V(root < 0, FAILED); roots.push_back(root); } roots.sort(); skeleton->roots = roots; if (roots.size() == 0) { return FAILED; } else if (roots.size() == 1) { return OK; } // Check that the subtrees have the same parent root const SkinNodeIndex parent = nodes[roots[0]]->parent; for (int i = 1; i < roots.size(); ++i) { if (nodes[roots[i]]->parent != parent) { return FAILED; } } return OK; } Error SkinTool::_create_skeletons( HashSet<String> &unique_names, Vector<Ref<GLTFSkin>> &skins, Vector<Ref<GLTFNode>> &nodes, HashMap<ObjectID, GLTFSkeletonIndex> &skeleton3d_to_gltf_skeleton, Vector<Ref<GLTFSkeleton>> &skeletons, HashMap<GLTFNodeIndex, Node *> &scene_nodes) { for (SkinSkeletonIndex skel_i = 0; skel_i < skeletons.size(); ++skel_i) { Ref<GLTFSkeleton> gltf_skeleton = skeletons.write[skel_i]; Skeleton3D *skeleton = memnew(Skeleton3D); gltf_skeleton->godot_skeleton = skeleton; skeleton3d_to_gltf_skeleton[skeleton->get_instance_id()] = skel_i; // Make a unique name, no gltf node represents this skeleton skeleton->set_name("Skeleton3D"); List<GLTFNodeIndex> bones; for (int i = 0; i < gltf_skeleton->roots.size(); ++i) { bones.push_back(gltf_skeleton->roots[i]); } // Make the skeleton creation deterministic by going through the roots in // a sorted order, and DEPTH FIRST bones.sort(); while (!bones.is_empty()) { const SkinNodeIndex node_i = bones.front()->get(); bones.pop_front(); Ref<GLTFNode> node = nodes[node_i]; ERR_FAIL_COND_V(node->skeleton != skel_i, FAILED); { // Add all child nodes to the stack (deterministically) Vector<SkinNodeIndex> child_nodes; for (int i = 0; i < node->children.size(); ++i) { const SkinNodeIndex child_i = node->children[i]; if (nodes[child_i]->skeleton == skel_i) { child_nodes.push_back(child_i); } } // Depth first insertion child_nodes.sort(); for (int i = child_nodes.size() - 1; i >= 0; --i) { bones.push_front(child_nodes[i]); } } const int bone_index = skeleton->get_bone_count(); if (node->get_name().is_empty()) { node->set_name("bone"); } node->set_name(_gen_unique_bone_name(unique_names, node->get_name())); skeleton->add_bone(node->get_name()); Transform3D rest_transform = node->get_additional_data("GODOT_rest_transform"); skeleton->set_bone_rest(bone_index, rest_transform); skeleton->set_bone_pose_position(bone_index, node->transform.origin); skeleton->set_bone_pose_rotation(bone_index, node->transform.basis.get_rotation_quaternion()); skeleton->set_bone_pose_scale(bone_index, node->transform.basis.get_scale()); if (node->parent >= 0 && nodes[node->parent]->skeleton == skel_i) { const int bone_parent = skeleton->find_bone(nodes[node->parent]->get_name()); ERR_FAIL_COND_V(bone_parent < 0, FAILED); skeleton->set_bone_parent(bone_index, skeleton->find_bone(nodes[node->parent]->get_name())); } scene_nodes.insert(node_i, skeleton); } } ERR_FAIL_COND_V(_map_skin_joints_indices_to_skeleton_bone_indices(skins, skeletons, nodes), ERR_PARSE_ERROR); return OK; } Error SkinTool::_map_skin_joints_indices_to_skeleton_bone_indices( Vector<Ref<GLTFSkin>> &skins, Vector<Ref<GLTFSkeleton>> &skeletons, Vector<Ref<GLTFNode>> &nodes) { for (GLTFSkinIndex skin_i = 0; skin_i < skins.size(); ++skin_i) { Ref<GLTFSkin> skin = skins.write[skin_i]; ERR_CONTINUE(skin.is_null()); Ref<GLTFSkeleton> skeleton = skeletons[skin->skeleton]; for (int joint_index = 0; joint_index < skin->joints_original.size(); ++joint_index) { const SkinNodeIndex node_i = skin->joints_original[joint_index]; const Ref<GLTFNode> node = nodes[node_i]; const int bone_index = skeleton->godot_skeleton->find_bone(node->get_name()); ERR_FAIL_COND_V(bone_index < 0, FAILED); skin->joint_i_to_bone_i.insert(joint_index, bone_index); } } return OK; } Error SkinTool::_create_skins(Vector<Ref<GLTFSkin>> &skins, Vector<Ref<GLTFNode>> &nodes, bool use_named_skin_binds, HashSet<String> &unique_names) { for (GLTFSkinIndex skin_i = 0; skin_i < skins.size(); ++skin_i) { Ref<GLTFSkin> gltf_skin = skins.write[skin_i]; ERR_CONTINUE(gltf_skin.is_null()); Ref<Skin> skin; skin.instantiate(); // Some skins don't have IBM's! What absolute monsters! const bool has_ibms = !gltf_skin->inverse_binds.is_empty(); for (int joint_i = 0; joint_i < gltf_skin->joints_original.size(); ++joint_i) { SkinNodeIndex node = gltf_skin->joints_original[joint_i]; String bone_name = nodes[node]->get_name(); Transform3D xform; if (has_ibms) { xform = gltf_skin->inverse_binds[joint_i]; } if (use_named_skin_binds) { skin->add_named_bind(bone_name, xform); } else { int32_t bone_i = gltf_skin->joint_i_to_bone_i[joint_i]; skin->add_bind(bone_i, xform); } } gltf_skin->godot_skin = skin; } // Purge the duplicates! _remove_duplicate_skins(skins); // Create unique names now, after removing duplicates for (GLTFSkinIndex skin_i = 0; skin_i < skins.size(); ++skin_i) { ERR_CONTINUE(skins.get(skin_i).is_null()); Ref<Skin> skin = skins.write[skin_i]->godot_skin; ERR_CONTINUE(skin.is_null()); if (skin->get_name().is_empty()) { // Make a unique name, no node represents this skin skin->set_name(_gen_unique_name(unique_names, "Skin")); } } return OK; } // FIXME: Duplicated from FBXDocument, very similar code in GLTFDocument too, // and even below in this class for bone names. String SkinTool::_gen_unique_name(HashSet<String> &unique_names, const String &p_name) { const String s_name = p_name.validate_node_name(); String u_name; int index = 1; while (true) { u_name = s_name; if (index > 1) { u_name += itos(index); } if (!unique_names.has(u_name)) { break; } index++; } unique_names.insert(u_name); return u_name; } bool SkinTool::_skins_are_same(const Ref<Skin> p_skin_a, const Ref<Skin> p_skin_b) { if (p_skin_a->get_bind_count() != p_skin_b->get_bind_count()) { return false; } for (int i = 0; i < p_skin_a->get_bind_count(); ++i) { if (p_skin_a->get_bind_bone(i) != p_skin_b->get_bind_bone(i)) { return false; } if (p_skin_a->get_bind_name(i) != p_skin_b->get_bind_name(i)) { return false; } Transform3D a_xform = p_skin_a->get_bind_pose(i); Transform3D b_xform = p_skin_b->get_bind_pose(i); if (a_xform != b_xform) { return false; } } return true; } void SkinTool::_remove_duplicate_skins(Vector<Ref<GLTFSkin>> &r_skins) { for (int i = 0; i < r_skins.size(); ++i) { for (int j = i + 1; j < r_skins.size(); ++j) { const Ref<Skin> skin_i = r_skins[i]->godot_skin; const Ref<Skin> skin_j = r_skins[j]->godot_skin; if (_skins_are_same(skin_i, skin_j)) { // replace it and delete the old r_skins.write[j]->godot_skin = skin_i; } } } } String SkinTool::_gen_unique_bone_name(HashSet<String> &r_unique_names, const String &p_name) { String s_name = _sanitize_bone_name(p_name); if (s_name.is_empty()) { s_name = "bone"; } String u_name; int index = 1; while (true) { u_name = s_name; if (index > 1) { u_name += "_" + itos(index); } if (!r_unique_names.has(u_name)) { break; } index++; } r_unique_names.insert(u_name); return u_name; } Error SkinTool::_asset_parse_skins( const Vector<SkinNodeIndex> &input_skin_indices, const Vector<Ref<GLTFSkin>> &input_skins, const Vector<Ref<GLTFNode>> &input_nodes, Vector<SkinNodeIndex> &output_skin_indices, Vector<Ref<GLTFSkin>> &output_skins, HashMap<GLTFNodeIndex, bool> &joint_mapping) { output_skin_indices.clear(); output_skins.clear(); joint_mapping.clear(); for (int i = 0; i < input_skin_indices.size(); ++i) { SkinNodeIndex skin_index = input_skin_indices[i]; if (skin_index >= 0 && skin_index < input_skins.size()) { output_skin_indices.push_back(skin_index); output_skins.push_back(input_skins[skin_index]); Ref<GLTFSkin> skin = input_skins[skin_index]; Vector<SkinNodeIndex> skin_joints = skin->get_joints(); for (int j = 0; j < skin_joints.size(); ++j) { SkinNodeIndex joint_index = skin_joints[j]; joint_mapping[joint_index] = true; } } } return OK; } String SkinTool::_sanitize_bone_name(const String &p_name) { String bone_name = p_name; bone_name = bone_name.replace(":", "_"); bone_name = bone_name.replace("/", "_"); return bone_name; }