// Copyright 2009-2021 Intel Corporation // SPDX-License-Identifier: Apache-2.0 #pragma once // Transcendental functions from "ispc": https://github.com/ispc/ispc/ // Most of the transcendental implementations in ispc code come from // Solomon Boulos's "syrah": https://github.com/boulos/syrah/ #include "../simd/simd.h" namespace embree { namespace fastapprox { template <typename T> __forceinline T sin(const T &v) { static const float piOverTwoVec = 1.57079637050628662109375; static const float twoOverPiVec = 0.636619746685028076171875; auto scaled = v * twoOverPiVec; auto kReal = floor(scaled); auto k = toInt(kReal); // Reduced range version of x auto x = v - kReal * piOverTwoVec; auto kMod4 = k & 3; auto sinUseCos = (kMod4 == 1) | (kMod4 == 3); auto flipSign = (kMod4 > 1); // These coefficients are from sollya with fpminimax(sin(x)/x, [|0, 2, // 4, 6, 8, 10|], [|single...|], [0;Pi/2]); static const float sinC2 = -0.16666667163372039794921875; static const float sinC4 = +8.333347737789154052734375e-3; static const float sinC6 = -1.9842604524455964565277099609375e-4; static const float sinC8 = +2.760012648650445044040679931640625e-6; static const float sinC10 = -2.50293279435709337121807038784027099609375e-8; static const float cosC2 = -0.5; static const float cosC4 = +4.166664183139801025390625e-2; static const float cosC6 = -1.388833043165504932403564453125e-3; static const float cosC8 = +2.47562347794882953166961669921875e-5; static const float cosC10 = -2.59630184018533327616751194000244140625e-7; auto outside = select(sinUseCos, 1., x); auto c2 = select(sinUseCos, T(cosC2), T(sinC2)); auto c4 = select(sinUseCos, T(cosC4), T(sinC4)); auto c6 = select(sinUseCos, T(cosC6), T(sinC6)); auto c8 = select(sinUseCos, T(cosC8), T(sinC8)); auto c10 = select(sinUseCos, T(cosC10), T(sinC10)); auto x2 = x * x; auto formula = x2 * c10 + c8; formula = x2 * formula + c6; formula = x2 * formula + c4; formula = x2 * formula + c2; formula = x2 * formula + 1.; formula *= outside; formula = select(flipSign, -formula, formula); return formula; } template <typename T> __forceinline T cos(const T &v) { static const float piOverTwoVec = 1.57079637050628662109375; static const float twoOverPiVec = 0.636619746685028076171875; auto scaled = v * twoOverPiVec; auto kReal = floor(scaled); auto k = toInt(kReal); // Reduced range version of x auto x = v - kReal * piOverTwoVec; auto kMod4 = k & 3; auto cosUseCos = (kMod4 == 0) | (kMod4 == 2); auto flipSign = (kMod4 == 1) | (kMod4 == 2); const float sinC2 = -0.16666667163372039794921875; const float sinC4 = +8.333347737789154052734375e-3; const float sinC6 = -1.9842604524455964565277099609375e-4; const float sinC8 = +2.760012648650445044040679931640625e-6; const float sinC10 = -2.50293279435709337121807038784027099609375e-8; const float cosC2 = -0.5; const float cosC4 = +4.166664183139801025390625e-2; const float cosC6 = -1.388833043165504932403564453125e-3; const float cosC8 = +2.47562347794882953166961669921875e-5; const float cosC10 = -2.59630184018533327616751194000244140625e-7; auto outside = select(cosUseCos, 1., x); auto c2 = select(cosUseCos, T(cosC2), T(sinC2)); auto c4 = select(cosUseCos, T(cosC4), T(sinC4)); auto c6 = select(cosUseCos, T(cosC6), T(sinC6)); auto c8 = select(cosUseCos, T(cosC8), T(sinC8)); auto c10 = select(cosUseCos, T(cosC10), T(sinC10)); auto x2 = x * x; auto formula = x2 * c10 + c8; formula = x2 * formula + c6; formula = x2 * formula + c4; formula = x2 * formula + c2; formula = x2 * formula + 1.; formula *= outside; formula = select(flipSign, -formula, formula); return formula; } template <typename T> __forceinline void sincos(const T &v, T &sinResult, T &cosResult) { const float piOverTwoVec = 1.57079637050628662109375; const float twoOverPiVec = 0.636619746685028076171875; auto scaled = v * twoOverPiVec; auto kReal = floor(scaled); auto k = toInt(kReal); // Reduced range version of