/*************************************************************************/ /* test_vector3.h */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifndef TEST_VECTOR3_H #define TEST_VECTOR3_H #include "core/math/vector3.h" #include "tests/test_macros.h" #define Math_SQRT13 0.57735026918962576450914878050196 #define Math_SQRT3 1.7320508075688772935274463415059 namespace TestVector3 { TEST_CASE("[Vector3] Constructor methods") { const Vector3 vector_empty = Vector3(); const Vector3 vector_zero = Vector3(0.0, 0.0, 0.0); CHECK_MESSAGE( vector_empty == vector_zero, "Vector3 Constructor with no inputs should return a zero Vector3."); } TEST_CASE("[Vector3] Angle methods") { const Vector3 vector_x = Vector3(1, 0, 0); const Vector3 vector_y = Vector3(0, 1, 0); const Vector3 vector_yz = Vector3(0, 1, 1); CHECK_MESSAGE( Math::is_equal_approx(vector_x.angle_to(vector_y), (real_t)Math_TAU / 4), "Vector3 angle_to should work as expected."); CHECK_MESSAGE( Math::is_equal_approx(vector_x.angle_to(vector_yz), (real_t)Math_TAU / 4), "Vector3 angle_to should work as expected."); CHECK_MESSAGE( Math::is_equal_approx(vector_yz.angle_to(vector_x), (real_t)Math_TAU / 4), "Vector3 angle_to should work as expected."); CHECK_MESSAGE( Math::is_equal_approx(vector_y.angle_to(vector_yz), (real_t)Math_TAU / 8), "Vector3 angle_to should work as expected."); CHECK_MESSAGE( Math::is_equal_approx(vector_x.signed_angle_to(vector_y, vector_y), (real_t)Math_TAU / 4), "Vector3 signed_angle_to edge case should be positive."); CHECK_MESSAGE( Math::is_equal_approx(vector_x.signed_angle_to(vector_yz, vector_y), (real_t)Math_TAU / -4), "Vector3 signed_angle_to should work as expected."); CHECK_MESSAGE( Math::is_equal_approx(vector_yz.signed_angle_to(vector_x, vector_y), (real_t)Math_TAU / 4), "Vector3 signed_angle_to should work as expected."); } TEST_CASE("[Vector3] Axis methods") { Vector3 vector = Vector3(1.2, 3.4, 5.6); CHECK_MESSAGE( vector.max_axis_index() == Vector3::Axis::AXIS_Z, "Vector3 max_axis_index should work as expected."); CHECK_MESSAGE( vector.min_axis_index() == Vector3::Axis::AXIS_X, "Vector3 min_axis_index should work as expected."); CHECK_MESSAGE( vector.get_axis(vector.max_axis_index()) == (real_t)5.6, "Vector3 get_axis should work as expected."); CHECK_MESSAGE( vector[vector.min_axis_index()] == (real_t)1.2, "Vector3 array operator should work as expected."); vector.set_axis(Vector3::Axis::AXIS_Y, 4.7); CHECK_MESSAGE( vector.get_axis(Vector3::Axis::AXIS_Y) == (real_t)4.7, "Vector3 set_axis should work as expected."); vector[Vector3::Axis::AXIS_Y] = 3.7; CHECK_MESSAGE( vector[Vector3::Axis::AXIS_Y] == (real_t)3.7, "Vector3 array operator setter should work as expected."); } TEST_CASE("[Vector3] Interpolation methods") { const Vector3 vector1 = Vector3(1, 2, 3); const Vector3 vector2 = Vector3(4, 5, 6); CHECK_MESSAGE( vector1.lerp(vector2, 0.5) == Vector3(2.5, 3.5, 4.5), "Vector3 lerp should work as expected."); CHECK_MESSAGE( vector1.lerp(vector2, 1.0 / 3.0).is_equal_approx(Vector3(2, 3, 4)), "Vector3 lerp should work as expected."); CHECK_MESSAGE( vector1.normalized().slerp(vector2.normalized(), 