/**************************************************************************/ /* mesh_storage.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #ifdef GLES3_ENABLED #include "mesh_storage.h" #include "config.h" #include "material_storage.h" #include "texture_storage.h" #include "utilities.h" using namespace GLES3; MeshStorage *MeshStorage::singleton = nullptr; MeshStorage *MeshStorage::get_singleton() { return singleton; } MeshStorage::MeshStorage() { singleton = this; { skeleton_shader.shader.initialize(); skeleton_shader.shader_version = skeleton_shader.shader.version_create(); } } MeshStorage::~MeshStorage() { singleton = nullptr; skeleton_shader.shader.version_free(skeleton_shader.shader_version); } /* MESH API */ RID MeshStorage::mesh_allocate() { return mesh_owner.allocate_rid(); } void MeshStorage::mesh_initialize(RID p_rid) { mesh_owner.initialize_rid(p_rid, Mesh()); } void MeshStorage::mesh_free(RID p_rid) { mesh_clear(p_rid); mesh_set_shadow_mesh(p_rid, RID()); Mesh *mesh = mesh_owner.get_or_null(p_rid); ERR_FAIL_NULL(mesh); mesh->dependency.deleted_notify(p_rid); if (mesh->instances.size()) { ERR_PRINT("deleting mesh with active instances"); } if (mesh->shadow_owners.size()) { for (Mesh *E : mesh->shadow_owners) { Mesh *shadow_owner = E; shadow_owner->shadow_mesh = RID(); shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH); } } mesh_owner.free(p_rid); } void MeshStorage::mesh_set_blend_shape_count(RID p_mesh, int p_blend_shape_count) { ERR_FAIL_COND(p_blend_shape_count < 0); Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_NULL(mesh); ERR_FAIL_COND(mesh->surface_count > 0); //surfaces already exist mesh->blend_shape_count = p_blend_shape_count; } bool MeshStorage::mesh_needs_instance(RID p_mesh, bool p_has_skeleton) { Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_NULL_V(mesh, false); return mesh->blend_shape_count > 0 || (mesh->has_bone_weights && p_has_skeleton); } void MeshStorage::mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface) { Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_NULL(mesh); ERR_FAIL_COND(mesh->surface_count == RS::MAX_MESH_SURFACES); #ifdef DEBUG_ENABLED //do a validation, to catch errors first { uint32_t stride = 0; uint32_t attrib_stride = 0; uint32_t skin_stride = 0; for (int i = 0; i < RS::ARRAY_WEIGHTS; i++) { if ((p_surface.format & (1ULL << i))) { switch (i) { case RS::ARRAY_VERTEX: { if ((p_surface.format & RS::ARRAY_FLAG_USE_2D_VERTICES) || (p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) { stride += sizeof(float) * 2; } else { stride += sizeof(float) * 3; } } break; case RS::ARRAY_NORMAL: { stride += sizeof(uint16_t) * 2; } break; case RS::ARRAY_TANGENT: { if (!(p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) { stride += sizeof(uint16_t) * 2; } } break; case RS::ARRAY_COLOR: { attrib_stride += sizeof(uint32_t); } break; case RS::ARRAY_TEX_UV: { if (p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) { attrib_stride += sizeof(uint16_t) * 2; } else { attrib_stride += sizeof(float) * 2; } } break; case RS::ARRAY_TEX_UV2: { if (p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) { attrib_stride += sizeof(uint16_t) * 2; } else { attrib_stride += sizeof(float) * 2; } } break; case RS::ARRAY_CUSTOM0: case RS::ARRAY_CUSTOM1: case RS::ARRAY_CUSTOM2: case RS::ARRAY_CUSTOM3: { int idx = i - RS::ARRAY_CUSTOM0; uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT }; uint32_t fmt = (p_surface.format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK; uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 }; attrib_stride += fmtsize[fmt]; } break; case RS::ARRAY_WEIGHTS: case RS::ARRAY_BONES: { //uses a separate array bool use_8 = p_surface.format & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS; skin_stride += sizeof(int16_t) * (use_8 ? 16 : 8); } break; } } } int expected_size = stride * p_surface.vertex_count; ERR_FAIL_COND_MSG(expected_size != p_surface.vertex_data.size(), "Size of vertex data provided (" + itos(p_surface.vertex_data.size()) + ") does not match expected (" + itos(expected_size) + ")"); int bs_expected_size = expected_size * mesh->blend_shape_count; ERR_FAIL_COND_MSG(bs_expected_size != p_surface.blend_shape_data.size(), "Size of blend shape data provided (" + itos(p_surface.blend_shape_data.size()) + ") does not match expected (" + itos(bs_expected_size) + ")"); int expected_attrib_size = attrib_stride * p_surface.vertex_count; ERR_FAIL_COND_MSG(expected_attrib_size != p_surface.attribute_data.size(), "Size of attribute data provided (" + itos(p_surface.attribute_data.size()) + ") does not match expected (" + itos(expected_attrib_size) + ")"); if ((p_surface.format & RS::ARRAY_FORMAT_WEIGHTS) && (p_surface.format & RS::ARRAY_FORMAT_BONES)) { expected_size = skin_stride * p_surface.vertex_count; ERR_FAIL_COND_MSG(expected_size != p_surface.skin_data.size(), "Size of skin data provided (" + itos(p_surface.skin_data.size()) + ") does not match expected (" + itos(expected_size) + ")"); } } #endif uint64_t surface_version = p_surface.format & (uint64_t(RS::ARRAY_FLAG_FORMAT_VERSION_MASK) << RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT); RS::SurfaceData new_surface = p_surface; #ifdef DISABLE_DEPRECATED ERR_FAIL_COND_MSG(surface_version != RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION, "Surface version provided (" + itos(int(surface_version >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT)) + ") does not match current version (" + itos(RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) + ")"); #else if (surface_version != uint64_t(RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION)) { RS::get_singleton()->fix_surface_compatibility(new_surface); surface_version = new_surface.format & (uint64_t(RS::ARRAY_FLAG_FORMAT_VERSION_MASK) << RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT); ERR_FAIL_COND_MSG(surface_version != RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION, vformat("Surface version provided (%d) does not match current version (%d).", (surface_version >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) & RS::ARRAY_FLAG_FORMAT_VERSION_MASK, (RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) & RS::ARRAY_FLAG_FORMAT_VERSION_MASK)); } #endif Mesh::Surface *s = memnew(Mesh::Surface); s->format = new_surface.format; s->primitive = new_surface.primitive; if (new_surface.vertex_data.size()) { glGenBuffers(1, &s->vertex_buffer); glBindBuffer(GL_ARRAY_BUFFER, s->vertex_buffer); // If we have an uncompressed surface that contains normals, but not tangents, we need to differentiate the array // from a compressed array in the shader. To do so, we allow the normal to read 4 components out of the buffer // But only give it 2 components per normal. So essentially, each vertex reads the next normal in normal.zw. // This allows us to avoid adding a shader permutation, and avoid passing dummy tangents. Since the stride is kept small // this should still be a net win for bandwidth. // If we do this, then the last normal will read past the end of the array. So we need to pad the array with dummy data. if (!(new_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) && (new_surface.format & RS::ARRAY_FORMAT_NORMAL) && !(new_surface.format & RS::ARRAY_FORMAT_TANGENT)) { // Unfortunately, we need to copy the buffer, which is fine as doing a resize triggers a CoW anyway. Vector new_vertex_data; new_vertex_data.resize_zeroed(new_surface.vertex_data.size() + sizeof(uint16_t) * 2); memcpy(new_vertex_data.ptrw(), new_surface.vertex_data.ptr(), new_surface.vertex_data.size()); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, s->vertex_buffer, new_vertex_data.size(), new_vertex_data.ptr(), (s->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW, "Mesh vertex buffer"); s->vertex_buffer_size = new_vertex_data.size(); } else { GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, s->vertex_buffer, new_surface.vertex_data.size(), new_surface.vertex_data.ptr(), (s->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW, "Mesh vertex buffer"); s->vertex_buffer_size = new_surface.vertex_data.size(); } } if (new_surface.attribute_data.size()) { glGenBuffers(1, &s->attribute_buffer); glBindBuffer(GL_ARRAY_BUFFER, s->attribute_buffer); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, s->attribute_buffer, new_surface.attribute_data.size(), new_surface.attribute_data.ptr(), (s->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW, "Mesh attribute buffer"); s->attribute_buffer_size = new_surface.attribute_data.size(); } if (new_surface.skin_data.size()) { glGenBuffers(1, &s->skin_buffer); glBindBuffer(GL_ARRAY_BUFFER, s->skin_buffer); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, s->skin_buffer, new_surface.skin_data.size(), new_surface.skin_data.ptr(), (s->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW, "Mesh skin buffer"); s->skin_buffer_size = new_surface.skin_data.size(); } glBindBuffer(GL_ARRAY_BUFFER, 0); s->vertex_count = new_surface.vertex_count; if (new_surface.format & RS::ARRAY_FORMAT_BONES) { mesh->has_bone_weights = true; } if (new_surface.index_count) { bool is_index_16 = new_surface.vertex_count <= 65536 && new_surface.vertex_count > 0; glGenBuffers(1, &s->index_buffer); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_buffer); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ELEMENT_ARRAY_BUFFER, s->index_buffer, new_surface.index_data.size(), new_surface.index_data.ptr(), GL_STATIC_DRAW, "Mesh index buffer"); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind s->index_count = new_surface.index_count; s->index_buffer_size = new_surface.index_data.size(); if (new_surface.lods.size()) { s->lods = memnew_arr(Mesh::Surface::LOD, new_surface.lods.size()); s->lod_count = new_surface.lods.size(); for (int i = 0; i < new_surface.lods.size(); i++) { glGenBuffers(1, &s->lods[i].index_buffer); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->lods[i].index_buffer); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ELEMENT_ARRAY_BUFFER, s->lods[i].index_buffer, new_surface.lods[i].index_data.size(), new_surface.lods[i].index_data.ptr(), GL_STATIC_DRAW, "Mesh index buffer LOD[" + itos(i) + "]"); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind s->lods[i].edge_length = new_surface.lods[i].edge_length; s->lods[i].index_count = new_surface.lods[i].index_data.size() / (is_index_16 ? 