/* clang-format off */ #[modes] mode_quad = mode_ninepatch = #define USE_NINEPATCH mode_primitive = #define USE_PRIMITIVE mode_attributes = #define USE_ATTRIBUTES mode_instanced = #define USE_ATTRIBUTES \n#define USE_INSTANCING #[specializations] DISABLE_LIGHTING = false USE_RGBA_SHADOWS = false SINGLE_INSTANCE = false #[vertex] #ifdef USE_ATTRIBUTES layout(location = 0) in vec2 vertex_attrib; layout(location = 3) in vec4 color_attrib; layout(location = 4) in vec2 uv_attrib; #ifdef USE_INSTANCING layout(location = 1) in highp vec4 instance_xform0; layout(location = 2) in highp vec4 instance_xform1; layout(location = 5) in highp uvec4 instance_color_custom_data; // Color packed into xy, custom_data packed into zw for compatibility with 3D #endif // USE_INSTANCING #endif // USE_ATTRIBUTES #include "stdlib_inc.glsl" layout(location = 6) in highp vec4 attrib_A; layout(location = 7) in highp vec4 attrib_B; layout(location = 8) in highp vec4 attrib_C; layout(location = 9) in highp vec4 attrib_D; layout(location = 10) in highp vec4 attrib_E; #ifdef USE_PRIMITIVE layout(location = 11) in highp uvec4 attrib_F; #else layout(location = 11) in highp vec4 attrib_F; #endif layout(location = 12) in highp uvec4 attrib_G; layout(location = 13) in highp uvec4 attrib_H; #define read_draw_data_world_x attrib_A.xy #define read_draw_data_world_y attrib_A.zw #define read_draw_data_world_ofs attrib_B.xy #define read_draw_data_color_texture_pixel_size attrib_B.zw #ifdef USE_PRIMITIVE #define read_draw_data_point_a attrib_C.xy #define read_draw_data_point_b attrib_C.zw #define read_draw_data_point_c attrib_D.xy #define read_draw_data_uv_a attrib_D.zw #define read_draw_data_uv_b attrib_E.xy #define read_draw_data_uv_c attrib_E.zw #define read_draw_data_color_a_rg attrib_F.x #define read_draw_data_color_a_ba attrib_F.y #define read_draw_data_color_b_rg attrib_F.z #define read_draw_data_color_b_ba attrib_F.w #define read_draw_data_color_c_rg attrib_G.x #define read_draw_data_color_c_ba attrib_G.y #else #define read_draw_data_modulation attrib_C #define read_draw_data_ninepatch_margins attrib_D #define read_draw_data_dst_rect attrib_E #define read_draw_data_src_rect attrib_F #endif #define read_draw_data_flags attrib_G.z #define read_draw_data_specular_shininess attrib_G.w #define read_draw_data_lights attrib_H // Varyings so the per-instance info can be used in the fragment shader flat out vec4 varying_A; flat out vec2 varying_B; #ifndef USE_PRIMITIVE flat out vec4 varying_C; #ifndef USE_ATTRIBUTES #ifdef USE_NINEPATCH flat out vec2 varying_D; #endif flat out vec4 varying_E; #endif #endif flat out uvec2 varying_F; flat out uvec4 varying_G; // This needs to be outside clang-format so the ubo comment is in the right place #ifdef MATERIAL_UNIFORMS_USED layout(std140) uniform MaterialUniforms{ //ubo:4 #MATERIAL_UNIFORMS }; #endif /* clang-format on */ #include "canvas_uniforms_inc.glsl" out vec2 uv_interp; out vec4 color_interp; out vec2 vertex_interp; #ifdef USE_NINEPATCH out vec2 pixel_size_interp; #endif #GLOBALS void main() { varying_A = vec4(read_draw_data_world_x, read_draw_data_world_y); varying_B = read_draw_data_color_texture_pixel_size; #ifndef USE_PRIMITIVE varying_C = read_draw_data_ninepatch_margins; #ifndef USE_ATTRIBUTES #ifdef USE_NINEPATCH varying_D = vec2(read_draw_data_dst_rect.z, read_draw_data_dst_rect.w); #endif // USE_NINEPATCH varying_E = read_draw_data_src_rect; #endif // !USE_ATTRIBUTES #endif // USE_PRIMITIVE varying_F = uvec2(read_draw_data_flags, read_draw_data_specular_shininess); varying_G = read_draw_data_lights; vec4 instance_custom = vec4(0.0); #ifdef USE_PRIMITIVE vec2 vertex; vec2 uv; vec4 color; if (gl_VertexID % 3 == 0) { vertex = read_draw_data_point_a; uv = read_draw_data_uv_a; color = vec4(unpackHalf2x16(read_draw_data_color_a_rg), unpackHalf2x16(read_draw_data_color_a_ba)); } else if (gl_VertexID % 3 == 1) { vertex = read_draw_data_point_b; uv = read_draw_data_uv_b; color = vec4(unpackHalf2x16(read_draw_data_color_b_rg), unpackHalf2x16(read_draw_data_color_b_ba)); } else { vertex = read_draw_data_point_c; uv = read_draw_data_uv_c; color = vec4(unpackHalf2x16(read_draw_data_color_c_rg), unpackHalf2x16(read_draw_data_color_c_ba)); } #elif defined(USE_ATTRIBUTES) vec2 vertex = vertex_attrib; vec4 color = color_attrib * read_draw_data_modulation; vec2 uv = uv_attrib; #ifdef USE_INSTANCING if (bool(read_draw_data_flags & FLAGS_INSTANCING_HAS_COLORS)) { vec4 instance_color = vec4(unpackHalf2x16(instance_color_custom_data.x), unpackHalf2x16(instance_color_custom_data.y)); color *= instance_color; } if (bool(read_draw_data_flags & FLAGS_INSTANCING_HAS_CUSTOM_DATA)) { instance_custom = vec4(unpackHalf2x16(instance_color_custom_data.z), unpackHalf2x16(instance_color_custom_data.w)); } #endif #else vec2 vertex_base_arr[6] = vec2[](vec2(0.0, 0.0), vec2(0.0, 1.0), vec2(1.0, 1.0), vec2(1.0, 0.0), vec2(0.0, 0.0), vec2(1.0, 1.0)); vec2 vertex_base = vertex_base_arr[gl_VertexID % 6]; vec2 uv = read_draw_data_src_rect.xy + abs(read_draw_data_src_rect.zw) * ((read_draw_data_flags & FLAGS_TRANSPOSE_RECT) != uint(0) ? vertex_base.yx : vertex_base.xy); vec4 color = read_draw_data_modulation; vec2 vertex = read_draw_data_dst_rect.xy + abs(read_draw_data_dst_rect.zw) * mix(vertex_base, vec2(1.0, 1.0) - vertex_base, lessThan(read_draw_data_src_rect.zw, vec2(0.0, 0.0))); #endif mat4 model_matrix = mat4(vec4(read_draw_data_world_x, 0.0, 0.0), vec4(read_draw_data_world_y, 0.0, 0.0), vec4(0.0, 0.0, 1.0, 0.0), vec4(read_draw_data_world_ofs, 0.0, 1.0)); #ifdef USE_INSTANCING model_matrix = model_matrix * transpose(mat4(instance_xform0, instance_xform1, vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))); #endif // USE_INSTANCING #if !defined(USE_ATTRIBUTES) && !defined(USE_PRIMITIVE) if (bool(read_draw_data_flags & FLAGS_USING_PARTICLES)) { //scale by texture size vertex /= read_draw_data_color_texture_pixel_size; } #endif vec2 color_texture_pixel_size = read_draw_data_color_texture_pixel_size; #ifdef USE_POINT_SIZE float point_size = 1.0; #endif { #CODE : VERTEX } #ifdef USE_NINEPATCH pixel_size_interp = abs(read_draw_data_dst_rect.zw) * vertex_base; #endif #if !defined(SKIP_TRANSFORM_USED) vertex = (model_matrix * vec4(vertex, 0.0, 1.0)).xy; #endif color_interp = color; if (use_pixel_snap) { vertex = floor(vertex + 0.5); // precision issue on some hardware creates artifacts within texture // offset uv by a small amount to avoid uv += 1e-5; } vertex = (canvas_transform * vec4(vertex, 0.0, 1.0)).xy; vertex_interp = vertex; uv_interp = uv; gl_Position = screen_transform * vec4(vertex, 0.0, 1.0); #ifdef USE_POINT_SIZE gl_PointSize = point_size; #endif } #[fragment] #include "canvas_uniforms_inc.glsl" #include "stdlib_inc.glsl" in vec2 uv_interp; in vec2 vertex_interp; in vec4 