/**************************************************************************/ /* rasterizer_scene_gles3.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "rasterizer_scene_gles3.h" #include "drivers/gles3/effects/copy_effects.h" #include "rasterizer_gles3.h" #include "storage/config.h" #include "storage/mesh_storage.h" #include "storage/particles_storage.h" #include "storage/texture_storage.h" #include "core/config/project_settings.h" #include "core/templates/sort_array.h" #include "servers/rendering/rendering_server_default.h" #include "servers/rendering/rendering_server_globals.h" #ifdef GLES3_ENABLED RasterizerSceneGLES3 *RasterizerSceneGLES3::singleton = nullptr; RenderGeometryInstance *RasterizerSceneGLES3::geometry_instance_create(RID p_base) { RS::InstanceType type = RSG::utilities->get_base_type(p_base); ERR_FAIL_COND_V(!((1 << type) & RS::INSTANCE_GEOMETRY_MASK), nullptr); GeometryInstanceGLES3 *ginstance = geometry_instance_alloc.alloc(); ginstance->data = memnew(GeometryInstanceGLES3::Data); ginstance->data->base = p_base; ginstance->data->base_type = type; ginstance->data->dependency_tracker.userdata = ginstance; ginstance->data->dependency_tracker.changed_callback = _geometry_instance_dependency_changed; ginstance->data->dependency_tracker.deleted_callback = _geometry_instance_dependency_deleted; ginstance->_mark_dirty(); return ginstance; } uint32_t RasterizerSceneGLES3::geometry_instance_get_pair_mask() { return (1 << RS::INSTANCE_LIGHT); } void RasterizerSceneGLES3::GeometryInstanceGLES3::pair_light_instances(const RID *p_light_instances, uint32_t p_light_instance_count) { GLES3::Config *config = GLES3::Config::get_singleton(); paired_omni_light_count = 0; paired_spot_light_count = 0; paired_omni_lights.clear(); paired_spot_lights.clear(); for (uint32_t i = 0; i < p_light_instance_count; i++) { RS::LightType type = GLES3::LightStorage::get_singleton()->light_instance_get_type(p_light_instances[i]); switch (type) { case RS::LIGHT_OMNI: { if (paired_omni_light_count < (uint32_t)config->max_lights_per_object) { paired_omni_lights.push_back(p_light_instances[i]); paired_omni_light_count++; } } break; case RS::LIGHT_SPOT: { if (paired_spot_light_count < (uint32_t)config->max_lights_per_object) { paired_spot_lights.push_back(p_light_instances[i]); paired_spot_light_count++; } } break; default: break; } } } void RasterizerSceneGLES3::geometry_instance_free(RenderGeometryInstance *p_geometry_instance) { GeometryInstanceGLES3 *ginstance = static_cast(p_geometry_instance); ERR_FAIL_NULL(ginstance); GeometryInstanceSurface *surf = ginstance->surface_caches; while (surf) { GeometryInstanceSurface *next = surf->next; geometry_instance_surface_alloc.free(surf); surf = next; } memdelete(ginstance->data); geometry_instance_alloc.free(ginstance); } void RasterizerSceneGLES3::GeometryInstanceGLES3::_mark_dirty() { if (dirty_list_element.in_list()) { return; } //clear surface caches GeometryInstanceSurface *surf = surface_caches; while (surf) { GeometryInstanceSurface *next = surf->next; RasterizerSceneGLES3::get_singleton()->geometry_instance_surface_alloc.free(surf); surf = next; } surface_caches = nullptr; RasterizerSceneGLES3::get_singleton()->geometry_instance_dirty_list.add(&dirty_list_element); } void RasterizerSceneGLES3::GeometryInstanceGLES3::set_use_lightmap(RID p_lightmap_instance, const Rect2 &p_lightmap_uv_scale, int p_lightmap_slice_index) { lightmap_instance = p_lightmap_instance; lightmap_uv_scale = p_lightmap_uv_scale; lightmap_slice_index = p_lightmap_slice_index; _mark_dirty(); } void RasterizerSceneGLES3::GeometryInstanceGLES3::set_lightmap_capture(const Color *p_sh9) { if (p_sh9) { if (lightmap_sh == nullptr) { lightmap_sh = memnew(GeometryInstanceLightmapSH); } memcpy(lightmap_sh->sh, p_sh9, sizeof(Color) * 9); } else { if (lightmap_sh != nullptr) { memdelete(lightmap_sh); lightmap_sh = nullptr; } } _mark_dirty(); } void RasterizerSceneGLES3::_update_dirty_geometry_instances() { while (geometry_instance_dirty_list.first()) { _geometry_instance_update(geometry_instance_dirty_list.first()->self()); } } void RasterizerSceneGLES3::_geometry_instance_dependency_changed(Dependency::DependencyChangedNotification p_notification, DependencyTracker *p_tracker) { switch (p_notification) { case Dependency::DEPENDENCY_CHANGED_MATERIAL: case Dependency::DEPENDENCY_CHANGED_MESH: case Dependency::DEPENDENCY_CHANGED_PARTICLES: case Dependency::DEPENDENCY_CHANGED_MULTIMESH: case Dependency::DEPENDENCY_CHANGED_SKELETON_DATA: { static_cast(p_tracker->userdata)->_mark_dirty(); static_cast(p_tracker->userdata)->data->dirty_dependencies = true; } break; case Dependency::DEPENDENCY_CHANGED_MULTIMESH_VISIBLE_INSTANCES: { GeometryInstanceGLES3 *ginstance = static_cast(p_tracker->userdata); if (ginstance->data->base_type == RS::INSTANCE_MULTIMESH) { ginstance->instance_count = GLES3::MeshStorage::get_singleton()->multimesh_get_instances_to_draw(ginstance->data->base); } } break; default: { //rest of notifications of no interest } break; } } void RasterizerSceneGLES3::_geometry_instance_dependency_deleted(const RID &p_dependency, DependencyTracker *p_tracker) { static_cast(p_tracker->userdata)->_mark_dirty(); static_cast(p_tracker->userdata)->data->dirty_dependencies = true; } void RasterizerSceneGLES3::_geometry_instance_add_surface_with_material(GeometryInstanceGLES3 *ginstance, uint32_t p_surface, GLES3::SceneMaterialData *p_material, uint32_t p_material_id, uint32_t p_shader_id, RID p_mesh) { GLES3::MeshStorage *mesh_storage = GLES3::MeshStorage::get_singleton(); bool has_read_screen_alpha = p_material->shader_data->uses_screen_texture || p_material->shader_data->uses_depth_texture || p_material->shader_data->uses_normal_texture; bool has_base_alpha = ((p_material->shader_data->uses_alpha && !p_material->shader_data->uses_alpha_clip) || has_read_screen_alpha); bool has_blend_alpha = p_material->shader_data->uses_blend_alpha; bool has_alpha = has_base_alpha || has_blend_alpha; uint32_t flags = 0; if (p_material->shader_data->uses_screen_texture) { flags |= GeometryInstanceSurface::FLAG_USES_SCREEN_TEXTURE; } if (p_material->shader_data->uses_depth_texture) { flags |= GeometryInstanceSurface::FLAG_USES_DEPTH_TEXTURE; } if (p_material->shader_data->uses_normal_texture) { flags |= GeometryInstanceSurface::FLAG_USES_NORMAL_TEXTURE; } if (ginstance->data->cast_double_sided_shadows) { flags |= GeometryInstanceSurface::FLAG_USES_DOUBLE_SIDED_SHADOWS; } if (has_alpha || has_read_screen_alpha || p_material->shader_data->depth_draw == GLES3::SceneShaderData::DEPTH_DRAW_DISABLED || p_material->shader_data->depth_test == GLES3::SceneShaderData::DEPTH_TEST_DISABLED) { //material is only meant for alpha pass flags |= GeometryInstanceSurface::FLAG_PASS_ALPHA; if (p_material->shader_data->uses_depth_prepass_alpha && !