/******************************************************************************* * Copyright 2018 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ #include "c_types_map.hpp" #include "memory_tracking.hpp" #include "mkldnn_thread.hpp" #include "jit_uni_dw_convolution.hpp" namespace mkldnn { namespace impl { namespace cpu { using namespace mkldnn::impl::status; using namespace mkldnn::impl::memory_tracking::names; using namespace mkldnn::impl::utils; template void _jit_uni_dw_convolution_fwd_t::execute_forward( const exec_ctx_t &ctx) const { auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC); auto weights = CTX_IN_MEM(const data_t *, MKLDNN_ARG_WEIGHTS); auto bias = CTX_IN_MEM(const data_t *, MKLDNN_ARG_BIAS); auto dst = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DST); const memory_desc_wrapper src_d(pd()->src_md()); const memory_desc_wrapper dst_d(pd()->dst_md()); const memory_desc_wrapper weights_d(pd()->weights_md(0)); const memory_desc_wrapper bias_d(pd()->weights_md(1)); const auto &jcp = kernel_->jcp; if (pd()->wants_padded_bias()) { auto padded_bias = this->scratchpad(ctx).template get( key_conv_padded_bias); utils::array_copy(padded_bias, bias, jcp.oc_without_padding); utils::array_set(padded_bias + jcp.oc_without_padding, 0.f, jcp.oc - jcp.oc_without_padding); bias = padded_bias; } int dil_h = jcp.dilate_h + 1; int dil_w = jcp.dilate_w + 1; int str_h = jcp.stride_h; int str_w = jcp.stride_w; auto kernel_params = [&](int ur_w_step, int ow, int oh, int ih, int kh, int kh_padding, int ch, int ch_num, int n) { auto par_conv = jit_conv_call_s(); const int i_l_overflow = nstl::max(0, (jcp.l_pad - ow * str_w)); const int i_r_overflow = nstl::max(jcp.iw, (ow * str_w + (jcp.kw - 1)*dil_w - jcp.l_pad + 1)) - jcp.iw; const int iw = nstl::max((ow*str_w - jcp.l_pad + div_up(i_l_overflow, dil_w)*dil_w), 0); const int kw = div_up(i_l_overflow, dil_w); const int kw_padding = jcp.kw - div_up(i_l_overflow, dil_w) - div_up(i_r_overflow, dil_w); par_conv.src = &src[src_d.blk_off(n, ch, ih, iw)]; par_conv.dst = &dst[dst_d.blk_off(n, ch, oh, ow)]; par_conv.filt = &weights[weights_d.blk_off(ch, 0, 0, kh, kw)]; if (bias) par_conv.bias = &bias[bias_d.blk_off(ch*jcp.ch_block)]; par_conv.kh_padding = (size_t)nstl::max(0, kh_padding); par_conv.kw_padding = (size_t)nstl::max(0, kw_padding); par_conv.ur_w = (size_t)ur_w_step; par_conv.ch_blocks = nstl::min(ch + ch_num, jcp.nb_ch) - ch; return par_conv; }; const int chb_work = utils::div_up(jcp.nb_ch, jcp.nb_ch_blocking); parallel_nd(jcp.mb, chb_work, jcp.oh, [&](int n, int chb, int oh) { int ch = chb * jcp.nb_ch_blocking; int ch_num = jcp.nb_ch_blocking; const int i_t_overflow = nstl::max(0, (int)(jcp.t_pad - oh*str_h)); const int i_b_overflow = nstl::max(jcp.ih, (int)(oh*str_h + (jcp.kh - 1)*dil_h - jcp.t_pad + 1)) - jcp.ih; const int ih = nstl::max((int)(oh*str_h - jcp.t_pad + div_up(i_t_overflow, dil_h)*dil_h), 0); const int kh = div_up(i_t_overflow, dil_h); const int kh_padding = jcp.kh - div_up(i_t_overflow, dil_h) - div_up(i_b_overflow, dil_h); // left