x auto x = v - kReal * piOverTwoVec; auto kMod4 = k & 3; auto cosUseCos = ((kMod4 == 0) | (kMod4 == 2)); auto sinUseCos = ((kMod4 == 1) | (kMod4 == 3)); auto sinFlipSign = (kMod4 > 1); auto cosFlipSign = ((kMod4 == 1) | (kMod4 == 2)); const float oneVec = +1.; const float sinC2 = -0.16666667163372039794921875; const float sinC4 = +8.333347737789154052734375e-3; const float sinC6 = -1.9842604524455964565277099609375e-4; const float sinC8 = +2.760012648650445044040679931640625e-6; const float sinC10 = -2.50293279435709337121807038784027099609375e-8; const float cosC2 = -0.5; const float cosC4 = +4.166664183139801025390625e-2; const float cosC6 = -1.388833043165504932403564453125e-3; const float cosC8 = +2.47562347794882953166961669921875e-5; const float cosC10 = -2.59630184018533327616751194000244140625e-7; auto x2 = x * x; auto sinFormula = x2 * sinC10 + sinC8; auto cosFormula = x2 * cosC10 + cosC8; sinFormula = x2 * sinFormula + sinC6; cosFormula = x2 * cosFormula + cosC6; sinFormula = x2 * sinFormula + sinC4; cosFormula = x2 * cosFormula + cosC4; sinFormula = x2 * sinFormula + sinC2; cosFormula = x2 * cosFormula + cosC2; sinFormula = x2 * sinFormula + oneVec; cosFormula = x2 * cosFormula + oneVec; sinFormula *= x; sinResult = select(sinUseCos, cosFormula, sinFormula); cosResult = select(cosUseCos, cosFormula, sinFormula); sinResult = select(sinFlipSign, -sinResult, sinResult); cosResult = select(cosFlipSign, -cosResult, cosResult); } template <typename T> __forceinline T tan(const T &v) { const float piOverFourVec = 0.785398185253143310546875; const float fourOverPiVec = 1.27323949337005615234375; auto xLt0 = v < 0.; auto y = select(xLt0, -v, v); auto scaled = y * fourOverPiVec; auto kReal = floor(scaled); auto k = toInt(kReal); auto x = y - kReal * piOverFourVec; // If k & 1, x -= Pi/4 auto needOffset = (k & 1) != 0; x = select(needOffset, x - piOverFourVec, x); // If k & 3 == (0 or 3) let z = tan_In...(y) otherwise z = -cot_In0To... auto kMod4 = k & 3; auto useCotan = (kMod4 == 1) | (kMod4 == 2); const float oneVec = 1.0; const float tanC2 = +0.33333075046539306640625; const float tanC4 = +0.13339905440807342529296875; const float tanC6 = +5.3348250687122344970703125e-2; const float tanC8 = +2.46033705770969390869140625e-2; const float tanC10 = +2.892402000725269317626953125e-3; const float tanC12 = +9.500005282461643218994140625e-3; const float cotC2 = -0.3333333432674407958984375; const float cotC4 = -2.222204394638538360595703125e-2; const float cotC6 = -2.11752182804048061370849609375e-3; const float cotC8 = -2.0846328698098659515380859375e-4; const float cotC10 = -2.548247357481159269809722900390625e-5; const float cotC12 = -3.5257363606433500535786151885986328125e-7; auto x2 = x * x; T z; if (any(useCotan)) { auto cotVal = x2 * cotC12 + cotC10; cotVal = x2 * cotVal + cotC8; cotVal = x2 * cotVal + cotC6; cotVal = x2 * cotVal + cotC4; cotVal = x2 * cotVal + cotC2; cotVal = x2 * cotVal + oneVec; // The equation is for x * cot(x) but we need -x * cot(x) for the tan part. cotVal /= -x; z = cotVal; } auto useTan = !useCotan; if (any(useTan)) { auto tanVal = x2 * tanC12 + tanC10; tanVal = x2 * tanVal + tanC8; tanVal = x2 * tanVal + tanC6; tanVal = x2 * tanVal + tanC4; tanVal = x2 * tanVal + tanC2; tanVal = x2 * tanVal + oneVec; // Equation was for tan(x)/x tanVal *= x; z = select(useTan, tanVal, z); } return select(xLt0, -z, z); } template <typename T> __forceinline T asin(const T &x0) { auto isneg = (x0 < 0.f); auto x = abs(x0); auto isnan = (x > 1.f); // sollya // fpminimax(((asin(x)-pi/2)/-sqrt(1-x)), [|0,1,2,3,4,5|],[|single...