/*************************************************************************/ /* visual_server_scene.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "visual_server_scene.h" #include "core/os/os.h" #include "visual_server_globals.h" #include "visual_server_raster.h" #include /* CAMERA API */ RID VisualServerScene::camera_create() { Camera *camera = memnew(Camera); return camera_owner.make_rid(camera); } void VisualServerScene::camera_set_perspective(RID p_camera, float p_fovy_degrees, float p_z_near, float p_z_far) { Camera *camera = camera_owner.get(p_camera); ERR_FAIL_COND(!camera); camera->type = Camera::PERSPECTIVE; camera->fov = p_fovy_degrees; camera->znear = p_z_near; camera->zfar = p_z_far; } void VisualServerScene::camera_set_orthogonal(RID p_camera, float p_size, float p_z_near, float p_z_far) { Camera *camera = camera_owner.get(p_camera); ERR_FAIL_COND(!camera); camera->type = Camera::ORTHOGONAL; camera->size = p_size; camera->znear = p_z_near; camera->zfar = p_z_far; } void VisualServerScene::camera_set_frustum(RID p_camera, float p_size, Vector2 p_offset, float p_z_near, float p_z_far) { Camera *camera = camera_owner.get(p_camera); ERR_FAIL_COND(!camera); camera->type = Camera::FRUSTUM; camera->size = p_size; camera->offset = p_offset; camera->znear = p_z_near; camera->zfar = p_z_far; } void VisualServerScene::camera_set_transform(RID p_camera, const Transform &p_transform) { Camera *camera = camera_owner.get(p_camera); ERR_FAIL_COND(!camera); camera->transform = p_transform.orthonormalized(); } void VisualServerScene::camera_set_cull_mask(RID p_camera, uint32_t p_layers) { Camera *camera = camera_owner.get(p_camera); ERR_FAIL_COND(!camera); camera->visible_layers = p_layers; } void VisualServerScene::camera_set_environment(RID p_camera, RID p_env) { Camera *camera = camera_owner.get(p_camera); ERR_FAIL_COND(!camera); camera->env = p_env; } void VisualServerScene::camera_set_use_vertical_aspect(RID p_camera, bool p_enable) { Camera *camera = camera_owner.get(p_camera); ERR_FAIL_COND(!camera); camera->vaspect = p_enable; } /* SPATIAL PARTITIONING */ VisualServerScene::SpatialPartitionID VisualServerScene::SpatialPartitioningScene_BVH::create(Instance *p_userdata, const AABB &p_aabb, int p_subindex, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask) { #if defined(DEBUG_ENABLED) && defined(TOOLS_ENABLED) // we are relying on this instance to be valid in order to pass // the visible flag to the bvh. CRASH_COND(!p_userdata); #endif return _bvh.create(p_userdata, p_userdata->visible, p_aabb, p_subindex, p_pairable, p_pairable_type, p_pairable_mask) + 1; } void VisualServerScene::SpatialPartitioningScene_BVH::erase(SpatialPartitionID p_handle) { _bvh.erase(p_handle - 1); } void VisualServerScene::SpatialPartitioningScene_BVH::move(SpatialPartitionID p_handle, const AABB &p_aabb) { _bvh.move(p_handle - 1, p_aabb); } void VisualServerScene::SpatialPartitioningScene_BVH::activate(SpatialPartitionID p_handle, const AABB &p_aabb) { // be very careful here, we are deferring the collision check, expecting a set_pairable to be called // immediately after. // see the notes in the BVH function. _bvh.activate(p_handle - 1, p_aabb, true); } void VisualServerScene::SpatialPartitioningScene_BVH::deactivate(SpatialPartitionID p_handle) { _bvh.deactivate(p_handle - 1); } void VisualServerScene::SpatialPartitioningScene_BVH::force_collision_check(SpatialPartitionID p_handle) { _bvh.force_collision_check(p_handle - 1); } void VisualServerScene::SpatialPartitioningScene_BVH::update() { _bvh.update(); } void VisualServerScene::SpatialPartitioningScene_BVH::update_collisions() { _bvh.update_collisions(); } void VisualServerScene::SpatialPartitioningScene_BVH::set_pairable(SpatialPartitionID p_handle, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask) { _bvh.set_pairable(p_handle - 1, p_pairable, p_pairable_type, p_pairable_mask); } int VisualServerScene::SpatialPartitioningScene_BVH::cull_convex(const Vector &p_convex, Instance **p_result_array, int p_result_max, uint32_t p_mask) { return _bvh.cull_convex(p_convex, p_result_array, p_result_max, p_mask); } int VisualServerScene::SpatialPartitioningScene_BVH::cull_aabb(const AABB &p_aabb, Instance **p_result_array, int p_result_max, int *p_subindex_array, uint32_t p_mask) { return _bvh.cull_aabb(p_aabb, p_result_array, p_result_max, p_subindex_array, p_mask); } int VisualServerScene::SpatialPartitioningScene_BVH::cull_segment(const Vector3 &p_from, const Vector3 &p_to, Instance **p_result_array, int p_result_max, int *p_subindex_array, uint32_t p_mask) { return _bvh.cull_segment(p_from, p_to, p_result_array, p_result_max, p_subindex_array, p_mask); } void VisualServerScene::SpatialPartitioningScene_BVH::set_pair_callback(PairCallback p_callback, void *p_userdata) { _bvh.set_pair_callback(p_callback, p_userdata); } void VisualServerScene::SpatialPartitioningScene_BVH::set_unpair_callback(UnpairCallback p_callback, void *p_userdata) { _bvh.set_unpair_callback(p_callback, p_userdata); } /////////////////////// VisualServerScene::SpatialPartitionID VisualServerScene::SpatialPartitioningScene_Octree::create(Instance *p_userdata, const AABB &p_aabb, int p_subindex, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask) { return _octree.create(p_userdata, p_aabb, p_subindex, p_pairable, p_pairable_type, p_pairable_mask); } void VisualServerScene::SpatialPartitioningScene_Octree::erase(SpatialPartitionID p_handle) { _octree.erase(p_handle); } void VisualServerScene::SpatialPartitioningScene_Octree::move(SpatialPartitionID p_handle, const AABB &p_aabb) { _octree.move(p_handle, p_aabb); } void VisualServerScene::SpatialPartitioningScene_Octree::set_pairable(SpatialPartitionID p_handle, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask) { _octree.set_pairable(p_handle, p_pairable, p_pairable_type, p_pairable_mask); } int VisualServerScene::SpatialPartitioningScene_Octree::cull_convex(const Vector &p_convex, Instance **p_result_array, int p_result_max, uint32_t p_mask) { return _octree.cull_convex(p_convex, p_result_array, p_result_max, p_mask); } int VisualServerScene::SpatialPartitioningScene_Octree::cull_aabb(const AABB &p_aabb, Instance **p_result_array, int p_result_max, int *p_subindex_array, uint32_t p_mask) { return _octree.cull_aabb(p_aabb, p_result_array, p_result_max, p_subindex_array, p_mask); } int VisualServerScene::SpatialPartitioningScene_Octree::cull_segment(const Vector3 &p_from, const Vector3 &p_to, Instance **p_result_array, int p_result_max, int *p_subindex_array, uint32_t p_mask) { return _octree.cull_segment(p_from, p_to, p_result_array, p_result_max, p_subindex_array, p_mask); } void VisualServerScene::SpatialPartitioningScene_Octree::set_pair_callback(PairCallback p_callback, void *p_userdata) { _octree.set_pair_callback(p_callback, p_userdata); } void VisualServerScene::SpatialPartitioningScene_Octree::set_unpair_callback(UnpairCallback p_callback, void *p_userdata) { _octree.set_unpair_callback(p_callback, p_userdata); } void VisualServerScene::SpatialPartitioningScene_Octree::set_balance(float p_balance) { _octree.set_balance(p_balance); } /* SCENARIO API */ VisualServerScene::Scenario::Scenario() { debug = VS::SCENARIO_DEBUG_DISABLED; bool use_bvh_or_octree = GLOBAL_GET("rendering/quality/spatial_partitioning/use_bvh"); if (use_bvh_or_octree) { sps = memnew(SpatialPartitioningScene_BVH); } else { sps = memnew(SpatialPartitioningScene_Octree); } } void *VisualServerScene::_instance_pair(void *p_self, SpatialPartitionID, Instance *p_A, int, SpatialPartitionID, Instance *p_B, int) { //VisualServerScene *self = (VisualServerScene*)p_self; Instance *A = p_A; Instance *B = p_B; //instance indices are designed so greater always contains lesser if (A->base_type > B->base_type) { SWAP(A, B); //lesser always first } if (B->base_type == VS::INSTANCE_LIGHT && ((1 << A->base_type) & VS::INSTANCE_GEOMETRY_MASK)) { InstanceLightData *light = static_cast(B->base_data); InstanceGeometryData *geom = static_cast(A->base_data); InstanceLightData::PairInfo pinfo; pinfo.geometry = A; pinfo.L = geom->lighting.push_back(B); List::Element *E = light->geometries.push_back(pinfo); if (geom->can_cast_shadows) { light->shadow_dirty = true; } geom->lighting_dirty = true; return E; //this element should make freeing faster } else if (B->base_type == VS::INSTANCE_REFLECTION_PROBE && ((1 << A->base_type) & VS::INSTANCE_GEOMETRY_MASK)) { InstanceReflectionProbeData *reflection_probe = static_cast(B->base_data); InstanceGeometryData *geom = static_cast(A->base_data); InstanceReflectionProbeData::PairInfo pinfo; pinfo.geometry = A; pinfo.L = geom->reflection_probes.push_back(B); List::Element *E = reflection_probe->geometries.push_back(pinfo); geom->reflection_dirty = true; return E; //this element should make freeing faster } else if (B->base_type == VS::INSTANCE_LIGHTMAP_CAPTURE && ((1 << A->base_type) & VS::INSTANCE_GEOMETRY_MASK)) { InstanceLightmapCaptureData *lightmap_capture = static_cast(B->base_data); InstanceGeometryData *geom = static_cast(A->base_data); InstanceLightmapCaptureData::PairInfo pinfo; pinfo.geometry = A; pinfo.L = geom->lightmap_captures.push_back(B); List::Element *E = lightmap_capture->geometries.push_back(pinfo); ((VisualServerScene *)p_self)->_instance_queue_update(A, false, false); //need to update capture return E; //this element should make freeing faster } else if (B->base_type == VS::INSTANCE_GI_PROBE && ((1 << A->base_type) & VS::INSTANCE_GEOMETRY_MASK)) { InstanceGIProbeData *gi_probe = static_cast(B->base_data); InstanceGeometryData *geom = static_cast(A->base_data); InstanceGIProbeData::PairInfo pinfo; pinfo.geometry = A; pinfo.L = geom->gi_probes.push_back(B); List::Element *E = gi_probe->geometries.push_back(pinfo); geom->gi_probes_dirty = true; return E; //this element should make freeing faster } else if (B->base_type == VS::INSTANCE_GI_PROBE && A->base_type == VS::INSTANCE_LIGHT) { InstanceGIProbeData *gi_probe = static_cast(B->base_data); return gi_probe->lights.insert(A); } return NULL; } void VisualServerScene::_instance_unpair(void *p_self, SpatialPartitionID, Instance *p_A, int, SpatialPartitionID, Instance *p_B, int, void *udata) { //VisualServerScene *self = (VisualServerScene*)p_self; Instance *A = p_A; Instance *B = p_B; //instance indices are designed so greater always contains lesser if (A->base_type > B->base_type) { SWAP(A, B); //lesser always first } if (B->base_type == VS::INSTANCE_LIGHT && ((1 << A->base_type) & VS::INSTANCE_GEOMETRY_MASK)) { InstanceLightData *light = static_cast(B->base_data); InstanceGeometryData *geom = static_cast(A->base_data); List::Element *E = reinterpret_cast::Element *>(udata); geom->lighting.erase(E->get().L); light->geometries.erase(E); if (geom->can_cast_shadows) { light->shadow_dirty = true; } geom->lighting_dirty = true; } else if (B->base_type == VS::INSTANCE_REFLECTION_PROBE && ((1 << A->base_type) & VS::INSTANCE_GEOMETRY_MASK)) { InstanceReflectionProbeData *reflection_probe = static_cast(B->base_data); InstanceGeometryData *geom = static_cast(A->base_data); List::Element *E = reinterpret_cast::Element *>(udata); geom->reflection_probes.erase(E->get().L); reflection_probe->geometries.erase(E); geom->reflection_dirty = true; } else if (B->base_type == VS::INSTANCE_LIGHTMAP_CAPTURE && ((1 << A->base_type) & VS::INSTANCE_GEOMETRY_MASK)) { InstanceLightmapCaptureData *lightmap_capture = static_cast(B->base_data); InstanceGeometryData *geom = static_cast(A->base_data); List::Element *E = reinterpret_cast::Element *>(udata); geom->lightmap_captures.erase(E->get().L); lightmap_capture->geometries.erase(E); ((VisualServerScene *)p_self)->_instance_queue_update(A, false, false); //need to update capture } else if (B->base_type == VS::INSTANCE_GI_PROBE && ((1 << A->base_type) & VS::INSTANCE_GEOMETRY_MASK)) { InstanceGIProbeData *gi_probe = static_cast(B->base_data); InstanceGeometryData *geom = static_cast(A->base_data); List::Element *E = reinterpret_cast::Element *>(udata); geom->gi_probes.erase(E->get().L); gi_probe->geometries.erase(E); geom->gi_probes_dirty = true; } else if (B->base_type == VS::INSTANCE_GI_PROBE && A->base_type == VS::INSTANCE_LIGHT) { InstanceGIProbeData *gi_probe = static_cast(B->base_data); Set::Element *E = reinterpret_cast::Element *>(udata); gi_probe->lights.erase(E); } } RID VisualServerScene::scenario_create() { Scenario *scenario = memnew(Scenario); ERR_FAIL_COND_V(!scenario, RID()); RID scenario_rid = scenario_owner.make_rid(scenario); scenario->self = scenario_rid; scenario->sps->set_balance(GLOBAL_GET("rendering/quality/spatial_partitioning/render_tree_balance")); scenario->sps->set_pair_callback(_instance_pair, this); scenario->sps->set_unpair_callback(_instance_unpair, this); scenario->reflection_probe_shadow_atlas = VSG::scene_render->shadow_atlas_create(); VSG::scene_render->shadow_atlas_set_size(scenario->reflection_probe_shadow_atlas, 1024); //make enough shadows for close distance, don't bother with rest VSG::scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 0, 4); VSG::scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 1, 4); VSG::scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 2, 4); VSG::scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 3, 8); scenario->reflection_atlas = VSG::scene_render->reflection_atlas_create(); return scenario_rid; } void VisualServerScene::scenario_set_debug(RID p_scenario, VS::ScenarioDebugMode p_debug_mode) { Scenario *scenario = scenario_owner.get(p_scenario); ERR_FAIL_COND(!scenario); scenario->debug = p_debug_mode; } void VisualServerScene::scenario_set_environment(RID p_scenario, RID p_environment) { Scenario *scenario = scenario_owner.get(p_scenario); ERR_FAIL_COND(!scenario); scenario->environment = p_environment; } void VisualServerScene::scenario_set_fallback_environment(RID