2 : 4); s->lods[i].index_buffer_size = new_surface.lods[i].index_data.size(); } } } ERR_FAIL_COND_MSG(!new_surface.index_count && !new_surface.vertex_count, "Meshes must contain a vertex array, an index array, or both"); if (GLES3::Config::get_singleton()->generate_wireframes && s->primitive == RS::PRIMITIVE_TRIANGLES) { // Generate wireframes. This is mostly used by the editor. s->wireframe = memnew(Mesh::Surface::Wireframe); Vector wf_indices; uint32_t &wf_index_count = s->wireframe->index_count; uint32_t *wr = nullptr; if (new_surface.format & RS::ARRAY_FORMAT_INDEX) { wf_index_count = s->index_count * 2; wf_indices.resize(wf_index_count); Vector ir = new_surface.index_data; wr = wf_indices.ptrw(); if (new_surface.vertex_count < (1 << 16)) { // Read 16 bit indices. const uint16_t *src_idx = (const uint16_t *)ir.ptr(); for (uint32_t i = 0; i + 5 < wf_index_count; i += 6) { // We use GL_LINES instead of GL_TRIANGLES for drawing these primitives later, // so we need double the indices for each triangle. wr[i + 0] = src_idx[i / 2]; wr[i + 1] = src_idx[i / 2 + 1]; wr[i + 2] = src_idx[i / 2 + 1]; wr[i + 3] = src_idx[i / 2 + 2]; wr[i + 4] = src_idx[i / 2 + 2]; wr[i + 5] = src_idx[i / 2]; } } else { // Read 32 bit indices. const uint32_t *src_idx = (const uint32_t *)ir.ptr(); for (uint32_t i = 0; i + 5 < wf_index_count; i += 6) { wr[i + 0] = src_idx[i / 2]; wr[i + 1] = src_idx[i / 2 + 1]; wr[i + 2] = src_idx[i / 2 + 1]; wr[i + 3] = src_idx[i / 2 + 2]; wr[i + 4] = src_idx[i / 2 + 2]; wr[i + 5] = src_idx[i / 2]; } } } else { // Not using indices. wf_index_count = s->vertex_count * 2; wf_indices.resize(wf_index_count); wr = wf_indices.ptrw(); for (uint32_t i = 0; i + 5 < wf_index_count; i += 6) { wr[i + 0] = i / 2; wr[i + 1] = i / 2 + 1; wr[i + 2] = i / 2 + 1; wr[i + 3] = i / 2 + 2; wr[i + 4] = i / 2 + 2; wr[i + 5] = i / 2; } } s->wireframe->index_buffer_size = wf_index_count * sizeof(uint32_t); glGenBuffers(1, &s->wireframe->index_buffer); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->wireframe->index_buffer); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ELEMENT_ARRAY_BUFFER, s->wireframe->index_buffer, s->wireframe->index_buffer_size, wr, GL_STATIC_DRAW, "Mesh wireframe index buffer"); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); // unbind } s->aabb = new_surface.aabb; s->bone_aabbs = new_surface.bone_aabbs; //only really useful for returning them. s->mesh_to_skeleton_xform = p_surface.mesh_to_skeleton_xform; s->uv_scale = new_surface.uv_scale; if (new_surface.skin_data.size() || mesh->blend_shape_count > 0) { // Size must match the size of the vertex array. int size = new_surface.vertex_data.size(); int vertex_size = 0; int position_stride = 0; int normal_tangent_stride = 0; int normal_offset = 0; int tangent_offset = 0; if ((new_surface.format & (1ULL << RS::ARRAY_VERTEX))) { if (new_surface.format & RS::ARRAY_FLAG_USE_2D_VERTICES) { vertex_size = 2; position_stride = sizeof(float) * vertex_size; } else { if (new_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) { vertex_size = 4; position_stride = sizeof(uint16_t) * vertex_size; } else { vertex_size = 3; position_stride = sizeof(float) * vertex_size; } } } if ((new_surface.format & (1ULL << RS::ARRAY_NORMAL))) { normal_offset = position_stride * s->vertex_count; normal_tangent_stride += sizeof(uint16_t) * 2; } if ((new_surface.format & (1ULL << RS::ARRAY_TANGENT))) { tangent_offset = normal_offset + normal_tangent_stride; normal_tangent_stride += sizeof(uint16_t) * 2; } if (mesh->blend_shape_count > 0) { // Blend shapes are passed as one large array, for OpenGL, we need to split each of them into their own buffer s->blend_shapes = memnew_arr(Mesh::Surface::BlendShape, mesh->blend_shape_count); for (uint32_t i = 0; i < mesh->blend_shape_count; i++) { glGenVertexArrays(1, &s->blend_shapes[i].vertex_array); glBindVertexArray(s->blend_shapes[i].vertex_array); glGenBuffers(1, &s->blend_shapes[i].vertex_buffer); glBindBuffer(GL_ARRAY_BUFFER, s->blend_shapes[i].vertex_buffer); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, s->blend_shapes[i].vertex_buffer, size, new_surface.blend_shape_data.ptr() + i * size, (s->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW, "Mesh blend shape buffer"); if ((new_surface.format & (1ULL << RS::ARRAY_VERTEX))) { glEnableVertexAttribArray(RS::ARRAY_VERTEX + 3); glVertexAttribPointer(RS::ARRAY_VERTEX + 3, vertex_size, GL_FLOAT, GL_FALSE, position_stride, CAST_INT_TO_UCHAR_PTR(0)); } if ((new_surface.format & (1ULL << RS::ARRAY_NORMAL))) { // Normal and tangent are packed into the same attribute. glEnableVertexAttribArray(RS::ARRAY_NORMAL + 3); glVertexAttribPointer(RS::ARRAY_NORMAL + 3, 2, GL_UNSIGNED_SHORT, GL_TRUE, normal_tangent_stride, CAST_INT_TO_UCHAR_PTR(normal_offset)); } if ((p_surface.format & (1ULL << RS::ARRAY_TANGENT))) { glEnableVertexAttribArray(RS::ARRAY_TANGENT + 3); glVertexAttribPointer(RS::ARRAY_TANGENT + 3, 2, GL_UNSIGNED_SHORT, GL_TRUE, normal_tangent_stride, CAST_INT_TO_UCHAR_PTR(tangent_offset)); } } glBindVertexArray(0); glBindBuffer(GL_ARRAY_BUFFER, 0); } glBindVertexArray(0); glBindBuffer(GL_ARRAY_BUFFER, 0); } if (mesh->surface_count == 0) { mesh->aabb = new_surface.aabb; } else { mesh->aabb.merge_with(new_surface.aabb); } mesh->skeleton_aabb_version = 0; s->material = new_surface.material; mesh->surfaces = (Mesh::Surface **)memrealloc(mesh->surfaces, sizeof(Mesh::Surface *) * (mesh->surface_count + 1)); mesh->surfaces[mesh->surface_count] = s; mesh->surface_count++; for (MeshInstance *mi : mesh->instances) { _mesh_instance_add_surface(mi, mesh, mesh->surface_count - 1); } mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH); for (Mesh *E : mesh->shadow_owners) { Mesh *shadow_owner = E; shadow_owner->shadow_mesh = RID(); shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH); } mesh->material_cache.clear(); } int MeshStorage::mesh_get_blend_shape_count(RID p_mesh) const { const Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_NULL_V(mesh, -1); return mesh->blend_shape_count; } void MeshStorage::mesh_set_blend_shape_mode(RID p_mesh, RS::BlendShapeMode p_mode) { Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_NULL(mesh); ERR_FAIL_INDEX((int)p_mode, 2); mesh->blend_shape_mode = p_mode; } RS::BlendShapeMode MeshStorage::mesh_get_blend_shape_mode(RID p_mesh) const { Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_NULL_V(mesh, RS::BLEND_SHAPE_MODE_NORMALIZED); return mesh->blend_shape_mode; } void MeshStorage::mesh_surface_update_vertex_region(RID p_mesh, int p_surface, int p_offset, const Vector &p_data) { Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_NULL(mesh); ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count); ERR_FAIL_COND(p_data.is_empty()); uint64_t data_size = p_data.size(); ERR_FAIL_COND(p_offset + data_size > mesh->surfaces[p_surface]->vertex_buffer_size); const uint8_t *r = p_data.ptr(); glBindBuffer(GL_ARRAY_BUFFER, mesh->surfaces[p_surface]->vertex_buffer); glBufferSubData(GL_ARRAY_BUFFER, p_offset, data_size, r); glBindBuffer(GL_ARRAY_BUFFER, 0); } void MeshStorage::mesh_surface_update_attribute_region(RID p_mesh, int p_surface, int p_offset, const Vector &p_data) { Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_NULL(mesh); ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count); ERR_FAIL_COND(p_data.is_empty()); uint64_t data_size = p_data.size(); ERR_FAIL_COND(p_offset + data_size > mesh->surfaces[p_surface]->attribute_buffer_size); const uint8_t *r = p_data.ptr(); glBindBuffer(GL_ARRAY_BUFFER, mesh->surfaces[p_surface]->attribute_buffer); glBufferSubData(GL_ARRAY_BUFFER, p_offset, data_size, r); glBindBuffer(GL_ARRAY_BUFFER, 0); } void MeshStorage::mesh_surface_update_skin_region(RID p_mesh, int p_surface, int p_offset, const Vector &p_data) { Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_NULL(mesh); ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count); ERR_FAIL_COND(p_data.is_empty()); uint64_t data_size = p_data.size(); ERR_FAIL_COND(p_offset + data_size > mesh->surfaces[p_surface]->skin_buffer_size); const uint8_t *r = p_data.ptr(); glBindBuffer(GL_ARRAY_BUFFER, mesh->surfaces[p_surface]->skin_buffer); glBufferSubData(GL_ARRAY_BUFFER, p_offset, data_size, r); glBindBuffer(GL_ARRAY_BUFFER, 0); } void MeshStorage::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material) { Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_NULL(mesh); ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count); mesh->surfaces[p_surface]->material = p_material; mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MATERIAL); mesh->material_cache.clear(); } RID MeshStorage::mesh_surface_get_material(RID p_mesh, int p_surface) const { Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_NULL_V(mesh, RID()); ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RID()); return mesh->surfaces[p_surface]->material; } RS::SurfaceData MeshStorage::mesh_get_surface(RID p_mesh, int p_surface) const { Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_NULL_V(mesh, RS::SurfaceData()); ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RS::SurfaceData()); Mesh::Surface &s = *mesh->surfaces[p_surface]; RS::SurfaceData sd; sd.format = s.format; if (s.vertex_buffer != 0) { sd.vertex_data = Utilities::buffer_get_data(GL_ARRAY_BUFFER, s.vertex_buffer, s.vertex_buffer_size); // When using an uncompressed buffer with normals, but without tangents, we have to trim the padding. if (!