color_interp; #ifdef USE_NINEPATCH in vec2 pixel_size_interp; #endif // Can all be flat as they are the same for the whole batched instance flat in vec4 varying_A; flat in vec2 varying_B; #define read_draw_data_world_x varying_A.xy #define read_draw_data_world_y varying_A.zw #define read_draw_data_color_texture_pixel_size varying_B #ifndef USE_PRIMITIVE flat in vec4 varying_C; #define read_draw_data_ninepatch_margins varying_C #ifndef USE_ATTRIBUTES #ifdef USE_NINEPATCH flat in vec2 varying_D; #define read_draw_data_dst_rect_z varying_D.x #define read_draw_data_dst_rect_w varying_D.y #endif flat in vec4 varying_E; #define read_draw_data_src_rect varying_E #endif // USE_ATTRIBUTES #endif // USE_PRIMITIVE flat in uvec2 varying_F; flat in uvec4 varying_G; #define read_draw_data_flags varying_F.x #define read_draw_data_specular_shininess varying_F.y #define read_draw_data_lights varying_G #ifndef DISABLE_LIGHTING uniform sampler2D atlas_texture; //texunit:-2 uniform sampler2D shadow_atlas_texture; //texunit:-3 #endif // DISABLE_LIGHTING uniform sampler2D color_buffer; //texunit:-4 uniform sampler2D sdf_texture; //texunit:-5 uniform sampler2D normal_texture; //texunit:-6 uniform sampler2D specular_texture; //texunit:-7 uniform sampler2D color_texture; //texunit:0 layout(location = 0) out vec4 frag_color; #ifdef MATERIAL_UNIFORMS_USED layout(std140) uniform MaterialUniforms{ //ubo:4 #MATERIAL_UNIFORMS }; #endif #GLOBALS float vec4_to_float(vec4 p_vec) { return dot(p_vec, vec4(1.0 / (255.0 * 255.0 * 255.0), 1.0 / (255.0 * 255.0), 1.0 / 255.0, 1.0)) * 2.0 - 1.0; } vec2 screen_uv_to_sdf(vec2 p_uv) { return screen_to_sdf * p_uv; } float texture_sdf(vec2 p_sdf) { vec2 uv = p_sdf * sdf_to_tex.xy + sdf_to_tex.zw; float d = vec4_to_float(texture(sdf_texture, uv)); d *= SDF_MAX_LENGTH; return d * tex_to_sdf; } vec2 texture_sdf_normal(vec2 p_sdf) { vec2 uv = p_sdf * sdf_to_tex.xy + sdf_to_tex.zw; const float EPSILON = 0.001; return normalize(vec2( vec4_to_float(texture(sdf_texture, uv + vec2(EPSILON, 0.0))) - vec4_to_float(texture(sdf_texture, uv - vec2(EPSILON, 0.0))), vec4_to_float(texture(sdf_texture, uv + vec2(0.0, EPSILON))) - vec4_to_float(texture(sdf_texture, uv - vec2(0.0, EPSILON))))); } vec2 sdf_to_screen_uv(vec2 p_sdf) { return p_sdf * sdf_to_screen; } #ifndef DISABLE_LIGHTING #ifdef LIGHT_CODE_USED vec4 light_compute( vec3 light_vertex, vec3 light_position, vec3 normal, vec4 light_color, float light_energy, vec4 specular_shininess, inout vec4 shadow_modulate, vec2 screen_uv, vec2 uv, vec4 color, bool is_directional) { vec4 light = vec4(0.0); vec3 light_direction = vec3(0.0); if (is_directional) { light_direction = normalize(mix(vec3(light_position.xy, 0.0), vec3(0, 0, 1), light_position.z)); light_position = vec3(0.0); } else { light_direction = normalize(light_position - light_vertex); } #CODE : LIGHT return light; } #endif vec3 light_normal_compute(vec3 light_vec, vec3 normal, vec3 base_color, vec3 light_color, vec4 specular_shininess, bool specular_shininess_used) { float cNdotL = max(0.0, dot(normal, light_vec)); if (specular_shininess_used) { //blinn vec3 view = vec3(0.0, 0.0, 1.0); // not great but good enough vec3 half_vec = normalize(view + light_vec); float cNdotV = max(dot(normal, view), 0.0); float cNdotH = max(dot(normal, half_vec), 0.0); float cVdotH = max(dot(view, half_vec), 0.0); float cLdotH = max(dot(light_vec, half_vec), 0.0); float