p_scenario, RID p_environment) { Scenario *scenario = scenario_owner.get(p_scenario); ERR_FAIL_COND(!scenario); scenario->fallback_environment = p_environment; } void VisualServerScene::scenario_set_reflection_atlas_size(RID p_scenario, int p_size, int p_subdiv) { Scenario *scenario = scenario_owner.get(p_scenario); ERR_FAIL_COND(!scenario); VSG::scene_render->reflection_atlas_set_size(scenario->reflection_atlas, p_size); VSG::scene_render->reflection_atlas_set_subdivision(scenario->reflection_atlas, p_subdiv); } /* INSTANCING API */ void VisualServerScene::_instance_queue_update(Instance *p_instance, bool p_update_aabb, bool p_update_materials) { if (p_update_aabb) p_instance->update_aabb = true; if (p_update_materials) p_instance->update_materials = true; if (p_instance->update_item.in_list()) return; _instance_update_list.add(&p_instance->update_item); } RID VisualServerScene::instance_create() { Instance *instance = memnew(Instance); ERR_FAIL_COND_V(!instance, RID()); RID instance_rid = instance_owner.make_rid(instance); instance->self = instance_rid; return instance_rid; } void VisualServerScene::instance_set_base(RID p_instance, RID p_base) { Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND(!instance); Scenario *scenario = instance->scenario; if (instance->base_type != VS::INSTANCE_NONE) { //free anything related to that base VSG::storage->instance_remove_dependency(instance->base, instance); if (instance->base_type == VS::INSTANCE_GI_PROBE) { //if gi probe is baking, wait until done baking, else race condition may happen when removing it //from octree InstanceGIProbeData *gi_probe = static_cast(instance->base_data); //make sure probes are done baking while (!probe_bake_list.empty()) { OS::get_singleton()->delay_usec(1); } //make sure this one is done baking while (gi_probe->dynamic.updating_stage == GI_UPDATE_STAGE_LIGHTING) { //wait until bake is done if it's baking OS::get_singleton()->delay_usec(1); } } if (scenario && instance->spatial_partition_id) { scenario->sps->erase(instance->spatial_partition_id); instance->spatial_partition_id = 0; } switch (instance->base_type) { case VS::INSTANCE_LIGHT: { InstanceLightData *light = static_cast(instance->base_data); if (instance->scenario && light->D) { instance->scenario->directional_lights.erase(light->D); light->D = NULL; } VSG::scene_render->free(light->instance); } break; case VS::INSTANCE_REFLECTION_PROBE: { InstanceReflectionProbeData *reflection_probe = static_cast(instance->base_data); VSG::scene_render->free(reflection_probe->instance); if (reflection_probe->update_list.in_list()) { reflection_probe_render_list.remove(&reflection_probe->update_list); } } break; case VS::INSTANCE_LIGHTMAP_CAPTURE: { InstanceLightmapCaptureData *lightmap_capture = static_cast(instance->base_data); //erase dependencies, since no longer a lightmap while (lightmap_capture->users.front()) { instance_set_use_lightmap(lightmap_capture->users.front()->get()->self, RID(), RID(), -1, Rect2(0, 0, 1, 1)); } } break; case VS::INSTANCE_GI_PROBE: { InstanceGIProbeData *gi_probe = static_cast(instance->base_data); if (gi_probe->update_element.in_list()) { gi_probe_update_list.remove(&gi_probe->update_element); } if (gi_probe->dynamic.probe_data.is_valid()) { VSG::storage->free(gi_probe->dynamic.probe_data); } if (instance->lightmap_capture) { Instance *capture = (Instance *)instance->lightmap_capture; InstanceLightmapCaptureData *lightmap_capture = static_cast(capture->base_data); lightmap_capture->users.erase(instance); instance->lightmap_capture = NULL; instance->lightmap = RID(); } VSG::scene_render->free(gi_probe->probe_instance); } break; default: { } } if (instance->base_data) { memdelete(instance->base_data); instance->base_data = NULL; } instance->blend_values.clear(); for (int i = 0; i < instance->materials.size(); i++) { if (instance->materials[i].is_valid()) { VSG::storage->material_remove_instance_owner(instance->materials[i], instance); } } instance->materials.clear(); } instance->base_type = VS::INSTANCE_NONE; instance->base = RID(); if (p_base.is_valid()) { instance->base_type = VSG::storage->get_base_type(p_base); ERR_FAIL_COND(instance->base_type == VS::INSTANCE_NONE); switch (instance->base_type) { case VS::INSTANCE_LIGHT: { InstanceLightData *light = memnew(InstanceLightData); if (scenario && VSG::storage->light_get_type(p_base) == VS::LIGHT_DIRECTIONAL) { light->D = scenario->directional_lights.push_back(instance); } light->instance = VSG::scene_render->light_instance_create(p_base); instance->base_data = light; } break; case VS::INSTANCE_MESH: case VS::INSTANCE_MULTIMESH: case VS::INSTANCE_IMMEDIATE: case VS::INSTANCE_PARTICLES: { InstanceGeometryData *geom = memnew(InstanceGeometryData); instance->base_data = geom; if (instance->base_type == VS::INSTANCE_MESH) { instance->blend_values.resize(VSG::storage->mesh_get_blend_shape_count(p_base)); } } break; case VS::INSTANCE_REFLECTION_PROBE: { InstanceReflectionProbeData *reflection_probe = memnew(InstanceReflectionProbeData); reflection_probe->owner = instance; instance->base_data = reflection_probe; reflection_probe->instance = VSG::scene_render->reflection_probe_instance_create(p_base); } break; case VS::INSTANCE_LIGHTMAP_CAPTURE: { InstanceLightmapCaptureData *lightmap_capture = memnew(InstanceLightmapCaptureData); instance->base_data = lightmap_capture; //lightmap_capture->instance = VSG::scene_render->lightmap_capture_instance_create(p_base); } break; case VS::INSTANCE_GI_PROBE: { InstanceGIProbeData *gi_probe = memnew(InstanceGIProbeData); instance->base_data = gi_probe; gi_probe->owner = instance; if (scenario && !gi_probe->update_element.in_list()) { gi_probe_update_list.add(&gi_probe->update_element); } gi_probe->probe_instance = VSG::scene_render->gi_probe_instance_create(); } break; default: { } } VSG::storage->instance_add_dependency(p_base, instance); instance->base = p_base; if (scenario) _instance_queue_update(instance, true, true); } } void VisualServerScene::instance_set_scenario(RID p_instance, RID p_scenario) { Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND(!instance); if (instance->scenario) { instance->scenario->instances.remove(&instance->scenario_item); if (instance->spatial_partition_id) { instance->scenario->sps->erase(instance->spatial_partition_id); instance->spatial_partition_id = 0; } switch (instance->base_type) { case VS::INSTANCE_LIGHT: { InstanceLightData *light = static_cast(instance->base_data); if (light->D) { instance->scenario->directional_lights.erase(light->D); light->D = NULL; } } break; case VS::INSTANCE_REFLECTION_PROBE: { InstanceReflectionProbeData *reflection_probe = static_cast(instance->base_data); VSG::scene_render->reflection_probe_release_atlas_index(reflection_probe->instance); } break; case VS::INSTANCE_GI_PROBE: { InstanceGIProbeData *gi_probe = static_cast(instance->base_data); if (gi_probe->update_element.in_list()) { gi_probe_update_list.remove(&gi_probe->update_element); } } break; default: { } } instance->scenario = NULL; } if (p_scenario.is_valid()) { Scenario *scenario = scenario_owner.get(p_scenario); ERR_FAIL_COND(!scenario); instance->scenario = scenario; scenario->instances.add(&instance->scenario_item); switch (instance->base_type) { case VS::INSTANCE_LIGHT: { InstanceLightData *light = static_cast(instance->base_data); if (VSG::storage->light_get_type(instance->base) == VS::LIGHT_DIRECTIONAL) { light->D = scenario->directional_lights.push_back(instance); } } break; case VS::INSTANCE_GI_PROBE: { InstanceGIProbeData *gi_probe = static_cast(instance->base_data); if (!gi_probe->update_element.in_list()) { gi_probe_update_list.add(&gi_probe->update_element); } } break; default: { } } _instance_queue_update(instance, true, true); } } void VisualServerScene::instance_set_layer_mask(RID p_instance, uint32_t p_mask) { Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND(!instance); instance->layer_mask = p_mask; } void VisualServerScene::instance_set_transform(RID p_instance, const Transform &p_transform) { Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND(!instance); if (instance->transform == p_transform) return; //must be checked to avoid worst evil #ifdef DEBUG_ENABLED for (int i = 0; i < 4; i++) { const Vector3 &v = i < 3 ? p_transform.basis.elements[i] : p_transform.origin; ERR_FAIL_COND(Math::is_inf(v.x)); ERR_FAIL_COND(Math::is_nan(v.x)); ERR_FAIL_COND(Math::is_inf(v.y)); ERR_FAIL_COND(Math::is_nan(v.y)); ERR_FAIL_COND(Math::is_inf(v.z)); ERR_FAIL_COND(Math::is_nan(v.z)); } #endif instance->transform = p_transform; _instance_queue_update(instance, true); } void VisualServerScene::instance_attach_object_instance_id(RID p_instance, ObjectID p_id) { Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND(!instance); instance->object_id = p_id; } void VisualServerScene::instance_set_blend_shape_weight(RID p_instance, int p_shape, float p_weight) { Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND(!instance); if (instance->update_item.in_list()) { _update_dirty_instance(instance); } ERR_FAIL_INDEX(p_shape, instance->blend_values.size()); instance->blend_values.write[p_shape] = p_weight; } void VisualServerScene::instance_set_surface_material(RID p_instance, int p_surface, RID p_material) { Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND(!instance); if (instance->base_type == VS::INSTANCE_MESH) { //may not have been updated yet instance->materials.resize(VSG::storage->mesh_get_surface_count(instance->base)); } ERR_FAIL_INDEX(p_surface, instance->materials.size()); if (instance->materials[p_surface].is_valid()) { VSG::storage->material_remove_instance_owner(instance->materials[p_surface], instance); } instance->materials.write[p_surface] = p_material; instance->base_changed(false, true); if (instance->materials[p_surface].is_valid()) { VSG::storage->material_add_instance_owner(instance->materials[p_surface], instance); } } void VisualServerScene::instance_set_visible(RID p_instance, bool p_visible) { Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND(!instance); if (instance->visible == p_visible) return; instance->visible = p_visible; // give the opportunity for the spatial paritioning scene to use a special implementation of visibility // for efficiency (supported in BVH but not octree) // slightly bug prone optimization here - we want to avoid doing a collision check twice // once when activating, and once when calling set_pairable. We do this by deferring the collision check. // However, in some cases (notably meshes), set_pairable never gets called. So we want to catch this case // and force a collision check (see later in this function). // This is only done in two stages to maintain compatibility with the octree. if (instance->spatial_partition_id && instance->scenario) { if (p_visible) { instance->scenario->sps->activate(instance->spatial_partition_id, instance->transformed_aabb); } else { instance->scenario->sps->deactivate(instance->spatial_partition_id); } } // when showing or hiding geometry, lights must be kept up to date to show / hide shadows if ((1 << instance->base_type) & VS::INSTANCE_GEOMETRY_MASK) { InstanceGeometryData *geom = static_cast(instance->base_data); if (geom->can_cast_shadows) { for (List::Element *E = geom->lighting.front(); E; E = E->next()) { InstanceLightData *light = static_cast(E->get()->base_data); light->shadow_dirty = true; } } } switch (instance->base_type) { case VS::INSTANCE_LIGHT: { if (VSG::storage->light_get_type(instance->base) != VS::LIGHT_DIRECTIONAL && instance->spatial_partition_id && instance->scenario) { instance->scenario->sps->set_pairable(instance->spatial_partition_id, p_visible, 1 << VS::INSTANCE_LIGHT, p_visible ? VS::INSTANCE_GEOMETRY_MASK : 0); } } break; case VS::INSTANCE_REFLECTION_PROBE: { if (instance->spatial_partition_id && instance->scenario) { instance->scenario->sps->set_pairable(instance->spatial_partition_id, p_visible, 1 << VS::INSTANCE_REFLECTION_PROBE, p_visible ? VS::INSTANCE_GEOMETRY_MASK : 0); } } break; case VS::INSTANCE_LIGHTMAP_CAPTURE: { if (instance->spatial_partition_id && instance->scenario) { instance->scenario->sps->set_pairable(instance->spatial_partition_id, p_visible, 1 << VS::INSTANCE_LIGHTMAP_CAPTURE, p_visible ? VS::INSTANCE_GEOMETRY_MASK : 0); } } break; case VS::INSTANCE_GI_PROBE: { if (instance->spatial_partition_id && instance->scenario) { instance->scenario->sps->set_pairable(instance->spatial_partition_id, p_visible, 1 << VS::INSTANCE_GI_PROBE, p_visible ? (VS::INSTANCE_GEOMETRY_MASK | (1 << VS::INSTANCE_LIGHT)) : 0); } } break; default: { // if we haven't called set_pairable, we STILL need to do a collision check // for activated items because we deferred it earlier in the call to activate. if (instance->spatial_partition_id && instance->scenario && p_visible) { instance->scenario->sps->force_collision_check(instance->spatial_partition_id); } } } } inline bool is_geometry_instance(VisualServer::InstanceType p_type) { return p_type == VS::INSTANCE_MESH || p_type == VS::INSTANCE_MULTIMESH || p_type == VS::INSTANCE_PARTICLES || p_type == VS::INSTANCE_IMMEDIATE; } void VisualServerScene::instance_set_use_lightmap(RID p_instance, RID p_lightmap_instance, RID p_lightmap, int p_lightmap_slice, const Rect2 &p_lightmap_uv_rect) { Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND(!instance); if (instance->lightmap_capture) { InstanceLightmapCaptureData *lightmap_capture = static_cast(((Instance *)instance->lightmap_capture)->base_data); lightmap_capture->users.erase(instance); instance->lightmap = RID(); instance->lightmap_slice = -1; instance->lightmap_uv_rect = Rect2(0, 0, 1, 1); instance->lightmap_capture = NULL; } if (p_lightmap_instance.is_valid()) { Instance *lightmap_instance = instance_owner.get(p_lightmap_instance); ERR_FAIL_COND(!lightmap_instance); ERR_FAIL_COND(lightmap_instance->base_type != VS::INSTANCE_LIGHTMAP_CAPTURE); instance->lightmap_capture = lightmap_instance; InstanceLightmapCaptureData *lightmap_capture = static_cast(((Instance *)instance->lightmap_capture)->base_data); lightmap_capture->users.insert(instance); instance->lightmap = p_lightmap; instance->lightmap_slice = p_lightmap_slice; instance->lightmap_uv_rect = p_lightmap_uv_rect; } } void VisualServerScene::instance_set_custom_aabb(RID p_instance, AABB p_aabb) { Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND(!instance); ERR_FAIL_COND(!is_geometry_instance(instance->base_type)); if (p_aabb != AABB()) { // Set custom AABB if (instance->custom_aabb == NULL) instance->custom_aabb = memnew(AABB); *instance->custom_aabb = p_aabb; } else { // Clear custom AABB if (instance->custom_aabb != NULL) { memdelete(instance->custom_aabb); instance->custom_aabb = NULL; } } if (instance->scenario) _instance_queue_update(instance, true, false); } void VisualServerScene::instance_attach_skeleton(RID p_instance, RID p_skeleton) { Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND(!instance); if (instance->skeleton == p_skeleton) return; if (instance->skeleton.is_valid()) { VSG::storage->instance_remove_skeleton(instance->skeleton, instance); } instance->skeleton = p_skeleton; if (instance->skeleton.is_valid()) { VSG::storage->instance_add_skeleton(instance->skeleton, instance); } _instance_queue_update(instance, true); } void VisualServerScene::instance_set_exterior(RID p_instance, bool p_enabled) { } void VisualServerScene::instance_set_extra_visibility_margin(RID p_instance, real_t p_margin) { Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND(!instance); instance->extra_margin = p_margin; _instance_queue_update(instance, true, false); } Vector VisualServerScene::instances_cull_aabb(const AABB &p_aabb, RID p_scenario) const { Vector instances; Scenario *scenario = scenario_owner.get(p_scenario); ERR_FAIL_COND_V(!scenario, instances); const_cast(this)->update_dirty_instances(); // check dirty instances before culling int culled = 0; Instance *cull[1024]; culled = scenario->sps->cull_aabb(p_aabb, cull, 1024); for (int i = 0; i < culled; i++) { Instance *instance = cull[i]; ERR_CONTINUE(!instance); if (instance->object_id == 0) continue; instances.push_back(instance->object_id); } return instances; } Vector VisualServerScene::instances_cull_ray(const Vector3 &p_from, const Vector3 &p_to, RID p_scenario) const { Vector instances; Scenario *scenario = scenario_owner.get(p_scenario); ERR_FAIL_COND_V(!scenario, instances); const_cast(this)->update_dirty_instances(); // check dirty instances before culling int culled = 0; Instance *cull[1024]; culled = scenario->sps->cull_segment(p_from, p_from + p_to * 10000, cull, 1024); for (int i = 0; i < culled; i++) { Instance *instance = cull[i]; ERR_CONTINUE(!instance); if (instance->object_id == 0) continue; instances.push_back(instance->object_id); } return instances; } Vector VisualServerScene::instances_cull_convex(const Vector &p_convex, RID p_scenario) const { Vector instances; Scenario *scenario = scenario_owner.get(p_scenario); ERR_FAIL_COND_V(!scenario, instances); const_cast(this)->update_dirty_instances(); // check dirty instances before culling int culled = 0; Instance *cull[1024]; culled = scenario->sps->cull_convex(p_convex, cull, 1024); for (int i = 0; i < culled; i++) { Instance *instance = cull[i]; ERR_CONTINUE(!instance); if (instance->object_id == 0) continue; instances.push_back(instance->object_id); } return instances; } void VisualServerScene::instance_geometry_set_flag(RID p_instance, VS::InstanceFlags p_flags, bool p_enabled) { Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND(!instance); switch (p_flags) { case VS::INSTANCE_FLAG_USE_BAKED_LIGHT: { instance->baked_light = p_enabled; } break; case VS::INSTANCE_FLAG_DRAW_NEXT_FRAME_IF_VISIBLE: { instance->redraw_if_visible = p_enabled; } break; default: { } } } void VisualServerScene::instance_geometry_set_cast_shadows_setting(RID p_instance, VS::ShadowCastingSetting p_shadow_casting_setting) { Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND(!instance); instance->cast_shadows = p_shadow_casting_setting; instance->base_changed(false, true); // to actually compute if shadows are visible or not } void VisualServerScene::instance_geometry_set_material_override(RID p_instance, RID p_material) { Instance *instance = instance_owner.get(p_instance); ERR_FAIL_COND(!instance); if (instance->material_override.is_valid()) { VSG::storage->material_remove_instance_owner(instance->material_override, instance); } instance->material_override = p_material; instance->base_changed(false, true); if (instance->material_override.is_valid()) { VSG::storage->material_add_instance_owner(instance->material_override, instance); } } void VisualServerScene::instance_geometry_set_draw_range(RID p_instance, float p_min, float p_max, float p_min_margin, float p_max_margin) { } void VisualServerScene::instance_geometry_set_as_instance_lod(RID p_instance, RID p_as_lod_of_instance) { } void VisualServerScene::_update_instance(Instance *p_instance) { p_instance->version++; if (p_instance->base_type == VS::INSTANCE_LIGHT) { InstanceLightData *light = static_cast(p_instance->base_data); VSG::scene_render->light_instance_set_transform(light->instance, p_instance->transform); light->shadow_dirty = true; } if (p_instance->base_type == VS::INSTANCE_REFLECTION_PROBE) { InstanceReflectionProbeData *reflection_probe = static_cast(p_instance->base_data); VSG::scene_render->reflection_probe_instance_set_transform(reflection_probe->instance, p_instance->transform); reflection_probe->reflection_dirty = true; } if (p_instance->base_type == VS::INSTANCE_PARTICLES) { VSG::storage->particles_set_emission_transform(p_instance->base, p_instance->transform); } if (p_instance->aabb.has_no_surface()) { return; } if ((1 << p_instance->base_type) & VS::INSTANCE_GEOMETRY_MASK) { InstanceGeometryData *geom = static_cast(p_instance->base_data); //make sure lights are updated if it casts shadow if (geom->can_cast_shadows) { for (List::Element *E = geom->lighting.front(); E; E = E->next()) { InstanceLightData *light = static_cast(E->get()->base_data); light->shadow_dirty = true; } } if (!p_instance->lightmap_capture && geom->lightmap_captures.size()) { //affected by lightmap captures, must update capture info! _update_instance_lightmap_captures(p_instance); } else { if (!p_instance->lightmap_capture_data.empty()) { p_instance->lightmap_capture_data.resize(0); //not in use, clear capture data } } } p_instance->mirror = p_instance->transform.basis.determinant() < 0.0; AABB new_aabb; new_aabb = p_instance->transform.xform(p_instance->aabb); p_instance->transformed_aabb = new_aabb; if (!p_instance->scenario) { return; } if (p_instance->spatial_partition_id == 0) { uint32_t base_type = 1 << p_instance->base_type; uint32_t pairable_mask = 0; bool pairable = false; if (p_instance->base_type == VS::INSTANCE_LIGHT || p_instance->base_type == VS::INSTANCE_REFLECTION_PROBE || p_instance->base_type == VS::INSTANCE_LIGHTMAP_CAPTURE) { pairable_mask = p_instance->visible ? VS::INSTANCE_GEOMETRY_MASK : 0; pairable = true; } if (p_instance->base_type == VS::INSTANCE_GI_PROBE) { //lights and geometries pairable_mask = p_instance->visible ? VS::INSTANCE_GEOMETRY_MASK | (1 << VS::INSTANCE_LIGHT) : 0; pairable = true; } // not inside octree p_instance->spatial_partition_id = p_instance->scenario->sps->create(p_instance, new_aabb, 0, pairable, base_type, pairable_mask); } else { /* if (new_aabb==p_instance->data.transformed_aabb) return; */ p_instance->scenario->sps->move(p_instance->spatial_partition_id, new_aabb); } } void VisualServerScene::_update_instance_aabb(Instance *p_instance) { AABB new_aabb; ERR_FAIL_COND(p_instance->base_type != VS::INSTANCE_NONE && !p_instance->base.is_valid()); switch (p_instance->base_type) { case VisualServer::INSTANCE_NONE: { // do nothing } break; case VisualServer::INSTANCE_MESH: { if (p_instance->custom_aabb) new_aabb = *p_instance->custom_aabb; else new_aabb = VSG::storage->mesh_get_aabb(p_instance->base, p_instance->skeleton); } break; case VisualServer::INSTANCE_MULTIMESH: { if (p_instance->custom_aabb) new_aabb = *p_instance->custom_aabb; else new_aabb = VSG::storage->multimesh_get_aabb(p_instance->base); } break; case VisualServer::INSTANCE_IMMEDIATE: { if (p_instance->custom_aabb) new_aabb = *p_instance->custom_aabb; else new_aabb = VSG::storage->immediate_get_aabb(p_instance->base); } break; case VisualServer::INSTANCE_PARTICLES: { if (p_instance->custom_aabb) new_aabb = *p_instance->custom_aabb; else new_aabb = VSG::storage->particles_get_aabb(p_instance->base); } break; case VisualServer::INSTANCE_LIGHT: { new_aabb = VSG::storage->light_get_aabb(p_instance->base); } break; case VisualServer::INSTANCE_REFLECTION_PROBE: { new_aabb = VSG::storage->reflection_probe_get_aabb(p_instance->base); } break; case VisualServer::INSTANCE_GI_PROBE: { new_aabb = VSG::storage->gi_probe_get_bounds(p_instance->base); } break; case VisualServer::INSTANCE_LIGHTMAP_CAPTURE: { new_aabb = VSG::storage->lightmap_capture_get_bounds(p_instance->base); } break; default: { } } // This is why I didn't re-use Instance::aabb to implement custom AABBs if (p_instance->extra_margin) new_aabb.grow_by(p_instance->extra_margin); p_instance->aabb = new_aabb; } _FORCE_INLINE_ static void _light_capture_sample_octree(const RasterizerStorage::LightmapCaptureOctree *p_octree, int p_cell_subdiv, const Vector3 &p_pos, const Vector3 &p_dir, float p_level, Vector3 &r_color, float &r_alpha) { static const Vector3 aniso_normal[6] = { Vector3(-1, 0, 0), Vector3(1, 0, 0), Vector3(0, -1, 0), Vector3(0, 1, 0), Vector3(0, 0, -1), Vector3(0, 0, 1) }; int size = 1 << (p_cell_subdiv - 1); int clamp_v = size - 1; //first of all, clamp Vector3 pos; pos.x = CLAMP(p_pos.x, 0, clamp_v); pos.y = CLAMP(p_pos.y, 0, clamp_v); pos.z = CLAMP(p_pos.z, 0, clamp_v); float level = (p_cell_subdiv - 1) - p_level; int target_level; float level_filter; if (level <= 0.0) { level_filter = 0; target_level = 0; } else { target_level = Math::ceil(level); level_filter = target_level - level; } Vector3 color[2][8]; float alpha[2][8]; zeromem(alpha, sizeof(float) * 2 * 8); //find cell at given level first for (int c = 0; c < 2; c++) { int current_level = MAX(0, target_level - c); int level_cell_size = (1 << (p_cell_subdiv - 1)) >> current_level; for (int n = 0; n < 8; n++) { int x = int(pos.x); int y = int(pos.y); int z = int(pos.z); if (n & 1) x += level_cell_size; if (n & 2) y += level_cell_size; if (n & 4) z += level_cell_size; int ofs_x = 0; int ofs_y = 0; int ofs_z = 0; x = CLAMP(x, 0, clamp_v); y = CLAMP(y, 0, clamp_v); z = CLAMP(z, 0, clamp_v); int half = size / 2; uint32_t cell = 0; for (int i = 0; i < current_level; i++) { const RasterizerStorage::LightmapCaptureOctree *bc = &p_octree[cell]; int child = 0; if (x >= ofs_x + half) { child |= 1; ofs_x += half; } if (y >= ofs_y + half) { child |= 2; ofs_y += half; } if (z >= ofs_z + half) { child |= 4; ofs_z += half; } cell = bc->children[child]; if (cell == RasterizerStorage::LightmapCaptureOctree::CHILD_EMPTY) break; half >>= 1; } if (cell == RasterizerStorage::LightmapCaptureOctree::CHILD_EMPTY) { alpha[c][n] = 0; } else { alpha[c][n] = p_octree[cell].alpha; for (int i = 0; i < 6; i++) { //anisotropic read light float amount = p_dir.dot(aniso_normal[i]); if (amount < 0) amount = 0; color[c][n].x += p_octree[cell].light[i][0] / 1024.0 * amount; color[c][n].y += p_octree[cell].light[i][1] / 1024.0 * amount; color[c][n].z += p_octree[cell].light[i][2] / 1024.0 * amount; } } //print_line("\tlev " + itos(c) + " - " + itos(n) + " alpha: " + rtos(cells[test_cell].alpha) + " col: " + color[c][n]); } } float target_level_size = size >> target_level; Vector3 pos_fract[2]; pos_fract[0].x = Math::fmod(pos.x, target_level_size) / target_level_size; pos_fract[0].y = Math::fmod(pos.y, target_level_size) / target_level_size; pos_fract[0].z = Math::fmod(pos.z, target_level_size) / target_level_size; target_level_size = size >> MAX(0, target_level - 1); pos_fract[1].x = Math::fmod(pos.x, target_level_size) / target_level_size; pos_fract[1].y = Math::fmod(pos.y, target_level_size) / target_level_size; pos_fract[1].z = Math::fmod(pos.z, target_level_size) / target_level_size; float alpha_interp[2]; Vector3 color_interp[2]; for (int i = 0; i < 2; i++) { Vector3 color_x00 = color[i][0].linear_interpolate(color[i][1], pos_fract[i].x); Vector3 color_xy0 = color[i][2].linear_interpolate(color[i][3], pos_fract[i].x); Vector3 blend_z0 = color_x00.linear_interpolate(color_xy0, pos_fract[i].y); Vector3 color_x0z = color[i][4].linear_interpolate(color[i][5], pos_fract[i].x); Vector3 color_xyz = color[i][6].linear_interpolate(color[i][7], pos_fract[i].x); Vector3 blend_z1 = color_x0z.linear_interpolate(color_xyz, pos_fract[i].y); color_interp[i] = blend_z0.linear_interpolate(blend_z1, pos_fract[i].z); float alpha_x00 = Math::lerp(alpha[i][0], alpha[i][1], pos_fract[i].x); float alpha_xy0 = Math::lerp(alpha[i][2], alpha[i][3], pos_fract[i].x); float alpha_z0 = Math::lerp(alpha_x00, alpha_xy0, pos_fract[i].y); float alpha_x0z = Math::lerp(alpha[i][4], alpha[i][5], pos_fract[i].x); float alpha_xyz = Math::lerp(alpha[i][6], alpha[i][7], pos_fract[i].x); float alpha_z1 = Math::lerp(alpha_x0z, alpha_xyz, pos_fract[i].y); alpha_interp[i] = Math::lerp(alpha_z0, alpha_z1, pos_fract[i].z); } r_color = color_interp[0].linear_interpolate(color_interp[1], level_filter); r_alpha = Math::lerp(alpha_interp[0], alpha_interp[1], level_filter); //print_line("pos: " + p_posf + " level " + rtos(p_level) + " down to " + itos(target_level) + "." + rtos(level_filter) + " color " + r_color + " alpha " + rtos(r_alpha)); } _FORCE_INLINE_ static Color _light_capture_voxel_cone_trace(const RasterizerStorage::LightmapCaptureOctree *p_octree, const Vector3 &p_pos, const Vector3 &p_dir, float p_aperture, int p_cell_subdiv) { float bias = 0.0; //no need for bias here float max_distance = (Vector3(1, 1, 1) * (1 << (p_cell_subdiv - 1))).length(); float dist = bias; float alpha = 0.0; Vector3 color; Vector3 scolor; float salpha; while (dist < max_distance && alpha < 0.95) { float diameter = MAX(1.0, 2.0 * p_aperture * dist); _light_capture_sample_octree(p_octree, p_cell_subdiv, p_pos + dist * p_dir, p_dir, log2(diameter), scolor, salpha); float a = (1.0 - alpha); color += scolor * a; alpha += a * salpha; dist += diameter * 0.5; } return Color(color.x, color.y, color.z, alpha); } void VisualServerScene::_update_instance_lightmap_captures(Instance *p_instance) { InstanceGeometryData *geom = static_cast(p_instance->base_data); static const Vector3 cone_traces[12] = { Vector3(0, 0, 1), Vector3(0.866025, 0, 0.5), Vector3(0.267617, 0.823639, 0.5), Vector3(-0.700629, 0.509037, 0.5), Vector3(-0.700629, -0.509037, 0.5), Vector3(0.267617, -0.823639, 0.5), Vector3(0, 0, -1), Vector3(0.866025, 0, -0.5), Vector3(0.267617, 0.823639, -0.5), Vector3(-0.700629, 0.509037, -0.5), Vector3(-0.700629, -0.509037, -0.5), Vector3(0.267617, -0.823639, -0.5) }; float cone_aperture = 0.577; // tan(angle) 60 degrees if (p_instance->lightmap_capture_data.empty()) { p_instance->lightmap_capture_data.resize(12); } //print_line("update captures for pos: " + p_instance->transform.origin); for (int i = 0; i < 12; i++) new (&p_instance->lightmap_capture_data.ptrw()[i]) Color; //this could use some sort of blending.. for (List::Element *E = geom->lightmap_captures.front(); E; E = E->next()) { const PoolVector *octree = VSG::storage->lightmap_capture_get_octree_ptr(E->get()->base); //print_line("octree size: " + itos(octree->size())); if (octree->size() == 0) continue; Transform to_cell_xform = VSG::storage->lightmap_capture_get_octree_cell_transform(E->get()->base); int cell_subdiv = VSG::storage->lightmap_capture_get_octree_cell_subdiv(E->get()->base); to_cell_xform = to_cell_xform * E->get()->transform.affine_inverse(); PoolVector::Read octree_r = octree->read(); Vector3 pos = to_cell_xform.xform(p_instance->transform.origin); const float capture_energy = VSG::storage->lightmap_capture_get_energy(E->get()->base); for (int i = 0; i < 12; i++) { Vector3 dir = to_cell_xform.basis.xform(cone_traces[i]).normalized(); Color capture = _light_capture_voxel_cone_trace(octree_r.ptr(), pos, dir, cone_aperture, cell_subdiv); capture.r *= capture_energy; capture.g *= capture_energy; capture.b *= capture_energy; p_instance->lightmap_capture_data.write[i] += capture; } } } bool VisualServerScene::_light_instance_update_shadow(Instance *p_instance, const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, RID p_shadow_atlas, Scenario *p_scenario) { InstanceLightData *light = static_cast(p_instance->base_data); Transform light_transform = p_instance->transform; light_transform.orthonormalize(); //scale does not count on lights bool animated_material_found = false; switch (VSG::storage->light_get_type(p_instance->base)) { case VS::LIGHT_DIRECTIONAL: { float max_distance = p_cam_projection.get_z_far(); float shadow_max = VSG::storage->light_get_param(p_instance->base, VS::LIGHT_PARAM_SHADOW_MAX_DISTANCE); if (shadow_max > 0 && !p_cam_orthogonal) { //its impractical (and leads to unwanted behaviors) to set max distance in orthogonal camera max_distance = MIN(shadow_max, max_distance); } max_distance = MAX(max_distance, p_cam_projection.get_z_near() + 0.001); float min_distance = MIN(p_cam_projection.get_z_near(), max_distance); VS::LightDirectionalShadowDepthRangeMode depth_range_mode = VSG::storage->light_directional_get_shadow_depth_range_mode(p_instance->base); if (depth_range_mode == VS::LIGHT_DIRECTIONAL_SHADOW_DEPTH_RANGE_OPTIMIZED) { //optimize min/max Vector planes = p_cam_projection.get_projection_planes(p_cam_transform); int cull_count = p_scenario->sps->cull_convex(planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, VS::INSTANCE_GEOMETRY_MASK); Plane base(p_cam_transform.origin, -p_cam_transform.basis.get_axis(2)); //check distance max and min bool found_items = false; float z_max = -1e20; float z_min = 1e20; for (int i = 0; i < cull_count; i++) { Instance *instance = instance_shadow_cull_result[i]; if (!instance->visible || !((1 << instance->base_type) & VS::INSTANCE_GEOMETRY_MASK) || !static_cast(instance->base_data)->can_cast_shadows) { continue; } if (static_cast(instance->base_data)->material_is_animated) { animated_material_found = true; } float max, min; instance->transformed_aabb.project_range_in_plane(base, min, max); if (max > z_max) { z_max = max; } if (min < z_min) { z_min = min; } found_items = true; } if (found_items) { min_distance = MAX(min_distance, z_min); max_distance = MIN(max_distance, z_max); } } float range = max_distance - min_distance; int splits = 0; switch (VSG::storage->light_directional_get_shadow_mode(p_instance->base)) { case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: splits = 1; break; case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: splits = 2; break; case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: splits = 4; break; } float distances[5]; distances[0] = min_distance; for (int i = 0; i < splits; i++) { distances[i + 1] = min_distance + VSG::storage->light_get_param(p_instance->base, VS::LightParam(VS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET + i)) * range; }; distances[splits] = max_distance; float texture_size = VSG::scene_render->get_directional_light_shadow_size(light->instance); bool overlap = VSG::storage->light_directional_get_blend_splits(p_instance->base); float first_radius = 0.0; for (int i = 0; i < splits; i++) { // setup a camera matrix for that range! CameraMatrix camera_matrix; float aspect = p_cam_projection.get_aspect(); if (p_cam_orthogonal) { Vector2 vp_he = p_cam_projection.get_viewport_half_extents(); camera_matrix.set_orthogonal(vp_he.y * 2.0, aspect, distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], false); } else { float fov = p_cam_projection.get_fov(); camera_matrix.set_perspective(fov, aspect, distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], false); } //obtain the frustum endpoints Vector3 endpoints[8]; // frustum plane endpoints bool res = camera_matrix.get_endpoints(p_cam_transform, endpoints); ERR_CONTINUE(!res); // obtain the light frustm ranges (given endpoints) Transform transform = light_transform; //discard scale and stabilize light Vector3 x_vec = transform.basis.get_axis(Vector3::AXIS_X).normalized(); Vector3 y_vec = transform.basis.get_axis(Vector3::AXIS_Y).normalized(); Vector3 z_vec = transform.basis.get_axis(Vector3::AXIS_Z).normalized(); //z_vec points agsint the camera, like in default opengl float x_min = 0.f, x_max = 0.f; float y_min = 0.f, y_max = 0.f; float z_min = 0.f, z_max = 0.f; // FIXME: z_max_cam is defined, computed, but not used below when setting up // ortho_camera. Commented out for now to fix warnings but should be investigated. float x_min_cam = 0.f, x_max_cam = 0.f; float y_min_cam = 0.f, y_max_cam = 0.f; float z_min_cam = 0.f; //float z_max_cam = 0.f; float bias_scale = 1.0; //used for culling for (int j = 0; j < 8; j++) { float d_x = x_vec.dot(endpoints[j]); float d_y = y_vec.dot(endpoints[j]); float d_z = z_vec.dot(endpoints[j]); if (j == 0 || d_x < x_min) x_min = d_x; if (j == 0 || d_x > x_max) x_max = d_x; if (j == 0 || d_y < y_min) y_min = d_y; if (j == 0 || d_y > y_max) y_max = d_y; if (j == 0 || d_z < z_min) z_min = d_z; if (j == 0 || d_z > z_max) z_max = d_z; } { //camera viewport stuff Vector3 center; for (int j = 0; j < 8; j++) { center += endpoints[j]; } center /= 8.0; //center=x_vec*(x_max-x_min)*0.5 + y_vec*(y_max-y_min)*0.5 + z_vec*(z_max-z_min)*0.5; float radius = 0; for (int j = 0; j < 8; j++) { float d = center.distance_to(endpoints[j]); if (d > radius) radius = d; } radius *= texture_size / (texture_size - 2.0); //add a texel by each side if (i == 0) { first_radius = radius; } else { bias_scale = radius / first_radius; } x_max_cam = x_vec.dot(center) + radius; x_min_cam = x_vec.dot(center) - radius; y_max_cam = y_vec.dot(center) + radius; y_min_cam = y_vec.dot(center) - radius; //z_max_cam = z_vec.dot(center) + radius; z_min_cam = z_vec.dot(center) - radius; if (depth_range_mode == VS::LIGHT_DIRECTIONAL_SHADOW_DEPTH_RANGE_STABLE) { //this trick here is what stabilizes the shadow (make potential jaggies to not move) //at the cost of some wasted resolution. Still the quality increase is very well worth it float unit = radius * 2.0 / texture_size; x_max_cam = Math::stepify(x_max_cam, unit); x_min_cam = Math::stepify(x_min_cam, unit); y_max_cam = Math::stepify(y_max_cam, unit); y_min_cam = Math::stepify(y_min_cam, unit); } } //now that we now all ranges, we can proceed to make the light frustum planes, for culling octree Vector light_frustum_planes; light_frustum_planes.resize(6); //right/left light_frustum_planes.write[0] = Plane(x_vec, x_max); light_frustum_planes.write[1] = Plane(-x_vec, -x_min); //top/bottom light_frustum_planes.write[2] = Plane(y_vec, y_max); light_frustum_planes.write[3] = Plane(-y_vec, -y_min); //near/far light_frustum_planes.write[4] = Plane(z_vec, z_max + 1e6); light_frustum_planes.write[5] = Plane(-z_vec, -z_min); // z_min is ok, since casters further than far-light plane are not needed int cull_count = p_scenario->sps->cull_convex(light_frustum_planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, VS::INSTANCE_GEOMETRY_MASK); // a pre pass will need to be needed to determine the actual z-near to be used Plane near_plane(light_transform.origin, -light_transform.basis.get_axis(2)); for (int j = 0; j < cull_count; j++) { float min, max; Instance *instance = instance_shadow_cull_result[j]; if (!instance->visible || !((1 << instance->base_type) & VS::INSTANCE_GEOMETRY_MASK) || !static_cast(instance->base_data)->can_cast_shadows) { cull_count--; SWAP(instance_shadow_cull_result[j], instance_shadow_cull_result[cull_count]); j--; continue; } instance->transformed_aabb.project_range_in_plane(Plane(z_vec, 0), min, max); instance->depth = near_plane.distance_to(instance->transform.origin); instance->depth_layer = 0; if (max > z_max) z_max = max; } { CameraMatrix ortho_camera; real_t half_x = (x_max_cam - x_min_cam) * 0.5; real_t half_y = (y_max_cam - y_min_cam) * 0.5; ortho_camera.set_orthogonal(-half_x, half_x, -half_y, half_y, 0, (z_max - z_min_cam)); Transform ortho_transform; ortho_transform.basis = transform.basis; ortho_transform.origin = x_vec * (x_min_cam + half_x) + y_vec * (y_min_cam + half_y) + z_vec * z_max; VSG::scene_render->light_instance_set_shadow_transform(light->instance, ortho_camera, ortho_transform, 0, distances[i + 1], i, bias_scale); } VSG::scene_render->render_shadow(light->instance, p_shadow_atlas, i, (RasterizerScene::InstanceBase **)instance_shadow_cull_result, cull_count); } } break; case VS::LIGHT_OMNI: { VS::LightOmniShadowMode shadow_mode = VSG::storage->light_omni_get_shadow_mode(p_instance->base); if (shadow_mode == VS::LIGHT_OMNI_SHADOW_DUAL_PARABOLOID || !VSG::scene_render->light_instances_can_render_shadow_cube()) { for (int i = 0; i < 2; i++) { //using this one ensures that raster deferred will have it float radius = VSG::storage->light_get_param(p_instance->base, VS::LIGHT_PARAM_RANGE); float z = i == 0 ? -1 : 1; Vector planes; planes.resize(6); planes.write[0] = light_transform.xform(Plane(Vector3(0, 0, z), radius)); planes.write[1] = light_transform.xform(Plane(Vector3(1, 0, z).normalized(), radius)); planes.write[2] = light_transform.xform(Plane(Vector3(-1, 0, z).normalized(), radius)); planes.write[3] = light_transform.xform(Plane(Vector3(0, 1, z).normalized(), radius)); planes.write[4] = light_transform.xform(Plane(Vector3(0, -1, z).normalized(), radius)); planes.write[5] = light_transform.xform(Plane(Vector3(0, 0, -z), 0)); int cull_count = p_scenario->sps->cull_convex(planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, VS::INSTANCE_GEOMETRY_MASK); Plane near_plane(light_transform.origin, light_transform.basis.get_axis(2) * z); for (int j = 0; j < cull_count; j++) { Instance *instance = instance_shadow_cull_result[j]; if (!instance->visible || !((1 << instance->base_type) & VS::INSTANCE_GEOMETRY_MASK) || !static_cast(instance->base_data)->can_cast_shadows) { cull_count--; SWAP(instance_shadow_cull_result[j], instance_shadow_cull_result[cull_count]); j--; } else { if (static_cast(instance->base_data)->material_is_animated) { animated_material_found = true; } instance->depth = near_plane.distance_to(instance->transform.origin); instance->depth_layer = 0; } } VSG::scene_render->light_instance_set_shadow_transform(light->instance, CameraMatrix(), light_transform, radius, 0, i); VSG::scene_render->render_shadow(light->instance, p_shadow_atlas, i, (RasterizerScene::InstanceBase **)instance_shadow_cull_result, cull_count); } } else { //shadow cube float radius = VSG::storage->light_get_param(p_instance->base, VS::LIGHT_PARAM_RANGE); CameraMatrix cm; cm.set_perspective(90, 1, 0.01, radius); for (int i = 0; i < 6; i++) { //using this one ensures that raster deferred will have it static const Vector3 view_normals[6] = { Vector3(-1, 0, 0), Vector3(+1, 0, 0), Vector3(0, -1, 0), Vector3(0, +1, 0), Vector3(0, 0, -1), Vector3(0, 0, +1) }; static const Vector3 view_up[6] = { Vector3(0, -1, 0), Vector3(0, -1, 0), Vector3(0, 0, -1), Vector3(0, 0, +1), Vector3(0, -1, 0), Vector3(0, -1, 0) }; Transform xform = light_transform * Transform().looking_at(view_normals[i], view_up[i]); Vector planes = cm.get_projection_planes(xform); int cull_count = p_scenario->sps->cull_convex(planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, VS::INSTANCE_GEOMETRY_MASK); Plane near_plane(xform.origin, -xform.basis.get_axis(2)); for (int j = 0; j < cull_count; j++) { Instance *instance = instance_shadow_cull_result[j]; if (!instance->visible || !