0.5).is_equal_approx(Vector3(0.363866806030273438, 0.555698215961456299, 0.747529566287994385)), "Vector3 slerp should work as expected."); CHECK_MESSAGE( vector1.normalized().slerp(vector2.normalized(), 1.0 / 3.0).is_equal_approx(Vector3(0.332119762897491455, 0.549413740634918213, 0.766707837581634521)), "Vector3 slerp should work as expected."); CHECK_MESSAGE( Vector3(5, 0, 0).slerp(Vector3(0, 3, 4), 0.5).is_equal_approx(Vector3(3.535533905029296875, 2.121320486068725586, 2.828427314758300781)), "Vector3 slerp with non-normalized values should work as expected."); CHECK_MESSAGE( Vector3(1, 1, 1).slerp(Vector3(2, 2, 2), 0.5).is_equal_approx(Vector3(1.5, 1.5, 1.5)), "Vector3 slerp with colinear inputs should behave as expected."); CHECK_MESSAGE( Vector3().slerp(Vector3(), 0.5) == Vector3(), "Vector3 slerp with both inputs as zero vectors should return a zero vector."); CHECK_MESSAGE( Vector3().slerp(Vector3(1, 1, 1), 0.5) == Vector3(0.5, 0.5, 0.5), "Vector3 slerp with one input as zero should behave like a regular lerp."); CHECK_MESSAGE( Vector3(1, 1, 1).slerp(Vector3(), 0.5) == Vector3(0.5, 0.5, 0.5), "Vector3 slerp with one input as zero should behave like a regular lerp."); CHECK_MESSAGE( Vector3(4, 6, 2).slerp(Vector3(8, 10, 3), 0.5).is_equal_approx(Vector3(5.90194219811429941053, 8.06758688849378394534, 2.558307894718317120038)), "Vector3 slerp should work as expected."); CHECK_MESSAGE( Math::is_equal_approx(vector1.slerp(vector2, 0.5).length(), (real_t)6.25831088708303172), "Vector3 slerp with different length input should return a vector with an interpolated length."); CHECK_MESSAGE( Math::is_equal_approx(vector1.angle_to(vector1.slerp(vector2, 0.5)) * 2, vector1.angle_to(vector2)), "Vector3 slerp with different length input should return a vector with an interpolated angle."); CHECK_MESSAGE( vector1.cubic_interpolate(vector2, Vector3(), Vector3(7, 7, 7), 0.5) == Vector3(2.375, 3.5, 4.625), "Vector3 cubic_interpolate should work as expected."); CHECK_MESSAGE( vector1.cubic_interpolate(vector2, Vector3(), Vector3(7, 7, 7), 1.0 / 3.0).is_equal_approx(Vector3(1.851851940155029297, 2.962963104248046875, 4.074074268341064453)), "Vector3 cubic_interpolate should work as expected."); CHECK_MESSAGE( Vector3(1, 0, 0).move_toward(Vector3(10, 0, 0), 3) == Vector3(4, 0, 0), "Vector3 move_toward should work as expected."); } TEST_CASE("[Vector3] Length methods") { const Vector3 vector1 = Vector3(10, 10, 10); const Vector3 vector2 = Vector3(20, 30, 40); CHECK_MESSAGE( vector1.length_squared() == 300, "Vector3 length_squared should work as expected and return exact result."); CHECK_MESSAGE( Math::is_equal_approx(vector1.length(), 10 * (real_t)Math_SQRT3), "Vector3 length should work as expected."); CHECK_MESSAGE( vector2.length_squared() == 2900, "Vector3 length_squared should work as expected and return exact result."); CHECK_MESSAGE( Math::is_equal_approx(vector2.length(), (real_t)53.8516480713450403125), "Vector3 length should work as expected."); CHECK_MESSAGE( vector1.distance_squared_to(vector2) == 1400, "Vector3 distance_squared_to should work as expected and return exact