(s.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) && (s.format & RS::ARRAY_FORMAT_NORMAL) && !(s.format & RS::ARRAY_FORMAT_TANGENT)) { sd.vertex_data.resize(sd.vertex_data.size() - sizeof(uint16_t) * 2); } } if (s.attribute_buffer != 0) { sd.attribute_data = Utilities::buffer_get_data(GL_ARRAY_BUFFER, s.attribute_buffer, s.attribute_buffer_size); } if (s.skin_buffer != 0) { sd.skin_data = Utilities::buffer_get_data(GL_ARRAY_BUFFER, s.skin_buffer, s.skin_buffer_size); } sd.vertex_count = s.vertex_count; sd.index_count = s.index_count; sd.primitive = s.primitive; if (sd.index_count) { sd.index_data = Utilities::buffer_get_data(GL_ELEMENT_ARRAY_BUFFER, s.index_buffer, s.index_buffer_size); } sd.aabb = s.aabb; for (uint32_t i = 0; i < s.lod_count; i++) { RS::SurfaceData::LOD lod; lod.edge_length = s.lods[i].edge_length; lod.index_data = Utilities::buffer_get_data(GL_ELEMENT_ARRAY_BUFFER, s.lods[i].index_buffer, s.lods[i].index_buffer_size); sd.lods.push_back(lod); } sd.bone_aabbs = s.bone_aabbs; sd.mesh_to_skeleton_xform = s.mesh_to_skeleton_xform; if (mesh->blend_shape_count) { sd.blend_shape_data = Vector(); for (uint32_t i = 0; i < mesh->blend_shape_count; i++) { sd.blend_shape_data.append_array(Utilities::buffer_get_data(GL_ARRAY_BUFFER, s.blend_shapes[i].vertex_buffer, s.vertex_buffer_size)); } } sd.uv_scale = s.uv_scale; return sd; } int MeshStorage::mesh_get_surface_count(RID p_mesh) const { Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_NULL_V(mesh, 0); return mesh->surface_count; } void MeshStorage::mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) { Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_NULL(mesh); mesh->custom_aabb = p_aabb; mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB); } AABB MeshStorage::mesh_get_custom_aabb(RID p_mesh) const { Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_NULL_V(mesh, AABB()); return mesh->custom_aabb; } AABB MeshStorage::mesh_get_aabb(RID p_mesh, RID p_skeleton) { Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_NULL_V(mesh, AABB()); if (mesh->custom_aabb != AABB()) { return mesh->custom_aabb; } Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton); if (!skeleton || skeleton->size == 0 || mesh->skeleton_aabb_version == skeleton->version) { return mesh->aabb; } // Calculate AABB based on Skeleton AABB aabb; for (uint32_t i = 0; i < mesh->surface_count; i++) { AABB laabb; const Mesh::Surface &surface = *mesh->surfaces[i]; if ((surface.format & RS::ARRAY_FORMAT_BONES) && surface.bone_aabbs.size()) { int bs = surface.bone_aabbs.size(); const AABB *skbones = surface.bone_aabbs.ptr(); int sbs = skeleton->size; ERR_CONTINUE(bs > sbs); const float *baseptr = skeleton->data.ptr(); bool found_bone_aabb = false; if (skeleton->use_2d) { for (int j = 0; j < bs; j++) { if (skbones[j].size == Vector3(-1, -1, -1)) { continue; //bone is unused } const float *dataptr = baseptr + j * 8; Transform3D mtx; mtx.basis.rows[0][0] = dataptr[0]; mtx.basis.rows[0][1] = dataptr[1]; mtx.origin.x = dataptr[3]; mtx.basis.rows[1][0] = dataptr[4]; mtx.basis.rows[1][1] = dataptr[5]; mtx.origin.y = dataptr[7]; // Transform bounds to skeleton's space before applying animation data. AABB baabb = surface.mesh_to_skeleton_xform.xform(skbones[j]); baabb = mtx.xform(baabb); if (!found_bone_aabb) { laabb = baabb; found_bone_aabb = true; } else { laabb.merge_with(baabb); } } } else { for (int j = 0; j < bs; j++) { if (skbones[j].size == Vector3(-1, -1, -1)) { continue; //bone is unused } const float *dataptr = baseptr + j * 12; Transform3D mtx; mtx.basis.rows[0][0] = dataptr[0]; mtx.basis.rows[0][1] = dataptr[1]; mtx.basis.rows[0][2] = dataptr[2]; mtx.origin.x = dataptr[3]; mtx.basis.rows[1][0] = dataptr[4]; mtx.basis.rows[1][1] = dataptr[5]; mtx.basis.rows[1][2] = dataptr[6]; mtx.origin.y = dataptr[7]; mtx.basis.rows[2][0] = dataptr[8]; mtx.basis.rows[2][1] = dataptr[9]; mtx.basis.rows[2][2] = dataptr[10]; mtx.origin.z = dataptr[11]; // Transform bounds to skeleton's space before applying animation data. AABB baabb = surface.mesh_to_skeleton_xform.xform(skbones[j]); baabb = mtx.xform(baabb); if (!found_bone_aabb) { laabb = baabb; found_bone_aabb = true; } else { laabb.merge_with(baabb); } } } if (found_bone_aabb) { // Transform skeleton bounds back to mesh's space if any animated AABB applied. laabb = surface.mesh_to_skeleton_xform.affine_inverse().xform(laabb); } if (laabb.size == Vector3()) { laabb = surface.aabb; } } else { laabb = surface.aabb; } if (i == 0) { aabb = laabb; } else { aabb.merge_with(laabb); } } mesh->aabb = aabb; mesh->skeleton_aabb_version = skeleton->version; return aabb; } void MeshStorage::mesh_set_path(RID p_mesh, const String &p_path) { Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_NULL(mesh); mesh->path = p_path; } String MeshStorage::mesh_get_path(RID p_mesh) const { Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_NULL_V(mesh, String()); return mesh->path; } void MeshStorage::mesh_set_shadow_mesh(RID p_mesh, RID p_shadow_mesh) { Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_NULL(mesh); Mesh *shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh); if (shadow_mesh) { shadow_mesh->shadow_owners.erase(mesh); } mesh->shadow_mesh = p_shadow_mesh; shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh); if (shadow_mesh) { shadow_mesh->shadow_owners.insert(mesh); } mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH); } void MeshStorage::mesh_clear(RID p_mesh) { Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_NULL(mesh); // Clear instance data before mesh data. for (MeshInstance *mi : mesh->instances) { _mesh_instance_clear(mi); } for (uint32_t i = 0; i < mesh->surface_count; i++) { Mesh::Surface &s = *mesh->surfaces[i]; if (s.vertex_buffer != 0) { GLES3::Utilities::get_singleton()->buffer_free_data(s.vertex_buffer); s.vertex_buffer = 0; } if (s.version_count != 0) { for (uint32_t j = 0; j < s.version_count; j++) { glDeleteVertexArrays(1, &s.versions[j].vertex_array); s.versions[j].vertex_array = 0; } } if (s.attribute_buffer != 0) { GLES3::Utilities::get_singleton()->buffer_free_data(s.attribute_buffer); s.attribute_buffer = 0; } if (s.skin_buffer != 0) { GLES3::Utilities::get_singleton()->buffer_free_data(s.skin_buffer); s.skin_buffer = 0; } if (s.index_buffer != 0) { GLES3::Utilities::get_singleton()->buffer_free_data(s.index_buffer); s.index_buffer = 0; } if (s.versions) { memfree(s.versions); //reallocs, so free with memfree. } if (s.wireframe) { GLES3::Utilities::get_singleton()->buffer_free_data(s.wireframe->index_buffer); memdelete(s.wireframe); } if (s.lod_count) { for (uint32_t j = 0; j < s.lod_count; j++) { if (s.lods[j].index_buffer != 0) { GLES3::Utilities::get_singleton()->buffer_free_data(s.lods[j].index_buffer); s.lods[j].index_buffer = 0; } } memdelete_arr(s.lods); } if (mesh->blend_shape_count) { for (uint32_t j = 0; j < mesh->blend_shape_count; j++) { if (s.blend_shapes[j].vertex_buffer != 0) { GLES3::Utilities::get_singleton()->buffer_free_data(s.blend_shapes[j].vertex_buffer); s.blend_shapes[j].vertex_buffer = 0; } if (s.blend_shapes[j].vertex_array != 0) { glDeleteVertexArrays(1, &s.blend_shapes[j].vertex_array); s.blend_shapes[j].vertex_array = 0; } } memdelete_arr(s.blend_shapes); } memdelete(mesh->surfaces[i]); } if (mesh->surfaces) { memfree(mesh->surfaces); } mesh->surfaces = nullptr; mesh->surface_count = 0; mesh->material_cache.clear(); mesh->has_bone_weights = false; mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH); for (Mesh *E : mesh->shadow_owners) { Mesh *shadow_owner = E; shadow_owner->shadow_mesh = RID(); shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH); } } void MeshStorage::_mesh_surface_generate_version_for_input_mask(Mesh::Surface::Version &v, Mesh::Surface *s, uint64_t p_input_mask, MeshInstance::Surface *mis) { Mesh::Surface::Attrib attribs[RS::ARRAY_MAX]; int position_stride = 0; // Vertex position only. int normal_tangent_stride = 0; int attributes_stride = 0; int skin_stride = 0; for (int i = 0; i < RS::ARRAY_INDEX; i++) { attribs[i].enabled = false; attribs[i].integer = false; if (!(s->format & (1ULL << i))) { continue; } if ((p_input_mask & (1ULL << i))) { // Only enable if it matches input mask. // Iterate over all anyway, so we can calculate stride. attribs[i].enabled = true; } switch (i) { case RS::ARRAY_VERTEX: { attribs[i].offset = 0; attribs[i].type = GL_FLOAT; attribs[i].normalized = GL_FALSE; if (s->format & RS::ARRAY_FLAG_USE_2D_VERTICES) { attribs[i].size = 2; position_stride = attribs[i].size * sizeof(float); } else { if (!mis && (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) { attribs[i].size = 4; position_stride = attribs[i].size * sizeof(uint16_t); attribs[i].type = GL_UNSIGNED_SHORT; attribs[i].normalized = GL_TRUE; } else { attribs[i].size = 3; position_stride = attribs[i].size * sizeof(float); } } } break; case RS::ARRAY_NORMAL: { if (!mis && (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) { attribs[i].size = 2; normal_tangent_stride += 2 * attribs[i].size; } else { attribs[i].size = 4; // A small trick here: if we are uncompressed and we have normals, but no tangents. We need // the shader to think there are 4 components to "axis_tangent_attrib". So we give a size of 4, // but a stride based on only having 2 elements. if (!