(p_material->shader_data->depth_draw == GLES3::SceneShaderData::DEPTH_DRAW_DISABLED || p_material->shader_data->depth_test == GLES3::SceneShaderData::DEPTH_TEST_DISABLED)) { flags |= GeometryInstanceSurface::FLAG_PASS_DEPTH; flags |= GeometryInstanceSurface::FLAG_PASS_SHADOW; } } else { flags |= GeometryInstanceSurface::FLAG_PASS_OPAQUE; flags |= GeometryInstanceSurface::FLAG_PASS_DEPTH; flags |= GeometryInstanceSurface::FLAG_PASS_SHADOW; } GLES3::SceneMaterialData *material_shadow = nullptr; void *surface_shadow = nullptr; if (!p_material->shader_data->uses_particle_trails && !p_material->shader_data->writes_modelview_or_projection && !p_material->shader_data->uses_vertex && !p_material->shader_data->uses_discard && !p_material->shader_data->uses_depth_prepass_alpha && !p_material->shader_data->uses_alpha_clip && !p_material->shader_data->uses_world_coordinates) { flags |= GeometryInstanceSurface::FLAG_USES_SHARED_SHADOW_MATERIAL; material_shadow = static_cast(GLES3::MaterialStorage::get_singleton()->material_get_data(scene_globals.default_material, RS::SHADER_SPATIAL)); RID shadow_mesh = mesh_storage->mesh_get_shadow_mesh(p_mesh); if (shadow_mesh.is_valid()) { surface_shadow = mesh_storage->mesh_get_surface(shadow_mesh, p_surface); } } else { material_shadow = p_material; } GeometryInstanceSurface *sdcache = geometry_instance_surface_alloc.alloc(); sdcache->flags = flags; sdcache->shader = p_material->shader_data; sdcache->material = p_material; sdcache->surface = mesh_storage->mesh_get_surface(p_mesh, p_surface); sdcache->primitive = mesh_storage->mesh_surface_get_primitive(sdcache->surface); sdcache->surface_index = p_surface; if (ginstance->data->dirty_dependencies) { RSG::utilities->base_update_dependency(p_mesh, &ginstance->data->dependency_tracker); } //shadow sdcache->shader_shadow = material_shadow->shader_data; sdcache->material_shadow = material_shadow; sdcache->surface_shadow = surface_shadow ? surface_shadow : sdcache->surface; sdcache->owner = ginstance; sdcache->next = ginstance->surface_caches; ginstance->surface_caches = sdcache; //sortkey sdcache->sort.sort_key1 = 0; sdcache->sort.sort_key2 = 0; sdcache->sort.surface_index = p_surface; sdcache->sort.material_id_low = p_material_id & 0x0000FFFF; sdcache->sort.material_id_hi = p_material_id >> 16; sdcache->sort.shader_id = p_shader_id; sdcache->sort.geometry_id = p_mesh.get_local_index(); sdcache->sort.priority = p_material->priority; GLES3::Mesh::Surface *s = reinterpret_cast(sdcache->surface); if (p_material->shader_data->uses_tangent && !(s->format & RS::ARRAY_FORMAT_TANGENT)) { WARN_PRINT_ED("Attempting to use a shader that requires tangents with a mesh that doesn't contain tangents. Ensure that meshes are imported with the 'ensure_tangents' option. If creating your own meshes, add an `ARRAY_TANGENT` array (when using ArrayMesh) or call `generate_tangents()` (when using SurfaceTool)."); } } void RasterizerSceneGLES3::_geometry_instance_add_surface_with_material_chain(GeometryInstanceGLES3 *ginstance, uint32_t p_surface, GLES3::SceneMaterialData *p_material_data, RID p_mat_src, RID p_mesh) { GLES3::SceneMaterialData *material_data = p_material_data; GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); _geometry_instance_add_surface_with_material(ginstance, p_surface, material_data, p_mat_src.get_local_index(), material_storage->material_get_shader_id(p_mat_src), p_mesh); while (material_data->next_pass.is_valid()) { RID next_pass = material_data->next_pass; material_data = static_cast(material_storage->material_get_data(next_pass, RS::SHADER_SPATIAL)); if (!material_data || !material_data->shader_data->valid) { break; } if (ginstance->data->dirty_dependencies) { material_storage->material_update_dependency(next_pass, &ginstance->data->dependency_tracker); } _geometry_instance_add_surface_with_material(ginstance, p_surface, material_data, next_pass.get_local_index(), material_storage->material_get_shader_id(next_pass), p_mesh); } } void RasterizerSceneGLES3::_geometry_instance_add_surface(GeometryInstanceGLES3 *ginstance, uint32_t p_surface, RID p_material, RID p_mesh) { GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); RID m_src; m_src = ginstance->data->material_override.is_valid() ? ginstance->data->material_override : p_material; GLES3::SceneMaterialData *material_data = nullptr; if (m_src.is_valid()) { material_data = static_cast(material_storage->material_get_data(m_src, RS::SHADER_SPATIAL)); if (!material_data || !material_data->shader_data->valid) { material_data = nullptr; } } if (material_data) { if (ginstance->data->dirty_dependencies) { material_storage->material_update_dependency(m_src, &ginstance->data->dependency_tracker); } } else { material_data = static_cast(material_storage->material_get_data(scene_globals.default_material, RS::SHADER_SPATIAL)); m_src = scene_globals.default_material; } ERR_FAIL_NULL(material_data); _geometry_instance_add_surface_with_material_chain(ginstance, p_surface, material_data, m_src, p_mesh); if (ginstance->data->material_overlay.is_valid()) { m_src = ginstance->data->material_overlay; material_data = static_cast(material_storage->material_get_data(m_src, RS::SHADER_SPATIAL)); if (material_data && material_data->shader_data->valid) { if (ginstance->data->dirty_dependencies) { material_storage->material_update_dependency(m_src, &ginstance->data->dependency_tracker); } _geometry_instance_add_surface_with_material_chain(ginstance, p_surface, material_data, m_src, p_mesh); } } } void RasterizerSceneGLES3::_geometry_instance_update(RenderGeometryInstance *p_geometry_instance) { GLES3::MeshStorage *mesh_storage = GLES3::MeshStorage::get_singleton(); GLES3::ParticlesStorage *particles_storage = GLES3::ParticlesStorage::get_singleton(); GeometryInstanceGLES3 *ginstance = static_cast(p_geometry_instance); if (ginstance->data->dirty_dependencies) { ginstance->data->dependency_tracker.update_begin(); } //add geometry for drawing switch (ginstance->data->base_type) { case RS::INSTANCE_MESH: { const RID *materials = nullptr; uint32_t surface_count; RID mesh = ginstance->data->base; materials = mesh_storage->mesh_get_surface_count_and_materials(mesh, surface_count); if (materials) { //if no materials, no surfaces. const RID *inst_materials = ginstance->data->surface_materials.ptr(); uint32_t surf_mat_count = ginstance->data->surface_materials.size(); for (uint32_t j = 0; j < surface_count; j++) { RID material = (j < surf_mat_count && inst_materials[j].is_valid()) ? inst_materials[j] : materials[j]; _geometry_instance_add_surface(ginstance, j, material, mesh); } } ginstance->instance_count = -1; } break; case RS::INSTANCE_MULTIMESH: { RID mesh = mesh_storage->multimesh_get_mesh(ginstance->data->base); if (mesh.is_valid()) { const RID *materials = nullptr; uint32_t surface_count; materials = mesh_storage->mesh_get_surface_count_and_materials(mesh, surface_count); if (materials) { for (uint32_t j = 0; j < surface_count; j++) { _geometry_instance_add_surface(ginstance, j, materials[j], mesh); } } ginstance->instance_count = mesh_storage->multimesh_get_instances_to_draw(ginstance->data->base); } } break; case RS::INSTANCE_PARTICLES: { int draw_passes = particles_storage->particles_get_draw_passes(ginstance->data->base); for (int j = 0; j < draw_passes; j++) { RID mesh = particles_storage->particles_get_draw_pass_mesh(ginstance->data->base, j); if (!mesh.is_valid()) { continue; } const RID *materials = nullptr; uint32_t surface_count; materials = mesh_storage->mesh_get_surface_count_and_materials(mesh, surface_count); if (materials) { for (uint32_t k = 0; k < surface_count; k++) { _geometry_instance_add_surface(ginstance, k, materials[k], mesh); } } } ginstance->instance_count = particles_storage->particles_get_amount(ginstance->data->base); } break; default: { } } bool store_transform = true; ginstance->base_flags = 0; if (ginstance->data->base_type == RS::INSTANCE_MULTIMESH) { ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH; if (mesh_storage->multimesh_get_transform_format(ginstance->data->base) == RS::MULTIMESH_TRANSFORM_2D) { ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH_FORMAT_2D; } if (mesh_storage->multimesh_uses_colors(ginstance->data->base)) { ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH_HAS_COLOR; } if (mesh_storage->multimesh_uses_custom_data(ginstance->data->base)) { ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH_HAS_CUSTOM_DATA; } } else if (ginstance->data->base_type == RS::INSTANCE_PARTICLES) { ginstance->base_flags |= INSTANCE_DATA_FLAG_PARTICLES; ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH; ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH_HAS_COLOR; ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH_HAS_CUSTOM_DATA; if (!particles_storage->particles_is_using_local_coords(ginstance->data->base)) { store_transform = false; } } else if (ginstance->data->base_type == RS::INSTANCE_MESH) { if (mesh_storage->skeleton_is_valid(ginstance->data->skeleton)) { if (ginstance->data->dirty_dependencies) { mesh_storage->skeleton_update_dependency(ginstance->data->skeleton, &ginstance->data->dependency_tracker); } } } ginstance->store_transform_cache = store_transform; if (ginstance->data->dirty_dependencies) { ginstance->data->dependency_tracker.update_end(); ginstance->data->dirty_dependencies = false; } ginstance->dirty_list_element.remove_from_list(); } /* SKY API */ void RasterizerSceneGLES3::_free_sky_data(Sky *p_sky) { if (p_sky->radiance != 0) { GLES3::Utilities::get_singleton()->texture_free_data(p_sky->radiance); p_sky->radiance = 0; GLES3::Utilities::get_singleton()->texture_free_data(p_sky->raw_radiance); p_sky->raw_radiance = 0; glDeleteFramebuffers(1, &p_sky->radiance_framebuffer); p_sky->radiance_framebuffer = 0; } } RID RasterizerSceneGLES3::sky_allocate() { return sky_owner.allocate_rid(); } void RasterizerSceneGLES3::sky_initialize(RID p_rid) { sky_owner.initialize_rid(p_rid); } void RasterizerSceneGLES3::sky_set_radiance_size(RID p_sky, int p_radiance_size) { Sky *sky = sky_owner.get_or_null(p_sky); ERR_FAIL_NULL(sky); ERR_FAIL_COND_MSG(p_radiance_size < 32 || p_radiance_size > 2048, "Sky radiance size must be between 32 and 2048"); if (sky->radiance_size == p_radiance_size) { return; // No need to update } sky->radiance_size = p_radiance_size; _free_sky_data(sky); _invalidate_sky(sky); } void RasterizerSceneGLES3::sky_set_mode(RID p_sky, RS::SkyMode p_mode) { Sky *sky = sky_owner.get_or_null(p_sky); ERR_FAIL_NULL(sky); if (sky->mode == p_mode) { return; } sky->mode = p_mode; _invalidate_sky(sky); } void RasterizerSceneGLES3::sky_set_material(RID p_sky, RID p_material) { Sky *sky = sky_owner.get_or_null(p_sky); ERR_FAIL_NULL(sky); if (sky->material == p_material) { return; } sky->material = p_material; _invalidate_sky(sky); } float RasterizerSceneGLES3::sky_get_baked_exposure(RID p_sky) const { Sky *sky = sky_owner.get_or_null(p_sky); ERR_FAIL_NULL_V(sky, 1.0); return sky->baked_exposure; } void RasterizerSceneGLES3::_invalidate_sky(Sky *p_sky) { if (!p_sky->dirty) { p_sky->dirty = true; p_sky->dirty_list = dirty_sky_list; dirty_sky_list = p_sky; } } void RasterizerSceneGLES3::_update_dirty_skys() { Sky *sky = dirty_sky_list; while (sky) { if (sky->radiance == 0) { sky->mipmap_count = Image::get_image_required_mipmaps(sky->radiance_size, sky->radiance_size, Image::FORMAT_RGBA8) - 1; // Left uninitialized, will attach a texture at render time glGenFramebuffers(1, &sky->radiance_framebuffer); GLenum internal_format = GL_RGB10_A2; glGenTextures(1, &sky->radiance); glBindTexture(GL_TEXTURE_CUBE_MAP, sky->radiance); #ifdef GL_API_ENABLED if (RasterizerGLES3::is_gles_over_gl()) { GLenum format = GL_RGBA; GLenum type = GL_UNSIGNED_INT_2_10_10_10_REV; //TODO, on low-end compare this to allocating each face of each mip individually // see: https://www.khronos.org/registry/OpenGL-Refpages/es3.0/html/glTexStorage2D.xhtml for (int i = 0; i < 6; i++) { glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, internal_format, sky->radiance_size, sky->radiance_size, 0, format, type, nullptr); } glGenerateMipmap(GL_TEXTURE_CUBE_MAP); } #endif // GL_API_ENABLED #ifdef GLES_API_ENABLED if (!RasterizerGLES3::is_gles_over_gl()) { glTexStorage2D(GL_TEXTURE_CUBE_MAP, sky->mipmap_count, internal_format, sky->radiance_size, sky->radiance_size); } #endif // GLES_API_ENABLED glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_BASE_LEVEL, 0); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAX_LEVEL, sky->mipmap_count - 1); GLES3::Utilities::get_singleton()->texture_allocated_data(sky->radiance, Image::get_image_data_size(sky->radiance_size, sky->radiance_size, Image::FORMAT_RGBA8, true), "Sky radiance map"); glGenTextures(1, &sky->raw_radiance); glBindTexture(GL_TEXTURE_CUBE_MAP, sky->raw_radiance); #ifdef GL_API_ENABLED if (RasterizerGLES3::is_gles_over_gl()) { GLenum format = GL_RGBA; GLenum type = GL_UNSIGNED_INT_2_10_10_10_REV; //TODO, on low-end compare this to allocating each face of each mip individually // see: https://www.khronos.org/registry/OpenGL-Refpages/es3.0/html/glTexStorage2D.xhtml for (int i = 0; i < 6; i++) { glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, internal_format, sky->radiance_size, sky->radiance_size, 0, format, type, nullptr); } glGenerateMipmap(GL_TEXTURE_CUBE_MAP); } #endif // GL_API_ENABLED #ifdef GLES_API_ENABLED if (!RasterizerGLES3::is_gles_over_gl()) { glTexStorage2D(GL_TEXTURE_CUBE_MAP, sky->mipmap_count, internal_format, sky->radiance_size, sky->radiance_size); } #endif // GLES_API_ENABLED glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_BASE_LEVEL, 0); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAX_LEVEL, sky->mipmap_count - 1); glBindTexture(GL_TEXTURE_CUBE_MAP, 0); GLES3::Utilities::get_singleton()->texture_allocated_data(sky->raw_radiance, Image::get_image_data_size(sky->radiance_size, sky->radiance_size, Image::FORMAT_RGBA8, true), "Sky raw radiance map"); } sky->reflection_dirty = true; sky->processing_layer = 0; Sky *next = sky->dirty_list; sky->dirty_list = nullptr; sky->dirty = false; sky = next; } dirty_sky_list = nullptr; } void RasterizerSceneGLES3::_setup_sky(const RenderDataGLES3 *p_render_data, const PagedArray &p_lights, const Projection &p_projection, const Transform3D &p_transform, const Size2i p_screen_size) { GLES3::LightStorage *light_storage = GLES3::LightStorage::get_singleton(); GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); ERR_FAIL_COND(p_render_data->environment.is_null()); GLES3::SkyMaterialData *material = nullptr; Sky *sky = sky_owner.get_or_null(environment_get_sky(p_render_data->environment)); RID sky_material; GLES3::SkyShaderData *shader_data = nullptr; if (sky) { sky_material = sky->material; if (sky_material.is_valid()) { material = static_cast(material_storage->material_get_data(sky_material, RS::SHADER_SKY)); if (!material || !material->shader_data->valid) { material = nullptr; } } } if (!material) { sky_material = sky_globals.default_material; material = static_cast(material_storage->material_get_data(sky_material, RS::SHADER_SKY)); } ERR_FAIL_NULL(material); shader_data = material->shader_data; ERR_FAIL_NULL(shader_data); if (sky) { if (shader_data->uses_time && time - sky->prev_time > 0.00001) { sky->prev_time = time; sky->reflection_dirty = true; RenderingServerDefault::redraw_request(); } if (material != sky->prev_material) { sky->prev_material = material; sky->reflection_dirty = true; } if (material->uniform_set_updated) { material->uniform_set_updated = false; sky->reflection_dirty = true; } if (!p_transform.origin.is_equal_approx(sky->prev_position) && shader_data->uses_position) { sky->prev_position = p_transform.origin; sky->reflection_dirty = true; } } glBindBufferBase(GL_UNIFORM_BUFFER, SKY_DIRECTIONAL_LIGHT_UNIFORM_LOCATION, sky_globals.directional_light_buffer); if (shader_data->uses_light) { sky_globals.directional_light_count = 0; for (int i = 0; i < (int)p_lights.size(); i++) { GLES3::LightInstance *li = GLES3::LightStorage::get_singleton()->get_light_instance(p_lights[i]); if (!li) { continue; } RID base = li->light; ERR_CONTINUE(base.is_null()); RS::LightType type = light_storage->light_get_type(base); if (type == RS::LIGHT_DIRECTIONAL && light_storage->light_directional_get_sky_mode(base) != RS::LIGHT_DIRECTIONAL_SKY_MODE_LIGHT_ONLY) { DirectionalLightData &sky_light_data = sky_globals.directional_lights[sky_globals.directional_light_count]; Transform3D light_transform = li->transform; Vector3 world_direction = light_transform.basis.xform(Vector3(0, 0, 1)).normalized(); sky_light_data.direction[0] = world_direction.x; sky_light_data.direction[1] = world_direction.y; sky_light_data.direction[2] = world_direction.z; float sign = light_storage->light_is_negative(base) ? -1 : 1; sky_light_data.energy = sign * light_storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY); if (is_using_physical_light_units()) { sky_light_data.energy *= light_storage->light_get_param(base, RS::LIGHT_PARAM_INTENSITY); } if (p_render_data->camera_attributes.is_valid()) { sky_light_data.energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes); } Color linear_col = light_storage->light_get_color(base); sky_light_data.color[0] = linear_col.r; sky_light_data.color[1] = linear_col.g; sky_light_data.color[2] = linear_col.b; sky_light_data.enabled = true; float angular_diameter = light_storage->light_get_param(base, RS::LIGHT_PARAM_SIZE); if (angular_diameter > 0.0) { angular_diameter = Math::tan(Math::deg_to_rad(angular_diameter)); } else { angular_diameter = 0.0; } sky_light_data.size = angular_diameter; sky_globals.directional_light_count++; if (sky_globals.directional_light_count >= sky_globals.max_directional_lights) { break; } } } // Check whether the directional_light_buffer changes bool light_data_dirty = false; // Light buffer is dirty if we have fewer or more lights // If we have fewer lights, make sure that old lights are disabled if (sky_globals.directional_light_count != sky_globals.last_frame_directional_light_count) { light_data_dirty = true; for (uint32_t i = sky_globals.directional_light_count; i < sky_globals.max_directional_lights; i++) { sky_globals.directional_lights[i].enabled = false; sky_globals.last_frame_directional_lights[i].enabled = false; } } if (!light_data_dirty) { for (uint32_t i = 0; i < sky_globals.directional_light_count; i++) { if (sky_globals.directional_lights[i].direction[0] != sky_globals.last_frame_directional_lights[i].direction[0] || sky_globals.directional_lights[i].direction[1] != sky_globals.last_frame_directional_lights[i].direction[1] || sky_globals.directional_lights[i].direction[2] != sky_globals.last_frame_directional_lights[i].direction[2] || sky_globals.directional_lights[i].energy != sky_globals.last_frame_directional_lights[i].energy || sky_globals.directional_lights[i].color[0] != sky_globals.last_frame_directional_lights[i].color[0] || sky_globals.directional_lights[i].color[1] != sky_globals.last_frame_directional_lights[i].color[1] || sky_globals.directional_lights[i].color[2] != sky_globals.last_frame_directional_lights[i].color[2] || sky_globals.directional_lights[i].enabled != sky_globals.last_frame_directional_lights[i].enabled || sky_globals.directional_lights[i].size != sky_globals.last_frame_directional_lights[i].size) { light_data_dirty = true; break; } } } if (light_data_dirty) { glBufferData(GL_UNIFORM_BUFFER, sizeof(DirectionalLightData) * sky_globals.max_directional_lights, sky_globals.directional_lights, GL_STREAM_DRAW); glBindBuffer(GL_UNIFORM_BUFFER, 0); DirectionalLightData *temp = sky_globals.last_frame_directional_lights; sky_globals.last_frame_directional_lights = sky_globals.directional_lights; sky_globals.directional_lights = temp; sky_globals.last_frame_directional_light_count = sky_globals.directional_light_count; if (sky) { sky->reflection_dirty = true; } } } if (p_render_data->view_count > 1) { glBindBufferBase(GL_UNIFORM_BUFFER, SKY_MULTIVIEW_UNIFORM_LOCATION, scene_state.multiview_buffer); glBindBuffer(GL_UNIFORM_BUFFER, 0); } if (sky && !sky->radiance) { _invalidate_sky(sky); _update_dirty_skys(); } } void RasterizerSceneGLES3::_draw_sky(RID p_env, const Projection &p_projection, const Transform3D &p_transform, float p_luminance_multiplier, bool p_use_multiview, bool p_flip_y) { GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); ERR_FAIL_COND(p_env.is_null()); Sky *sky = sky_owner.get_or_null(environment_get_sky(p_env)); ERR_FAIL_NULL(sky); GLES3::SkyMaterialData *material_data = nullptr; RID sky_material; uint64_t spec_constants = p_use_multiview ? SkyShaderGLES3::USE_MULTIVIEW : 0; if (p_flip_y) { spec_constants |= SkyShaderGLES3::USE_INVERTED_Y; } RS::EnvironmentBG background = environment_get_background(p_env); if (sky) { sky_material = sky->material; if (sky_material.is_valid()) { material_data = static_cast(material_storage->material_get_data(sky_material, RS::SHADER_SKY)); if (!material_data || !material_data->shader_data->valid) { material_data = nullptr; } } if (!material_data) { sky_material = sky_globals.default_material; material_data = static_cast(material_storage->material_get_data(sky_material, RS::SHADER_SKY)); } } else if (background == RS::ENV_BG_CLEAR_COLOR || background == RS::ENV_BG_COLOR) { sky_material = sky_globals.fog_material; material_data = static_cast(material_storage->material_get_data(sky_material, RS::SHADER_SKY)); } ERR_FAIL_NULL(material_data); material_data->bind_uniforms(); GLES3::SkyShaderData *shader_data = material_data->shader_data; ERR_FAIL_NULL(shader_data); // Camera Projection camera; if (environment_get_sky_custom_fov(p_env)) { float near_plane = p_projection.get_z_near(); float far_plane = p_projection.get_z_far(); float aspect = p_projection.get_aspect(); camera.set_perspective(environment_get_sky_custom_fov(p_env), aspect, near_plane, far_plane); } else { camera = p_projection; } Basis sky_transform = environment_get_sky_orientation(p_env); sky_transform.invert(); sky_transform = sky_transform * p_transform.basis; bool success = material_storage->shaders.sky_shader.version_bind_shader(shader_data->version, SkyShaderGLES3::MODE_BACKGROUND, spec_constants); if (!success) { return; } material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::ORIENTATION, sky_transform, shader_data->version, SkyShaderGLES3::MODE_BACKGROUND, spec_constants); material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::PROJECTION, camera.columns[2][0], camera.columns[0][0], camera.columns[2][1], camera.columns[1][1], shader_data->version, SkyShaderGLES3::MODE_BACKGROUND, spec_constants); material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::POSITION, p_transform.origin, shader_data->version, SkyShaderGLES3::MODE_BACKGROUND, spec_constants); material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::TIME, time, shader_data->version, SkyShaderGLES3::MODE_BACKGROUND, spec_constants); material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::LUMINANCE_MULTIPLIER, p_luminance_multiplier, shader_data->version, SkyShaderGLES3::MODE_BACKGROUND, spec_constants); if (p_use_multiview) { glBindBufferBase(GL_UNIFORM_BUFFER, SKY_MULTIVIEW_UNIFORM_LOCATION, scene_state.multiview_buffer); glBindBuffer(GL_UNIFORM_BUFFER, 0); } glBindVertexArray(sky_globals.screen_triangle_array); glDrawArrays(GL_TRIANGLES, 0, 3); } void RasterizerSceneGLES3::_update_sky_radiance(RID p_env, const Projection &p_projection, const Transform3D &p_transform, float p_luminance_multiplier) { GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); ERR_FAIL_COND(p_env.is_null()); Sky *sky = sky_owner.get_or_null(environment_get_sky(p_env)); ERR_FAIL_NULL(sky); GLES3::SkyMaterialData *material_data = nullptr; RID sky_material; RS::EnvironmentBG background = environment_get_background(p_env); if (sky) { ERR_FAIL_NULL(sky); sky_material = sky->material; if (sky_material.is_valid()) { material_data = static_cast(material_storage->material_get_data(sky_material, RS::SHADER_SKY)); if (!material_data || !material_data->shader_data->valid) { material_data = nullptr; } } if (!material_data) { sky_material = sky_globals.default_material; material_data = static_cast(material_storage->material_get_data(sky_material, RS::SHADER_SKY)); } } else if (background == RS::ENV_BG_CLEAR_COLOR || background == RS::ENV_BG_COLOR) { sky_material = sky_globals.fog_material; material_data = static_cast(material_storage->material_get_data(sky_material, RS::SHADER_SKY)); } ERR_FAIL_NULL(material_data); material_data->bind_uniforms(); GLES3::SkyShaderData *shader_data = material_data->shader_data; ERR_FAIL_NULL(shader_data); bool update_single_frame = sky->mode == RS::SKY_MODE_REALTIME || sky->mode == RS::SKY_MODE_QUALITY; RS::SkyMode sky_mode = sky->mode; if (sky_mode == RS::SKY_MODE_AUTOMATIC) { if (shader_data->uses_time || shader_data->uses_position) { update_single_frame = true; sky_mode = RS::SKY_MODE_REALTIME; } else if (shader_data->uses_light || shader_data->ubo_size > 0) { update_single_frame = false; sky_mode = RS::SKY_MODE_INCREMENTAL; } else { update_single_frame = true; sky_mode = RS::SKY_MODE_QUALITY; } } if (sky->processing_layer == 0 && sky_mode == RS::SKY_MODE_INCREMENTAL) { // On the first frame after creating sky, rebuild in single frame update_single_frame = true; sky_mode = RS::SKY_MODE_QUALITY; } int max_processing_layer = sky->mipmap_count; // Update radiance cubemap if (sky->reflection_dirty && (sky->processing_layer > max_processing_layer || update_single_frame)) { static const Vector3 view_normals[6] = { Vector3(+1, 0, 0), Vector3(-1, 0, 0), Vector3(0, +1, 0), Vector3(0, -1, 0), Vector3(0, 0, +1), Vector3(0, 0, -1) }; static const Vector3 view_up[6] = { Vector3(0, -1, 0), Vector3(0, -1, 0), Vector3(0, 0, +1), Vector3(0, 0, -1), Vector3(0, -1, 0), Vector3(0, -1, 0) }; Projection cm; cm.set_perspective(90, 1, 0.01, 10.0); Projection correction; correction.columns[1][1] = -1.0; cm = correction * cm; bool success = material_storage->shaders.sky_shader.version_bind_shader(shader_data->version, SkyShaderGLES3::MODE_CUBEMAP); if (!success) { return; } material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::POSITION, p_transform.origin, shader_data->version, SkyShaderGLES3::MODE_CUBEMAP); material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::TIME, time, shader_data->version, SkyShaderGLES3::MODE_CUBEMAP); material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::PROJECTION, cm.columns[2][0], cm.columns[0][0], cm.columns[2][1], cm.columns[1][1], shader_data->version, SkyShaderGLES3::MODE_CUBEMAP); material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::LUMINANCE_MULTIPLIER, p_luminance_multiplier, shader_data->version, SkyShaderGLES3::MODE_CUBEMAP); glBindVertexArray(sky_globals.screen_triangle_array); glViewport(0, 0, sky->radiance_size, sky->radiance_size); glBindFramebuffer(GL_FRAMEBUFFER, sky->radiance_framebuffer); glDisable(GL_BLEND); glDepthMask(GL_FALSE); glDisable(GL_DEPTH_TEST); scene_state.current_depth_test = GLES3::SceneShaderData::DEPTH_TEST_DISABLED; glDisable(GL_SCISSOR_TEST); glDisable(GL_CULL_FACE); scene_state.cull_mode = GLES3::SceneShaderData::CULL_DISABLED; for (int i = 0; i < 6; i++) { Basis local_view = Basis::looking_at(view_normals[i], view_up[i]); material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::ORIENTATION, local_view, shader_data->version, SkyShaderGLES3::MODE_CUBEMAP); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, sky->raw_radiance, 0); glDrawArrays(GL_TRIANGLES, 0, 3); } if (update_single_frame) { for (int i = 0; i < max_processing_layer; i++) { _filter_sky_radiance(sky, i); } } else { _filter_sky_radiance(sky, 0); //Just copy over the first mipmap } sky->processing_layer = 1; sky->baked_exposure = p_luminance_multiplier; sky->reflection_dirty = false; } else { if (sky_mode == RS::SKY_MODE_INCREMENTAL && sky->processing_layer < max_processing_layer) { glDisable(GL_BLEND); glDepthMask(GL_FALSE); glDisable(GL_DEPTH_TEST); scene_state.current_depth_test = GLES3::SceneShaderData::DEPTH_TEST_DISABLED; glDisable(GL_SCISSOR_TEST); glDisable(GL_CULL_FACE); scene_state.cull_mode = GLES3::SceneShaderData::CULL_DISABLED; _filter_sky_radiance(sky, sky->processing_layer); sky->processing_layer++; } } } // Helper functions for IBL filtering Vector3 importance_sample_GGX(Vector2 xi, float roughness4) { // Compute distribution direction float phi = 2.0 * Math_PI * xi.x; float cos_theta = sqrt((1.0 - xi.y) / (1.0 + (roughness4 - 1.0) * xi.y)); float sin_theta = sqrt(1.0 - cos_theta * cos_theta); // Convert to spherical direction Vector3 half_vector; half_vector.x = sin_theta * cos(phi); half_vector.y = sin_theta * sin(phi); half_vector.z = cos_theta; return half_vector; } float distribution_GGX(float NdotH, float roughness4) { float NdotH2 = NdotH * NdotH; float denom = (NdotH2 * (roughness4 - 1.0) + 1.0); denom = Math_PI * denom * denom; return roughness4 / denom; } float radical_inverse_vdC(uint32_t bits) { bits = (bits << 16) | (bits >> 16); bits = ((bits & 0x55555555) << 1) | ((bits & 0xAAAAAAAA) >> 1); bits = ((bits & 0x33333333) << 2) | ((bits & 0xCCCCCCCC) >> 2); bits = ((bits & 0x0F0F0F0F) << 4) | ((bits & 0xF0F0F0F0) >> 4); bits = ((bits & 0x00FF00FF) << 8) | ((bits & 0xFF00FF00) >> 8); return float(bits) * 2.3283064365386963e-10; } Vector2 hammersley(uint32_t i, uint32_t N) { return Vector2(float(i) / float(N), radical_inverse_vdC(i)); } void RasterizerSceneGLES3::_filter_sky_radiance(Sky *p_sky, int p_base_layer) { GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_CUBE_MAP, p_sky->raw_radiance); glBindFramebuffer(GL_FRAMEBUFFER, p_sky->radiance_framebuffer); CubemapFilterShaderGLES3::ShaderVariant mode = CubemapFilterShaderGLES3::MODE_DEFAULT; if (p_base_layer == 0) { glGenerateMipmap(GL_TEXTURE_CUBE_MAP); // Copy over base layer without filtering. mode = CubemapFilterShaderGLES3::MODE_COPY; } int size = p_sky->radiance_size >> p_base_layer; glViewport(0, 0, size, size); glBindVertexArray(sky_globals.screen_triangle_array); bool success = material_storage->shaders.cubemap_filter_shader.version_bind_shader(scene_globals.cubemap_filter_shader_version, mode); if (!success) { return; } if (p_base_layer > 0) { const uint32_t sample_counts[4] = { 