|], // [1e-20;.9999999999999999]); // avg error: 1.1105439e-06, max error 1.3187528e-06 auto v = 1.57079517841339111328125f + x * (-0.21450997889041900634765625f + x * (8.78556668758392333984375e-2f + x * (-4.489909112453460693359375e-2f + x * (1.928029954433441162109375e-2f + x * (-4.3095736764371395111083984375e-3f))))); v *= -sqrt(1.f - x); v = v + 1.57079637050628662109375f; v = select(v < 0.f, T(0.f), v); v = select(isneg, -v, v); v = select(isnan, T(cast_i2f(0x7fc00000)), v); return v; } template <typename T> __forceinline T acos(const T &v) { return 1.57079637050628662109375f - asin(v); } template <typename T> __forceinline T atan(const T &v) { const float piOverTwoVec = 1.57079637050628662109375; // atan(-x) = -atan(x) (so flip from negative to positive first) // If x > 1 -> atan(x) = Pi/2 - atan(1/x) auto xNeg = v < 0.f; auto xFlipped = select(xNeg, -v, v); auto xGt1 = xFlipped > 1.; auto x = select(xGt1, rcpSafe(xFlipped), xFlipped); // These coefficients approximate atan(x)/x const float atanC0 = +0.99999988079071044921875; const float atanC2 = -0.3333191573619842529296875; const float atanC4 = +0.199689209461212158203125; const float atanC6 = -0.14015688002109527587890625; const float atanC8 = +9.905083477497100830078125e-2; const float atanC10 = -5.93664981424808502197265625e-2; const float atanC12 = +2.417283318936824798583984375e-2; const float atanC14 = -4.6721356920897960662841796875e-3; auto x2 = x * x; auto result = x2 * atanC14 + atanC12; result = x2 * result + atanC10; result = x2 * result + atanC8; result = x2 * result + atanC6; result = x2 * result + atanC4; result = x2 * result + atanC2; result = x2 * result + atanC0; result *= x; result = select(xGt1, piOverTwoVec - result, result); result = select(xNeg, -result, result); return result; } template <typename T> __forceinline T atan2(const T &y, const T &x) { const float piVec = 3.1415926536; // atan2(y, x) = // // atan2(y > 0, x = +-0) -> Pi/2 // atan2(y < 0, x = +-0) -> -Pi/2 // atan2(y = +-0, x < +0) -> +-Pi // atan2(y = +-0, x >= +0) -> +-0 // // atan2(y >= 0, x < 0) -> Pi + atan(y/x) // atan2(y < 0, x < 0) -> -Pi + atan(y/x) // atan2(y, x > 0) -> atan(y/x) // // and then a bunch of code for dealing with infinities. auto yOverX = y * rcpSafe(x); auto atanArg = atan(yOverX); auto xLt0 = x < 0.f; auto yLt0 = y < 0.f; auto offset = select(xLt0, select(yLt0, T(-piVec), T(piVec)), 0.f); return offset + atanArg; } template <typename T> __forceinline T exp(const T &v) { const float ln2Part1 = 0.6931457519; const float ln2Part2 = 1.4286067653e-6; const float oneOverLn2 = 1.44269502162933349609375; auto scaled = v * oneOverLn2; auto kReal = floor(scaled); auto k = toInt(kReal); // Reduced range version of x auto x = v - kReal * ln2Part1; x -= kReal * ln2Part2; // These coefficients are for e^x in [0, ln(2)] const float one = 1.; const float c2 = 0.4999999105930328369140625; const float c3 = 0.166668415069580078125; const float c4 = 4.16539050638675689697265625e-2; const float c5 = 8.378830738365650177001953125e-3; const float c6 = 1.304379315115511417388916015625e-3; const float c7 = 2.7555381529964506626129150390625e-4; auto result = x * c7 + c6; result = x * result + c5; result = x * result + c4; result = x * result + c3; result = x * result + c2; result = x * result + one; result = x * result + one; // Compute 2^k (should differ for float and double, but I'll avoid // it for now and just do floats) const int fpbias = 127; auto biasedN = k + fpbias; auto overflow = kReal > fpbias; // Minimum exponent is -126, so if k is <= -127 (k + 127 <= 0) // we've got underflow. -127 * ln(2) -> -88.02. So the most // negative float input that doesn't result in zero is like -88. auto underflow = kReal <= -fpbias; const int infBits = 0x7f800000; biasedN <<= 23; // Reinterpret this thing as float auto twoToTheN = asFloat(biasedN); // Handle both doubles and floats (hopefully eliding the copy for float) auto elemtype2n = twoToTheN; result *= elemtype2n; result = select(overflow, cast_i2f(infBits), result); result = select(underflow, 0., result); return result; } // Range reduction for logarithms takes log(x) -> log(2^n * y) -> n // * log(2) + log(y) where y is the reduced range (usually in [1/2, 1)). template <typename T, typename R> __forceinline void __rangeReduceLog(const T &input, T &reduced, R &exponent) { auto intVersion = asInt(input); // single precision = SEEE EEEE EMMM MMMM MMMM MMMM MMMM MMMM // exponent mask = 0111 1111 1000 0000 0000 0000 0000 0000 // 0x7 0xF 0x8 0x0 0x0 0x0 0x0 0x0 // non-exponent = 1000 0000 0111 1111 1111 1111 1111 1111 // = 0x8 0x0 0x7 0xF 0xF 0xF 0xF 0xF //const int exponentMask(0x7F800000) static const int nonexponentMask = 0x807FFFFF; // We want the reduced version to have an exponent of -1 which is // -1 + 127 after biasing or 126 static const int exponentNeg1 = (126l << 23); // NOTE(boulos): We don't need to mask anything out since we know // the sign bit has to be 0. If it's 1, we need to return infinity/nan // anyway (log(x), x = +-0 -> infinity, x < 0 -> NaN). auto biasedExponent = intVersion >> 23; // This number is [0, 255] but it means [-127, 128] auto offsetExponent = biasedExponent + 1; // Treat the number as if it were 2^{e+1} * (1.m)/2 exponent = offsetExponent - 127; // get the real value // Blend the offset_exponent with the original input (do this in // int for now, until I decide if float can have & and ¬) auto blended = (intVersion & nonexponentMask) | (exponentNeg1); reduced = asFloat(blended); } template <typename T> struct ExponentType { }; template <int N> struct ExponentType<vfloat_impl<N>> { typedef vint<N> Ty; }; template <> struct ExponentType<float> { typedef int Ty; }; template <typename T> __forceinline T log(const T &v) { T reduced; typename ExponentType<T>::Ty exponent; const int nanBits = 0x7fc00000; const int negInfBits = 0xFF800000; const float nan = cast_i2f(nanBits); const float negInf = cast_i2f(negInfBits); auto useNan = v < 0.; auto useInf = v == 0.; auto exceptional = useNan | useInf; const float one = 1.0; auto patched = select(exceptional, one, v); __rangeReduceLog(patched, reduced, exponent); const float ln2 = 0.693147182464599609375; auto x1 = one - reduced; const float c1 = +0.50000095367431640625; const float c2 = +0.33326041698455810546875; const float c3 = +0.2519190013408660888671875; const float c4 = +0.17541764676570892333984375; const float c5 = +0.3424419462680816650390625; const float c6 = -0.599632322788238525390625; const float c7 = +1.98442304134368896484375; const float c8 = -2.4899270534515380859375; const float c9 = +1.7491014003753662109375; auto result = x1 * c9 + c8; result = x1 * result + c7; result = x1 * result + c6; result = x1 * result + c5; result = x1 * result + c4; result = x1 * result + c3; result = x1 * result + c2; result = x1 * result + c1; result = x1 * result + one; // Equation was for -(ln(red)/(1-red)) result *= -x1; result += toFloat(exponent) * ln2; return select(exceptional, select(useNan, T(nan), T(negInf)), result); } template <typename T> __forceinline T pow(const T &x, const T &y) { auto x1 = abs(x); auto z = exp(y * log(x1)); // Handle special cases const float twoOver23 = 8388608.0f; auto yInt = y == round(y); auto yOddInt = select(yInt, asInt(abs(y) + twoOver23) << 31, 0); // set sign bit // x == 0 z = select(x == 0.0f, select(y < 0.0f, T(inf) | signmsk(x), select(y == 0.0f, T(1.0f), asFloat(yOddInt) & x)), z); // x < 0 auto xNegative = x < 0.0f; if (any(xNegative)) { auto z1 = z | asFloat(yOddInt); z1 = select(yInt, z1, std::numeric_limits<float>::quiet_NaN()); z = select(xNegative, z1, z); } auto xFinite = isfinite(x); auto yFinite = isfinite(y); if (all(xFinite & yFinite)) return z; // x finite and y infinite z = select(andn(xFinite, yFinite), select(x1 == 1.0f, 1.0f, select((x1 > 1.0f) ^ (y < 0.0f), inf, T(0.0f))), z); // x infinite z = select(xFinite, z, select(y == 0.0f, 1.0f, select(y < 0.0f, T(0.0f), inf) | (asFloat(yOddInt) & x))); return z; } template <typename T> __forceinline T pow(const T &x, float y) { return pow(x, T(y)); } } // namespace fastapprox } // namespace embree