((1 << instance->base_type) & VS::INSTANCE_GEOMETRY_MASK) || !static_cast(instance->base_data)->can_cast_shadows) { cull_count--; SWAP(instance_shadow_cull_result[j], instance_shadow_cull_result[cull_count]); j--; } else { if (static_cast(instance->base_data)->material_is_animated) { animated_material_found = true; } instance->depth = near_plane.distance_to(instance->transform.origin); instance->depth_layer = 0; } } VSG::scene_render->light_instance_set_shadow_transform(light->instance, cm, xform, radius, 0, i); VSG::scene_render->render_shadow(light->instance, p_shadow_atlas, i, (RasterizerScene::InstanceBase **)instance_shadow_cull_result, cull_count); } //restore the regular DP matrix VSG::scene_render->light_instance_set_shadow_transform(light->instance, CameraMatrix(), light_transform, radius, 0, 0); } } break; case VS::LIGHT_SPOT: { float radius = VSG::storage->light_get_param(p_instance->base, VS::LIGHT_PARAM_RANGE); float angle = VSG::storage->light_get_param(p_instance->base, VS::LIGHT_PARAM_SPOT_ANGLE); CameraMatrix cm; cm.set_perspective(angle * 2.0, 1.0, 0.01, radius); Vector planes = cm.get_projection_planes(light_transform); int cull_count = p_scenario->sps->cull_convex(planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, VS::INSTANCE_GEOMETRY_MASK); Plane near_plane(light_transform.origin, -light_transform.basis.get_axis(2)); for (int j = 0; j < cull_count; j++) { Instance *instance = instance_shadow_cull_result[j]; if (!instance->visible || !((1 << instance->base_type) & VS::INSTANCE_GEOMETRY_MASK) || !static_cast(instance->base_data)->can_cast_shadows) { cull_count--; SWAP(instance_shadow_cull_result[j], instance_shadow_cull_result[cull_count]); j--; } else { if (static_cast(instance->base_data)->material_is_animated) { animated_material_found = true; } instance->depth = near_plane.distance_to(instance->transform.origin); instance->depth_layer = 0; } } VSG::scene_render->light_instance_set_shadow_transform(light->instance, cm, light_transform, radius, 0, 0); VSG::scene_render->render_shadow(light->instance, p_shadow_atlas, 0, (RasterizerScene::InstanceBase **)instance_shadow_cull_result, cull_count); } break; } return animated_material_found; } void VisualServerScene::render_camera(RID p_camera, RID p_scenario, Size2 p_viewport_size, RID p_shadow_atlas) { // render to mono camera #ifndef _3D_DISABLED Camera *camera = camera_owner.getornull(p_camera); ERR_FAIL_COND(!camera); /* STEP 1 - SETUP CAMERA */ CameraMatrix camera_matrix; bool ortho = false; switch (camera->type) { case Camera::ORTHOGONAL: { camera_matrix.set_orthogonal( camera->size, p_viewport_size.width / (float)p_viewport_size.height, camera->znear, camera->zfar, camera->vaspect); ortho = true; } break; case Camera::PERSPECTIVE: { camera_matrix.set_perspective( camera->fov, p_viewport_size.width / (float)p_viewport_size.height, camera->znear, camera->zfar, camera->vaspect); ortho = false; } break; case Camera::FRUSTUM: { camera_matrix.set_frustum( camera->size, p_viewport_size.width / (float)p_viewport_size.height, camera->offset, camera->znear, camera->zfar, camera->vaspect); ortho = false; } break; } _prepare_scene(camera->transform, camera_matrix, ortho, camera->env, camera->visible_layers, p_scenario, p_shadow_atlas, RID()); _render_scene(camera->transform, camera_matrix, ortho, camera->env, p_scenario, p_shadow_atlas, RID(), -1); #endif } void VisualServerScene::render_camera(Ref &p_interface, ARVRInterface::Eyes p_eye, RID p_camera, RID p_scenario, Size2 p_viewport_size, RID p_shadow_atlas) { // render for AR/VR interface Camera *camera = camera_owner.getornull(p_camera); ERR_FAIL_COND(!camera); /* SETUP CAMERA, we are ignoring type and FOV here */ float aspect = p_viewport_size.width / (float)p_viewport_size.height; CameraMatrix camera_matrix = p_interface->get_projection_for_eye(p_eye, aspect, camera->znear, camera->zfar); // We also ignore our camera position, it will have been positioned with a slightly old tracking position. // Instead we take our origin point and have our ar/vr interface add fresh tracking data! Whoohoo! Transform world_origin = ARVRServer::get_singleton()->get_world_origin(); Transform cam_transform = p_interface->get_transform_for_eye(p_eye, world_origin); // For stereo render we only prepare for our left eye and then reuse the outcome for our right eye if (p_eye == ARVRInterface::EYE_LEFT) { ///@TODO possibly move responsibility for this into our ARVRServer or ARVRInterface? // Center our transform, we assume basis is equal. Transform mono_transform = cam_transform; Transform right_transform = p_interface->get_transform_for_eye(ARVRInterface::EYE_RIGHT, world_origin); mono_transform.origin += right_transform.origin; mono_transform.origin *= 0.5; // We need to combine our projection frustums for culling. // Ideally we should use our clipping planes for this and combine them, // however our shadow map logic uses our projection matrix. // Note: as our left and right frustums should be mirrored, we don't need our right projection matrix. // - get some base values we need float eye_dist = (mono_transform.origin - cam_transform.origin).length(); float z_near = camera_matrix.get_z_near(); // get our near plane float z_far = camera_matrix.get_z_far(); // get our far plane float width = (2.0 * z_near) / camera_matrix.matrix[0][0]; float x_shift = width * camera_matrix.matrix[2][0]; float height = (2.0 * z_near) / camera_matrix.matrix[1][1]; float y_shift = height * camera_matrix.matrix[2][1]; // printf("Eye_dist = %f, Near = %f, Far = %f, Width = %f, Shift = %f\n", eye_dist, z_near, z_far, width, x_shift); // - calculate our near plane size (horizontal only, right_near is mirrored) float left_near = -eye_dist - ((width - x_shift) * 0.5); // - calculate our far plane size (horizontal only, right_far is mirrored) float left_far = -eye_dist - (z_far * (width - x_shift) * 0.5 / z_near); float left_far_right_eye = eye_dist - (z_far * (width + x_shift) * 0.5 / z_near); if (left_far > left_far_right_eye) { // on displays smaller then double our iod, the right eye far frustrum can overtake the left eyes. left_far = left_far_right_eye; } // - figure out required z-shift float slope = (left_far - left_near) / (z_far - z_near); float z_shift = (left_near / slope) - z_near; // - figure out new vertical near plane size (this will be slightly oversized thanks to our z-shift) float top_near = (height - y_shift) * 0.5; top_near += (top_near / z_near) * z_shift; float bottom_near = -(height + y_shift) * 0.5; bottom_near += (bottom_near / z_near) * z_shift; // printf("Left_near = %f, Left_far = %f, Top_near = %f, Bottom_near = %f, Z_shift = %f\n", left_near, left_far, top_near, bottom_near, z_shift); // - generate our frustum CameraMatrix combined_matrix; combined_matrix.set_frustum(left_near, -left_near, bottom_near, top_near, z_near + z_shift, z_far + z_shift); // and finally move our camera back Transform apply_z_shift; apply_z_shift.origin = Vector3(0.0, 0.0, z_shift); // z negative is forward so this moves it backwards mono_transform *= apply_z_shift; // now prepare our scene with our adjusted transform projection matrix _prepare_scene(mono_transform, combined_matrix, false, camera->env, camera->visible_layers, p_scenario, p_shadow_atlas, RID()); } else if (p_eye == ARVRInterface::EYE_MONO) { // For mono render, prepare as per usual _prepare_scene(cam_transform, camera_matrix, false, camera->env, camera->visible_layers, p_scenario, p_shadow_atlas, RID()); } // And render our scene... _render_scene(cam_transform, camera_matrix, false, camera->env, p_scenario, p_shadow_atlas, RID(), -1); }; void VisualServerScene::_prepare_scene(const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, RID p_force_environment, uint32_t p_visible_layers, RID p_scenario, RID p_shadow_atlas, RID p_reflection_probe) { // Note, in stereo rendering: // - p_cam_transform will be a transform in the middle of our two eyes // - p_cam_projection is a wider frustrum that encompasses both eyes Scenario *scenario = scenario_owner.getornull(p_scenario); render_pass++; uint32_t camera_layer_mask = p_visible_layers; VSG::scene_render->set_scene_pass(render_pass); //rasterizer->set_camera(camera->transform, camera_matrix,ortho); Vector planes = p_cam_projection.get_projection_planes(p_cam_transform); Plane near_plane(p_cam_transform.origin, -p_cam_transform.basis.get_axis(2).normalized()); float z_far = p_cam_projection.get_z_far(); /* STEP 2 - CULL */ instance_cull_count = scenario->sps->cull_convex(planes, instance_cull_result, MAX_INSTANCE_CULL); light_cull_count = 0; reflection_probe_cull_count = 0; //light_samplers_culled=0; /* print_line("OT: "+rtos( (OS::get_singleton()->get_ticks_usec()-t)/1000.0)); print_line("OTO: "+itos(p_scenario->octree.get_octant_count())); print_line("OTE: "+itos(p_scenario->octree.get_elem_count())); print_line("OTP: "+itos(p_scenario->octree.get_pair_count())); */ /* STEP 3 - PROCESS PORTALS, VALIDATE ROOMS */ //removed, will replace with culling /* STEP 4 - REMOVE FURTHER CULLED OBJECTS, ADD LIGHTS */ for (int i = 0; i < instance_cull_count; i++) { Instance *ins = instance_cull_result[i]; bool keep = false; if ((camera_layer_mask & ins->layer_mask) == 0) { //failure } else if (ins->base_type == VS::INSTANCE_LIGHT && ins->visible) { if (light_cull_count < MAX_LIGHTS_CULLED) { InstanceLightData *light = static_cast(ins->base_data); if (!light->geometries.empty()) { //do not add this light if no geometry is affected by it.. light_cull_result[light_cull_count] = ins; light_instance_cull_result[light_cull_count] = light->instance; if (p_shadow_atlas.is_valid() && VSG::storage->light_has_shadow(ins->base)) { VSG::scene_render->light_instance_mark_visible(light->instance); //mark it visible for shadow allocation later } light_cull_count++; } } } else if (ins->base_type == VS::INSTANCE_REFLECTION_PROBE && ins->visible) { if (reflection_probe_cull_count < MAX_REFLECTION_PROBES_CULLED) { InstanceReflectionProbeData *reflection_probe = static_cast(ins->base_data); if (p_reflection_probe != reflection_probe->instance) { //avoid entering The Matrix if (!reflection_probe->geometries.empty()) { //do not add this light if no geometry is affected by it.. if (reflection_probe->reflection_dirty || VSG::scene_render->reflection_probe_instance_needs_redraw(reflection_probe->instance)) { if (!reflection_probe->update_list.in_list()) { reflection_probe->render_step = 0; reflection_probe_render_list.add_last(&reflection_probe->update_list); } reflection_probe->reflection_dirty = false; } if (VSG::scene_render->reflection_probe_instance_has_reflection(reflection_probe->instance)) { reflection_probe_instance_cull_result[reflection_probe_cull_count] = reflection_probe->instance; reflection_probe_cull_count++; } } } } } else if (ins->base_type == VS::INSTANCE_GI_PROBE && ins->visible) { InstanceGIProbeData *gi_probe = static_cast(ins->base_data); if (!gi_probe->update_element.in_list()) { gi_probe_update_list.add(&gi_probe->update_element); } } else if (((1 << ins->base_type) & VS::INSTANCE_GEOMETRY_MASK) && ins->visible && ins->cast_shadows != VS::SHADOW_CASTING_SETTING_SHADOWS_ONLY) { keep = true; InstanceGeometryData *geom = static_cast(ins->base_data); if (ins->redraw_if_visible) { VisualServerRaster::redraw_request(); } if (ins->base_type == VS::INSTANCE_PARTICLES) { //particles visible? process them if (VSG::storage->particles_is_inactive(ins->base)) { //but if nothing is going on, don't do it. keep = false; } else { VSG::storage->particles_request_process(ins->base); //particles visible? request redraw VisualServerRaster::redraw_request(); } } if (geom->lighting_dirty) { int l = 0; //only called when lights AABB enter/exit this geometry ins->light_instances.resize(geom->lighting.size()); for (List::Element *E = geom->lighting.front(); E; E = E->next()) { InstanceLightData *light = static_cast(E->get()->base_data); ins->light_instances.write[l++] = light->instance; } geom->lighting_dirty = false; } if (geom->reflection_dirty) { int l = 0; //only called when reflection probe AABB enter/exit this geometry ins->reflection_probe_instances.resize(geom->reflection_probes.size()); for (List::Element *E = geom->reflection_probes.front(); E; E = E->next()) { InstanceReflectionProbeData *reflection_probe = static_cast(E->get()->base_data); ins->reflection_probe_instances.write[l++] = reflection_probe->instance; } geom->reflection_dirty = false; } if (geom->gi_probes_dirty) { int l = 0; //only called when reflection probe AABB enter/exit this geometry ins->gi_probe_instances.resize(geom->gi_probes.size()); for (List::Element *E = geom->gi_probes.front(); E; E = E->next()) { InstanceGIProbeData *gi_probe = static_cast(E->get()->base_data); ins->gi_probe_instances.write[l++] = gi_probe->probe_instance; } geom->gi_probes_dirty = false; } ins->depth = near_plane.distance_to(ins->transform.origin); ins->depth_layer = CLAMP(int(ins->depth * 16 / z_far), 0, 15); } if (!keep) { // remove, no reason to keep instance_cull_count--; SWAP(instance_cull_result[i], instance_cull_result[instance_cull_count]); i--; ins->last_render_pass = 0; // make invalid } else { ins->last_render_pass = render_pass; } } /* STEP 5 - PROCESS LIGHTS */ RID *directional_light_ptr = &light_instance_cull_result[light_cull_count]; directional_light_count = 0; // directional lights { Instance **lights_with_shadow = (Instance **)alloca(sizeof(Instance *) * scenario->directional_lights.size()); int directional_shadow_count = 0; for (List::Element *E = scenario->directional_lights.front(); E; E = E->next()) { if (light_cull_count + directional_light_count >= MAX_LIGHTS_CULLED) { break; } if (!E->get()->visible) continue; InstanceLightData *light = static_cast(E->get()->base_data); //check shadow.. if (light) { if (p_shadow_atlas.is_valid() && VSG::storage->light_has_shadow(E->get()->base)) { lights_with_shadow[directional_shadow_count++] = E->get(); } //add to list directional_light_ptr[directional_light_count++] = light->instance; } } VSG::scene_render->set_directional_shadow_count(directional_shadow_count); for (int i = 0; i < directional_shadow_count; i++) { _light_instance_update_shadow(lights_with_shadow[i], p_cam_transform, p_cam_projection, p_cam_orthogonal, p_shadow_atlas, scenario); } } { //setup shadow maps //SortArray sorter; //sorter.sort(light_cull_result,light_cull_count); for (int i = 0; i < light_cull_count; i++) { Instance *ins = light_cull_result[i]; if (!p_shadow_atlas.is_valid() || !VSG::storage->light_has_shadow(ins->base)) continue; InstanceLightData *light = static_cast(ins->base_data); float coverage = 0.f; { //compute coverage Transform cam_xf = p_cam_transform; float zn = p_cam_projection.get_z_near(); Plane p(cam_xf.origin + cam_xf.basis.get_axis(2) * -zn, -cam_xf.basis.get_axis(2)); //camera near plane // near plane half width and height Vector2 vp_half_extents = p_cam_projection.get_viewport_half_extents(); switch (VSG::storage->light_get_type(ins->base)) { case VS::LIGHT_OMNI: { float radius = VSG::storage->light_get_param(ins->base, VS::LIGHT_PARAM_RANGE); //get two points parallel to near plane Vector3 points[2] = { ins->transform.origin, ins->transform.origin + cam_xf.basis.get_axis(0) * radius }; if (!p_cam_orthogonal) { //if using perspetive, map them to near plane for (int j = 0; j < 2; j++) { if (p.distance_to(points[j]) < 0) { points[j].z = -zn; //small hack to keep size constant when hitting the screen } p.intersects_segment(cam_xf.origin, points[j], &points[j]); //map to plane } } float screen_diameter = points[0].distance_to(points[1]) * 2; coverage = screen_diameter / (vp_half_extents.x + vp_half_extents.y); } break; case VS::LIGHT_SPOT: { float radius = VSG::storage->light_get_param(ins->base, VS::LIGHT_PARAM_RANGE); float angle = VSG::storage->light_get_param(ins->base, VS::LIGHT_PARAM_SPOT_ANGLE); float w = radius * Math::sin(Math::deg2rad(angle)); float d = radius * Math::cos(Math::deg2rad(angle)); Vector3 base = ins->transform.origin - ins->transform.basis.get_axis(2).normalized() * d; Vector3 points[2] = { base, base + cam_xf.basis.get_axis(0) * w }; if (!p_cam_orthogonal) { //if using perspetive, map them to near plane for (int j = 0; j < 2; j++) { if (p.distance_to(points[j]) < 0) { points[j].z = -zn; //small hack to keep size constant when hitting the screen } p.intersects_segment(cam_xf.origin, points[j], &points[j]); //map to plane } } float screen_diameter = points[0].distance_to(points[1]) * 2; coverage = screen_diameter / (vp_half_extents.x + vp_half_extents.y); } break; default: { ERR_PRINT("Invalid Light Type"); } } } if (light->shadow_dirty) { light->last_version++; light->shadow_dirty = false; } bool redraw = VSG::scene_render->shadow_atlas_update_light(p_shadow_atlas, light->instance, coverage, light->last_version); if (redraw) { //must redraw! light->shadow_dirty = _light_instance_update_shadow(ins, p_cam_transform, p_cam_projection, p_cam_orthogonal, p_shadow_atlas, scenario); } } } } void VisualServerScene::_render_scene(const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, RID p_force_environment, RID p_scenario, RID p_shadow_atlas, RID p_reflection_probe, int p_reflection_probe_pass) { Scenario *scenario = scenario_owner.getornull(p_scenario); /* ENVIRONMENT */ RID environment; if (p_force_environment.is_valid()) //camera has more environment priority environment = p_force_environment; else if (scenario->environment.is_valid()) environment = scenario->environment; else environment = scenario->fallback_environment; /* PROCESS GEOMETRY AND DRAW SCENE */ VSG::scene_render->render_scene(p_cam_transform, p_cam_projection, p_cam_orthogonal, (RasterizerScene::InstanceBase **)instance_cull_result, instance_cull_count, light_instance_cull_result, light_cull_count + directional_light_count, reflection_probe_instance_cull_result, reflection_probe_cull_count, environment, p_shadow_atlas, scenario->reflection_atlas, p_reflection_probe, p_reflection_probe_pass); } void VisualServerScene::render_empty_scene(RID p_scenario, RID p_shadow_atlas) { #ifndef _3D_DISABLED Scenario *scenario = scenario_owner.getornull(p_scenario); RID environment; if (scenario->environment.is_valid()) environment = scenario->environment; else environment = scenario->fallback_environment; VSG::scene_render->render_scene(Transform(), CameraMatrix(), true, NULL, 0, NULL, 0, NULL, 0, environment, p_shadow_atlas, scenario->reflection_atlas, RID(), 0); #endif } bool VisualServerScene::_render_reflection_probe_step(Instance *p_instance, int p_step) { InstanceReflectionProbeData *reflection_probe = static_cast(p_instance->base_data); Scenario *scenario = p_instance->scenario; ERR_FAIL_COND_V(!scenario, true); VisualServerRaster::redraw_request(); //update, so it updates in editor if (p_step == 0) { if (!VSG::scene_render->reflection_probe_instance_begin_render(reflection_probe->instance, scenario->reflection_atlas)) { return true; //sorry, all full :( } } if (p_step >= 0 && p_step < 6) { static const Vector3 view_normals[6] = { Vector3(-1, 0, 0), Vector3(+1, 0, 0), Vector3(0, -1, 0), Vector3(0, +1, 0), Vector3(0, 0, -1), Vector3(0, 0, +1) }; Vector3 extents = VSG::storage->reflection_probe_get_extents(p_instance->base); Vector3 origin_offset = VSG::storage->reflection_probe_get_origin_offset(p_instance->base); float max_distance = VSG::storage->reflection_probe_get_origin_max_distance(p_instance->base); Vector3 edge = view_normals[p_step] * extents; float distance = ABS(view_normals[p_step].dot(edge) - view_normals[p_step].dot(origin_offset)); //distance from origin offset to actual view distance limit max_distance = MAX(max_distance, distance); //render cubemap side CameraMatrix cm; cm.set_perspective(90, 1, 0.01, max_distance); static const Vector3 view_up[6] = { Vector3(0, -1, 0), Vector3(0, -1, 0), Vector3(0, 0, -1), Vector3(0, 0, +1), Vector3(0, -1, 0), Vector3(0, -1, 0) }; Transform local_view; local_view.set_look_at(origin_offset, origin_offset + view_normals[p_step], view_up[p_step]); Transform xform = p_instance->transform * local_view; RID shadow_atlas; if (VSG::storage->reflection_probe_renders_shadows(p_instance->base)) { shadow_atlas = scenario->reflection_probe_shadow_atlas; } _prepare_scene(xform, cm, false, RID(), VSG::storage->reflection_probe_get_cull_mask(p_instance->base), p_instance->scenario->self, shadow_atlas, reflection_probe->instance); _render_scene(xform, cm, false, RID(), p_instance->scenario->self, shadow_atlas, reflection_probe->instance, p_step); } else { //do roughness postprocess step until it believes it's done return VSG::scene_render->reflection_probe_instance_postprocess_step(reflection_probe->instance); } return false; } void VisualServerScene::_gi_probe_fill_local_data(int p_idx, int p_level, int p_x, int p_y, int p_z, const GIProbeDataCell *p_cell, const GIProbeDataHeader *p_header, InstanceGIProbeData::LocalData *p_local_data, Vector *prev_cell) { if ((uint32_t)p_level == p_header->cell_subdiv - 1) { Vector3 emission; emission.x = (p_cell[p_idx].emission >> 24) / 255.0; emission.y = ((p_cell[p_idx].emission >> 16) & 0xFF) / 255.0; emission.z = ((p_cell[p_idx].emission >> 8) & 0xFF) / 255.0; float l = (p_cell[p_idx].emission & 0xFF) / 255.0; l *= 8.0; emission *= l; p_local_data[p_idx].energy[0] = uint16_t(emission.x * 1024); //go from 0 to 1024 for light p_local_data[p_idx].energy[1] = uint16_t(emission.y * 1024); //go from 0 to 1024 for light p_local_data[p_idx].energy[2] = uint16_t(emission.z * 1024); //go from 0 to 1024 for light } else { p_local_data[p_idx].energy[0] = 0; p_local_data[p_idx].energy[1] = 0; p_local_data[p_idx].energy[2] = 0; int half = (1 << (p_header->cell_subdiv - 1)) >> (p_level + 1); for (int i = 0; i < 8; i++) { uint32_t child = p_cell[p_idx].children[i]; if (child == 0xFFFFFFFF) continue; int x = p_x; int y = p_y; int z = p_z; if (i & 1) x += half; if (i & 2) y += half; if (i & 4) z += half; _gi_probe_fill_local_data(child, p_level + 1, x, y, z, p_cell, p_header, p_local_data, prev_cell); } } //position for each part of the mipmaped texture p_local_data[p_idx].pos[0] = p_x >> (p_header->cell_subdiv - p_level - 1); p_local_data[p_idx].pos[1] = p_y >> (p_header->cell_subdiv - p_level - 1); p_local_data[p_idx].pos[2] = p_z >> (p_header->cell_subdiv - p_level - 1); prev_cell[p_level].push_back(p_idx); } void VisualServerScene::_gi_probe_bake_threads(void *self) { VisualServerScene *vss = (VisualServerScene *)self; vss->_gi_probe_bake_thread(); } void VisualServerScene::_setup_gi_probe(Instance *p_instance) { InstanceGIProbeData *probe = static_cast(p_instance->base_data); if (probe->dynamic.probe_data.is_valid()) { VSG::storage->free(probe->dynamic.probe_data); probe->dynamic.probe_data = RID(); } probe->dynamic.light_data = VSG::storage->gi_probe_get_dynamic_data(p_instance->base); if (probe->dynamic.light_data.size() == 0) return; //using dynamic data PoolVector::Read r = probe->dynamic.light_data.read(); const GIProbeDataHeader *header = (GIProbeDataHeader *)r.ptr(); probe->dynamic.local_data.resize(header->cell_count); int cell_count = probe->dynamic.local_data.size(); PoolVector::Write ldw = probe->dynamic.local_data.write(); const GIProbeDataCell *cells = (GIProbeDataCell *)&r[16]; probe->dynamic.level_cell_lists.resize(header->cell_subdiv); _gi_probe_fill_local_data(0, 0, 0, 0, 0, cells, header, ldw.ptr(), probe->dynamic.level_cell_lists.ptrw()); bool compress = VSG::storage->gi_probe_is_compressed(p_instance->base); probe->dynamic.compression = compress ? VSG::storage->gi_probe_get_dynamic_data_get_preferred_compression() : RasterizerStorage::GI_PROBE_UNCOMPRESSED; probe->dynamic.probe_data = VSG::storage->gi_probe_dynamic_data_create(header->width, header->height, header->depth, probe->dynamic.compression); probe->dynamic.bake_dynamic_range = VSG::storage->gi_probe_get_dynamic_range(p_instance->base); probe->dynamic.mipmaps_3d.clear(); probe->dynamic.propagate = VSG::storage->gi_probe_get_propagation(p_instance->base); probe->dynamic.grid_size[0] = header->width; probe->dynamic.grid_size[1] = header->height; probe->dynamic.grid_size[2] = header->depth; int size_limit = 1; int size_divisor = 1; if (probe->dynamic.compression == RasterizerStorage::GI_PROBE_S3TC) { size_limit = 4; size_divisor = 4; } for (int i = 0; i < (int)header->cell_subdiv; i++) { int x = header->width >> i; int y = header->height >> i; int z = header->depth >> i; //create and clear mipmap PoolVector mipmap; int size = x * y * z * 4; size /= size_divisor; mipmap.resize(size); PoolVector::Write w = mipmap.write(); zeromem(w.ptr(), size); w.release(); probe->dynamic.mipmaps_3d.push_back(mipmap); if (x <= size_limit || y <= size_limit || z <= size_limit) break; } probe->dynamic.updating_stage = GI_UPDATE_STAGE_CHECK; probe->invalid = false; probe->dynamic.enabled = true; Transform cell_to_xform = VSG::storage->gi_probe_get_to_cell_xform(p_instance->base); AABB bounds = VSG::storage->gi_probe_get_bounds(p_instance->base); float cell_size = VSG::storage->gi_probe_get_cell_size(p_instance->base); probe->dynamic.light_to_cell_xform = cell_to_xform * p_instance->transform.affine_inverse(); VSG::scene_render->gi_probe_instance_set_light_data(probe->probe_instance, p_instance->base, probe->dynamic.probe_data); VSG::scene_render->gi_probe_instance_set_transform_to_data(probe->probe_instance, probe->dynamic.light_to_cell_xform); VSG::scene_render->gi_probe_instance_set_bounds(probe->probe_instance, bounds.size / cell_size); probe->base_version = VSG::storage->gi_probe_get_version(p_instance->base); //if compression is S3TC, fill it up if (probe->dynamic.compression == RasterizerStorage::GI_PROBE_S3TC) { //create all blocks Vector > comp_blocks; int mipmap_count = probe->dynamic.mipmaps_3d.size(); comp_blocks.resize(mipmap_count); for (int i = 0; i < cell_count; i++) { const GIProbeDataCell &c = cells[i]; const InstanceGIProbeData::LocalData &ld = ldw[i]; int level = c.level_alpha >> 16; int mipmap = header->cell_subdiv - level - 1; if (mipmap >= mipmap_count) continue; //uninteresting int blockx = (ld.pos[0] >> 2); int blocky = (ld.pos[1] >> 2); int blockz = (ld.pos[2]); //compression is x/y only int blockw = (header->width >> mipmap) >> 2; int blockh = (header->height >> mipmap) >> 2; //print_line("cell "+itos(i)+" level "+itos(level)+"mipmap: "+itos(mipmap)+" pos: "+Vector3(blockx,blocky,blockz)+" size "+Vector2(blockw,blockh)); uint32_t key = blockz * blockw * blockh + blocky * blockw + blockx; Map &cmap = comp_blocks.write[mipmap]; if (!cmap.has(key)) { InstanceGIProbeData::CompBlockS3TC k; k.offset = key; //use offset as counter first k.source_count = 0; cmap[key] = k; } InstanceGIProbeData::CompBlockS3TC &k = cmap[key]; ERR_CONTINUE(k.source_count == 16); k.sources[k.source_count++] = i; } //fix the blocks, precomputing what is needed probe->dynamic.mipmaps_s3tc.resize(mipmap_count); for (int i = 0; i < mipmap_count; i++) { //print_line("S3TC level: " + itos(i) + " blocks: " + itos(comp_blocks[i].size())); probe->dynamic.mipmaps_s3tc.write[i].resize(comp_blocks[i].size()); PoolVector::Write w = probe->dynamic.mipmaps_s3tc.write[i].write(); int block_idx = 0; for (Map::Element *E = comp_blocks[i].front(); E; E = E->next()) { InstanceGIProbeData::CompBlockS3TC k = E->get(); //PRECOMPUTE ALPHA int max_alpha = -100000; int min_alpha = k.source_count == 16 ? 