(s->format & RS::ARRAY_FORMAT_TANGENT)) { normal_tangent_stride += (mis ? sizeof(float) : sizeof(uint16_t)) * 2; } else { normal_tangent_stride += (mis ? sizeof(float) : sizeof(uint16_t)) * 4; } } if (mis) { // Transform feedback has interleave all or no attributes. It can't mix interleaving. attribs[i].offset = position_stride; normal_tangent_stride += position_stride; position_stride = normal_tangent_stride; } else { attribs[i].offset = position_stride * s->vertex_count; } attribs[i].type = (mis ? GL_FLOAT : GL_UNSIGNED_SHORT); attribs[i].normalized = GL_TRUE; } break; case RS::ARRAY_TANGENT: { // We never use the tangent attribute. It is always packed in ARRAY_NORMAL, or ARRAY_VERTEX. attribs[i].enabled = false; attribs[i].integer = false; } break; case RS::ARRAY_COLOR: { attribs[i].offset = attributes_stride; attribs[i].size = 4; attribs[i].type = GL_UNSIGNED_BYTE; attributes_stride += 4; attribs[i].normalized = GL_TRUE; } break; case RS::ARRAY_TEX_UV: { attribs[i].offset = attributes_stride; attribs[i].size = 2; if (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) { attribs[i].type = GL_UNSIGNED_SHORT; attributes_stride += 2 * sizeof(uint16_t); attribs[i].normalized = GL_TRUE; } else { attribs[i].type = GL_FLOAT; attributes_stride += 2 * sizeof(float); attribs[i].normalized = GL_FALSE; } } break; case RS::ARRAY_TEX_UV2: { attribs[i].offset = attributes_stride; attribs[i].size = 2; if (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) { attribs[i].type = GL_UNSIGNED_SHORT; attributes_stride += 2 * sizeof(uint16_t); attribs[i].normalized = GL_TRUE; } else { attribs[i].type = GL_FLOAT; attributes_stride += 2 * sizeof(float); attribs[i].normalized = GL_FALSE; } } break; case RS::ARRAY_CUSTOM0: case RS::ARRAY_CUSTOM1: case RS::ARRAY_CUSTOM2: case RS::ARRAY_CUSTOM3: { attribs[i].offset = attributes_stride; int idx = i - RS::ARRAY_CUSTOM0; uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT }; uint32_t fmt = (s->format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK; uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 }; GLenum gl_type[RS::ARRAY_CUSTOM_MAX] = { GL_UNSIGNED_BYTE, GL_BYTE, GL_HALF_FLOAT, GL_HALF_FLOAT, GL_FLOAT, GL_FLOAT, GL_FLOAT, GL_FLOAT }; GLboolean norm[RS::ARRAY_CUSTOM_MAX] = { GL_TRUE, GL_TRUE, GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE }; attribs[i].type = gl_type[fmt]; attributes_stride += fmtsize[fmt]; attribs[i].size = fmtsize[fmt] / sizeof(float); attribs[i].normalized = norm[fmt]; } break; case RS::ARRAY_BONES: { attribs[i].offset = skin_stride; attribs[i].size = 4; attribs[i].type = GL_UNSIGNED_SHORT; skin_stride += 4 * sizeof(uint16_t); attribs[i].normalized = GL_FALSE; attribs[i].integer = true; } break; case RS::ARRAY_WEIGHTS: { attribs[i].offset = skin_stride; attribs[i].size = 4; attribs[i].type = GL_UNSIGNED_SHORT; skin_stride += 4 * sizeof(uint16_t); attribs[i].normalized = GL_TRUE; } break; } } glGenVertexArrays(1, &v.vertex_array); glBindVertexArray(v.vertex_array); for (int i = 0; i < RS::ARRAY_INDEX; i++) { if (!attribs[i].enabled) { glDisableVertexAttribArray(i); continue; } if (i <= RS::ARRAY_TANGENT) { attribs[i].stride = (i == RS::ARRAY_VERTEX) ? position_stride : normal_tangent_stride; if (mis) { glBindBuffer(GL_ARRAY_BUFFER, mis->vertex_buffer); } else { glBindBuffer(GL_ARRAY_BUFFER, s->vertex_buffer); } } else if (i <= RS::ARRAY_CUSTOM3) { attribs[i].stride = attributes_stride; glBindBuffer(GL_ARRAY_BUFFER, s->attribute_buffer); } else { attribs[i].stride = skin_stride; glBindBuffer(GL_ARRAY_BUFFER, s->skin_buffer); } if (attribs[i].integer) { glVertexAttribIPointer(i, attribs[i].size, attribs[i].type, attribs[i].stride, CAST_INT_TO_UCHAR_PTR(attribs[i].offset)); } else { glVertexAttribPointer(i, attribs[i].size, attribs[i].type, attribs[i].normalized, attribs[i].stride, CAST_INT_TO_UCHAR_PTR(attribs[i].offset)); } glEnableVertexAttribArray(i); } // Do not bind index here as we want to switch between index buffers for LOD glBindVertexArray(0); glBindBuffer(GL_ARRAY_BUFFER, 0); v.input_mask = p_input_mask; } /* MESH INSTANCE API */ RID MeshStorage::mesh_instance_create(RID p_base) { Mesh *mesh = mesh_owner.get_or_null(p_base); ERR_FAIL_NULL_V(mesh, RID()); RID rid = mesh_instance_owner.make_rid(); MeshInstance *mi = mesh_instance_owner.get_or_null(rid); mi->mesh = mesh; for (uint32_t i = 0; i < mesh->surface_count; i++) { _mesh_instance_add_surface(mi, mesh, i); } mi->I = mesh->instances.push_back(mi); mi->dirty = true; return rid; } void MeshStorage::mesh_instance_free(RID p_rid) { MeshInstance *mi = mesh_instance_owner.get_or_null(p_rid); _mesh_instance_clear(mi); mi->mesh->instances.erase(mi->I); mi->I = nullptr; mesh_instance_owner.free(p_rid); } void MeshStorage::mesh_instance_set_skeleton(RID p_mesh_instance, RID p_skeleton) { MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance); if (mi->skeleton == p_skeleton) { return; } mi->skeleton = p_skeleton; mi->skeleton_version = 0; mi->dirty = true; } void MeshStorage::mesh_instance_set_blend_shape_weight(RID p_mesh_instance, int p_shape, float p_weight) { MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance); ERR_FAIL_NULL(mi); ERR_FAIL_INDEX(p_shape, (int)mi->blend_weights.size()); mi->blend_weights[p_shape] = p_weight; mi->dirty = true; } void MeshStorage::_mesh_instance_clear(MeshInstance *mi) { for (uint32_t i = 0; i < mi->surfaces.size(); i++) { if (mi->surfaces[i].version_count != 0) { for (uint32_t j = 0; j < mi->surfaces[i].version_count; j++) { glDeleteVertexArrays(1, &mi->surfaces[i].versions[j].vertex_array); mi->surfaces[i].versions[j].vertex_array = 0; } memfree(mi->surfaces[i].versions); } if (mi->surfaces[i].vertex_buffers[0] != 0) { GLES3::Utilities::get_singleton()->buffer_free_data(mi->surfaces[i].vertex_buffers[0]); GLES3::Utilities::get_singleton()->buffer_free_data(mi->surfaces[i].vertex_buffers[1]); mi->surfaces[i].vertex_buffers[0] = 0; mi->surfaces[i].vertex_buffers[1] = 0; } if (mi->surfaces[i].vertex_buffer != 0) { GLES3::Utilities::get_singleton()->buffer_free_data(mi->surfaces[i].vertex_buffer); mi->surfaces[i].vertex_buffer = 0; } } mi->surfaces.clear(); mi->blend_weights.clear(); mi->skeleton_version = 0; } void MeshStorage::_mesh_instance_add_surface(MeshInstance *mi, Mesh *mesh, uint32_t p_surface) { if (mesh->blend_shape_count > 0) { mi->blend_weights.resize(mesh->blend_shape_count); for (uint32_t i = 0; i < mi->blend_weights.size(); i++) { mi->blend_weights[i] = 0.0; } } MeshInstance::Surface s; if ((mesh->blend_shape_count > 0 || (mesh->surfaces[p_surface]->format & RS::ARRAY_FORMAT_BONES)) && mesh->surfaces[p_surface]->vertex_buffer_size > 0) { // Cache surface properties s.format_cache = mesh->surfaces[p_surface]->format; if ((s.format_cache & (1ULL << RS::ARRAY_VERTEX))) { if (s.format_cache & RS::ARRAY_FLAG_USE_2D_VERTICES) { s.vertex_size_cache = 2; } else { s.vertex_size_cache = 3; } s.vertex_stride_cache = sizeof(float) * s.vertex_size_cache; } if ((s.format_cache & (1ULL << RS::ARRAY_NORMAL))) { s.vertex_normal_offset_cache = s.vertex_stride_cache; s.vertex_stride_cache += sizeof(uint32_t) * 2; } if ((s.format_cache & (1ULL << RS::ARRAY_TANGENT))) { s.vertex_tangent_offset_cache = s.vertex_stride_cache; s.vertex_stride_cache += sizeof(uint32_t) * 2; } int buffer_size = s.vertex_stride_cache * mesh->surfaces[p_surface]->vertex_count; // Buffer to be used for rendering. Final output of skeleton and blend shapes. glGenBuffers(1, &s.vertex_buffer); glBindBuffer(GL_ARRAY_BUFFER, s.vertex_buffer); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, s.vertex_buffer, buffer_size, nullptr, GL_DYNAMIC_DRAW, "MeshInstance vertex buffer"); if (mesh->blend_shape_count > 0) { // Ping-Pong buffers for processing blendshapes. glGenBuffers(2, s.vertex_buffers); for (uint32_t i = 0; i < 2; i++) { glBindBuffer(GL_ARRAY_BUFFER, s.vertex_buffers[i]); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, s.vertex_buffers[i], buffer_size, nullptr, GL_DYNAMIC_DRAW, "MeshInstance process buffer[" + itos(i) + "]"); } } glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind } mi->surfaces.push_back(s); mi->dirty = true; } void MeshStorage::mesh_instance_check_for_update(RID p_mesh_instance) { MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance); bool needs_update = mi->dirty; if (mi->array_update_list.in_list()) { return; } if (!needs_update && mi->skeleton.is_valid()) { Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton); if (sk && sk->version != mi->skeleton_version) { needs_update = true; } } if (needs_update) { dirty_mesh_instance_arrays.add(&mi->array_update_list); } } void MeshStorage::mesh_instance_set_canvas_item_transform(RID p_mesh_instance, const Transform2D &p_transform) { MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance); mi->canvas_item_transform_2d = p_transform; } void MeshStorage::_blend_shape_bind_mesh_instance_buffer(MeshInstance *p_mi, uint32_t p_surface) { glBindBuffer(GL_ARRAY_BUFFER, p_mi->surfaces[p_surface].vertex_buffers[0]); if ((p_mi->surfaces[p_surface].format_cache & (1ULL << RS::ARRAY_VERTEX))) { glEnableVertexAttribArray(RS::ARRAY_VERTEX); glVertexAttribPointer(RS::ARRAY_VERTEX, p_mi->surfaces[p_surface].vertex_size_cache, GL_FLOAT, GL_FALSE, p_mi->surfaces[p_surface].vertex_stride_cache, CAST_INT_TO_UCHAR_PTR(0)); } else { glDisableVertexAttribArray(RS::ARRAY_VERTEX); } if ((p_mi->surfaces[p_surface].format_cache & (1ULL << RS::ARRAY_NORMAL))) { glEnableVertexAttribArray(RS::ARRAY_NORMAL); glVertexAttribIPointer(RS::ARRAY_NORMAL, 2, GL_UNSIGNED_INT, p_mi->surfaces[p_surface].vertex_stride_cache, CAST_INT_TO_UCHAR_PTR(p_mi->surfaces[p_surface].vertex_normal_offset_cache)); } else { glDisableVertexAttribArray(RS::ARRAY_NORMAL); } if ((p_mi->surfaces[p_surface].format_cache & (1ULL << RS::ARRAY_TANGENT))) { glEnableVertexAttribArray(RS::ARRAY_TANGENT); glVertexAttribIPointer(RS::ARRAY_TANGENT, 2, GL_UNSIGNED_INT, p_mi->surfaces[p_surface].vertex_stride_cache, CAST_INT_TO_UCHAR_PTR(p_mi->surfaces[p_surface].vertex_tangent_offset_cache)); } else { glDisableVertexAttribArray(RS::ARRAY_TANGENT); } } void MeshStorage::_compute_skeleton(MeshInstance *p_mi, Skeleton *p_sk, uint32_t p_surface) { // Add in the bones and weights. glBindBuffer(GL_ARRAY_BUFFER, p_mi->mesh->surfaces[p_surface]->skin_buffer); bool use_8_weights = p_mi->surfaces[p_surface].format_cache & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS; int skin_stride = sizeof(int16_t) * (use_8_weights ? 