/*************************************************************************/ /* godot_body_3d.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "godot_body_3d.h" #include "godot_area_3d.h" #include "godot_body_direct_state_3d.h" #include "godot_space_3d.h" void GodotBody3D::_mass_properties_changed() { if (get_space() && !mass_properties_update_list.in_list() && (calculate_inertia || calculate_center_of_mass)) { get_space()->body_add_to_mass_properties_update_list(&mass_properties_update_list); } } void GodotBody3D::_update_transform_dependent() { center_of_mass = get_transform().basis.xform(center_of_mass_local); principal_inertia_axes = get_transform().basis * principal_inertia_axes_local; // Update inertia tensor. Basis tb = principal_inertia_axes; Basis tbt = tb.transposed(); Basis diag; diag.scale(_inv_inertia); _inv_inertia_tensor = tb * diag * tbt; } void GodotBody3D::update_mass_properties() { // Update shapes and motions. switch (mode) { case PhysicsServer3D::BODY_MODE_DYNAMIC: { real_t total_area = 0; for (int i = 0; i < get_shape_count(); i++) { if (is_shape_disabled(i)) { continue; } total_area += get_shape_area(i); } if (calculate_center_of_mass) { // We have to recompute the center of mass. center_of_mass_local.zero(); if (total_area != 0.0) { for (int i = 0; i < get_shape_count(); i++) { if (is_shape_disabled(i)) { continue; } real_t area = get_shape_area(i); real_t mass = area * this->mass / total_area; // NOTE: we assume that the shape origin is also its center of mass. center_of_mass_local += mass * get_shape_transform(i).origin; } center_of_mass_local /= mass; } } if (calculate_inertia) { // Recompute the inertia tensor. Basis inertia_tensor; inertia_tensor.set_zero(); bool inertia_set = false; for (int i = 0; i < get_shape_count(); i++) { if (is_shape_disabled(i)) { continue; } real_t area = get_shape_area(i); if (area == 0.0) { continue; } inertia_set = true; const GodotShape3D *shape = get_shape(i); real_t mass = area * this->mass / total_area; Basis shape_inertia_tensor = Basis::from_scale(shape->get_moment_of_inertia(mass)); Transform3D shape_transform = get_shape_transform(i); Basis shape_basis = shape_transform.basis.orthonormalized(); // NOTE: we don't take the scale of collision shapes into account when computing the inertia tensor! shape_inertia_tensor = shape_basis * shape_inertia_tensor * shape_basis.transposed(); Vector3 shape_origin = shape_transform.origin - center_of_mass_local; inertia_tensor += shape_inertia_tensor + (Basis() * shape_origin.dot(shape_origin) - shape_origin.outer(shape_origin)) * mass; } // Set the inertia to a valid value when there are no valid shapes. if (!inertia_set) { inertia_tensor = Basis(); } // Handle partial custom inertia. if (inertia.x > 0.0) { inertia_tensor[0][0] = inertia.x; } if (inertia.y > 0.0) { inertia_tensor[1][1] = inertia.y; } if (inertia.z > 0.0) { inertia_tensor[2][2] = inertia.z; } // Compute the principal axes of inertia. principal_inertia_axes_local = inertia_tensor.diagonalize().transposed(); _inv_inertia = inertia_tensor.get_main_diagonal().inverse(); } if (mass) { _inv_mass = 1.0 / mass; } else { _inv_mass = 0; } } break; case PhysicsServer3D::BODY_MODE_KINEMATIC: case PhysicsServer3D::BODY_MODE_STATIC: { _inv_inertia = Vector3(); _inv_mass = 0; } break; case PhysicsServer3D::BODY_MODE_DYNAMIC_LINEAR: { _inv_inertia_tensor.set_zero(); _inv_mass = 1.0 / mass; } break; } _update_transform_dependent(); } void GodotBody3D::reset_mass_properties() { calculate_inertia = true; calculate_center_of_mass = true; _mass_properties_changed(); } void GodotBody3D::set_active(bool p_active) { if (active == p_active) { return; } active = p_active; if (active) { if (mode == PhysicsServer3D::BODY_MODE_STATIC) { // Static bodies can't be active. active = false; } else if (get_space()) { get_space()->body_add_to_active_list(&active_list); } } else if (get_space()) { get_space()->body_remove_from_active_list(&active_list); } } void GodotBody3D::set_param(PhysicsServer3D::BodyParameter p_param, const Variant &p_value) { switch (p_param) { case PhysicsServer3D::BODY_PARAM_BOUNCE: { bounce = p_value; } break; case PhysicsServer3D::BODY_PARAM_FRICTION: { friction = p_value; } break; case PhysicsServer3D::BODY_PARAM_MASS: { real_t mass_value = p_value; ERR_FAIL_COND(mass_value <= 0); mass = mass_value; if (mode >= PhysicsServer3D::BODY_MODE_DYNAMIC) { _mass_properties_changed(); } } break; case PhysicsServer3D::BODY_PARAM_INERTIA: { inertia = p_value; if ((inertia.x <= 0.0) || (inertia.y <= 0.0) || (inertia.z <= 0.0)) { calculate_inertia = true; if (mode == PhysicsServer3D::BODY_MODE_DYNAMIC) { _mass_properties_changed(); } } else { calculate_inertia = false; if (mode == PhysicsServer3D::BODY_MODE_DYNAMIC) { principal_inertia_axes_local = Basis(); _inv_inertia = inertia.inverse(); _update_transform_dependent(); } } } break; case PhysicsServer3D::BODY_PARAM_CENTER_OF_MASS: { calculate_center_of_mass = false; center_of_mass_local = p_value; _update_transform_dependent(); } break; case PhysicsServer3D::BODY_PARAM_GRAVITY_SCALE: { gravity_scale = p_value; } break; case PhysicsServer3D::BODY_PARAM_LINEAR_DAMP_MODE: { int mode_value = p_value; linear_damp_mode = (PhysicsServer3D::BodyDampMode)mode_value; } break; case PhysicsServer3D::BODY_PARAM_ANGULAR_DAMP_MODE: { int mode_value = p_value; angular_damp_mode = (PhysicsServer3D::BodyDampMode)mode_value; } break; case PhysicsServer3D::BODY_PARAM_LINEAR_DAMP: { linear_damp = p_value; } break; case PhysicsServer3D::BODY_PARAM_ANGULAR_DAMP: { angular_damp = p_value; } break; default: { } } } Variant GodotBody3D::get_param(PhysicsServer3D::BodyParameter p_param) const { switch (p_param) { case PhysicsServer3D::BODY_PARAM_BOUNCE: { return bounce; } break; case PhysicsServer3D::BODY_PARAM_FRICTION: { return friction; } break; case PhysicsServer3D::BODY_PARAM_MASS: { return mass; } break; case PhysicsServer3D::BODY_PARAM_INERTIA: { if (mode == PhysicsServer3D::BODY_MODE_DYNAMIC) { return _inv_inertia.inverse(); } else { return Vector3(); } } break; case PhysicsServer3D::BODY_PARAM_CENTER_OF_MASS: { return center_of_mass_local; } break; case PhysicsServer3D::BODY_PARAM_GRAVITY_SCALE: { return gravity_scale; } break; case PhysicsServer3D::BODY_PARAM_LINEAR_DAMP_MODE: { return linear_damp_mode; } case PhysicsServer3D::BODY_PARAM_ANGULAR_DAMP_MODE: { return angular_damp_mode; } case PhysicsServer3D::BODY_PARAM_LINEAR_DAMP: { return linear_damp; } break; case PhysicsServer3D::BODY_PARAM_ANGULAR_DAMP: { return angular_damp; } break; default: { } } return 0; } void GodotBody3D::set_mode(PhysicsServer3D::BodyMode p_mode) { PhysicsServer3D::BodyMode prev = mode; mode = p_mode; switch (p_mode) { case PhysicsServer3D::BODY_MODE_STATIC: case PhysicsServer3D::BODY_MODE_KINEMATIC: { _set_inv_transform(get_transform().affine_inverse()); _inv_mass = 0; _inv_inertia = Vector3(); _set_static(p_mode == PhysicsServer3D::BODY_MODE_STATIC); set_active(p_mode == PhysicsServer3D::BODY_MODE_KINEMATIC && contacts.size()); linear_velocity = Vector3(); angular_velocity = Vector3(); if (mode == PhysicsServer3D::BODY_MODE_KINEMATIC && prev != mode) { first_time_kinematic = true; } _update_transform_dependent(); } break; case PhysicsServer3D::BODY_MODE_DYNAMIC: { _inv_mass = mass > 0 ? (1.0 / mass) : 0; if (!calculate_inertia) { principal_inertia_axes_local = Basis(); _inv_inertia = inertia.inverse(); _update_transform_dependent(); } _mass_properties_changed(); _set_static(false); set_active(true); } break; case PhysicsServer3D::BODY_MODE_DYNAMIC_LINEAR: { _inv_mass = mass > 0 ? (1.0 / mass) : 0; _inv_inertia = Vector3(); angular_velocity = Vector3(); _update_transform_dependent(); _set_static(false); set_active(true); } } } PhysicsServer3D::BodyMode GodotBody3D::get_mode() const { return mode; } void GodotBody3D::_shapes_changed() { _mass_properties_changed(); wakeup(); wakeup_neighbours(); } void GodotBody3D::set_state(PhysicsServer3D::BodyState p_state, const Variant &p_variant) { switch (p_state) { case PhysicsServer3D::BODY_STATE_TRANSFORM: { if (mode == PhysicsServer3D::BODY_MODE_KINEMATIC) { new_transform = p_variant; //wakeup_neighbours(); set_active(true); if (first_time_kinematic) { _set_transform(p_variant); _set_inv_transform(get_transform().affine_inverse()); first_time_kinematic = false; } } else if (mode == PhysicsServer3D::BODY_MODE_STATIC) { _set_transform(p_variant); _set_inv_transform(get_transform().affine_inverse()); wakeup_neighbours(); } else { Transform3D t = p_variant; t.orthonormalize(); new_transform = get_transform(); //used as old to compute motion if (new_transform == t) { break; } _set_transform(t); _set_inv_transform(get_transform().inverse()); _update_transform_dependent(); } wakeup(); } break; case PhysicsServer3D::BODY_STATE_LINEAR_VELOCITY: { linear_velocity = p_variant; constant_linear_velocity = linear_velocity; wakeup(); } break; case PhysicsServer3D::BODY_STATE_ANGULAR_VELOCITY: { angular_velocity = p_variant; constant_angular_velocity = angular_velocity; wakeup(); } break; case PhysicsServer3D::BODY_STATE_SLEEPING: { if (mode == PhysicsServer3D::BODY_MODE_STATIC || mode == PhysicsServer3D::BODY_MODE_KINEMATIC) { break; } bool do_sleep = p_variant; if (do_sleep) { linear_velocity = Vector3(); //biased_linear_velocity=Vector3(); angular_velocity = Vector3(); //biased_angular_velocity=Vector3(); set_active(false); } else { set_active(true); } } break; case PhysicsServer3D::BODY_STATE_CAN_SLEEP: { can_sleep = p_variant; if (mode >= PhysicsServer3D::BODY_MODE_DYNAMIC && !active && !can_sleep) { set_active(true); } } break; } } Variant GodotBody3D::get_state(PhysicsServer3D::BodyState p_state) const { switch (p_state) { case PhysicsServer3D::BODY_STATE_TRANSFORM: { return get_transform(); } break; case PhysicsServer3D::BODY_STATE_LINEAR_VELOCITY: { return linear_velocity; } break; case PhysicsServer3D::BODY_STATE_ANGULAR_VELOCITY: { return angular_velocity; } break; case PhysicsServer3D::BODY_STATE_SLEEPING: { return !is_active(); } break; case PhysicsServer3D::BODY_STATE_CAN_SLEEP: { return can_sleep; } break; } return Variant(); } void GodotBody3D::set_space(GodotSpace3D *p_space) { if (get_space()) { if (mass_properties_update_list.in_list()) { get_space()->body_remove_from_mass_properties_update_list(&mass_properties_update_list); } if (active_list.in_list()) { get_space()->body_remove_from_active_list(&active_list); } if (direct_state_query_list.in_list()) { get_space()->body_remove_from_state_query_list(&direct_state_query_list); } } _set_space(p_space); if (get_space()) { _mass_properties_changed(); if (active) { get_space()->body_add_to_active_list(&active_list); } } } void GodotBody3D::set_axis_lock(PhysicsServer3D::BodyAxis p_axis, bool lock) { if (lock) { locked_axis |= p_axis; } else { locked_axis &= ~p_axis; } } bool GodotBody3D::is_axis_locked(PhysicsServer3D::BodyAxis p_axis) const { return locked_axis & p_axis; } void GodotBody3D::integrate_forces(real_t p_step) { if (mode == PhysicsServer3D::BODY_MODE_STATIC) { return; } ERR_FAIL_COND(!get_space()); int ac = areas.size(); bool gravity_done = false; bool linear_damp_done = false; bool angular_damp_done = false; bool stopped = false; gravity = Vector3(0, 0, 0); total_linear_damp = 0.0; total_angular_damp = 0.0; // Combine gravity and damping from overlapping areas in priority order. if (ac) { areas.sort(); const AreaCMP *aa = &areas[0]; for (int i = ac - 1; i >= 0 && !stopped; i--) { if (!gravity_done) { PhysicsServer3D::AreaSpaceOverrideMode area_gravity_mode = (PhysicsServer3D::AreaSpaceOverrideMode)(int)aa[i].area->get_param(PhysicsServer3D::AREA_PARAM_GRAVITY_OVERRIDE_MODE); if (area_gravity_mode != PhysicsServer3D::AREA_SPACE_OVERRIDE_DISABLED) { Vector3 area_gravity; aa[i].area->compute_gravity(get_transform().get_origin(), area_gravity); switch (area_gravity_mode) { case PhysicsServer3D::AREA_SPACE_OVERRIDE_COMBINE: case PhysicsServer3D::AREA_SPACE_OVERRIDE_COMBINE_REPLACE: { gravity += area_gravity; gravity_done = area_gravity_mode == PhysicsServer3D::AREA_SPACE_OVERRIDE_COMBINE_REPLACE; } break; case PhysicsServer3D::AREA_SPACE_OVERRIDE_REPLACE: case PhysicsServer3D::AREA_SPACE_OVERRIDE_REPLACE_COMBINE: { gravity = area_gravity; gravity_done = area_gravity_mode == PhysicsServer3D::AREA_SPACE_OVERRIDE_REPLACE; } break; default: { } } } } if (!linear_damp_done) { PhysicsServer3D::AreaSpaceOverrideMode area_linear_damp_mode = (PhysicsServer3D::AreaSpaceOverrideMode)(int)aa[i].area->get_param(PhysicsServer3D::AREA_PARAM_LINEAR_DAMP_OVERRIDE_MODE); if (area_linear_damp_mode != PhysicsServer3D::AREA_SPACE_OVERRIDE_DISABLED) { real_t area_linear_damp = aa[i].area->get_linear_damp(); switch (area_linear_damp_mode) { case PhysicsServer3D::AREA_SPACE_OVERRIDE_COMBINE: case PhysicsServer3D::AREA_SPACE_OVERRIDE_COMBINE_REPLACE: { total_linear_damp += area_linear_damp; linear_damp_done = area_linear_damp_mode == PhysicsServer3D::AREA_SPACE_OVERRIDE_COMBINE_REPLACE; } break; case PhysicsServer3D::AREA_SPACE_OVERRIDE_REPLACE: case PhysicsServer3D::AREA_SPACE_OVERRIDE_REPLACE_COMBINE: { total_linear_damp = area_linear_damp; linear_damp_done = area_linear_damp_mode == PhysicsServer3D::AREA_SPACE_OVERRIDE_REPLACE; } break; default: { } } } } if (!angular_damp_done) { PhysicsServer3D::AreaSpaceOverrideMode area_angular_damp_mode = (PhysicsServer3D::AreaSpaceOverrideMode)(int)aa[i].area->get_param(PhysicsServer3D::AREA_PARAM_ANGULAR_DAMP_OVERRIDE_MODE); if (area_angular_damp_mode != PhysicsServer3D::AREA_SPACE_OVERRIDE_DISABLED) { real_t area_angular_damp = aa[i].area->get_angular_damp(); switch (area_angular_damp_mode) { case PhysicsServer3D::AREA_SPACE_OVERRIDE_COMBINE: case PhysicsServer3D::AREA_SPACE_OVERRIDE_COMBINE_REPLACE: { total_angular_damp += area_angular_damp; angular_damp_done = area_angular_damp_mode == PhysicsServer3D::AREA_SPACE_OVERRIDE_COMBINE_REPLACE; } break; case PhysicsServer3D::AREA_SPACE_OVERRIDE_REPLACE: case PhysicsServer3D::AREA_SPACE_OVERRIDE_REPLACE_COMBINE: { total_angular_damp = area_angular_damp; angular_damp_done = area_angular_damp_mode == PhysicsServer3D::AREA_SPACE_OVERRIDE_REPLACE; } break; default: { } } } } stopped = gravity_done && linear_damp_done && angular_damp_done; } } // Add default gravity and damping from space area. if (!stopped) { GodotArea3D *default_area = get_space()->get_default_area(); ERR_FAIL_COND(!default_area); if (!gravity_done) { Vector3 default_gravity; default_area->compute_gravity(get_transform().get_origin(), default_gravity); gravity += default_gravity; } if (!linear_damp_done) { total_linear_damp += default_area->get_linear_damp(); } if (!angular_damp_done) { total_angular_damp += default_area->get_angular_damp(); } } // Override linear damping with body's value. switch (linear_damp_mode) { case PhysicsServer3D::BODY_DAMP_MODE_COMBINE: { total_linear_damp += linear_damp; } break; case PhysicsServer3D::BODY_DAMP_MODE_REPLACE: { total_linear_damp = linear_damp; } break; } // Override angular damping with body's value. switch (angular_damp_mode) { case PhysicsServer3D::BODY_DAMP_MODE_COMBINE: { total_angular_damp += angular_damp; } break; case PhysicsServer3D::BODY_DAMP_MODE_REPLACE: { total_angular_damp = angular_damp; } break; } gravity *= gravity_scale; Vector3 motion; bool do_motion = false; if (mode == PhysicsServer3D::BODY_MODE_KINEMATIC) { //compute motion, angular and etc. velocities from prev transform motion = new_transform.origin - get_transform().origin; do_motion = true; linear_velocity = constant_linear_velocity + motion / p_step; //compute a FAKE angular velocity, not so easy Basis rot = new_transform.basis.orthonormalized() * get_transform().basis.orthonormalized().transposed(); Vector3 axis; real_t angle; rot.get_axis_angle(axis, angle); axis.normalize(); angular_velocity = constant_angular_velocity + axis * (angle / p_step); } else { if (!omit_force_integration) { //overridden by direct state query Vector3 force = gravity * mass; force += applied_force; Vector3 torque = applied_torque; real_t damp = 1.0 - p_step * total_linear_damp; if (damp < 0) { // reached zero in the given time damp = 0; } real_t angular_damp = 1.0 - p_step * total_angular_damp; if (angular_damp < 0) { // reached zero in the given time angular_damp = 0; } linear_velocity *= damp; angular_velocity *= angular_damp; linear_velocity += _inv_mass * force * p_step; angular_velocity += _inv_inertia_tensor.xform(torque) * p_step; } if (continuous_cd) { motion = linear_velocity * p_step; do_motion = true; } } applied_force = Vector3(); applied_torque = Vector3(); biased_angular_velocity = Vector3(); biased_linear_velocity = Vector3(); if (do_motion) { //shapes temporarily extend for raycast _update_shapes_with_motion(motion); } contact_count = 0; } void GodotBody3D::integrate_velocities(real_t p_step) { if (mode == PhysicsServer3D::BODY_MODE_STATIC) { return; } if (fi_callback_data || body_state_callback) { get_space()->body_add_to_state_query_list(&direct_state_query_list); } //apply axis lock linear for (int i = 0; i < 3; i++) { if (is_axis_locked((PhysicsServer3D::BodyAxis)(1 << i))) { linear_velocity[i] = 0; biased_linear_velocity[i] = 0; new_transform.origin[i] = get_transform().origin[i]; } } //apply axis lock angular for (int i = 0; i < 3; i++) { if (is_axis_locked((PhysicsServer3D::BodyAxis)(1 << (i + 3)))) { angular_velocity[i] = 0; biased_angular_velocity[i] = 0; } } if (mode == PhysicsServer3D::BODY_MODE_KINEMATIC) { _set_transform(new_transform, false); _set_inv_transform(new_transform.affine_inverse()); if (contacts.size() == 0 && linear_velocity == Vector3() && angular_velocity == Vector3()) { set_active(false); //stopped moving, deactivate } return; } Vector3 total_angular_velocity = angular_velocity + biased_angular_velocity; real_t ang_vel = total_angular_velocity.length(); Transform3D transform = get_transform(); if (!Math::is_zero_approx(ang_vel)) { Vector3 ang_vel_axis = total_angular_velocity / ang_vel; Basis rot(ang_vel_axis, ang_vel * p_step); Basis identity3(1, 0, 0, 0, 1, 0, 0, 0, 1); transform.origin += ((identity3 - rot) * transform.basis).xform(center_of_mass_local); transform.basis = rot * transform.basis; transform.orthonormalize(); } Vector3 total_linear_velocity = linear_velocity + biased_linear_velocity; /*for(int i=0;i<3;i++) { if (axis_lock&(1< &E : constraint_map) { const GodotConstraint3D *c = E.key; GodotBody3D **n = c->get_body_ptr(); int bc = c->get_body_count(); for (int i = 0; i < bc; i++) { if (i == E.value) { continue; } GodotBody3D *b = n[i]; if (b->mode < PhysicsServer3D::BODY_MODE_DYNAMIC) { continue; } if (!b->is_active()) { b->set_active(true); } } } } void GodotBody3D::call_queries() { if (fi_callback_data) { if (!fi_callback_data->callable.get_object()) { set_force_integration_callback(Callable()); } else { Variant direct_state_variant = get_direct_state(); const Variant *vp[2] = { &direct_state_variant, &fi_callback_data->udata }; Callable::CallError ce; int argc = (fi_callback_data->udata.get_type() == Variant::NIL) ? 1 : 2; Variant rv; fi_callback_data->callable.call(vp, argc, rv, ce); } } if (body_state_callback_instance) { (body_state_callback)(body_state_callback_instance, get_direct_state()); } } bool GodotBody3D::sleep_test(real_t p_step) { if (mode == PhysicsServer3D::BODY_MODE_STATIC || mode == PhysicsServer3D::BODY_MODE_KINEMATIC) { return true; } else if (!can_sleep) { return false; } if (Math::abs(angular_velocity.length()) < get_space()->get_body_angular_velocity_sleep_threshold() && Math::abs(linear_velocity.length_squared()) < get_space()->get_body_linear_velocity_sleep_threshold() * get_space()->get_body_linear_velocity_sleep_threshold()) { still_time += p_step; return still_time > get_space()->get_body_time_to_sleep(); } else { still_time = 0; //maybe this should be set to 0 on set_active? return false; } } void GodotBody3D::set_state_sync_callback(void *p_instance, PhysicsServer3D::BodyStateCallback p_callback) { body_state_callback_instance = p_instance; body_state_callback = p_callback; } void GodotBody3D::set_force_integration_callback(const Callable &p_callable, const Variant &p_udata) { if (p_callable.get_object()) { if (!fi_callback_data) { fi_callback_data = memnew(ForceIntegrationCallbackData); } fi_callback_data->callable = p_callable; fi_callback_data->udata = p_udata; } else if (fi_callback_data) { memdelete(fi_callback_data); fi_callback_data = nullptr; } } GodotPhysicsDirectBodyState3D *GodotBody3D::get_direct_state() { if (!direct_state) { direct_state = memnew(GodotPhysicsDirectBodyState3D); direct_state->body = this; } return direct_state; } GodotBody3D::GodotBody3D() : GodotCollisionObject3D(TYPE_BODY), active_list(this), mass_properties_update_list(this), direct_state_query_list(this) { _set_static(false); } GodotBody3D::~GodotBody3D() { if (fi_callback_data) { memdelete(fi_callback_data); } if (direct_state) { memdelete(direct_state); } }