100000 : 0; //if the block is not completely full, minimum is always 0, (and those blocks will map to 1, which will be zero) uint8_t alpha_block[4][4] = { { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 } }; for (uint32_t j = 0; j < k.source_count; j++) { int alpha = (cells[k.sources[j]].level_alpha >> 8) & 0xFF; if (alpha < min_alpha) min_alpha = alpha; if (alpha > max_alpha) max_alpha = alpha; //fill up alpha block alpha_block[ldw[k.sources[j]].pos[0] % 4][ldw[k.sources[j]].pos[1] % 4] = alpha; } //use the first mode (8 adjustable levels) k.alpha[0] = max_alpha; k.alpha[1] = min_alpha; uint64_t alpha_bits = 0; if (max_alpha != min_alpha) { int idx = 0; for (int y = 0; y < 4; y++) { for (int x = 0; x < 4; x++) { //subtract minimum uint32_t a = uint32_t(alpha_block[x][y]) - min_alpha; //convert range to 3 bits a = int((a * 7.0 / (max_alpha - min_alpha)) + 0.5); a = MIN(a, 7); //just to be sure a = 7 - a; //because range is inverted in this mode if (a == 0) { //do none, remain } else if (a == 7) { a = 1; } else { a = a + 1; } alpha_bits |= uint64_t(a) << (idx * 3); idx++; } } } k.alpha[2] = (alpha_bits >> 0) & 0xFF; k.alpha[3] = (alpha_bits >> 8) & 0xFF; k.alpha[4] = (alpha_bits >> 16) & 0xFF; k.alpha[5] = (alpha_bits >> 24) & 0xFF; k.alpha[6] = (alpha_bits >> 32) & 0xFF; k.alpha[7] = (alpha_bits >> 40) & 0xFF; w[block_idx++] = k; } } } } void VisualServerScene::_gi_probe_bake_thread() { while (true) { probe_bake_sem.wait(); if (probe_bake_thread_exit) { break; } Instance *to_bake = NULL; probe_bake_mutex.lock(); if (!probe_bake_list.empty()) { to_bake = probe_bake_list.front()->get(); probe_bake_list.pop_front(); } probe_bake_mutex.unlock(); if (!to_bake) continue; _bake_gi_probe(to_bake); } } uint32_t VisualServerScene::_gi_bake_find_cell(const GIProbeDataCell *cells, int x, int y, int z, int p_cell_subdiv) { uint32_t cell = 0; int ofs_x = 0; int ofs_y = 0; int ofs_z = 0; int size = 1 << (p_cell_subdiv - 1); int half = size / 2; if (x < 0 || x >= size) return -1; if (y < 0 || y >= size) return -1; if (z < 0 || z >= size) return -1; for (int i = 0; i < p_cell_subdiv - 1; i++) { const GIProbeDataCell *bc = &cells[cell]; int child = 0; if (x >= ofs_x + half) { child |= 1; ofs_x += half; } if (y >= ofs_y + half) { child |= 2; ofs_y += half; } if (z >= ofs_z + half) { child |= 4; ofs_z += half; } cell = bc->children[child]; if (cell == 0xFFFFFFFF) return 0xFFFFFFFF; half >>= 1; } return cell; } static float _get_normal_advance(const Vector3 &p_normal) { Vector3 normal = p_normal; Vector3 unorm = normal.abs(); if ((unorm.x >= unorm.y) && (unorm.x >= unorm.z)) { // x code unorm = normal.x > 0.0 ? Vector3(1.0, 0.0, 0.0) : Vector3(-1.0, 0.0, 0.0); } else if ((unorm.y > unorm.x) && (unorm.y >= unorm.z)) { // y code unorm = normal.y > 0.0 ? Vector3(0.0, 1.0, 0.0) : Vector3(0.0, -1.0, 0.0); } else if ((unorm.z > unorm.x) && (unorm.z > unorm.y)) { // z code unorm = normal.z > 0.0 ? Vector3(0.0, 0.0, 1.0) : Vector3(0.0, 0.0, -1.0); } else { // oh-no we messed up code // has to be unorm = Vector3(1.0, 0.0, 0.0); } return 1.0 / normal.dot(unorm); } void VisualServerScene::_bake_gi_probe_light(const GIProbeDataHeader *header, const GIProbeDataCell *cells, InstanceGIProbeData::LocalData *local_data, const uint32_t *leaves, int p_leaf_count, const InstanceGIProbeData::LightCache &light_cache, int p_sign) { int light_r = int(light_cache.color.r * light_cache.energy * 1024.0) * p_sign; int light_g = int(light_cache.color.g * light_cache.energy * 1024.0) * p_sign; int light_b = int(light_cache.color.b * light_cache.energy * 1024.0) * p_sign; float limits[3] = { float(header->width), float(header->height), float(header->depth) }; Plane clip[3]; int clip_planes = 0; switch (light_cache.type) { case VS::LIGHT_DIRECTIONAL: { float max_len = Vector3(limits[0], limits[1], limits[2]).length() * 1.1; Vector3 light_axis = -light_cache.transform.basis.get_axis(2).normalized(); for (int i = 0; i < 3; i++) { if (Math::is_zero_approx(light_axis[i])) continue; clip[clip_planes].normal[i] = 1.0; if (light_axis[i] < 0) { clip[clip_planes].d = limits[i] + 1; } else { clip[clip_planes].d -= 1.0; } clip_planes++; } float distance_adv = _get_normal_advance(light_axis); int success_count = 0; // uint64_t us = OS::get_singleton()->get_ticks_usec(); for (int i = 0; i < p_leaf_count; i++) { uint32_t idx = leaves[i]; const GIProbeDataCell *cell = &cells[idx]; InstanceGIProbeData::LocalData *light = &local_data[idx]; Vector3 to(light->pos[0] + 0.5, light->pos[1] + 0.5, light->pos[2] + 0.5); to += -light_axis.sign() * 0.47; //make it more likely to receive a ray Vector3 norm( (((cells[idx].normal >> 16) & 0xFF) / 255.0) * 2.0 - 1.0, (((cells[idx].normal >> 8) & 0xFF) / 255.0) * 2.0 - 1.0, (((cells[idx].normal >> 0) & 0xFF) / 255.0) * 2.0 - 1.0); float att = norm.dot(-light_axis); if (att < 0.001) { //not lighting towards this continue; } Vector3 from = to - max_len * light_axis; for (int j = 0; j < clip_planes; j++) { clip[j].intersects_segment(from, to, &from); } float distance = (to - from).length(); distance += distance_adv - Math::fmod(distance, distance_adv); //make it reach the center of the box always from = to - light_axis * distance; uint32_t result = 0xFFFFFFFF; while (distance > -distance_adv) { //use this to avoid precision errors result = _gi_bake_find_cell(cells, int(floor(from.x)), int(floor(from.y)), int(floor(from.z)), header->cell_subdiv); if (result != 0xFFFFFFFF) { break; } from += light_axis * distance_adv; distance -= distance_adv; } if (result == idx) { //cell hit itself! hooray! light->energy[0] += int32_t(light_r * att * ((cell->albedo >> 16) & 0xFF) / 255.0); light->energy[1] += int32_t(light_g * att * ((cell->albedo >> 8) & 0xFF) / 255.0); light->energy[2] += int32_t(light_b * att * ((cell->albedo) & 0xFF) / 255.0); success_count++; } } // print_line("BAKE TIME: " + rtos((OS::get_singleton()->get_ticks_usec() - us) / 1000000.0)); // print_line("valid cells: " + itos(success_count)); } break; case VS::LIGHT_OMNI: case VS::LIGHT_SPOT: { // uint64_t us = OS::get_singleton()->get_ticks_usec(); Vector3 light_pos = light_cache.transform.origin; Vector3 spot_axis = -light_cache.transform.basis.get_axis(2).normalized(); float local_radius = light_cache.radius * light_cache.transform.basis.get_axis(2).length(); for (int i = 0; i < p_leaf_count; i++) { uint32_t idx = leaves[i]; const GIProbeDataCell *cell = &cells[idx]; InstanceGIProbeData::LocalData *light = &local_data[idx]; Vector3 to(light->pos[0] + 0.5, light->pos[1] + 0.5, light->pos[2] + 0.5); to += (light_pos - to).sign() * 0.47; //make it more likely to receive a ray Vector3 norm( (((cells[idx].normal >> 16) & 0xFF) / 255.0) * 2.0 - 1.0, (((cells[idx].normal >> 8) & 0xFF) / 255.0) * 2.0 - 1.0, (((cells[idx].normal >> 0) & 0xFF) / 255.0) * 2.0 - 1.0); Vector3 light_axis = (to - light_pos).normalized(); float distance_adv = _get_normal_advance(light_axis); float att = norm.dot(-light_axis); if (att < 0.001) { //not lighting towards this continue; } { float d = light_pos.distance_to(to); if (d + distance_adv > local_radius) continue; // too far away float dt = CLAMP((d + distance_adv) / local_radius, 0, 1); att *= powf(1.0 - dt, light_cache.attenuation); } if (light_cache.type == VS::LIGHT_SPOT) { float angle = Math::rad2deg(acos(light_axis.dot(spot_axis))); if (angle > light_cache.spot_angle) continue; float d = CLAMP(angle / light_cache.spot_angle, 0, 1); att *= powf(1.0 - d, light_cache.spot_attenuation); } clip_planes = 0; for (int c = 0; c < 3; c++) { if (Math::is_zero_approx(light_axis[c])) continue; clip[clip_planes].normal[c] = 1.0; if (light_axis[c] < 0) { clip[clip_planes].d = limits[c] + 1; } else { clip[clip_planes].d -= 1.0; } clip_planes++; } Vector3 from = light_pos; for (int j = 0; j < clip_planes; j++) { clip[j].intersects_segment(from, to, &from); } float distance = (to - from).length(); distance -= Math::fmod(distance, distance_adv); //make it reach the center of the box always, but this tame make it closer from = to - light_axis * distance; uint32_t result = 0xFFFFFFFF; while (distance > -distance_adv) { //use this to avoid precision errors result = _gi_bake_find_cell(cells, int(floor(from.x)), int(floor(from.y)), int(floor(from.z)), header->cell_subdiv); if (result != 0xFFFFFFFF) { break; } from += light_axis * distance_adv; distance -= distance_adv; } if (result == idx) { //cell hit itself! hooray! light->energy[0] += int32_t(light_r * att * ((cell->albedo >> 16) & 0xFF) / 255.0); light->energy[1] += int32_t(light_g * att * ((cell->albedo >> 8) & 0xFF) / 255.0); light->energy[2] += int32_t(light_b * att * ((cell->albedo) & 0xFF) / 255.0); } } //print_line("BAKE TIME: " + rtos((OS::get_singleton()->get_ticks_usec() - us) / 1000000.0)); } break; } } void VisualServerScene::_bake_gi_downscale_light(int p_idx, int p_level, const GIProbeDataCell *p_cells, const GIProbeDataHeader *p_header, InstanceGIProbeData::LocalData *p_local_data, float p_propagate) { //average light to upper level float divisor = 0; float sum[3] = { 0.0, 0.0, 0.0 }; for (int i = 0; i < 8; i++) { uint32_t child = p_cells[p_idx].children[i]; if (child == 0xFFFFFFFF) continue; if (p_level + 1 < (int)p_header->cell_subdiv - 1) { _bake_gi_downscale_light(child, p_level + 1, p_cells, p_header, p_local_data, p_propagate); } sum[0] += p_local_data[child].energy[0]; sum[1] += p_local_data[child].energy[1]; sum[2] += p_local_data[child].energy[2]; divisor += 1.0; } divisor = Math::lerp((float)8.0, divisor, p_propagate); sum[0] /= divisor; sum[1] /= divisor; sum[2] /= divisor; //divide by eight for average p_local_data[p_idx].energy[0] = Math::fast_ftoi(sum[0]); p_local_data[p_idx].energy[1] = Math::fast_ftoi(sum[1]); p_local_data[p_idx].energy[2] = Math::fast_ftoi(sum[2]); } void VisualServerScene::_bake_gi_probe(Instance *p_gi_probe) { InstanceGIProbeData *probe_data = static_cast(p_gi_probe->base_data); PoolVector::Read r = probe_data->dynamic.light_data.read(); const GIProbeDataHeader *header = (const GIProbeDataHeader *)r.ptr(); const GIProbeDataCell *cells = (const GIProbeDataCell *)&r[16]; int leaf_count = probe_data->dynamic.level_cell_lists[header->cell_subdiv - 1].size(); const uint32_t *leaves = probe_data->dynamic.level_cell_lists[header->cell_subdiv - 1].ptr(); PoolVector::Write ldw = probe_data->dynamic.local_data.write(); InstanceGIProbeData::LocalData *local_data = ldw.ptr(); //remove what must be removed for (Map::Element *E = probe_data->dynamic.light_cache.front(); E; E = E->next()) { RID rid = E->key(); const InstanceGIProbeData::LightCache &lc = E->get(); if ((!probe_data->dynamic.light_cache_changes.has(rid) || probe_data->dynamic.light_cache_changes[rid] != lc) && lc.visible) { //erase light data _bake_gi_probe_light(header, cells, local_data, leaves, leaf_count, lc, -1); } } //add what must be added for (Map::Element *E = probe_data->dynamic.light_cache_changes.front(); E; E = E->next()) { RID rid = E->key(); const InstanceGIProbeData::LightCache &lc = E->get(); if ((!probe_data->dynamic.light_cache.has(rid) || probe_data->dynamic.light_cache[rid] != lc) && lc.visible) { //add light data _bake_gi_probe_light(header, cells, local_data, leaves, leaf_count, lc, 1); } } SWAP(probe_data->dynamic.light_cache_changes, probe_data->dynamic.light_cache); //downscale to lower res levels _bake_gi_downscale_light(0, 0, cells, header, local_data, probe_data->dynamic.propagate); //plot result to 3D texture! if (probe_data->dynamic.compression == RasterizerStorage::GI_PROBE_UNCOMPRESSED) { for (int i = 0; i < (int)header->cell_subdiv; i++) { int stage = header->cell_subdiv - i - 1; if (stage >= probe_data->dynamic.mipmaps_3d.size()) continue; //no mipmap for this one //print_line("generating mipmap stage: " + itos(stage)); int level_cell_count = probe_data->dynamic.level_cell_lists[i].size(); const uint32_t *level_cells = probe_data->dynamic.level_cell_lists[i].ptr(); PoolVector::Write lw = probe_data->dynamic.mipmaps_3d.write[stage].write(); uint8_t *mipmapw = lw.ptr(); uint32_t sizes[3] = { header->width >> stage, header->height >> stage, header->depth >> stage }; for (int j = 0; j < level_cell_count; j++) { uint32_t idx = level_cells[j]; uint32_t r2 = (uint32_t(local_data[idx].energy[0]) / probe_data->dynamic.bake_dynamic_range) >> 2; uint32_t g = (uint32_t(local_data[idx].energy[1]) / probe_data->dynamic.bake_dynamic_range) >> 2; uint32_t b = (uint32_t(local_data[idx].energy[2]) / probe_data->dynamic.bake_dynamic_range) >> 2; uint32_t a = (cells[idx].level_alpha >> 8) & 0xFF; uint32_t mm_ofs = sizes[0] * sizes[1] * (local_data[idx].pos[2]) + sizes[0] * (local_data[idx].pos[1]) + (local_data[idx].pos[0]); mm_ofs *= 4; //for RGBA (4 bytes) mipmapw[mm_ofs + 0] = uint8_t(MIN(r2, 255)); mipmapw[mm_ofs + 1] = uint8_t(MIN(g, 255)); mipmapw[mm_ofs + 2] = uint8_t(MIN(b, 255)); mipmapw[mm_ofs + 3] = uint8_t(MIN(a, 255)); } } } else if (probe_data->dynamic.compression == RasterizerStorage::GI_PROBE_S3TC) { int mipmap_count = probe_data->dynamic.mipmaps_3d.size(); for (int mmi = 0; mmi < mipmap_count; mmi++) { PoolVector::Write mmw = probe_data->dynamic.mipmaps_3d.write[mmi].write(); int block_count = probe_data->dynamic.mipmaps_s3tc[mmi].size(); PoolVector::Read mmr = probe_data->dynamic.mipmaps_s3tc[mmi].read(); for (int i = 0; i < block_count; i++) { const InstanceGIProbeData::CompBlockS3TC &b = mmr[i]; uint8_t *blockptr = &mmw[b.offset * 16]; copymem(blockptr, b.alpha, 8); //copy alpha part, which is precomputed Vector3 colors[16]; for (uint32_t j = 0; j < b.source_count; j++) { colors[j].x = (local_data[b.sources[j]].energy[0] / float(probe_data->dynamic.bake_dynamic_range)) / 1024.0; colors[j].y = (local_data[b.sources[j]].energy[1] / float(probe_data->dynamic.bake_dynamic_range)) / 1024.0; colors[j].z = (local_data[b.sources[j]].energy[2] / float(probe_data->dynamic.bake_dynamic_range)) / 1024.0; } //super quick and dirty compression //find 2 most further apart float distance = 0; Vector3 from, to; if (b.source_count == 16) { //all cells are used so, find minmax between them int further_apart[2] = { 0, 0 }; for (uint32_t j = 0; j < b.source_count; j++) { for (uint32_t k = j + 1; k < b.source_count; k++) { float d = colors[j].distance_squared_to(colors[k]); if (d > distance) { distance = d; further_apart[0] = j; further_apart[1] = k; } } } from = colors[further_apart[0]]; to = colors[further_apart[1]]; } else { //if a block is missing, the priority is that this block remains black, //otherwise the geometry will appear deformed //correct shape wins over correct color in this case //average all colors first Vector3 average; for (uint32_t j = 0; j < b.source_count; j++) { average += colors[j]; } average.normalize(); //find max distance in normal from average for (uint32_t j = 0; j < b.source_count; j++) { float d = average.dot(colors[j]); distance = MAX(d, distance); } from = Vector3(); //from black to = average * distance; //find max distance } int indices[16]; uint16_t color_0 = 0; color_0 = CLAMP(int(from.x * 31), 0, 31) << 11; color_0 |= CLAMP(int(from.y * 63), 0, 63) << 5; color_0 |= CLAMP(int(from.z * 31), 0, 31); uint16_t color_1 = 0; color_1 = CLAMP(int(to.x * 31), 0, 31) << 11; color_1 |= CLAMP(int(to.y * 63), 0, 63) << 5; color_1 |= CLAMP(int(to.z * 31), 0, 31); if (color_1 > color_0) { SWAP(color_1, color_0); SWAP(from, to); } if (distance > 0) { Vector3 dir = (to - from).normalized(); for (uint32_t j = 0; j < b.source_count; j++) { float d = (colors[j] - from).dot(dir) / distance; indices[j] = int(d * 3 + 0.5); static const int index_swap[4] = { 0, 3, 1, 2 }; indices[j] = index_swap[CLAMP(indices[j], 0, 3)]; } } else { for (uint32_t j = 0; j < b.source_count; j++) { indices[j] = 0; } } //by default, 1 is black, otherwise it will be overridden by source uint32_t index_block[16] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; for (uint32_t j = 0; j < b.source_count; j++) { int x = local_data[b.sources[j]].pos[0] % 4; int y = local_data[b.sources[j]].pos[1] % 4; index_block[y * 4 + x] = indices[j]; } uint32_t encode = 0; for (int j = 0; j < 16; j++) { encode |= index_block[j] << (j * 2); } blockptr[8] = color_0 & 0xFF; blockptr[9] = (color_0 >> 8) & 0xFF; blockptr[10] = color_1 & 0xFF; blockptr[11] = (color_1 >> 8) & 0xFF; blockptr[12] = encode & 0xFF; blockptr[13] = (encode >> 8) & 0xFF; blockptr[14] = (encode >> 16) & 0xFF; blockptr[15] = (encode >> 24) & 0xFF; } } } //send back to main thread to update un little chunks probe_bake_mutex.lock(); probe_data->dynamic.updating_stage = GI_UPDATE_STAGE_UPLOADING; probe_bake_mutex.unlock(); } bool VisualServerScene::_check_gi_probe(Instance *p_gi_probe) { InstanceGIProbeData *probe_data = static_cast(p_gi_probe->base_data); probe_data->dynamic.light_cache_changes.clear(); bool all_equal = true; for (List::Element *E = p_gi_probe->scenario->directional_lights.front(); E; E = E->next()) { if (VSG::storage->light_get_bake_mode(E->get()->base) == VS::LightBakeMode::LIGHT_BAKE_DISABLED) continue; InstanceGIProbeData::LightCache lc; lc.type = VSG::storage->light_get_type(E->get()->base); lc.color = VSG::storage->light_get_color(E->get()->base); lc.energy = VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_ENERGY) * VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_INDIRECT_ENERGY); lc.radius = VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_RANGE); lc.attenuation = VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_ATTENUATION); lc.spot_angle = VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_SPOT_ANGLE); lc.spot_attenuation = VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_SPOT_ATTENUATION); lc.transform = probe_data->dynamic.light_to_cell_xform * E->get()->transform; lc.visible = E->get()->visible; if (!probe_data->dynamic.light_cache.has(E->get()->self) || probe_data->dynamic.light_cache[E->get()->self] != lc) { all_equal = false; } probe_data->dynamic.light_cache_changes[E->get()->self] = lc; } for (Set::Element *E = probe_data->lights.front(); E; E = E->next()) { if (VSG::storage->light_get_bake_mode(E->get()->base) == VS::LightBakeMode::LIGHT_BAKE_DISABLED) continue; InstanceGIProbeData::LightCache lc; lc.type = VSG::storage->light_get_type(E->get()->base); lc.color = VSG::storage->light_get_color(E->get()->base); lc.energy = VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_ENERGY) * VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_INDIRECT_ENERGY); lc.radius = VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_RANGE); lc.attenuation = VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_ATTENUATION); lc.spot_angle = VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_SPOT_ANGLE); lc.spot_attenuation = VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_SPOT_ATTENUATION); lc.transform = probe_data->dynamic.light_to_cell_xform * E->get()->transform; lc.visible = E->get()->visible; if (!probe_data->dynamic.light_cache.has(E->get()->self) || probe_data->dynamic.light_cache[E->get()->self] != lc) { all_equal = false; } probe_data->dynamic.light_cache_changes[E->get()->self] = lc; } //lighting changed from after to before, must do some updating return !all_equal || probe_data->dynamic.light_cache_changes.size() != probe_data->dynamic.light_cache.size(); } void VisualServerScene::render_probes() { /* REFLECTION PROBES */ SelfList *ref_probe = reflection_probe_render_list.first(); bool busy = false; while (ref_probe) { SelfList *next = ref_probe->next(); RID base = ref_probe->self()->owner->base; switch (VSG::storage->reflection_probe_get_update_mode(base)) { case VS::REFLECTION_PROBE_UPDATE_ONCE: { if (busy) //already rendering something break; bool done = _render_reflection_probe_step(ref_probe->self()->owner, ref_probe->self()->render_step); if (done) { reflection_probe_render_list.remove(ref_probe); } else { ref_probe->self()->render_step++; } busy = true; //do not render another one of this kind } break; case VS::REFLECTION_PROBE_UPDATE_ALWAYS: { int step = 0; bool done = false; while (!done) { done = _render_reflection_probe_step(ref_probe->self()->owner, step); step++; } reflection_probe_render_list.remove(ref_probe); } break; } ref_probe = next; } /* GI PROBES */ SelfList *gi_probe = gi_probe_update_list.first(); while (gi_probe) { SelfList *next = gi_probe->next(); InstanceGIProbeData *probe = gi_probe->self(); Instance *instance_probe = probe->owner; //check if probe must be setup, but don't do if on the lighting thread bool force_lighting = false; if (probe->invalid || (probe->dynamic.updating_stage == GI_UPDATE_STAGE_CHECK && probe->base_version != VSG::storage->gi_probe_get_version(instance_probe->base))) { _setup_gi_probe(instance_probe); force_lighting = true; } float propagate = VSG::storage->gi_probe_get_propagation(instance_probe->base); if (probe->dynamic.propagate != propagate) { probe->dynamic.propagate = propagate; force_lighting = true; } if (!probe->invalid && probe->dynamic.enabled) { switch (probe->dynamic.updating_stage) { case GI_UPDATE_STAGE_CHECK: { if (_check_gi_probe(instance_probe) || force_lighting) { //send to lighting thread #ifndef NO_THREADS probe_bake_mutex.lock(); probe->dynamic.updating_stage = GI_UPDATE_STAGE_LIGHTING; probe_bake_list.push_back(instance_probe); probe_bake_mutex.unlock(); probe_bake_sem.post(); #else _bake_gi_probe(instance_probe); #endif } } break; case GI_UPDATE_STAGE_LIGHTING: { //do none, wait til done! } break; case GI_UPDATE_STAGE_UPLOADING: { //uint64_t us = OS::get_singleton()->get_ticks_usec(); for (int i = 0; i < (int)probe->dynamic.mipmaps_3d.size(); i++) { PoolVector::Read r = probe->dynamic.mipmaps_3d[i].read(); VSG::storage->gi_probe_dynamic_data_update(probe->dynamic.probe_data, 0, probe->dynamic.grid_size[2] >> i, i, r.ptr()); } probe->dynamic.updating_stage = GI_UPDATE_STAGE_CHECK; //print_line("UPLOAD TIME: " + rtos((OS::get_singleton()->get_ticks_usec() - us) / 1000000.0)); } break; } } //_update_gi_probe(gi_probe->self()->owner); gi_probe = next; } } void VisualServerScene::_update_dirty_instance(Instance *p_instance) { if (p_instance->update_aabb) { _update_instance_aabb(p_instance); } if (p_instance->update_materials) { if (p_instance->base_type == VS::INSTANCE_MESH) { //remove materials no longer used and un-own them int new_mat_count = VSG::storage->mesh_get_surface_count(p_instance->base); for (int i = p_instance->materials.size() - 1; i >= new_mat_count; i--) { if (p_instance->materials[i].is_valid()) { VSG::storage->material_remove_instance_owner(p_instance->materials[i], p_instance); } } p_instance->materials.resize(new_mat_count); int new_blend_shape_count = VSG::storage->mesh_get_blend_shape_count(p_instance->base); if (new_blend_shape_count != p_instance->blend_values.size()) { p_instance->blend_values.resize(new_blend_shape_count); for (int i = 0; i < new_blend_shape_count; i++) { p_instance->blend_values.write[i] = 0; } } } if ((1 << p_instance->base_type) & VS::INSTANCE_GEOMETRY_MASK) { InstanceGeometryData *geom = static_cast(p_instance->base_data); bool can_cast_shadows = true; bool is_animated = false; if (p_instance->cast_shadows == VS::SHADOW_CASTING_SETTING_OFF) { can_cast_shadows = false; } else if (p_instance->material_override.is_valid()) { can_cast_shadows = VSG::storage->material_casts_shadows(p_instance->material_override); is_animated = VSG::storage->material_is_animated(p_instance->material_override); } else { if (p_instance->base_type == VS::INSTANCE_MESH) { RID mesh = p_instance->base; if (mesh.is_valid()) { bool cast_shadows = false; for (int i = 0; i < p_instance->materials.size(); i++) { RID mat = p_instance->materials[i].is_valid() ? p_instance->materials[i] : VSG::storage->mesh_surface_get_material(mesh, i); if (!mat.is_valid()) { cast_shadows = true; } else { if (VSG::storage->material_casts_shadows(mat)) { cast_shadows = true; } if (VSG::storage->material_is_animated(mat)) { is_animated = true; } } } if (!cast_shadows) { can_cast_shadows = false; } } } else if (p_instance->base_type == VS::INSTANCE_MULTIMESH) { RID mesh = VSG::storage->multimesh_get_mesh(p_instance->base); if (mesh.is_valid()) { bool cast_shadows = false; int sc = VSG::storage->mesh_get_surface_count(mesh); for (int i = 0; i < sc; i++) { RID mat = VSG::storage->mesh_surface_get_material(mesh, i); if (!mat.is_valid()) { cast_shadows = true; } else { if (VSG::storage->material_casts_shadows(mat)) { cast_shadows = true; } if (VSG::storage->material_is_animated(mat)) { is_animated = true; } } } if (!cast_shadows) { can_cast_shadows = false; } } } else if (p_instance->base_type == VS::INSTANCE_IMMEDIATE) { RID mat = VSG::storage->immediate_get_material(p_instance->base); can_cast_shadows = !mat.is_valid() || VSG::storage->material_casts_shadows(mat); if (mat.is_valid() && VSG::storage->material_is_animated(mat)) { is_animated = true; } } else if (p_instance->base_type == VS::INSTANCE_PARTICLES) { bool cast_shadows = false; int dp = VSG::storage->particles_get_draw_passes(p_instance->base); for (int i = 0; i < dp; i++) { RID mesh = VSG::storage->particles_get_draw_pass_mesh(p_instance->base, i); if (!mesh.is_valid()) continue; int sc = VSG::storage->mesh_get_surface_count(mesh); for (int j = 0; j < sc; j++) { RID mat = VSG::storage->mesh_surface_get_material(mesh, j); if (!mat.is_valid()) { cast_shadows = true; } else { if (VSG::storage->material_casts_shadows(mat)) { cast_shadows = true; } if (VSG::storage->material_is_animated(mat)) { is_animated = true; } } } } if (!cast_shadows) { can_cast_shadows = false; } } } if (can_cast_shadows != geom->can_cast_shadows) { //ability to cast shadows change, let lights now for (List::Element *E = geom->lighting.front(); E; E = E->next()) { InstanceLightData *light = static_cast(E->get()->base_data); light->shadow_dirty = true; } geom->can_cast_shadows = can_cast_shadows; } geom->material_is_animated = is_animated; } } _instance_update_list.remove(&p_instance->update_item); _update_instance(p_instance); p_instance->update_aabb = false; p_instance->update_materials = false; } void VisualServerScene::update_dirty_instances() { VSG::storage->update_dirty_resources(); // this is just to get access to scenario so we can update the spatial partitioning scheme Scenario *scenario = nullptr; if (_instance_update_list.first()) { scenario = _instance_update_list.first()->self()->scenario; } while (_instance_update_list.first()) { _update_dirty_instance(_instance_update_list.first()->self()); } if (scenario) { scenario->sps->update(); } } bool VisualServerScene::free(RID p_rid) { if (camera_owner.owns(p_rid)) { Camera *camera = camera_owner.get(p_rid); camera_owner.free(p_rid); memdelete(camera); } else if (scenario_owner.owns(p_rid)) { Scenario *scenario = scenario_owner.get(p_rid); while (scenario->instances.first()) { instance_set_scenario(scenario->instances.first()->self()->self, RID()); } VSG::scene_render->free(scenario->reflection_probe_shadow_atlas); VSG::scene_render->free(scenario->reflection_atlas); scenario_owner.free(p_rid); memdelete(scenario); } else if (instance_owner.owns(p_rid)) { // delete the instance update_dirty_instances(); Instance *instance = instance_owner.get(p_rid); instance_set_use_lightmap(p_rid, RID(), RID(), -1, Rect2(0, 0, 1, 1)); instance_set_scenario(p_rid, RID()); instance_set_base(p_rid, RID()); instance_geometry_set_material_override(p_rid, RID()); instance_attach_skeleton(p_rid, RID()); update_dirty_instances(); //in case something changed this instance_owner.free(p_rid); memdelete(instance); } else { return false; } return true; } VisualServerScene *VisualServerScene::singleton = NULL; VisualServerScene::VisualServerScene() { probe_bake_thread.start(_gi_probe_bake_threads, this); probe_bake_thread_exit = false; render_pass = 1; singleton = this; _use_bvh = GLOBAL_DEF("rendering/quality/spatial_partitioning/use_bvh", true); } VisualServerScene::~VisualServerScene() { probe_bake_thread_exit = true; probe_bake_sem.post(); probe_bake_thread.wait_to_finish(); }