16 : 8); glEnableVertexAttribArray(RS::ARRAY_BONES); glVertexAttribIPointer(RS::ARRAY_BONES, 4, GL_UNSIGNED_SHORT, skin_stride, CAST_INT_TO_UCHAR_PTR(0)); if (use_8_weights) { glEnableVertexAttribArray(11); glVertexAttribIPointer(11, 4, GL_UNSIGNED_SHORT, skin_stride, CAST_INT_TO_UCHAR_PTR(4 * sizeof(uint16_t))); glEnableVertexAttribArray(12); glVertexAttribPointer(12, 4, GL_UNSIGNED_SHORT, GL_TRUE, skin_stride, CAST_INT_TO_UCHAR_PTR(8 * sizeof(uint16_t))); glEnableVertexAttribArray(13); glVertexAttribPointer(13, 4, GL_UNSIGNED_SHORT, GL_TRUE, skin_stride, CAST_INT_TO_UCHAR_PTR(12 * sizeof(uint16_t))); } else { glEnableVertexAttribArray(RS::ARRAY_WEIGHTS); glVertexAttribPointer(RS::ARRAY_WEIGHTS, 4, GL_UNSIGNED_SHORT, GL_TRUE, skin_stride, CAST_INT_TO_UCHAR_PTR(4 * sizeof(uint16_t))); } glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, p_mi->surfaces[p_surface].vertex_buffer); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, p_sk->transforms_texture); glBeginTransformFeedback(GL_POINTS); glDrawArrays(GL_POINTS, 0, p_mi->mesh->surfaces[p_surface]->vertex_count); glEndTransformFeedback(); glDisableVertexAttribArray(RS::ARRAY_BONES); glDisableVertexAttribArray(RS::ARRAY_WEIGHTS); glDisableVertexAttribArray(RS::ARRAY_BONES + 2); glDisableVertexAttribArray(RS::ARRAY_WEIGHTS + 2); glBindVertexArray(0); glBindBuffer(GL_TRANSFORM_FEEDBACK_BUFFER, 0); } void MeshStorage::update_mesh_instances() { if (dirty_mesh_instance_arrays.first() == nullptr) { return; //nothing to do } glEnable(GL_RASTERIZER_DISCARD); glBindFramebuffer(GL_FRAMEBUFFER, GLES3::TextureStorage::system_fbo); // Process skeletons and blend shapes using transform feedback while (dirty_mesh_instance_arrays.first()) { MeshInstance *mi = dirty_mesh_instance_arrays.first()->self(); Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton); // Precompute base weight if using blend shapes. float base_weight = 1.0; if (mi->mesh->blend_shape_count && mi->mesh->blend_shape_mode == RS::BLEND_SHAPE_MODE_NORMALIZED) { for (uint32_t i = 0; i < mi->mesh->blend_shape_count; i++) { base_weight -= mi->blend_weights[i]; } } for (uint32_t i = 0; i < mi->surfaces.size(); i++) { if (mi->surfaces[i].vertex_buffer == 0) { continue; } bool array_is_2d = mi->surfaces[i].format_cache & RS::ARRAY_FLAG_USE_2D_VERTICES; bool can_use_skeleton = sk != nullptr && sk->use_2d == array_is_2d && (mi->surfaces[i].format_cache & RS::ARRAY_FORMAT_BONES); bool use_8_weights = mi->surfaces[i].format_cache & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS; // Always process blend shapes first. if (mi->mesh->blend_shape_count) { SkeletonShaderGLES3::ShaderVariant variant = SkeletonShaderGLES3::MODE_BASE_PASS; uint64_t specialization = 0; specialization |= array_is_2d ? SkeletonShaderGLES3::MODE_2D : 0; specialization |= SkeletonShaderGLES3::USE_BLEND_SHAPES; if (!array_is_2d) { if ((mi->surfaces[i].format_cache & (1ULL << RS::ARRAY_NORMAL))) { specialization |= SkeletonShaderGLES3::USE_NORMAL; } if ((mi->surfaces[i].format_cache & (1ULL << RS::ARRAY_TANGENT))) { specialization |= SkeletonShaderGLES3::USE_TANGENT; } } bool success = skeleton_shader.shader.version_bind_shader(skeleton_shader.shader_version, variant, specialization); if (!success) { continue; } skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_WEIGHT, base_weight, skeleton_shader.shader_version, variant, specialization); skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_SHAPE_COUNT, float(mi->mesh->blend_shape_count), skeleton_shader.shader_version, variant, specialization); glBindBuffer(GL_ARRAY_BUFFER, 0); GLuint vertex_array_gl = 0; uint64_t mask = RS::ARRAY_FORMAT_VERTEX | RS::ARRAY_FORMAT_NORMAL | RS::ARRAY_FORMAT_VERTEX; uint64_t format = mi->mesh->surfaces[i]->format & mask; // Format should only have vertex, normal, tangent (as necessary). mesh_surface_get_vertex_arrays_and_format(mi->mesh->surfaces[i], format, vertex_array_gl); glBindVertexArray(vertex_array_gl); glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, mi->surfaces[i].vertex_buffers[0]); glBeginTransformFeedback(GL_POINTS); glDrawArrays(GL_POINTS, 0, mi->mesh->surfaces[i]->vertex_count); glEndTransformFeedback(); variant = SkeletonShaderGLES3::MODE_BLEND_PASS; success = skeleton_shader.shader.version_bind_shader(skeleton_shader.shader_version, variant, specialization); if (!success) { continue; } //Do the last blend shape separately, as it can be combined with the skeleton pass. for (uint32_t bs = 0; bs < mi->mesh->blend_shape_count - 1; bs++) { float weight = mi->blend_weights[bs]; if (Math::is_zero_approx(weight)) { //not bother with this one continue; } skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_WEIGHT, weight, skeleton_shader.shader_version, variant, specialization); skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_SHAPE_COUNT, float(mi->mesh->blend_shape_count), skeleton_shader.shader_version, variant, specialization); glBindVertexArray(mi->mesh->surfaces[i]->blend_shapes[bs].vertex_array); _blend_shape_bind_mesh_instance_buffer(mi, i); glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, mi->surfaces[i].vertex_buffers[1]); glBeginTransformFeedback(GL_POINTS); glDrawArrays(GL_POINTS, 0, mi->mesh->surfaces[i]->vertex_count); glEndTransformFeedback(); SWAP(mi->surfaces[i].vertex_buffers[0], mi->surfaces[i].vertex_buffers[1]); } uint32_t bs = mi->mesh->blend_shape_count - 1; float weight = mi->blend_weights[bs]; glBindVertexArray(mi->mesh->surfaces[i]->blend_shapes[bs].vertex_array); _blend_shape_bind_mesh_instance_buffer(mi, i); specialization |= can_use_skeleton ? SkeletonShaderGLES3::USE_SKELETON : 0; specialization |= (can_use_skeleton && use_8_weights) ? SkeletonShaderGLES3::USE_EIGHT_WEIGHTS : 0; specialization |= SkeletonShaderGLES3::FINAL_PASS; success = skeleton_shader.shader.version_bind_shader(skeleton_shader.shader_version, variant, specialization); if (!success) { continue; } skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_WEIGHT, weight, skeleton_shader.shader_version, variant, specialization); skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_SHAPE_COUNT, float(mi->mesh->blend_shape_count), skeleton_shader.shader_version, variant, specialization); if (can_use_skeleton) { Transform2D transform = mi->canvas_item_transform_2d.affine_inverse() * sk->base_transform_2d; skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::SKELETON_TRANSFORM_X, transform[0], skeleton_shader.shader_version, variant, specialization); skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::SKELETON_TRANSFORM_Y, transform[1], skeleton_shader.shader_version, variant, specialization); skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::SKELETON_TRANSFORM_OFFSET, transform[2], skeleton_shader.shader_version, variant, specialization); Transform2D inverse_transform = transform.affine_inverse(); skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::INVERSE_TRANSFORM_X, inverse_transform[0], skeleton_shader.shader_version, variant, specialization); skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::INVERSE_TRANSFORM_Y, inverse_transform[1], skeleton_shader.shader_version, variant, specialization); skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::INVERSE_TRANSFORM_OFFSET, inverse_transform[2], skeleton_shader.shader_version, variant, specialization); // Do last blendshape in the same pass as the Skeleton. _compute_skeleton(mi, sk, i); can_use_skeleton = false; } else { // Do last blendshape by itself and prepare vertex data for use by the renderer. glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, mi->surfaces[i].vertex_buffer); glBeginTransformFeedback(GL_POINTS); glDrawArrays(GL_POINTS, 0, mi->mesh->surfaces[i]->vertex_count); glEndTransformFeedback(); } glBindVertexArray(0); glBindBuffer(GL_TRANSFORM_FEEDBACK_BUFFER, 0); } // This branch should only execute when Skeleton is run by itself. if (can_use_skeleton) { SkeletonShaderGLES3::ShaderVariant variant = SkeletonShaderGLES3::MODE_BASE_PASS; uint64_t specialization = 0; specialization |= array_is_2d ? SkeletonShaderGLES3::MODE_2D : 0; specialization |= SkeletonShaderGLES3::USE_SKELETON; specialization |= SkeletonShaderGLES3::FINAL_PASS; specialization |= use_8_weights ? SkeletonShaderGLES3::USE_EIGHT_WEIGHTS : 0; if (!array_is_2d) { if ((mi->surfaces[i].format_cache & (1ULL << RS::ARRAY_NORMAL))) { specialization |= SkeletonShaderGLES3::USE_NORMAL; } if ((mi->surfaces[i].format_cache & (1ULL << RS::ARRAY_TANGENT))) { specialization |= SkeletonShaderGLES3::USE_TANGENT; } } bool success = skeleton_shader.shader.version_bind_shader(skeleton_shader.shader_version, variant, specialization); if (!success) { continue; } Transform2D transform = mi->canvas_item_transform_2d.affine_inverse() * sk->base_transform_2d; skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::SKELETON_TRANSFORM_X, transform[0], skeleton_shader.shader_version, variant, specialization); skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::SKELETON_TRANSFORM_Y, transform[1], skeleton_shader.shader_version, variant, specialization); skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::SKELETON_TRANSFORM_OFFSET, transform[2], skeleton_shader.shader_version, variant, specialization); Transform2D inverse_transform = transform.affine_inverse(); skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::INVERSE_TRANSFORM_X, inverse_transform[0], skeleton_shader.shader_version, variant, specialization); skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::INVERSE_TRANSFORM_Y, inverse_transform[1], skeleton_shader.shader_version, variant, specialization); skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::INVERSE_TRANSFORM_OFFSET, inverse_transform[2], skeleton_shader.shader_version, variant, specialization); GLuint vertex_array_gl = 0; uint64_t mask = RS::ARRAY_FORMAT_VERTEX | RS::ARRAY_FORMAT_NORMAL | RS::ARRAY_FORMAT_VERTEX; uint64_t format = mi->mesh->surfaces[i]->format & mask; // Format