shininess = exp2(15.0 * specular_shininess.a + 1.0) * 0.25; float blinn = pow(cNdotH, shininess); blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI)); float s = (blinn) / max(4.0 * cNdotV * cNdotL, 0.75); return specular_shininess.rgb * light_color * s + light_color * base_color * cNdotL; } else { return light_color * base_color * cNdotL; } } #ifdef USE_RGBA_SHADOWS #define SHADOW_DEPTH(m_uv) (dot(textureLod(shadow_atlas_texture, (m_uv), 0.0), vec4(1.0 / (255.0 * 255.0 * 255.0), 1.0 / (255.0 * 255.0), 1.0 / 255.0, 1.0)) * 2.0 - 1.0) #else #define SHADOW_DEPTH(m_uv) (textureLod(shadow_atlas_texture, (m_uv), 0.0).r) #endif /* clang-format off */ #define SHADOW_TEST(m_uv) { highp float sd = SHADOW_DEPTH(m_uv); shadow += step(sd, shadow_uv.z / shadow_uv.w); } /* clang-format on */ //float distance = length(shadow_pos); vec4 light_shadow_compute(uint light_base, vec4 light_color, vec4 shadow_uv #ifdef LIGHT_CODE_USED , vec3 shadow_modulate #endif ) { float shadow = 0.0; uint shadow_mode = light_array[light_base].flags & LIGHT_FLAGS_FILTER_MASK; if (shadow_mode == LIGHT_FLAGS_SHADOW_NEAREST) { SHADOW_TEST(shadow_uv.xy); } else if (shadow_mode == LIGHT_FLAGS_SHADOW_PCF5) { vec2 shadow_pixel_size = vec2(light_array[light_base].shadow_pixel_size, 0.0); SHADOW_TEST(shadow_uv.xy - shadow_pixel_size * 2.0); SHADOW_TEST(shadow_uv.xy - shadow_pixel_size); SHADOW_TEST(shadow_uv.xy); SHADOW_TEST(shadow_uv.xy + shadow_pixel_size); SHADOW_TEST(shadow_uv.xy + shadow_pixel_size * 2.0); shadow /= 5.0; } else { //PCF13 vec2 shadow_pixel_size = vec2(light_array[light_base].shadow_pixel_size, 0.0); SHADOW_TEST(shadow_uv.xy - shadow_pixel_size * 6.0); SHADOW_TEST(shadow_uv.xy - shadow_pixel_size * 5.0); SHADOW_TEST(shadow_uv.xy - shadow_pixel_size * 4.0); SHADOW_TEST(shadow_uv.xy - shadow_pixel_size * 3.0); SHADOW_TEST(shadow_uv.xy - shadow_pixel_size * 2.0); SHADOW_TEST(shadow_uv.xy - shadow_pixel_size); SHADOW_TEST(shadow_uv.xy); SHADOW_TEST(shadow_uv.xy + shadow_pixel_size); SHADOW_TEST(shadow_uv.xy + shadow_pixel_size * 2.0); SHADOW_TEST(shadow_uv.xy + shadow_pixel_size * 3.0); SHADOW_TEST(shadow_uv.xy + shadow_pixel_size * 4.0); SHADOW_TEST(shadow_uv.xy + shadow_pixel_size * 5.0); SHADOW_TEST(shadow_uv.xy + shadow_pixel_size * 6.0); shadow /= 13.0; } vec4 shadow_color = godot_unpackUnorm4x8(light_array[light_base].shadow_color); #ifdef LIGHT_CODE_USED shadow_color.rgb *= shadow_modulate; #endif shadow_color.a *= light_color.a; //respect light alpha return mix(light_color, shadow_color, shadow); } void light_blend_compute(uint light_base, vec4 light_color, inout vec3 color) { uint blend_mode = light_array[light_base].flags & LIGHT_FLAGS_BLEND_MASK; switch (blend_mode) { case LIGHT_FLAGS_BLEND_MODE_ADD: { color.rgb += light_color.rgb * light_color.a; } break; case LIGHT_FLAGS_BLEND_MODE_SUB: { color.rgb -= light_color.rgb * light_color.a; } break; case LIGHT_FLAGS_BLEND_MODE_MIX: { color.rgb = mix(color.rgb, light_color.rgb, light_color.a); } break; } } #endif #ifdef USE_NINEPATCH float map_ninepatch_axis(float pixel, float draw_size, float tex_pixel_size, float margin_begin, float margin_end, int np_repeat, inout int draw_center) { float tex_size = 1.0 / tex_pixel_size; if (pixel < margin_begin) { return pixel * tex_pixel_size; } else if (pixel >= draw_size - margin_end) { return (tex_size - (draw_size - pixel)) * tex_pixel_size; } else { if (!bool(read_draw_data_flags & FLAGS_NINEPACH_DRAW_CENTER)) { draw_center--; } // np_repeat is passed as uniform using NinePatchRect::AxisStretchMode enum. if (np_repeat == 0) { // Stretch. // Convert to ratio. float ratio = (pixel - margin_begin) / (draw_size - margin_begin - margin_end); // Scale to source texture. return (margin_begin + ratio * (tex_size - margin_begin - margin_end)) * tex_pixel_size; } else if (np_repeat == 1) { // Tile. // Convert to offset. float ofs = mod((pixel - margin_begin), tex_size - margin_begin - margin_end); // Scale to source texture. return (margin_begin + ofs) * tex_pixel_size; } else if (np_repeat == 2) { // Tile Fit. // Calculate scale. float src_area = draw_size - margin_begin - margin_end; float dst_area = tex_size - margin_begin - margin_end; float scale = max(1.0, floor(src_area / max(dst_area, 0.0000001) + 0.5)); // Convert to ratio. float ratio = (pixel - margin_begin) / src_area; ratio = mod(ratio * scale, 1.0); // Scale to source texture. return (margin_begin + ratio * dst_area) * tex_pixel_size; } else { // Shouldn't happen, but silences compiler warning. return 0.0; } } } #endif float msdf_median(float r, float g, float b, float a) { return min(max(min(r, g), min(max(r, g), b)), a); } void main() { vec4 color = color_interp; vec2 uv = uv_interp; vec2 vertex = vertex_interp; #if !defined(USE_ATTRIBUTES) && !defined(USE_PRIMITIVE) #ifdef USE_NINEPATCH int draw_center = 2; uv = vec2( map_ninepatch_axis(pixel_size_interp.x, abs(read_draw_data_dst_rect_z), read_draw_data_color_texture_pixel_size.x, read_draw_data_ninepatch_margins.x, read_draw_data_ninepatch_margins.z, int(read_draw_data_flags >> FLAGS_NINEPATCH_H_MODE_SHIFT) & 0x3, draw_center), map_ninepatch_axis(pixel_size_interp.y, abs(read_draw_data_dst_rect_w), read_draw_data_color_texture_pixel_size.y, read_draw_data_ninepatch_margins.y, read_draw_data_ninepatch_margins.w, int(read_draw_data_flags >> FLAGS_NINEPATCH_V_MODE_SHIFT) & 0x3, draw_center)); if (draw_center == 0) { color.a = 0.0; } uv = uv * read_draw_data_src_rect.zw + read_draw_data_src_rect.xy; //apply region if needed #endif if (bool(read_draw_data_flags & FLAGS_CLIP_RECT_UV)) { uv = clamp(uv, read_draw_data_src_rect.xy, read_draw_data_src_rect.xy + abs(read_draw_data_src_rect.zw)); } #endif #ifndef USE_PRIMITIVE if (bool(read_draw_data_flags & FLAGS_USE_MSDF)) { float px_range = read_draw_data_ninepatch_margins.x; float outline_thickness = read_draw_data_ninepatch_margins.y; vec4 msdf_sample = texture(color_texture, uv); vec2 msdf_size = vec2(textureSize(color_texture, 0)); vec2 dest_size = vec2(1.0) / fwidth(uv); float px_size = max(0.5 * dot((vec2(px_range) / msdf_size), dest_size), 1.0); float d = msdf_median(msdf_sample.r, msdf_sample.g, msdf_sample.b, msdf_sample.a) - 0.5; if (outline_thickness > 0.0) { float cr = clamp(outline_thickness, 0.0, px_range / 2.0) / px_range; float a = clamp((d + cr) * px_size, 0.0, 1.0); color.a = a * color.a; } else { float a = clamp(d * px_size + 0.5, 0.0, 1.0); color.a = a * color.a; } } else if (bool(read_draw_data_flags & FLAGS_USE_LCD)) { vec4 lcd_sample = texture(color_texture, uv); if (lcd_sample.a == 1.0) { color.rgb = lcd_sample.rgb * color.a; } else { color = vec4(0.0, 0.0, 0.0, 0.0); } } else { #else { #endif color *= texture(color_texture, uv); } uint light_count = (read_draw_data_flags >> uint(FLAGS_LIGHT_COUNT_SHIFT)) & uint(0xF); //max 