result."); CHECK_MESSAGE( Math::is_equal_approx(vector1.distance_to(vector2), (real_t)37.41657386773941385584), "Vector3 distance_to should work as expected."); } TEST_CASE("[Vector3] Limiting methods") { const Vector3 vector = Vector3(10, 10, 10); CHECK_MESSAGE( vector.limit_length().is_equal_approx(Vector3(Math_SQRT13, Math_SQRT13, Math_SQRT13)), "Vector3 limit_length should work as expected."); CHECK_MESSAGE( vector.limit_length(5).is_equal_approx(5 * Vector3(Math_SQRT13, Math_SQRT13, Math_SQRT13)), "Vector3 limit_length should work as expected."); CHECK_MESSAGE( Vector3(-5, 5, 15).clamp(Vector3(), vector) == Vector3(0, 5, 10), "Vector3 clamp should work as expected."); CHECK_MESSAGE( vector.clamp(Vector3(0, 10, 15), Vector3(5, 10, 20)) == Vector3(5, 10, 15), "Vector3 clamp should work as expected."); } TEST_CASE("[Vector3] Normalization methods") { CHECK_MESSAGE( Vector3(1, 0, 0).is_normalized() == true, "Vector3 is_normalized should return true for a normalized vector."); CHECK_MESSAGE( Vector3(1, 1, 1).is_normalized() == false, "Vector3 is_normalized should return false for a non-normalized vector."); CHECK_MESSAGE( Vector3(1, 0, 0).normalized() == Vector3(1, 0, 0), "Vector3 normalized should return the same vector for a normalized vector."); CHECK_MESSAGE( Vector3(1, 1, 0).normalized().is_equal_approx(Vector3(Math_SQRT12, Math_SQRT12, 0)), "Vector3 normalized should work as expected."); CHECK_MESSAGE( Vector3(1, 1, 1).normalized().is_equal_approx(Vector3(Math_SQRT13, Math_SQRT13, Math_SQRT13)), "Vector3 normalized should work as expected."); Vector3 vector = Vector3(3.2, -5.4, 6); vector.normalize(); CHECK_MESSAGE( vector == Vector3(3.2, -5.4, 6).normalized(), "Vector3 normalize should convert same way as Vector3 normalized."); CHECK_MESSAGE( vector.is_equal_approx(Vector3(0.368522751763902980457, -0.621882143601586279522, 0.6909801595573180883585)), "Vector3 normalize should work as expected."); } TEST_CASE("[Vector3] Operators") { const Vector3 decimal1 = Vector3(2.3, 4.9, 7.8); const Vector3 decimal2 = Vector3(1.2, 3.4, 5.6); const Vector3 power1 = Vector3(0.75, 1.5, 0.625); const Vector3 power2 = Vector3(0.5, 0.125, 0.25); const Vector3 int1 = Vector3(4, 5, 9); const Vector3 int2 = Vector3(1, 2, 3); CHECK_MESSAGE( (decimal1 + decimal2).is_equal_approx(Vector3(3.5, 8.3, 13.4)), "Vector3 addition should behave as expected."); CHECK_MESSAGE( (power1 + power2) == Vector3(1.25, 1.625, 0.875), "Vector3 addition with powers of two should give exact results."); CHECK_MESSAGE( (int1 + int2) == Vector3(5, 7, 12), "Vector3 addition with integers should give exact results."); CHECK_MESSAGE( (decimal1 - decimal2).is_equal_approx(Vector3(1.1, 1.5, 2.2)), "Vector3 subtraction should behave as expected."); CHECK_MESSAGE( (power1 - power2) == Vector3(0.25, 1.375, 0.375), "Vector3 subtraction with powers of two should give exact results."); CHECK_MESSAGE( (int1 - int2) == Vector3(3, 3, 6), "Vector3 subtraction with integers should give exact results."); CHECK_MESSAGE( (decimal1 * decimal2).is_equal_approx(Vector3(2.76, 16.66, 43.68)), "Vector3 multiplication should behave as expected."); CHECK_MESSAGE( (power1 * power2) == Vector3(0.375, 0.1875, 0.15625), "Vector3 multiplication with powers of two should give exact results."); CHECK_MESSAGE( (int1 * int2) == Vector3(4, 10, 27), "Vector3 multiplication with integers should give exact results."); CHECK_MESSAGE( (decimal1 / decimal2).is_equal_approx(Vector3(1.91666666666666666, 1.44117647058823529, 1.39285714285714286)), "Vector3 division should behave as expected."); CHECK_MESSAGE( (power1 / power2) == Vector3(1.5, 12.0, 2.5), "Vector3 division with powers of two should give exact results."); CHECK_MESSAGE( (int1 / int2) == Vector3(4, 2.5, 3), "Vector3 division with integers should give exact results."); CHECK_MESSAGE( (decimal1 * 2).is_equal_approx(Vector3(4.6, 9.8, 15.6)), "Vector3 multiplication should behave as expected."); CHECK_MESSAGE( (power1 * 2) == Vector3(1.5, 3, 1.25), "Vector3 multiplication with powers of two should give exact results."); CHECK_MESSAGE( (int1 * 2) == Vector3(8, 10, 18), "Vector3 multiplication with integers should give exact results."); CHECK_MESSAGE( (decimal1 / 2).is_equal_approx(Vector3(1.15, 2.45, 3.9)), "Vector3 division should behave as expected."); CHECK_MESSAGE( (power1 / 2) == Vector3(0.375, 0.75, 0.3125), "Vector3 division with powers of two should give exact results."); CHECK_MESSAGE( (int1 / 2) == Vector3(2, 2.5, 4.5), "Vector3 division with integers should give exact results."); CHECK_MESSAGE( ((Vector3i)decimal1) == Vector3i(2, 4, 7), "Vector3 cast to Vector3i should work as expected."); CHECK_MESSAGE( ((Vector3i)decimal2) == Vector3i(1, 3, 5), "Vector3 cast to Vector3i should work as expected."); CHECK_MESSAGE( Vector3(Vector3i(1, 2, 3)) == Vector3(1, 2, 3), "Vector3 constructed from Vector3i should work as expected."); CHECK_MESSAGE( ((String)decimal1) == "(2.3, 4.9, 7.8)", "Vector3 cast to String should work as expected."); CHECK_MESSAGE( ((String)decimal2) == "(1.2, 3.4, 5.6)", "Vector3 cast to String should work as expected."); CHECK_MESSAGE( ((String)Vector3(9.7, 9.8, 9.9)) == "(9.7, 9.8, 9.9)", "Vector3 cast to String should work as expected."); #ifdef REAL_T_IS_DOUBLE CHECK_MESSAGE( ((String)Vector3(Math_E, Math_SQRT2, Math_SQRT3)) == "(2.71828182845905, 1.4142135623731, 1.73205080756888)", "Vector3 cast to String should print the correct amount of digits for real_t = double."); #else CHECK_MESSAGE( ((String)Vector3(Math_E, Math_SQRT2, Math_SQRT3)) == "(2.718282, 1.414214, 1.732051)", "Vector3 cast to String should print the correct amount of digits for real_t = float."); #endif // REAL_T_IS_DOUBLE } TEST_CASE("[Vector3] Other methods") { const Vector3 vector = Vector3(1.2, 3.4, 5.6); CHECK_MESSAGE( vector.direction_to(Vector3()).is_equal_approx(-vector.normalized()), "Vector3 direction_to should work as expected."); CHECK_MESSAGE( Vector3(1, 1, 1).direction_to(Vector3(2, 2, 2)).is_equal_approx(Vector3(Math_SQRT13, Math_SQRT13, Math_SQRT13)), "Vector3 direction_to should work as expected."); CHECK_MESSAGE( vector.inverse().is_equal_approx(Vector3(1 / 1.2, 1 / 3.4, 1 / 5.6)), "Vector3 inverse should work as expected."); CHECK_MESSAGE( vector.posmod(2).is_equal_approx(Vector3(1.2, 