should only have vertex, normal, tangent (as necessary). mesh_surface_get_vertex_arrays_and_format(mi->mesh->surfaces[i], format, vertex_array_gl); glBindVertexArray(vertex_array_gl); _compute_skeleton(mi, sk, i); } } mi->dirty = false; if (sk) { mi->skeleton_version = sk->version; } dirty_mesh_instance_arrays.remove(&mi->array_update_list); } glDisable(GL_RASTERIZER_DISCARD); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, 0); } /* MULTIMESH API */ RID MeshStorage::multimesh_allocate() { return multimesh_owner.allocate_rid(); } void MeshStorage::multimesh_initialize(RID p_rid) { multimesh_owner.initialize_rid(p_rid, MultiMesh()); } void MeshStorage::multimesh_free(RID p_rid) { _update_dirty_multimeshes(); multimesh_allocate_data(p_rid, 0, RS::MULTIMESH_TRANSFORM_2D); MultiMesh *multimesh = multimesh_owner.get_or_null(p_rid); multimesh->dependency.deleted_notify(p_rid); multimesh_owner.free(p_rid); } void MeshStorage::multimesh_allocate_data(RID p_multimesh, int p_instances, RS::MultimeshTransformFormat p_transform_format, bool p_use_colors, bool p_use_custom_data) { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_NULL(multimesh); if (multimesh->instances == p_instances && multimesh->xform_format == p_transform_format && multimesh->uses_colors == p_use_colors && multimesh->uses_custom_data == p_use_custom_data) { return; } if (multimesh->buffer) { GLES3::Utilities::get_singleton()->buffer_free_data(multimesh->buffer); multimesh->buffer = 0; } if (multimesh->data_cache_dirty_regions) { memdelete_arr(multimesh->data_cache_dirty_regions); multimesh->data_cache_dirty_regions = nullptr; multimesh->data_cache_used_dirty_regions = 0; } // If we have either color or custom data, reserve space for both to make data handling logic simpler. // This way we can always treat them both as a single, compressed uvec4. int color_and_custom_strides = (p_use_colors || p_use_custom_data) ? 2 : 0; multimesh->instances = p_instances; multimesh->xform_format = p_transform_format; multimesh->uses_colors = p_use_colors; multimesh->color_offset_cache = p_transform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12; multimesh->uses_custom_data = p_use_custom_data; multimesh->custom_data_offset_cache = multimesh->color_offset_cache + color_and_custom_strides; multimesh->stride_cache = multimesh->custom_data_offset_cache + color_and_custom_strides; multimesh->buffer_set = false; multimesh->data_cache = Vector(); multimesh->aabb = AABB(); multimesh->aabb_dirty = false; multimesh->visible_instances = MIN(multimesh->visible_instances, multimesh->instances); if (multimesh->instances) { glGenBuffers(1, &multimesh->buffer); glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, multimesh->buffer, multimesh->instances * multimesh->stride_cache * sizeof(float), nullptr, GL_STATIC_DRAW, "MultiMesh buffer"); glBindBuffer(GL_ARRAY_BUFFER, 0); } multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH); } int MeshStorage::multimesh_get_instance_count(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_NULL_V(multimesh, 0); return multimesh->instances; } void MeshStorage::multimesh_set_mesh(RID p_multimesh, RID p_mesh) { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_NULL(multimesh); if (multimesh->mesh == p_mesh || p_mesh.is_null()) { return; } multimesh->mesh = p_mesh; if (multimesh->instances == 0) { return; } if (multimesh->data_cache.size()) { //we have a data cache, just mark it dirty _multimesh_mark_all_dirty(multimesh, false, true); } else if (multimesh->instances) { // Need to re-create AABB. Unfortunately, calling this has a penalty. if (multimesh->buffer_set) { Vector buffer = Utilities::buffer_get_data(GL_ARRAY_BUFFER, multimesh->buffer, multimesh->instances * multimesh->stride_cache * sizeof(float)); const uint8_t *r = buffer.ptr(); const float *data = (const float *)r; _multimesh_re_create_aabb(multimesh, data, multimesh->instances); } } multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH); } #define MULTIMESH_DIRTY_REGION_SIZE 512 void MeshStorage::_multimesh_make_local(MultiMesh *multimesh) const { if (multimesh->data_cache.size() > 0 || multimesh->instances == 0) { return; //already local } ERR_FAIL_COND(multimesh->data_cache.size() > 0); // this means that the user wants to load/save individual elements, // for this, the data must reside on CPU, so just copy it there. multimesh->data_cache.resize(multimesh->instances * multimesh->stride_cache); { float *w = multimesh->data_cache.ptrw(); if (multimesh->buffer_set) { Vector buffer = Utilities::buffer_get_data(GL_ARRAY_BUFFER, multimesh->buffer, multimesh->instances * multimesh->stride_cache * sizeof(float)); { const uint8_t *r = buffer.ptr(); memcpy(w, r, buffer.size()); } } else { memset(w, 0, (size_t)multimesh->instances * multimesh->stride_cache * sizeof(float)); } } uint32_t data_cache_dirty_region_count = Math::division_round_up(multimesh->instances, MULTIMESH_DIRTY_REGION_SIZE); multimesh->data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count); for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) { multimesh->data_cache_dirty_regions[i] = false; } multimesh->data_cache_used_dirty_regions = 0; } void MeshStorage::_multimesh_mark_dirty(MultiMesh *multimesh, int p_index, bool p_aabb) { uint32_t region_index = p_index / MULTIMESH_DIRTY_REGION_SIZE; #ifdef DEBUG_ENABLED uint32_t data_cache_dirty_region_count = Math::division_round_up(multimesh->instances, MULTIMESH_DIRTY_REGION_SIZE); ERR_FAIL_UNSIGNED_INDEX(region_index, data_cache_dirty_region_count); //bug #endif if (!multimesh->data_cache_dirty_regions[region_index]) { multimesh->data_cache_dirty_regions[region_index] = true; multimesh->data_cache_used_dirty_regions++; } if (p_aabb) { multimesh->aabb_dirty = true; } if (!multimesh->dirty) { multimesh->dirty_list = multimesh_dirty_list; multimesh_dirty_list = multimesh; multimesh->dirty = true; } } void MeshStorage::_multimesh_mark_all_dirty(MultiMesh *multimesh, bool p_data, bool p_aabb) { if (p_data) { uint32_t data_cache_dirty_region_count = Math::division_round_up(multimesh->instances, MULTIMESH_DIRTY_REGION_SIZE); for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) { if (!multimesh->data_cache_dirty_regions[i]) { multimesh->data_cache_dirty_regions[i] = true; multimesh->data_cache_used_dirty_regions++; } } } if (p_aabb) { multimesh->aabb_dirty = true; } if (!multimesh->dirty) { multimesh->dirty_list = multimesh_dirty_list; multimesh_dirty_list = multimesh; multimesh->dirty = true; } } void MeshStorage::_multimesh_re_create_aabb(MultiMesh *multimesh, const float *p_data, int p_instances) { ERR_FAIL_COND(multimesh->mesh.is_null()); if (multimesh->custom_aabb != AABB()) { return; } AABB aabb; AABB mesh_aabb = mesh_get_aabb(multimesh->mesh); for (int i = 0; i < p_instances; i++) { const float *data = p_data + multimesh->stride_cache * i; Transform3D t; if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) { t.basis.rows[0][0] = data[0]; t.basis.rows[0][1] = data[1]; t.basis.rows[0][2] = data[2]; t.origin.x = data[3]; t.basis.rows[1][0] = data[4]; t.basis.rows[1][1] = data[5]; t.basis.rows[1][2] = data[6]; t.origin.y = data[7]; t.basis.rows[2][0] = data[8]; t.basis.rows[2][1] = data[9]; t.basis.rows[2][2] = data[10]; t.origin.z = data[11]; } else { t.basis.rows[0][0] = data[0]; t.basis.rows[0][1] = data[1]; t.origin.x = data[3]; t.basis.rows[1][0] = data[4]; t.basis.rows[1][1] = data[5]; t.origin.y = data[7]; } if (i == 0) { aabb = t.xform(mesh_aabb); } else { aabb.merge_with(t.xform(mesh_aabb)); } } multimesh->aabb = aabb; } void MeshStorage::multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform3D &p_transform) { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_NULL(multimesh); ERR_FAIL_INDEX(p_index, multimesh->instances); ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D); _multimesh_make_local(multimesh); { float *w = multimesh->data_cache.ptrw(); float *dataptr = w + p_index * multimesh->stride_cache; dataptr[0] = p_transform.basis.rows[0][0]; dataptr[1] = p_transform.basis.rows[0][1]; dataptr[2] = p_transform.basis.rows[0][2]; dataptr[3] = p_transform.origin.x; dataptr[4] = p_transform.basis.rows[1][0]; dataptr[5] = p_transform.basis.rows[1][1]; dataptr[6] = p_transform.basis.rows[1][2]; dataptr[7] = p_transform.origin.y; dataptr[8] = p_transform.basis.rows[2][0]; dataptr[9] = p_transform.basis.rows[2][1]; dataptr[10] = p_transform.basis.rows[2][2]; dataptr[11] = p_transform.origin.z; } _multimesh_mark_dirty(multimesh, p_index, true); } void MeshStorage::multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_NULL(multimesh); ERR_FAIL_INDEX(p_index, multimesh->instances); ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D); _multimesh_make_local(multimesh); { float *w = multimesh->data_cache.ptrw(); float *dataptr = w + p_index * multimesh->stride_cache; dataptr[0] = p_transform.columns[0][0]; dataptr[1] = p_transform.columns[1][0]; dataptr[2] = 0; dataptr[3] = p_transform.columns[2][0]; dataptr[4] = p_transform.columns[0][1]; dataptr[5] = p_transform.columns[1][1]; dataptr[6] = 0; dataptr[7] = p_transform.columns[2][1]; } _multimesh_mark_dirty(multimesh, p_index, true); } void MeshStorage::multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_NULL(multimesh); ERR_FAIL_INDEX(p_index, multimesh->instances); ERR_FAIL_COND(!multimesh->uses_colors); _multimesh_make_local(multimesh); { // Colors are packed into 2 floats. float *w = multimesh->data_cache.ptrw(); float *dataptr = w + p_index * multimesh->stride_cache + multimesh->color_offset_cache; uint16_t val[4] = { Math::make_half_float(p_color.r), Math::make_half_float(p_color.g), Math::make_half_float(p_color.b), Math::make_half_float(p_color.a) }; memcpy(dataptr, val, 2 * 4); } _multimesh_mark_dirty(multimesh, p_index, false); } void