/******************************************************************************* * Copyright 2018 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ #ifndef CPU_JIT_UNI_DW_CONVOLUTION_HPP #define CPU_JIT_UNI_DW_CONVOLUTION_HPP #include "c_types_map.hpp" #include "memory_tracking.hpp" #include "cpu_barrier.hpp" #include "cpu_convolution_pd.hpp" #include "cpu_primitive.hpp" #include "cpu_reducer.hpp" #include "jit_uni_dw_conv_kernel_f32.hpp" namespace mkldnn { namespace impl { namespace cpu { template struct _jit_uni_dw_convolution_fwd_t: public cpu_primitive_t { struct pd_t: public cpu_convolution_fwd_pd_t { pd_t(engine_t *engine, const convolution_desc_t *adesc, const primitive_attr_t *attr, const typename pd_t::base_class *hint_fwd_pd) : cpu_convolution_fwd_pd_t(engine, adesc, attr, hint_fwd_pd) , jcp_() {} DECLARE_COMMON_PD_T( JIT_IMPL_NAME_HELPER("jit_dw:", isa, ""), _jit_uni_dw_convolution_fwd_t); status_t init() { bool ok = true && is_fwd() && set_default_alg_kind(alg_kind::convolution_direct) && expect_data_types(data_type::f32, data_type::f32, data_type::f32, data_type::f32, data_type::f32) && !has_zero_dim_memory() && set_default_formats(); if (!ok) return status::unimplemented; status_t status = jit_uni_dw_conv_fwd_kernel_f32::init_conf( jcp_, *desc(), src_md(), *weights_md(), *dst_md(), *attr()); if (status != status::success) return status; auto scratchpad = scratchpad_registry().registrar(); jit_uni_dw_conv_fwd_kernel_f32::init_scratchpad(scratchpad, jcp_); return status::success; } jit_conv_conf_t jcp_; protected: bool set_default_formats() { using namespace format_tag; auto dat_tag = isa == avx512_common ? nChw16c : nChw8c; auto wei_tag = isa == avx512_common ? Goihw16g : Goihw8g; return set_default_formats_common(dat_tag, wei_tag, dat_tag); } }; _jit_uni_dw_convolution_fwd_t(const pd_t *apd): cpu_primitive_t(apd) { kernel_ = new jit_uni_dw_conv_fwd_kernel_f32(pd()->jcp_); } ~_jit_uni_dw_convolution_fwd_t() { delete kernel_; } typedef typename prec_traits::type data_t; virtual status_t execute(const exec_ctx_t &ctx) const override { execute_forward(ctx); return status::success; } private: void execute_forward(const exec_ctx_t &ctx) const; const pd_t *pd() const { return (const pd_t *)primitive_t::pd(); } jit_uni_dw_conv_fwd_kernel_f32 *kernel_; }; using jit_avx512_common_dw_convolution_fwd_t = _jit_uni_dw_convolution_fwd_t; using jit_avx2_dw_convolution_fwd_t = _jit_uni_dw_convolution_fwd_t; using jit_sse42_dw_convolution_fwd_t = _jit_uni_dw_convolution_fwd_t; template struct _jit_uni_dw_convolution_bwd_data_t: public cpu_primitive_t { struct pd_t: public cpu_convolution_bwd_data_pd_t { pd_t(engine_t *engine, const convolution_desc_t *adesc, const primitive_attr_t *attr, const convolution_fwd_pd_t *hint_fwd_pd) : cpu_convolution_bwd_data_pd_t(engine, adesc, attr, hint_fwd_pd) , jcp_() {} DECLARE_COMMON_PD_T( JIT_IMPL_NAME_HELPER("jit_dw:", isa, ""), _jit_uni_dw_convolution_bwd_data_t); status_t init() { bool ok = true && desc()->prop_kind == prop_kind::backward_data && set_default_alg_kind(alg_kind::convolution_direct) && expect_data_types(data_type::f32, data_type::f32, data_type::undef, data_type::f32, data_type::f32) && !has_zero_dim_memory() && set_default_formats(); if (!ok) return status::unimplemented; status_t status = jit_uni_dw_conv_bwd_data_kernel_f32:: init_conf(jcp_, *desc(), *diff_src_md(), *weights_md(), *diff_dst_md()); if (status != status::success) return status; auto scratchpad = scratchpad_registry().registrar(); jit_uni_dw_conv_bwd_data_kernel_f32::init_scratchpad( scratchpad, jcp_); return status::success; } jit_conv_conf_t jcp_; protected: bool set_default_formats() { using namespace format_tag; auto dat_tag = isa == avx512_common ? nChw16c : nChw8c; auto wei_tag = isa == avx512_common ? Goihw16g : Goihw8g; return set_default_formats_common(dat_tag, wei_tag, dat_tag); } }; _jit_uni_dw_convolution_bwd_data_t(const pd_t *apd): cpu_primitive_t(apd) { kernel_ = new jit_uni_dw_conv_bwd_data_kernel_f32(pd()->jcp_); } ~_jit_uni_dw_convolution_bwd_data_t() { delete kernel_; }; typedef typename prec_traits::type data_t; virtual status_t execute(const exec_ctx_t &ctx) const override { execute_backward_data(ctx); return status::success; } private: void execute_backward_data(const exec_ctx_t &ctx) const; const pd_t *pd() const { return (const pd_t *)primitive_t::pd(); } jit_uni_dw_conv_bwd_data_kernel_f32 *kernel_; }; using jit_avx512_common_dw_convolution_bwd_data_t = _jit_uni_dw_convolution_bwd_data_t; using jit_avx2_dw_convolution_bwd_data_t = _jit_uni_dw_convolution_bwd_data_t; using jit_sse42_dw_convolution_bwd_data_t = _jit_uni_dw_convolution_bwd_data_t; template struct _jit_uni_dw_convolution_bwd_weights_t: public cpu_primitive_t { struct pd_t: public cpu_convolution_bwd_weights_pd_t { pd_t(engine_t *engine, const convolution_desc_t *adesc, const primitive_attr_t *attr, const convolution_fwd_pd_t *hint_fwd_pd) : cpu_convolution_bwd_weights_pd_t(engine, adesc, attr, hint_fwd_pd) , jcp_() {} DECLARE_COMMON_PD_T( JIT_IMPL_NAME_HELPER("jit_dw:", isa, ""), _jit_uni_dw_convolution_bwd_weights_t); status_t init() { bool ok = true && desc()->prop_kind == prop_kind::backward_weights && set_default_alg_kind(alg_kind::convolution_direct) && expect_data_types(data_type::f32, data_type::f32, data_type::f32, data_type::f32, data_type::f32) && !has_zero_dim_memory() && set_default_formats(); if (!ok) return status::unimplemented; const int max_threads = mkldnn_in_parallel() ? 1 : mkldnn_get_max_threads(); status_t status = jit_uni_dw_conv_bwd_weights_kernel_f32:: init_conf(jcp_, *desc(), *src_md(), *diff_weights_md(), *diff_dst_md(), max_threads); if (status != status::success) return status; auto scratchpad = scratchpad_registry().registrar(); jit_uni_dw_conv_bwd_weights_kernel_f32::init_scratchpad( scratchpad, jcp_); return status::success; } jit_conv_conf_t jcp_; protected: bool set_default_formats() { using namespace format_tag; auto dat_tag = isa == avx512_common ? nChw16c : nChw8c; auto wei_tag = isa == avx512_common ? Goihw16g : Goihw8g; return set_default_formats_common(dat_tag, wei_tag, dat_tag); } }; _jit_uni_dw_convolution_bwd_weights_t(const pd_t *apd); ~_jit_uni_dw_convolution_bwd_weights_t() { delete kernel_; delete acc_ker_; }; typedef typename prec_traits::type data_t; virtual status_t execute(const exec_ctx_t &ctx) const override { execute_backward_weights(ctx); return status::success; } private: void execute_backward_weights(const exec_ctx_t &ctx) const; bool do_parallel_reduction() const { return false; } const pd_t *pd() const { return (const pd_t *)primitive_t::pd(); } jit_uni_dw_conv_bwd_weights_kernel_f32 *kernel_; cpu_accumulator_1d_t *acc_ker_; }; using jit_avx512_common_dw_convolution_bwd_weights_t = _jit_uni_dw_convolution_bwd_weights_t; using jit_avx2_dw_convolution_bwd_weights_t = _jit_uni_dw_convolution_bwd_weights_t; using jit_sse42_dw_convolution_bwd_weights_t = _jit_uni_dw_convolution_bwd_weights_t; } } } #endif