1.4, 1.6)), "Vector3 posmod should work as expected."); CHECK_MESSAGE( (-vector).posmod(2).is_equal_approx(Vector3(0.8, 0.6, 0.4)), "Vector3 posmod should work as expected."); CHECK_MESSAGE( vector.posmodv(Vector3(1, 2, 3)).is_equal_approx(Vector3(0.2, 1.4, 2.6)), "Vector3 posmodv should work as expected."); CHECK_MESSAGE( (-vector).posmodv(Vector3(2, 3, 4)).is_equal_approx(Vector3(0.8, 2.6, 2.4)), "Vector3 posmodv should work as expected."); CHECK_MESSAGE( vector.rotated(Vector3(0, 1, 0), Math_TAU).is_equal_approx(vector), "Vector3 rotated should work as expected."); CHECK_MESSAGE( vector.rotated(Vector3(0, 1, 0), Math_TAU / 4).is_equal_approx(Vector3(5.6, 3.4, -1.2)), "Vector3 rotated should work as expected."); CHECK_MESSAGE( vector.rotated(Vector3(1, 0, 0), Math_TAU / 3).is_equal_approx(Vector3(1.2, -6.54974226119285642, 0.1444863728670914)), "Vector3 rotated should work as expected."); CHECK_MESSAGE( vector.rotated(Vector3(0, 0, 1), Math_TAU / 2).is_equal_approx(vector.rotated(Vector3(0, 0, 1), Math_TAU / -2)), "Vector3 rotated should work as expected."); CHECK_MESSAGE( vector.snapped(Vector3(1, 1, 1)) == Vector3(1, 3, 6), "Vector3 snapped to integers should be the same as rounding."); CHECK_MESSAGE( vector.snapped(Vector3(0.25, 0.25, 0.25)) == Vector3(1.25, 3.5, 5.5), "Vector3 snapped to 0.25 should give exact results."); } TEST_CASE("[Vector3] Plane methods") { const Vector3 vector = Vector3(1.2, 3.4, 5.6); const Vector3 vector_y = Vector3(0, 1, 0); const Vector3 vector_normal = Vector3(0.88763458893247992491, 0.26300284116517923701, 0.37806658417494515320); const Vector3 vector_non_normal = Vector3(5.4, 1.6, 2.3); CHECK_MESSAGE( vector.bounce(vector_y) == Vector3(1.2, -3.4, 5.6), "Vector3 bounce on a plane with normal of the Y axis should."); CHECK_MESSAGE( vector.bounce(vector_normal).is_equal_approx(Vector3(-6.0369629829775736287, 1.25571467171034855444, 2.517589840583626047)), "Vector3 bounce with normal should return expected value."); CHECK_MESSAGE( vector.reflect(vector_y) == Vector3(-1.2, 3.4, -5.6), "Vector3 reflect on a plane with normal of the Y axis should."); CHECK_MESSAGE( vector.reflect(vector_normal).is_equal_approx(Vector3(6.0369629829775736287, -1.25571467171034855444, -2.517589840583626047)), "Vector3 reflect with normal should return expected value."); CHECK_MESSAGE( vector.project(vector_y) == Vector3(0, 3.4, 0), "Vector3 projected on the Y axis should only give the Y component."); CHECK_MESSAGE( vector.project(vector_normal).is_equal_approx(Vector3(3.61848149148878681437, 1.0721426641448257227776, 1.54120507970818697649)), "Vector3 projected on a normal should return expected value."); CHECK_MESSAGE( vector.slide(vector_y) == Vector3(1.2, 0, 5.6), "Vector3 slide on a plane with normal of the Y axis should set the Y to zero."); CHECK_MESSAGE( vector.slide(vector_normal).is_equal_approx(Vector3(-2.41848149148878681437, 2.32785733585517427722237, 4.0587949202918130235)), "Vector3 slide with normal should return expected value."); // There's probably a better way to test these ones? ERR_PRINT_OFF; CHECK_MESSAGE( vector.bounce(vector_non_normal).is_equal_approx(Vector3()), "Vector3 