border int ow = 0; int l_border = nstl::min(div_up(jcp.l_pad, str_w), jcp.ow); int ur_w_step = 1; for (; ow < l_border; ow++) { jit_conv_call_s par_conv = kernel_params(ur_w_step, ow, oh, ih, kh, kh_padding, ch, ch_num, n); kernel_->jit_ker(&par_conv); } // main loop ur_w_step = (jcp.iw - (jcp.kw - 1)*dil_w + jcp.l_pad - 1) / jcp.stride_w - ow + 1; if (ur_w_step > 0) { jit_conv_call_s par_conv = kernel_params(ur_w_step, ow, oh, ih, kh, kh_padding, ch, ch_num, n); kernel_->jit_ker(&par_conv); ow += ur_w_step; } // right border ur_w_step = 1; for (; ow < jcp.ow; ow++) { jit_conv_call_s par_conv = kernel_params(ur_w_step, ow, oh, ih, kh, kh_padding, ch, ch_num, n); kernel_->jit_ker(&par_conv); } }); if (pd()->wants_zero_pad_dst()) ctx.memory(MKLDNN_ARG_DST)->zero_pad(); } template struct _jit_uni_dw_convolution_fwd_t; template struct _jit_uni_dw_convolution_fwd_t; template struct _jit_uni_dw_convolution_fwd_t; template void _jit_uni_dw_convolution_bwd_data_t::execute_backward_data( const exec_ctx_t &ctx) const { auto diff_dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DIFF_DST); auto weights = CTX_IN_MEM(const data_t *, MKLDNN_ARG_WEIGHTS); auto diff_src = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_SRC); const memory_desc_wrapper diff_dst_d(pd()->diff_dst_md()); const memory_desc_wrapper diff_src_d(pd()->diff_src_md()); const memory_desc_wrapper weights_d(pd()->weights_md(0)); const auto &jcp = kernel_->jcp; auto kernel_params = [&](int ur_str_w, int iw, int oh, int ih, int i_t_overflow, int i_b_overflow, int stride_off_h, int ch, int ch_num, int n) { auto par_conv = jit_conv_call_s(); const int i_l_overflow = nstl::max(0, (jcp.kw - 1 - iw - jcp.l_pad)); const int i_r_overflow = nstl::max(0, (jcp.kw - 1 - (jcp.iw - 1 - iw) - jcp.r_pad)); int ow = iw + jcp.l_pad - i_r_overflow; int stride_off_w = ow % jcp.stride_w; ow /= jcp.stride_w; par_conv.src = &diff_src[diff_src_d.blk_off(n, ch, ih, iw)]; par_conv.dst = &diff_dst[diff_dst_d.blk_off(n, ch, oh, ow)]; par_conv.filt = &weights[weights_d.blk_off(ch, 0, 0, i_b_overflow + stride_off_h, i_r_overflow + stride_off_w)]; par_conv.kh_padding = nstl::max(0, jcp.kh - i_t_overflow - i_b_overflow - stride_off_h); par_conv.kw_padding = nstl::max(0, jcp.kw - i_l_overflow - i_r_overflow - stride_off_w); par_conv.ur_str_w = ur_str_w; par_conv.ch_blocks = nstl::min(ch + ch_num, jcp.nb_ch) - ch; return par_conv; }; const int chb_work = utils::div_up(jcp.nb_ch, jcp.nb_ch_blocking); parallel_nd(jcp.mb, chb_work, jcp.ih, [&](int n, int chb, int ih) { int ch = chb * jcp.nb_ch_blocking; int ch_num = jcp.nb_ch_blocking; const int i_t_overflow = nstl::max(0, (int)(jcp.kh - 1 - ih - jcp.t_pad)); const int i_b_overflow = nstl::max(0, (int)(jcp.kh - 1 - (jcp.ih - 1 - ih) - jcp.b_pad)); int oh = ih + jcp.t_pad - i_b_overflow; int stride_off_h = oh % jcp.stride_h; oh /= jcp.stride_h; for (int i_str_w = 0; i_str_w < jcp.stride_w; i_str_w++) { // left border int iw = i_str_w; int l_border = nstl::min(jcp.kw - 1 - jcp.l_pad, jcp.iw); int ur_str_w = 1; for (; iw < l_border; iw += jcp.stride_w) { jit_conv_call_s par_conv = kernel_params(ur_str_w, iw, oh, ih, i_t_overflow, i_b_overflow, stride_off_h, ch, ch_num, n); kernel_->jit_ker(&par_conv); } // main loop ur_str_w = nstl::min((jcp.iw - jcp.kw + jcp.r_pad - iw) / jcp.stride_w, jcp.iw); if (ur_str_w > 0) { jit_conv_call_s par_conv = kernel_params(ur_str_w, iw, oh, ih, i_t_overflow, i_b_overflow, stride_off_h, ch, ch_num, n); kernel_->jit_ker(&par_conv); iw += ur_str_w * jcp.stride_w; } // right border ur_str_w = 1; for (; iw < jcp.iw; iw += jcp.stride_w) { jit_conv_call_s par_conv = kernel_params(ur_str_w, iw, oh, ih, i_t_overflow, i_b_overflow, stride_off_h, ch, ch_num, n); kernel_->jit_ker(&par_conv); } } }); } template struct _jit_uni_dw_convolution_bwd_data_t; template struct _jit_uni_dw_convolution_bwd_data_t; template struct _jit_uni_dw_convolution_bwd_data_t; template _jit_uni_dw_convolution_bwd_weights_t:: _jit_uni_dw_convolution_bwd_weights_t(const pd_t *apd) : cpu_primitive_t(apd) , kernel_(nullptr), acc_ker_(nullptr) { kernel_ = new jit_uni_dw_conv_bwd_weights_kernel_f32(pd()->jcp_); if (pd()->jcp_.nthr_mb > 1 && do_parallel_reduction()) acc_ker_ = new cpu_accumulator_1d_t(); } template void _jit_uni_dw_convolution_bwd_weights_t::execute_backward_weights( const exec_ctx_t &ctx) const { auto diff_dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DIFF_DST); auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC); auto diff_weights = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_WEIGHTS); auto diff_bias = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_BIAS); auto diff_wei_reduction_buf = scratchpad(ctx).template get(key_conv_wei_reduction); auto diff_bia_reduction_buf = scratchpad(ctx).template get(key_conv_bia_reduction); const auto &jcp = kernel_->jcp; /* Used when executing a parallel reduction */ simple_barrier::ctx_t reduction_bctx; simple_barrier::ctx_init(&reduction_bctx); const size_t wei_size = jcp.ngroups * jcp.kh * jcp.kw; const size_t bias_size = jcp.with_bias ? jcp.ngroups : 0; const int ch_block = jcp.ch_block; auto set_kernel_params = [&](jit_dw_conv_call_s *conv_params, const int batch, const int group, const int oh_start, const int work_size, const unsigned char exec_flag, const size_t kh_padding, const size_t filter_off) { const int tpad_underflow_off = jcp.t_pad - filter_off; conv_params->exec_flags = exec_flag; conv_params->kh_count = jcp.kh - kh_padding; const int oh_s = oh_start; const int oh_e = oh_start + work_size; const int ih_s = oh_s * jcp.stride_h; conv_params->filter_pad_off = filter_off * jcp.kw * ch_block * sizeof(float); conv_params->oh_index = oh_s; conv_params->oh_count = oh_e; size_t diff_dst_off = ((batch * (jcp.ngroups / ch_block) + group) * jcp.oh + oh_start) * jcp.ow; size_t src_off = ((batch * (jcp.ngroups / ch_block) + group) * jcp.ih + ih_s - tpad_underflow_off) * jcp.iw; conv_params->output = &diff_dst[diff_dst_off * ch_block]; conv_params->input = &src[src_off * ch_block]; }; parallel(jcp.nthr, [&](const int ithr, const int nthr) { assert(nthr == jcp.nthr); auto conv_params = jit_dw_conv_call_s(); const int h_block_size = 15; /* assign iteration space to thread */ const int ithr_g = ithr % jcp.nthr_g; const int ithr_mb = (ithr / jcp.nthr_g) % jcp.nthr_mb; /* split dimensions */ int g_start{ 0 }, g_end{ 0 }; balance211(jcp.nb_ch, jcp.nthr_g, ithr_g, g_start, g_end); int mb_start{ 0 }, mb_end{ 0 }; balance211(jcp.mb, jcp.nthr_mb, ithr_mb, mb_start, mb_end); auto diff_wei = ithr_mb == 0 ? diff_weights : diff_wei_reduction_buf + (ithr_mb - 1) * wei_size; auto diff_bia = ithr_mb == 0 ? diff_bias : diff_bia_reduction_buf + (ithr_mb - 1) * bias_size; for (int g = g_start; g < g_end; ++g) { unsigned char zero_filter_flag = FLAG_ZERO_FILTER; unsigned char zero_bias_flag = jcp.with_bias ? FLAG_ZERO_BIAS : 0; size_t diff_wei_off = g * jcp.kh * jcp.kw; conv_params.filter = &diff_wei[diff_wei_off * ch_block]; if (jcp.with_bias) conv_params.bias = &diff_bia[g * ch_block]; for (int mb = mb_start; mb < mb_end; ++mb) { int oh = 0; while (oh < jcp.oh) { const int h_work = nstl::min(h_block_size, jcp.oh - oh); auto kh_t_padding = nstl::max(0, jcp.t_pad - oh); auto kh_b_padding = (oh * jcp.stride_h + jcp.kh - 1 > jcp.ih) ? jcp.b_pad - (h_work - 1) : 0; set_kernel_params(&conv_params, mb, g, oh, h_work, zero_filter_flag | zero_bias_flag, kh_t_padding + kh_b_padding, kh_t_padding); kernel_->jit_ker(&conv_params); zero_bias_flag &= ~FLAG_ZERO_BIAS; zero_filter_flag &= ~FLAG_ZERO_FILTER; oh += h_work; } } } if (do_parallel_reduction() && jcp.nthr_mb > 1) { size_t reduct_start{ 0 }, reduct_end{ 0 }; balance211(wei_size, nthr, ithr, reduct_start, reduct_end); const int acc_size = reduct_end - reduct_start; const size_t reduct_off = reduct_start; auto *acc_data = diff_weights + reduct_off; simple_barrier::barrier(&reduction_bctx, nthr); for (int thr_mb = 1; thr_mb < jcp.nthr_mb; ++thr_mb) { auto *src_data = diff_wei_reduction_buf + (thr_mb - 1) * wei_size + reduct_off; acc_ker_->accumulate(acc_data, src_data, acc_size); } } }); if (jcp.nthr_mb <= 1) return; /* Apply single-threaded 'mb' reduction */ for (int thr_mb = 1; thr_mb < jcp.nthr_mb; ++thr_mb) { size_t mb_accum_offset = (thr_mb - 1) * wei_size; size_t b_accum_offset = (thr_mb - 1) * bias_size; for (int g = 0; g < jcp.nb_ch; ++g) { /* Reduction on Bias */ if (jcp.with_bias) { PRAGMA_OMP_SIMD() for (int g_block = 0; g_block < ch_block; ++g_block) { size_t bias_offset = g * ch_block + g_block; diff_bias[bias_offset] += diff_bia_reduction_buf[ b_accum_offset + bias_offset]; } } if (do_parallel_reduction()) continue; for (int kh = 0; kh < jcp.kh; ++kh) for (int kw = 0; kw < jcp.kw; ++kw) { size_t wei_offset = (g * jcp.kh + kh) * jcp.kw + kw; PRAGMA_OMP_SIMD() for (int g_block = 0; g_block < ch_block; ++g_block) { const size_t off = wei_offset * ch_block + g_block; diff_weights[off] += diff_wei_reduction_buf[mb_accum_offset + off]; } } } } } template struct _jit_uni_dw_convolution_bwd_weights_t; template struct _jit_uni_dw_convolution_bwd_weights_t; template struct _jit_uni_dw_convolution_bwd_weights_t; } } }