16 lights bool using_light = light_count > 0u || directional_light_count > 0u; vec3 normal; #if defined(NORMAL_USED) bool normal_used = true; #else bool normal_used = false; #endif if (normal_used || (using_light && bool(read_draw_data_flags & FLAGS_DEFAULT_NORMAL_MAP_USED))) { normal.xy = texture(normal_texture, uv).xy * vec2(2.0, -2.0) - vec2(1.0, -1.0); if (bool(read_draw_data_flags & FLAGS_FLIP_H)) { normal.x = -normal.x; } if (bool(read_draw_data_flags & FLAGS_FLIP_V)) { normal.y = -normal.y; } normal.z = sqrt(1.0 - dot(normal.xy, normal.xy)); normal_used = true; } else { normal = vec3(0.0, 0.0, 1.0); } vec4 specular_shininess; #if defined(SPECULAR_SHININESS_USED) bool specular_shininess_used = true; #else bool specular_shininess_used = false; #endif if (specular_shininess_used || (using_light && normal_used && bool(read_draw_data_flags & FLAGS_DEFAULT_SPECULAR_MAP_USED))) { specular_shininess = texture(specular_texture, uv); specular_shininess *= godot_unpackUnorm4x8(read_draw_data_specular_shininess); specular_shininess_used = true; } else { specular_shininess = vec4(1.0); } #if defined(SCREEN_UV_USED) vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size; #else vec2 screen_uv = vec2(0.0); #endif vec2 color_texture_pixel_size = read_draw_data_color_texture_pixel_size.xy; vec3 light_vertex = vec3(vertex, 0.0); vec2 shadow_vertex = vertex; { float normal_map_depth = 1.0; #if defined(NORMAL_MAP_USED) vec3 normal_map = vec3(0.0, 0.0, 1.0); normal_used = true; #endif #CODE : FRAGMENT #if defined(NORMAL_MAP_USED) normal = mix(vec3(0.0, 0.0, 1.0), normal_map * vec3(2.0, -2.0, 1.0) - vec3(1.0, -1.0, 0.0), normal_map_depth); #endif } if (normal_used) { //convert by item transform normal.xy = mat2(normalize(read_draw_data_world_x), normalize(read_draw_data_world_y)) * normal.xy; //convert by canvas transform normal = normalize((canvas_normal_transform * vec4(normal, 0.0)).xyz); } vec4 base_color = color; #ifdef MODE_LIGHT_ONLY color = vec4(0.0); #else color *= canvas_modulation; #endif #if !defined(DISABLE_LIGHTING) && !defined(MODE_UNSHADED) // Directional Lights for (uint i = 0u; i < directional_light_count; i++) { uint light_base = i; vec2 direction = light_array[light_base].position; vec4 light_color = light_array[light_base].color; #ifdef LIGHT_CODE_USED vec4 shadow_modulate = vec4(1.0); light_color = light_compute(light_vertex, vec3(direction, light_array[light_base].height), normal, light_color, light_color.a, specular_shininess, shadow_modulate, screen_uv, uv, base_color, true); #else if (normal_used) { vec3 light_vec = normalize(mix(vec3(direction, 0.0), vec3(0, 0, 1), light_array[light_base].height)); light_color.rgb = light_normal_compute(light_vec, normal, base_color.rgb, light_color.rgb, specular_shininess, specular_shininess_used); } else { light_color.rgb *= base_color.rgb; } #endif if (bool(light_array[light_base].flags & LIGHT_FLAGS_HAS_SHADOW)) { vec2 shadow_pos = (vec4(shadow_vertex, 0.0, 1.0) * mat4(light_array[light_base].shadow_matrix[0], light_array[light_base].shadow_matrix[1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy; //multiply inverse given its transposed. Optimizer removes useless operations. vec4 shadow_uv = vec4(shadow_pos.x, light_array[light_base].shadow_y_ofs, shadow_pos.y * light_array[light_base].shadow_zfar_inv, 1.0); light_color = light_shadow_compute(light_base, light_color, shadow_uv #ifdef LIGHT_CODE_USED , shadow_modulate.rgb #endif ); } light_blend_compute(light_base, light_color, color.rgb); } // Positional Lights for (uint i = 0u; i < MAX_LIGHTS_PER_ITEM; i++) { if (i >= light_count) { break; } uint light_base; if (i < 8u) { if (i < 4u) { light_base = read_draw_data_lights[0]; } else { light_base = read_draw_data_lights[1]; } } else { if (i < 12u) { light_base = read_draw_data_lights[2]; } else { light_base = read_draw_data_lights[3]; } } light_base >>= (i & 3u) * 8u; light_base &= uint(0xFF); vec2 tex_uv = (vec4(vertex, 0.0, 1.0) * mat4(light_array[light_base].texture_matrix[0], light_array[light_base].texture_matrix[1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy; //multiply inverse given its transposed. Optimizer removes useless operations. vec2 tex_uv_atlas = tex_uv * light_array[light_base].atlas_rect.zw + light_array[light_base].atlas_rect.xy; vec4 light_color = textureLod(atlas_texture, tex_uv_atlas, 0.0); vec4 light_base_color = light_array[light_base].color; #ifdef LIGHT_CODE_USED vec4 shadow_modulate = vec4(1.0); vec3 light_position = vec3(light_array[light_base].position, light_array[light_base].height); light_color.rgb *= light_base_color.rgb; light_color = light_compute(light_vertex, light_position, normal, light_color, light_base_color.a, specular_shininess, shadow_modulate, screen_uv, uv, base_color, false); #else light_color.rgb *= light_base_color.rgb * light_base_color.a; if (normal_used) { vec3 light_pos = vec3(light_array[light_base].position, light_array[light_base].height); vec3 pos = light_vertex; vec3 light_vec = normalize(light_pos - pos); light_color.rgb = light_normal_compute(light_vec, normal, base_color.rgb, light_color.rgb, specular_shininess, specular_shininess_used); } else { light_color.rgb *= base_color.rgb; } #endif if (any(lessThan(tex_uv, vec2(0.0, 0.0))) || any(greaterThanEqual(tex_uv, vec2(1.0, 1.0)))) { //if outside the light texture, light color is zero light_color.a = 0.0; } if (bool(light_array[light_base].flags & LIGHT_FLAGS_HAS_SHADOW)) { vec2 shadow_pos = (vec4(shadow_vertex, 0.0, 1.0) * mat4(light_array[light_base].shadow_matrix[0], light_array[light_base].shadow_matrix[1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy; //multiply inverse given its transposed. Optimizer removes useless operations. vec2 pos_norm = normalize(shadow_pos); vec2 pos_abs = abs(pos_norm); vec2 pos_box = pos_norm / max(pos_abs.x, pos_abs.y); vec2 pos_rot = pos_norm * mat2(vec2(0.7071067811865476, -0.7071067811865476), vec2(0.7071067811865476, 0.7071067811865476)); //is there a faster way to 45 degrees rot? float tex_ofs; float dist; if (pos_rot.y > 0.0) { if (pos_rot.x > 0.0) { tex_ofs = pos_box.y * 0.125 + 0.125; dist = shadow_pos.x; } else { tex_ofs = pos_box.x * -0.125 + (0.25 + 0.125); dist = shadow_pos.y; } } else { if (pos_rot.x < 0.0) { tex_ofs = pos_box.y * -0.125 + (0.5 + 0.125); dist = -shadow_pos.x; } else { tex_ofs = pos_box.x * 0.125 + (0.75 + 0.125); dist = -shadow_pos.y; } } dist *= light_array[light_base].shadow_zfar_inv; //float distance = length(shadow_pos); vec4 shadow_uv = vec4(tex_ofs, light_array[light_base].shadow_y_ofs, dist, 1.0); light_color = light_shadow_compute(light_base, light_color, shadow_uv #ifdef LIGHT_CODE_USED , shadow_modulate.rgb #endif ); } light_blend_compute(light_base, light_color, color.rgb); } #endif frag_color = color; }