bounce should return empty Vector3 with non-normalised input."); CHECK_MESSAGE( vector.reflect(vector_non_normal).is_equal_approx(Vector3()), "Vector3 reflect should return empty Vector3 with non-normalised input."); CHECK_MESSAGE( vector.slide(vector_non_normal).is_equal_approx(Vector3()), "Vector3 slide should return empty Vector3 with non-normalised input."); ERR_PRINT_ON; } TEST_CASE("[Vector3] Rounding methods") { const Vector3 vector1 = Vector3(1.2, 3.4, 5.6); const Vector3 vector2 = Vector3(1.2, -3.4, -5.6); CHECK_MESSAGE( vector1.abs() == vector1, "Vector3 abs should work as expected."); CHECK_MESSAGE( vector2.abs() == vector1, "Vector3 abs should work as expected."); CHECK_MESSAGE( vector1.ceil() == Vector3(2, 4, 6), "Vector3 ceil should work as expected."); CHECK_MESSAGE( vector2.ceil() == Vector3(2, -3, -5), "Vector3 ceil should work as expected."); CHECK_MESSAGE( vector1.floor() == Vector3(1, 3, 5), "Vector3 floor should work as expected."); CHECK_MESSAGE( vector2.floor() == Vector3(1, -4, -6), "Vector3 floor should work as expected."); CHECK_MESSAGE( vector1.round() == Vector3(1, 3, 6), "Vector3 round should work as expected."); CHECK_MESSAGE( vector2.round() == Vector3(1, -3, -6), "Vector3 round should work as expected."); CHECK_MESSAGE( vector1.sign() == Vector3(1, 1, 1), "Vector3 sign should work as expected."); CHECK_MESSAGE( vector2.sign() == Vector3(1, -1, -1), "Vector3 sign should work as expected."); } TEST_CASE("[Vector3] Linear algebra methods") { const Vector3 vector_x = Vector3(1, 0, 0); const Vector3 vector_y = Vector3(0, 1, 0); const Vector3 vector_z = Vector3(0, 0, 1); const Vector3 a = Vector3(3.5, 8.5, 2.3); const Vector3 b = Vector3(5.2, 4.6, 7.8); CHECK_MESSAGE( vector_x.cross(vector_y) == vector_z, "Vector3 cross product of X and Y should give Z."); CHECK_MESSAGE( vector_y.cross(vector_x) == -vector_z, "Vector3 cross product of Y and X should give negative Z."); CHECK_MESSAGE( vector_y.cross(vector_z) == vector_x, "Vector3 cross product of Y and Z should give X."); CHECK_MESSAGE( vector_z.cross(vector_x) == vector_y, "Vector3 cross product of Z and X should give Y."); CHECK_MESSAGE( a.cross(b).is_equal_approx(Vector3(55.72, -15.34, -28.1)), "Vector3 cross should return expected value."); CHECK_MESSAGE( Vector3(-a.x, a.y, -a.z).cross(Vector3(b.x, -b.y, b.z)).is_equal_approx(Vector3(55.72, 15.34, -28.1)), "Vector2 cross should return expected value."); CHECK_MESSAGE( vector_x.dot(vector_y) == 0.0, "Vector3 dot product of perpendicular vectors should be zero."); CHECK_MESSAGE( vector_x.dot(vector_x) == 1.0, "Vector3 dot product of identical unit vectors should be one."); CHECK_MESSAGE( (vector_x * 10).dot(vector_x * 10) == 100.0, "Vector3 dot product of same direction vectors should behave as expected."); CHECK_MESSAGE( Math::is_equal_approx(a.dot(b), (real_t)75.24), "Vector3 dot should return expected value."); CHECK_MESSAGE( Math::is_equal_approx(Vector3(-a.x, a.y, -a.z).dot(Vector3(b.x, -b.y, b.z)), (real_t)-75.24), "Vector3 dot should return expected value."); } } // namespace TestVector3 #endif // TEST_VECTOR3_H