MeshStorage::multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color) { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_NULL(multimesh); ERR_FAIL_INDEX(p_index, multimesh->instances); ERR_FAIL_COND(!multimesh->uses_custom_data); _multimesh_make_local(multimesh); { float *w = multimesh->data_cache.ptrw(); float *dataptr = w + p_index * multimesh->stride_cache + multimesh->custom_data_offset_cache; uint16_t val[4] = { Math::make_half_float(p_color.r), Math::make_half_float(p_color.g), Math::make_half_float(p_color.b), Math::make_half_float(p_color.a) }; memcpy(dataptr, val, 2 * 4); } _multimesh_mark_dirty(multimesh, p_index, false); } RID MeshStorage::multimesh_get_mesh(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_NULL_V(multimesh, RID()); return multimesh->mesh; } void MeshStorage::multimesh_set_custom_aabb(RID p_multimesh, const AABB &p_aabb) { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_NULL(multimesh); multimesh->custom_aabb = p_aabb; multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB); } AABB MeshStorage::multimesh_get_custom_aabb(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_NULL_V(multimesh, AABB()); return multimesh->custom_aabb; } AABB MeshStorage::multimesh_get_aabb(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_NULL_V(multimesh, AABB()); if (multimesh->custom_aabb != AABB()) { return multimesh->custom_aabb; } if (multimesh->aabb_dirty) { const_cast(this)->_update_dirty_multimeshes(); } return multimesh->aabb; } Transform3D MeshStorage::multimesh_instance_get_transform(RID p_multimesh, int p_index) const { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_NULL_V(multimesh, Transform3D()); ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform3D()); ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D, Transform3D()); _multimesh_make_local(multimesh); Transform3D t; { const float *r = multimesh->data_cache.ptr(); const float *dataptr = r + p_index * multimesh->stride_cache; t.basis.rows[0][0] = dataptr[0]; t.basis.rows[0][1] = dataptr[1]; t.basis.rows[0][2] = dataptr[2]; t.origin.x = dataptr[3]; t.basis.rows[1][0] = dataptr[4]; t.basis.rows[1][1] = dataptr[5]; t.basis.rows[1][2] = dataptr[6]; t.origin.y = dataptr[7]; t.basis.rows[2][0] = dataptr[8]; t.basis.rows[2][1] = dataptr[9]; t.basis.rows[2][2] = dataptr[10]; t.origin.z = dataptr[11]; } return t; } Transform2D MeshStorage::multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_NULL_V(multimesh, Transform2D()); ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform2D()); ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D, Transform2D()); _multimesh_make_local(multimesh); Transform2D t; { const float *r = multimesh->data_cache.ptr(); const float *dataptr = r + p_index * multimesh->stride_cache; t.columns[0][0] = dataptr[0]; t.columns[1][0] = dataptr[1]; t.columns[2][0] = dataptr[3]; t.columns[0][1] = dataptr[4]; t.columns[1][1] = dataptr[5]; t.columns[2][1] = dataptr[7]; } return t; } Color MeshStorage::multimesh_instance_get_color(RID p_multimesh, int p_index) const { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_NULL_V(multimesh, Color()); ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color()); ERR_FAIL_COND_V(!multimesh->uses_colors, Color()); _multimesh_make_local(multimesh); Color c; { const float *r = multimesh->data_cache.ptr(); const float *dataptr = r + p_index * multimesh->stride_cache + multimesh->color_offset_cache; uint16_t raw_data[4]; memcpy(raw_data, dataptr, 2 * 4); c.r = Math::half_to_float(raw_data[0]); c.g = Math::half_to_float(raw_data[1]); c.b = Math::half_to_float(raw_data[2]); c.a = Math::half_to_float(raw_data[3]); } return c; } Color MeshStorage::multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_NULL_V(multimesh, Color()); ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color()); ERR_FAIL_COND_V(!multimesh->uses_custom_data, Color()); _multimesh_make_local(multimesh); Color c; { const float *r = multimesh->data_cache.ptr(); const float *dataptr = r + p_index * multimesh->stride_cache + multimesh->custom_data_offset_cache; uint16_t raw_data[4]; memcpy(raw_data, dataptr, 2 * 4); c.r = Math::half_to_float(raw_data[0]); c.g = Math::half_to_float(raw_data[1]); c.b = Math::half_to_float(raw_data[2]); c.a = Math::half_to_float(raw_data[3]); } return c; } void MeshStorage::multimesh_set_buffer(RID p_multimesh, const Vector &p_buffer) { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_NULL(multimesh); if (multimesh->uses_colors || multimesh->uses_custom_data) { // Color and custom need to be packed so copy buffer to data_cache and pack. _multimesh_make_local(multimesh); uint32_t old_stride = multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12; old_stride += multimesh->uses_colors ? 4 : 0; old_stride += multimesh->uses_custom_data ? 4 : 0; ERR_FAIL_COND(p_buffer.size() != (multimesh->instances * (int)old_stride)); multimesh->data_cache = p_buffer; float *w = multimesh->data_cache.ptrw(); for (int i = 0; i < multimesh->instances; i++) { { float *dataptr = w + i * old_stride; float *newptr = w + i * multimesh->stride_cache; float vals[8] = { dataptr[0], dataptr[1], dataptr[2], dataptr[3], dataptr[4], dataptr[5], dataptr[6], dataptr[7] }; memcpy(newptr, vals, 8 * 4); } if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) { float *dataptr = w + i * old_stride + 8; float *newptr = w + i * multimesh->stride_cache + 8; float vals[8] = { dataptr[0], dataptr[1], dataptr[2], dataptr[3] }; memcpy(newptr, vals, 4 * 4); } if (multimesh->uses_colors) { float *dataptr = w + i * old_stride + (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12); float *newptr = w + i * multimesh->stride_cache + multimesh->color_offset_cache; uint16_t val[4] = { Math::make_half_float(dataptr[0]), Math::make_half_float(dataptr[1]), Math::make_half_float(dataptr[2]), Math::make_half_float(dataptr[3]) }; memcpy(newptr, val, 2 * 4); } if (multimesh->uses_custom_data) { float *dataptr = w + i * old_stride + (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12) + (multimesh->uses_colors ? 4 : 0); float *newptr = w + i * multimesh->stride_cache + multimesh->custom_data_offset_cache; uint16_t val[4] = { Math::make_half_float(dataptr[0]), Math::make_half_float(dataptr[1]), Math::make_half_float(dataptr[2]), Math::make_half_float(dataptr[3]) }; memcpy(newptr, val, 2 * 4); } } multimesh->data_cache.resize(multimesh->instances * (int)multimesh->stride_cache); const float *r = multimesh->data_cache.ptr(); glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer); glBufferData(GL_ARRAY_BUFFER, multimesh->data_cache.size() * sizeof(float), r, GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); } else { // If we have a data cache, just update it. if (multimesh->data_cache.size()) { multimesh->data_cache = p_buffer; } // Only Transform is being used, so we can upload directly. ERR_FAIL_COND(p_buffer.size() != (multimesh->instances * (int)multimesh->stride_cache)); const float *r = p_buffer.ptr(); glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer); glBufferData(GL_ARRAY_BUFFER, p_buffer.size() * sizeof(float), r, GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); } multimesh->buffer_set = true; if (multimesh->data_cache.size() || multimesh->uses_colors || multimesh->uses_custom_data) { // Clear dirty since nothing will be dirty anymore. uint32_t data_cache_dirty_region_count = Math::division_round_up(multimesh->instances, MULTIMESH_DIRTY_REGION_SIZE); for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) { multimesh->data_cache_dirty_regions[i] = false; } multimesh->data_cache_used_dirty_regions = 0; _multimesh_mark_all_dirty(multimesh, false, true); //update AABB } else if (multimesh->mesh.is_valid()) { //if we have a mesh set, we need to re-generate the AABB from the new data const float *data = p_buffer.ptr(); if (multimesh->custom_aabb == AABB()) { _multimesh_re_create_aabb(multimesh, data, multimesh->instances); multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB); } } } Vector MeshStorage::multimesh_get_buffer(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_NULL_V(multimesh, Vector()); Vector ret; if (multimesh->buffer == 0 || multimesh->instances == 0) { return Vector(); } else if (multimesh->data_cache.size()) { ret = multimesh->data_cache; } else { // Buffer not cached, so fetch from GPU memory. This can be a stalling operation, avoid whenever possible. Vector buffer = Utilities::buffer_get_data(GL_ARRAY_BUFFER, multimesh->buffer, multimesh->instances * multimesh->stride_cache * sizeof(float)); ret.resize(multimesh->instances * multimesh->stride_cache); { float *w = ret.ptrw(); const uint8_t *r = buffer.ptr(); memcpy(w, r, buffer.size()); } } if (multimesh->uses_colors || multimesh->uses_custom_data) { // Need to decompress buffer. uint32_t new_stride = multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12; new_stride += multimesh->uses_colors ? 4 : 0; new_stride += multimesh->uses_custom_data ? 4 : 0; Vector decompressed; decompressed.resize(multimesh->instances * (int)new_stride); float *w = decompressed.ptrw(); const float *r = ret.ptr(); for (int i = 0; i < multimesh->instances; i++) { { float *newptr = w + i * new_stride; const float *oldptr = r + i * multimesh->stride_cache; float vals[8] = { oldptr[0], oldptr[1], oldptr[2], oldptr[3], oldptr[4], oldptr[5], oldptr[6], oldptr[7] }; memcpy(newptr, vals, 8 * 4); } if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) { float *newptr = w + i * new_stride + 8; const float *oldptr = r + i * multimesh->stride_cache + 8; float vals[8] = { oldptr[0], oldptr[1], oldptr[2], oldptr[3] }; memcpy(newptr, vals, 4 * 4); } if (multimesh->uses_colors) { float *newptr = w + i * new_stride + (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12); const float *oldptr = r + i * multimesh->stride_cache + multimesh->color_offset_cache; uint16_t raw_data[4]; memcpy(raw_data, oldptr, 2 * 4); newptr[0] = Math::half_to_float(raw_data[0]); newptr[1] = Math::half_to_float(raw_data[1]); newptr[2] = Math::half_to_float(raw_data[2]); newptr[3] = Math::half_to_float(raw_data[3]); } if (multimesh->uses_custom_data) { float *newptr = w + i * new_stride + (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12) + (multimesh->uses_colors ? 4 : 0); const float *oldptr = r + i * multimesh->stride_cache + multimesh->custom_data_offset_cache; uint16_t raw_data[4]; memcpy(raw_data, oldptr, 2 * 4); newptr[0] = Math::half_to_float(raw_data[0]); newptr[1] = Math::half_to_float(raw_data[1]); newptr[2] = Math::half_to_float(raw_data[2]); newptr[3] = Math::half_to_float(raw_data[3]); } } return decompressed; } else { return ret; } } void MeshStorage::multimesh_set_visible_instances(RID p_multimesh, int p_visible) { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_NULL(multimesh); ERR_FAIL_COND(p_visible < -1 || p_visible > multimesh->instances); if (multimesh->visible_instances == p_visible) { return; } if (multimesh->data_cache.size()) { // There is a data cache, but we may need to update some sections. _multimesh_mark_all_dirty(multimesh, false, true); int start = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances; for (int i = start; i < p_visible; i++) { _multimesh_mark_dirty(multimesh, i, true); } } multimesh->visible_instances = p_visible; multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH_VISIBLE_INSTANCES); } int MeshStorage::multimesh_get_visible_instances(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_NULL_V(multimesh, 0); return multimesh->visible_instances; } void MeshStorage::_update_dirty_multimeshes() { while (multimesh_dirty_list) { MultiMesh *multimesh = multimesh_dirty_list; if (multimesh->data_cache.size()) { //may have been cleared, so only process if it exists const float *data = multimesh->data_cache.ptr(); uint32_t visible_instances = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances; if (multimesh->data_cache_used_dirty_regions) { uint32_t data_cache_dirty_region_count = Math::division_round_up(multimesh->instances, (int)MULTIMESH_DIRTY_REGION_SIZE); uint32_t visible_region_count = visible_instances == 0 ? 0 : Math::division_round_up(visible_instances, (uint32_t)MULTIMESH_DIRTY_REGION_SIZE); GLint region_size = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float); if (multimesh->data_cache_used_dirty_regions > 32 || multimesh->data_cache_used_dirty_regions > visible_region_count / 2) { // If there too many dirty regions, or represent the majority of regions, just copy all, else transfer cost piles up too much glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer); glBufferSubData(GL_ARRAY_BUFFER, 0, MIN(visible_region_count * region_size, multimesh->instances * multimesh->stride_cache * sizeof(float)), data); glBindBuffer(GL_ARRAY_BUFFER, 0); } else { // Not that many regions? update them all // TODO: profile the performance cost on low end glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer); for (uint32_t i = 0; i < visible_region_count; i++) { if (multimesh->data_cache_dirty_regions[i]) { GLint offset = i * region_size; GLint size = multimesh->stride_cache * (uint32_t)multimesh->instances * (uint32_t)sizeof(float); uint32_t region_start_index = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * i; glBufferSubData(GL_ARRAY_BUFFER, offset, MIN(region_size, size - offset), &data[region_start_index]); } } glBindBuffer(GL_ARRAY_BUFFER, 0); } for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) { multimesh->data_cache_dirty_regions[i] = false; } multimesh->data_cache_used_dirty_regions = 0; } if (multimesh->aabb_dirty && multimesh->mesh.is_valid()) { multimesh->aabb_dirty = false; if (multimesh->custom_aabb == AABB()) { _multimesh_re_create_aabb(multimesh, data, visible_instances); multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB); } } } multimesh_dirty_list = multimesh->dirty_list; multimesh->dirty_list = nullptr; multimesh->dirty = false; } multimesh_dirty_list = nullptr; } /* SKELETON API */ RID MeshStorage::skeleton_allocate() { return skeleton_owner.allocate_rid(); } void MeshStorage::skeleton_initialize(RID p_rid) { skeleton_owner.initialize_rid(p_rid, Skeleton()); } void MeshStorage::skeleton_free(RID p_rid) { _update_dirty_skeletons(); skeleton_allocate_data(p_rid, 0); Skeleton *skeleton = skeleton_owner.get_or_null(p_rid); skeleton->dependency.deleted_notify(p_rid); skeleton_owner.free(p_rid); } void MeshStorage::_skeleton_make_dirty(Skeleton *skeleton) { if (!skeleton->dirty) { skeleton->dirty = true; skeleton->dirty_list = skeleton_dirty_list; skeleton_dirty_list = skeleton; } } void MeshStorage::skeleton_allocate_data(RID p_skeleton, int p_bones, bool p_2d_skeleton) { Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton); ERR_FAIL_NULL(skeleton); ERR_FAIL_COND(p_bones < 0); if (skeleton->size == p_bones && skeleton->use_2d == p_2d_skeleton) { return; } skeleton->size = p_bones; skeleton->use_2d = p_2d_skeleton; skeleton->height = (p_bones * (p_2d_skeleton ? 2 : 3)) / 256; if ((p_bones * (p_2d_skeleton ? 2 : 3)) % 256) { skeleton->height++; } if (skeleton->transforms_texture != 0) { GLES3::Utilities::get_singleton()->texture_free_data(skeleton->transforms_texture); skeleton->transforms_texture = 0; skeleton->data.clear(); } if (skeleton->size) { skeleton->data.resize(256 * skeleton->height * 4); glGenTextures(1, &skeleton->transforms_texture); glBindTexture(GL_TEXTURE_2D, skeleton->transforms_texture); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, 256, skeleton->height, 0, GL_RGBA, GL_FLOAT, nullptr); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_2D, 0); GLES3::Utilities::get_singleton()->texture_allocated_data(skeleton->transforms_texture, skeleton->data.size() * sizeof(float), "Skeleton transforms texture"); memset(skeleton->data.ptrw(), 0, skeleton->data.size() * sizeof(float)); _skeleton_make_dirty(skeleton); } skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_DATA); } void MeshStorage::skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform) { Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton); ERR_FAIL_NULL(skeleton); ERR_FAIL_COND(!skeleton->use_2d); skeleton->base_transform_2d = p_base_transform; } int MeshStorage::skeleton_get_bone_count(RID p_skeleton) const { Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton); ERR_FAIL_NULL_V(skeleton, 0); return skeleton->size; } void MeshStorage::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform3D &p_transform) { Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton); ERR_FAIL_NULL(skeleton); ERR_FAIL_INDEX(p_bone, skeleton->size); ERR_FAIL_COND(skeleton->use_2d); float *dataptr = skeleton->data.ptrw() + p_bone * 12; dataptr[0] = p_transform.basis.rows[0][0]; dataptr[1] = p_transform.basis.rows[0][1]; dataptr[2] = p_transform.basis.rows[0][2]; dataptr[3] = p_transform.origin.x; dataptr[4] = p_transform.basis.rows[1][0]; dataptr[5] = p_transform.basis.rows[1][1]; dataptr[6] = p_transform.basis.rows[1][2]; dataptr[7] = p_transform.origin.y; dataptr[8] = p_transform.basis.rows[2][0]; dataptr[9] = p_transform.basis.rows[2][1]; dataptr[10] = p_transform.basis.rows[2][2]; dataptr[11] = p_transform.origin.z; _skeleton_make_dirty(skeleton); } Transform3D MeshStorage::skeleton_bone_get_transform(RID p_skeleton, int p_bone) const { Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton); ERR_FAIL_NULL_V(skeleton, Transform3D()); ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform3D()); ERR_FAIL_COND_V(skeleton->use_2d, Transform3D()); const float *dataptr = skeleton->data.ptr() + p_bone * 12; Transform3D t; t.basis.rows[0][0] = dataptr[0]; t.basis.rows[0][1] = dataptr[1]; t.basis.rows[0][2] = dataptr[2]; t.origin.x = dataptr[3]; t.basis.rows[1][0] = dataptr[4]; t.basis.rows[1][1] = dataptr[5]; t.basis.rows[1][2] = dataptr[6]; t.origin.y = dataptr[7]; t.basis.rows[2][0] = dataptr[8]; t.basis.rows[2][1] = dataptr[9]; t.basis.rows[2][2] = dataptr[10]; t.origin.z = dataptr[11]; return t; } void MeshStorage::skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform) { Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton); ERR_FAIL_NULL(skeleton); ERR_FAIL_INDEX(p_bone, skeleton->size); ERR_FAIL_COND(!skeleton->use_2d); float *dataptr = skeleton->data.ptrw() + p_bone * 8; dataptr[0] = p_transform.columns[0][0]; dataptr[1] = p_transform.columns[1][0]; dataptr[2] = 0; dataptr[3] = p_transform.columns[2][0]; dataptr[4] = p_transform.columns[0][1]; dataptr[5] = p_transform.columns[1][1]; dataptr[6] = 0; dataptr[7] = p_transform.columns[2][1]; _skeleton_make_dirty(skeleton); } Transform2D MeshStorage::skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const { Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton); ERR_FAIL_NULL_V(skeleton, Transform2D()); ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform2D()); ERR_FAIL_COND_V(!skeleton->use_2d, Transform2D()); const float *dataptr = skeleton->data.ptr() + p_bone * 8; Transform2D t; t.columns[0][0] = dataptr[0]; t.columns[1][0] = dataptr[1]; t.columns[2][0] = dataptr[3]; t.columns[0][1] = dataptr[4]; t.columns[1][1] = dataptr[5]; t.columns[2][1] = dataptr[7]; return t; } void MeshStorage::_update_dirty_skeletons() { while (skeleton_dirty_list) { Skeleton *skeleton = skeleton_dirty_list; if (skeleton->size) { glBindTexture(GL_TEXTURE_2D, skeleton->transforms_texture); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, 256, skeleton->height, 0, GL_RGBA, GL_FLOAT, skeleton->data.ptr()); glBindTexture(GL_TEXTURE_2D, 0); } skeleton_dirty_list = skeleton->dirty_list; skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_BONES); skeleton->version++; skeleton->dirty = false; skeleton->dirty_list = nullptr; } skeleton_dirty_list = nullptr; } void MeshStorage::skeleton_update_dependency(RID p_skeleton, DependencyTracker *p_instance) { Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton); ERR_FAIL_NULL(skeleton); p_instance->update_dependency(&skeleton->dependency); } #endif // GLES3_ENABLED