1, sky_globals.ggx_samples / 4, sky_globals.ggx_samples / 2, sky_globals.ggx_samples }; uint32_t sample_count = sample_counts[MIN(3, p_base_layer)]; float roughness = float(p_base_layer) / (p_sky->mipmap_count); float roughness4 = roughness * roughness; roughness4 *= roughness4; float solid_angle_texel = 4.0 * Math_PI / float(6 * size * size); LocalVector sample_directions; sample_directions.resize(4 * sample_count); uint32_t index = 0; float weight = 0.0; for (uint32_t i = 0; i < sample_count; i++) { Vector2 xi = hammersley(i, sample_count); Vector3 dir = importance_sample_GGX(xi, roughness4); Vector3 light_vec = (2.0 * dir.z * dir - Vector3(0.0, 0.0, 1.0)); if (light_vec.z < 0.0) { continue; } sample_directions[index * 4] = light_vec.x; sample_directions[index * 4 + 1] = light_vec.y; sample_directions[index * 4 + 2] = light_vec.z; float D = distribution_GGX(dir.z, roughness4); float pdf = D * dir.z / (4.0 * dir.z) + 0.0001; float solid_angle_sample = 1.0 / (float(sample_count) * pdf + 0.0001); float mip_level = MAX(0.5 * log2(solid_angle_sample / solid_angle_texel) + float(MAX(1, p_base_layer - 3)), 1.0); sample_directions[index * 4 + 3] = mip_level; weight += light_vec.z; index++; } glUniform4fv(material_storage->shaders.cubemap_filter_shader.version_get_uniform(CubemapFilterShaderGLES3::SAMPLE_DIRECTIONS_MIP, scene_globals.cubemap_filter_shader_version, mode), sample_count, sample_directions.ptr()); material_storage->shaders.cubemap_filter_shader.version_set_uniform(CubemapFilterShaderGLES3::WEIGHT, weight, scene_globals.cubemap_filter_shader_version, mode); material_storage->shaders.cubemap_filter_shader.version_set_uniform(CubemapFilterShaderGLES3::SAMPLE_COUNT, index, scene_globals.cubemap_filter_shader_version, mode); } for (int i = 0; i < 6; i++) { glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, p_sky->radiance, p_base_layer); #ifdef DEBUG_ENABLED GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (status != GL_FRAMEBUFFER_COMPLETE) { WARN_PRINT("Could not bind sky radiance face: " + itos(i) + ", status: " + GLES3::TextureStorage::get_singleton()->get_framebuffer_error(status)); } #endif material_storage->shaders.cubemap_filter_shader.version_set_uniform(CubemapFilterShaderGLES3::FACE_ID, i, scene_globals.cubemap_filter_shader_version, mode); glDrawArrays(GL_TRIANGLES, 0, 3); } glBindVertexArray(0); glViewport(0, 0, p_sky->screen_size.x, p_sky->screen_size.y); glBindFramebuffer(GL_FRAMEBUFFER, 0); } Ref RasterizerSceneGLES3::sky_bake_panorama(RID p_sky, float p_energy, bool p_bake_irradiance, const Size2i &p_size) { return Ref(); } /* ENVIRONMENT API */ void RasterizerSceneGLES3::environment_glow_set_use_bicubic_upscale(bool p_enable) { glow_bicubic_upscale = p_enable; } void RasterizerSceneGLES3::environment_set_ssr_roughness_quality(RS::EnvironmentSSRRoughnessQuality p_quality) { } void RasterizerSceneGLES3::environment_set_ssao_quality(RS::EnvironmentSSAOQuality p_quality, bool p_half_size, float p_adaptive_target, int p_blur_passes, float p_fadeout_from, float p_fadeout_to) { } void RasterizerSceneGLES3::environment_set_ssil_quality(RS::EnvironmentSSILQuality p_quality, bool p_half_size, float p_adaptive_target, int p_blur_passes, float p_fadeout_from, float p_fadeout_to) { } void RasterizerSceneGLES3::environment_set_sdfgi_ray_count(RS::EnvironmentSDFGIRayCount p_ray_count) { } void RasterizerSceneGLES3::environment_set_sdfgi_frames_to_converge(RS::EnvironmentSDFGIFramesToConverge p_frames) { } void RasterizerSceneGLES3::environment_set_sdfgi_frames_to_update_light(RS::EnvironmentSDFGIFramesToUpdateLight p_update) { } void RasterizerSceneGLES3::environment_set_volumetric_fog_volume_size(int p_size, int p_depth) { } void RasterizerSceneGLES3::environment_set_volumetric_fog_filter_active(bool p_enable) { } Ref RasterizerSceneGLES3::environment_bake_panorama(RID p_env, bool p_bake_irradiance, const Size2i &p_size) { return Ref(); } void RasterizerSceneGLES3::positional_soft_shadow_filter_set_quality(RS::ShadowQuality p_quality) { scene_state.positional_shadow_quality = p_quality; } void RasterizerSceneGLES3::directional_soft_shadow_filter_set_quality(RS::ShadowQuality p_quality) { scene_state.directional_shadow_quality = p_quality; } RID RasterizerSceneGLES3::fog_volume_instance_create(RID p_fog_volume) { return RID(); } void RasterizerSceneGLES3::fog_volume_instance_set_transform(RID p_fog_volume_instance, const Transform3D &p_transform) { } void RasterizerSceneGLES3::fog_volume_instance_set_active(RID p_fog_volume_instance, bool p_active) { } RID RasterizerSceneGLES3::fog_volume_instance_get_volume(RID p_fog_volume_instance) const { return RID(); } Vector3 RasterizerSceneGLES3::fog_volume_instance_get_position(RID p_fog_volume_instance) const { return Vector3(); } RID RasterizerSceneGLES3::voxel_gi_instance_create(RID p_voxel_gi) { return RID(); } void RasterizerSceneGLES3::voxel_gi_instance_set_transform_to_data(RID p_probe, const Transform3D &p_xform) { } bool RasterizerSceneGLES3::voxel_gi_needs_update(RID p_probe) const { return false; } void RasterizerSceneGLES3::voxel_gi_update(RID p_probe, bool p_update_light_instances, const Vector &p_light_instances, const PagedArray &p_dynamic_objects) { } void RasterizerSceneGLES3::voxel_gi_set_quality(RS::VoxelGIQuality) { } _FORCE_INLINE_ static uint32_t _indices_to_primitives(RS::PrimitiveType p_primitive, uint32_t p_indices) { static const uint32_t divisor[RS::PRIMITIVE_MAX] = { 1, 2, 1, 3, 1 }; static const uint32_t subtractor[RS::PRIMITIVE_MAX] = { 0, 0, 1, 0, 1 }; return (p_indices - subtractor[p_primitive]) / divisor[p_primitive]; } void RasterizerSceneGLES3::_fill_render_list(RenderListType p_render_list, const RenderDataGLES3 *p_render_data, PassMode p_pass_mode, bool p_append) { GLES3::MeshStorage *mesh_storage = GLES3::MeshStorage::get_singleton(); if (p_render_list == RENDER_LIST_OPAQUE) { scene_state.used_screen_texture = false; scene_state.used_normal_texture = false; scene_state.used_depth_texture = false; } Plane near_plane; if (p_render_data->cam_orthogonal) { near_plane = Plane(-p_render_data->cam_transform.basis.get_column(Vector3::AXIS_Z), p_render_data->cam_transform.origin); near_plane.d += p_render_data->cam_projection.get_z_near(); } float z_max = p_render_data->cam_projection.get_z_far() - p_render_data->cam_projection.get_z_near(); RenderList *rl = &render_list[p_render_list]; // Parse any updates on our geometry, updates surface caches and such _update_dirty_geometry_instances(); if (!p_append) { rl->clear(); if (p_render_list == RENDER_LIST_OPAQUE) { render_list[RENDER_LIST_ALPHA].clear(); //opaque fills alpha too } } //fill list for (int i = 0; i < (int)p_render_data->instances->size(); i++) { GeometryInstanceGLES3 *inst = static_cast((*p_render_data->instances)[i]); Vector3 center = inst->transform.origin; if (p_render_data->cam_orthogonal) { if (inst->use_aabb_center) { center = inst->transformed_aabb.get_support(-near_plane.normal); } inst->depth = near_plane.distance_to(center) - inst->sorting_offset; } else { if (inst->use_aabb_center) { center = inst->transformed_aabb.position + (inst->transformed_aabb.size * 0.5); } inst->depth = p_render_data->cam_transform.origin.distance_to(center) - inst->sorting_offset; } uint32_t depth_layer = CLAMP(int(inst->depth * 16 / z_max), 0, 15); uint32_t flags = inst->base_flags; //fill flags if appropriate if (inst->non_uniform_scale) { flags |= INSTANCE_DATA_FLAGS_NON_UNIFORM_SCALE; } // Sets the index values for lookup in the shader // This has to be done after _setup_lights was called this frame if (p_pass_mode == PASS_MODE_COLOR) { inst->light_passes.clear(); inst->spot_light_gl_cache.clear(); inst->omni_light_gl_cache.clear(); uint64_t current_frame = RSG::rasterizer->get_frame_number(); if (inst->paired_omni_light_count) { for (uint32_t j = 0; j < inst->paired_omni_light_count; j++) { RID light_instance = inst->paired_omni_lights[j]; if (GLES3::LightStorage::get_singleton()->light_instance_get_render_pass(light_instance) != current_frame) { continue; } RID light = GLES3::LightStorage::get_singleton()->light_instance_get_base_light(light_instance); int32_t shadow_id = GLES3::LightStorage::get_singleton()->light_instance_get_shadow_id(light_instance); if (GLES3::LightStorage::get_singleton()->light_has_shadow(light) && shadow_id >= 0) { // Skip static lights when a lightmap is used. if (!inst->lightmap_instance.is_valid() || GLES3::LightStorage::get_singleton()->light_get_bake_mode(light) != RenderingServer::LIGHT_BAKE_STATIC) { GeometryInstanceGLES3::LightPass pass; pass.light_id = GLES3::LightStorage::get_singleton()->light_instance_get_gl_id(light_instance); pass.shadow_id = shadow_id; pass.light_instance_rid = light_instance; pass.is_omni = true; inst->light_passes.push_back(pass); } } else { // Lights without shadow can all go in base pass. inst->omni_light_gl_cache.push_back((uint32_t)GLES3::LightStorage::get_singleton()->light_instance_get_gl_id(light_instance)); } } } if (inst->paired_spot_light_count) { for (uint32_t j = 0; j < inst->paired_spot_light_count; j++) { RID light_instance = inst->paired_spot_lights[j]; if (GLES3::LightStorage::get_singleton()->light_instance_get_render_pass(light_instance) != current_frame) { continue; } RID light = GLES3::LightStorage::get_singleton()->light_instance_get_base_light(light_instance); int32_t shadow_id = GLES3::LightStorage::get_singleton()->light_instance_get_shadow_id(light_instance); if (GLES3::LightStorage::get_singleton()->light_has_shadow(light) && shadow_id >= 0) { // Skip static lights when a lightmap is used. if (!inst->lightmap_instance.is_valid() || GLES3::LightStorage::get_singleton()->light_get_bake_mode(light) != RenderingServer::LIGHT_BAKE_STATIC) { GeometryInstanceGLES3::LightPass pass; pass.light_id = GLES3::LightStorage::get_singleton()->light_instance_get_gl_id(light_instance); pass.shadow_id = shadow_id; pass.light_instance_rid = light_instance; inst->light_passes.push_back(pass); } } else { // Lights without shadow can all go in base pass. inst->spot_light_gl_cache.push_back((uint32_t)GLES3::LightStorage::get_singleton()->light_instance_get_gl_id(light_instance)); } } } } inst->flags_cache = flags; GeometryInstanceSurface *surf = inst->surface_caches; while (surf) { // LOD if (p_render_data->screen_mesh_lod_threshold > 0.0 && mesh_storage->mesh_surface_has_lod(surf->surface)) { // Get the LOD support points on the mesh AABB. Vector3 lod_support_min = inst->transformed_aabb.get_support(p_render_data->cam_transform.basis.get_column(Vector3::AXIS_Z)); Vector3 lod_support_max = inst->transformed_aabb.get_support(-p_render_data->cam_transform.basis.get_column(Vector3::AXIS_Z)); // Get the distances to those points on the AABB from the camera origin. float distance_min = (float)p_render_data->cam_transform.origin.distance_to(lod_support_min); float distance_max = (float)p_render_data->cam_transform.origin.distance_to(lod_support_max); float distance = 0.0; if (distance_min * distance_max < 0.0) { //crossing plane distance = 0.0; } else if (distance_min >= 0.0) { distance = distance_min; } else if (distance_max <= 0.0) { distance = -distance_max; } if (p_render_data->cam_orthogonal) { distance = 1.0; } uint32_t indices = 0; surf->lod_index = mesh_storage->mesh_surface_get_lod(surf->surface, inst->lod_model_scale * inst->lod_bias, distance * p_render_data->lod_distance_multiplier, p_render_data->screen_mesh_lod_threshold, indices); surf->index_count = indices; if (p_render_data->render_info) { indices = _indices_to_primitives(surf->primitive, indices); if (p_render_list == RENDER_LIST_OPAQUE) { //opaque p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_VISIBLE][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += indices; } else if (p_render_list == RENDER_LIST_SECONDARY) { //shadow p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_SHADOW][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += indices; } } } else { surf->lod_index = 0; if (p_render_data->render_info) { uint32_t to_draw = mesh_storage->mesh_surface_get_vertices_drawn_count(surf->surface); to_draw = _indices_to_primitives(surf->primitive, to_draw); to_draw *= inst->instance_count > 0 ? inst->instance_count : 1; if (p_render_list == RENDER_LIST_OPAQUE) { //opaque p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_VISIBLE][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += to_draw; } else if (p_render_list == RENDER_LIST_SECONDARY) { //shadow p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_SHADOW][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += to_draw; } } } // ADD Element if (p_pass_mode == PASS_MODE_COLOR) { #ifdef DEBUG_ENABLED bool force_alpha = unlikely(get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_OVERDRAW); #else bool force_alpha = false; #endif if (!force_alpha && (surf->flags & GeometryInstanceSurface::FLAG_PASS_OPAQUE)) { rl->add_element(surf); } if (force_alpha || (surf->flags & GeometryInstanceSurface::FLAG_PASS_ALPHA)) { render_list[RENDER_LIST_ALPHA].add_element(surf); } if (surf->flags & GeometryInstanceSurface::FLAG_USES_SCREEN_TEXTURE) { scene_state.used_screen_texture = true; } if (surf->flags & GeometryInstanceSurface::FLAG_USES_NORMAL_TEXTURE) { scene_state.used_normal_texture = true; } if (surf->flags & GeometryInstanceSurface::FLAG_USES_DEPTH_TEXTURE) { scene_state.used_depth_texture = true; } } else if (p_pass_mode == PASS_MODE_SHADOW) { if (surf->flags & GeometryInstanceSurface::FLAG_PASS_SHADOW) { rl->add_element(surf); } } else { if (surf->flags & (GeometryInstanceSurface::FLAG_PASS_DEPTH | GeometryInstanceSurface::FLAG_PASS_OPAQUE)) { rl->add_element(surf); } } surf->sort.depth_layer = depth_layer; surf->finished_base_pass = false; surf->light_pass_index = 0; surf = surf->next; } } } // Needs to be called after _setup_lights so that directional_light_count is accurate. void RasterizerSceneGLES3::_setup_environment(const RenderDataGLES3 *p_render_data, bool p_no_fog, const Size2i &p_screen_size, bool p_flip_y, const Color &p_default_bg_color, bool p_pancake_shadows, float p_shadow_bias) { Projection correction; correction.columns[1][1] = p_flip_y ? -1.0 : 1.0; Projection projection = correction * p_render_data->cam_projection; //store camera into ubo GLES3::MaterialStorage::store_camera(projection, scene_state.ubo.projection_matrix); GLES3::MaterialStorage::store_camera(projection.inverse(), scene_state.ubo.inv_projection_matrix); GLES3::MaterialStorage::store_transform(p_render_data->cam_transform, scene_state.ubo.inv_view_matrix); GLES3::MaterialStorage::store_transform(p_render_data->inv_cam_transform, scene_state.ubo.view_matrix); scene_state.ubo.camera_visible_layers = p_render_data->camera_visible_layers; if (p_render_data->view_count > 1) { for (uint32_t v = 0; v < p_render_data->view_count; v++) { projection = correction * p_render_data->view_projection[v]; GLES3::MaterialStorage::store_camera(projection, scene_state.multiview_ubo.projection_matrix_view[v]); GLES3::MaterialStorage::store_camera(projection.inverse(), scene_state.multiview_ubo.inv_projection_matrix_view[v]); scene_state.multiview_ubo.eye_offset[v][0] = p_render_data->view_eye_offset[v].x; scene_state.multiview_ubo.eye_offset[v][1] = p_render_data->view_eye_offset[v].y; scene_state.multiview_ubo.eye_offset[v][2] = p_render_data->view_eye_offset[v].z; scene_state.multiview_ubo.eye_offset[v][3] = 0.0; } } // Only render the lights without shadows in the base pass. scene_state.ubo.directional_light_count = p_render_data->directional_light_count - p_render_data->directional_shadow_count; scene_state.ubo.z_far = p_render_data->z_far; scene_state.ubo.z_near = p_render_data->z_near; scene_state.ubo.viewport_size[0] = p_screen_size.x; scene_state.ubo.viewport_size[1] = p_screen_size.y; Size2 screen_pixel_size = Vector2(1.0, 1.0) / Size2(p_screen_size); scene_state.ubo.screen_pixel_size[0] = screen_pixel_size.x; scene_state.ubo.screen_pixel_size[1] = screen_pixel_size.y; scene_state.ubo.shadow_bias = p_shadow_bias; scene_state.ubo.pancake_shadows = p_pancake_shadows; //time global variables scene_state.ubo.time = time; if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_UNSHADED) { scene_state.ubo.use_ambient_light = true; scene_state.ubo.ambient_light_color_energy[0] = 1; scene_state.ubo.ambient_light_color_energy[1] = 1; scene_state.ubo.ambient_light_color_energy[2] = 1; scene_state.ubo.ambient_light_color_energy[3] = 1.0; scene_state.ubo.use_ambient_cubemap = false; scene_state.ubo.use_reflection_cubemap = false; } else if (is_environment(p_render_data->environment)) { RS::EnvironmentBG env_bg = environment_get_background(p_render_data->environment); RS::EnvironmentAmbientSource ambient_src = environment_get_ambient_source(p_render_data->environment); float bg_energy_multiplier = environment_get_bg_energy_multiplier(p_render_data->environment); scene_state.ubo.ambient_light_color_energy[3] = bg_energy_multiplier; scene_state.ubo.ambient_color_sky_mix = environment_get_ambient_sky_contribution(p_render_data->environment); //ambient if (ambient_src == RS::ENV_AMBIENT_SOURCE_BG && (env_bg == RS::ENV_BG_CLEAR_COLOR || env_bg == RS::ENV_BG_COLOR)) { Color color = env_bg == RS::ENV_BG_CLEAR_COLOR ? p_default_bg_color : environment_get_bg_color(p_render_data->environment); color = color.srgb_to_linear(); scene_state.ubo.ambient_light_color_energy[0] = color.r * bg_energy_multiplier; scene_state.ubo.ambient_light_color_energy[1] = color.g * bg_energy_multiplier; scene_state.ubo.ambient_light_color_energy[2] = color.b * bg_energy_multiplier; scene_state.ubo.use_ambient_light = true; scene_state.ubo.use_ambient_cubemap = false; } else { float energy = environment_get_ambient_light_energy(p_render_data->environment); Color color = environment_get_ambient_light(p_render_data->environment); color = color.srgb_to_linear(); scene_state.ubo.ambient_light_color_energy[0] = color.r * energy; scene_state.ubo.ambient_light_color_energy[1] = color.g * energy; scene_state.ubo.ambient_light_color_energy[2] = color.b * energy; Basis sky_transform = environment_get_sky_orientation(p_render_data->environment); sky_transform = sky_transform.inverse() * p_render_data->cam_transform.basis; GLES3::MaterialStorage::store_transform_3x3(sky_transform, scene_state.ubo.radiance_inverse_xform); scene_state.ubo.use_ambient_cubemap = (ambient_src == RS::ENV_AMBIENT_SOURCE_BG && env_bg == RS::ENV_BG_SKY) || ambient_src == RS::ENV_AMBIENT_SOURCE_SKY; scene_state.ubo.use_ambient_light = scene_state.ubo.use_ambient_cubemap || ambient_src == RS::ENV_AMBIENT_SOURCE_COLOR; } //specular RS::EnvironmentReflectionSource ref_src = environment_get_reflection_source(p_render_data->environment); if ((ref_src == RS::ENV_REFLECTION_SOURCE_BG && env_bg == RS::ENV_BG_SKY) || ref_src == RS::ENV_REFLECTION_SOURCE_SKY) { scene_state.ubo.use_reflection_cubemap = true; } else { scene_state.ubo.use_reflection_cubemap = false; } scene_state.ubo.fog_enabled = environment_get_fog_enabled(p_render_data->environment); scene_state.ubo.fog_density = environment_get_fog_density(p_render_data->environment); scene_state.ubo.fog_height = environment_get_fog_height(p_render_data->environment); scene_state.ubo.fog_height_density = environment_get_fog_height_density(p_render_data->environment); scene_state.ubo.fog_aerial_perspective = environment_get_fog_aerial_perspective(p_render_data->environment); Color fog_color = environment_get_fog_light_color(p_render_data->environment).srgb_to_linear(); float fog_energy = environment_get_fog_light_energy(p_render_data->environment); scene_state.ubo.fog_light_color[0] = fog_color.r * fog_energy; scene_state.ubo.fog_light_color[1] = fog_color.g * fog_energy; scene_state.ubo.fog_light_color[2] = fog_color.b * fog_energy; scene_state.ubo.fog_sun_scatter = environment_get_fog_sun_scatter(p_render_data->environment); } else { } if (p_render_data->camera_attributes.is_valid()) { scene_state.ubo.emissive_exposure_normalization = RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes); scene_state.ubo.IBL_exposure_normalization = 1.0; if (is_environment(p_render_data->environment)) { RID sky_rid = environment_get_sky(p_render_data->environment); if (sky_rid.is_valid()) { float current_exposure = RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes) * environment_get_bg_intensity(p_render_data->environment); scene_state.ubo.IBL_exposure_normalization = current_exposure / MAX(0.001, sky_get_baked_exposure(sky_rid)); } } } else if (scene_state.ubo.emissive_exposure_normalization > 0.0) { // This branch is triggered when using render_material(). // Emissive is set outside the function, so don't set it. // IBL isn't used don't set it. } else { scene_state.ubo.emissive_exposure_normalization = 1.0; scene_state.ubo.IBL_exposure_normalization = 1.0; } if (scene_state.ubo_buffer == 0) { glGenBuffers(1, &scene_state.ubo_buffer); glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_DATA_UNIFORM_LOCATION, scene_state.ubo_buffer); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, scene_state.ubo_buffer, sizeof(SceneState::UBO), &scene_state.ubo, GL_STREAM_DRAW, "Scene state UBO"); glBindBuffer(GL_UNIFORM_BUFFER, 0); } else { glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_DATA_UNIFORM_LOCATION, scene_state.ubo_buffer); glBufferData(GL_UNIFORM_BUFFER, sizeof(SceneState::UBO), &scene_state.ubo, GL_STREAM_DRAW); } glBindBuffer(GL_UNIFORM_BUFFER, 0); if (p_render_data->view_count > 1) { if (scene_state.multiview_buffer == 0) { glGenBuffers(1, &scene_state.multiview_buffer); glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_MULTIVIEW_UNIFORM_LOCATION, scene_state.multiview_buffer); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, scene_state.multiview_buffer, sizeof(SceneState::MultiviewUBO), &scene_state.multiview_ubo, GL_STREAM_DRAW, "Multiview UBO"); } else { glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_MULTIVIEW_UNIFORM_LOCATION, scene_state.multiview_buffer); glBufferData(GL_UNIFORM_BUFFER, sizeof(SceneState::MultiviewUBO), &scene_state.multiview_ubo, GL_STREAM_DRAW); } glBindBuffer(GL_UNIFORM_BUFFER, 0); } } // Puts lights into Uniform Buffers. Needs to be called before _fill_list as this caches the index of each light in the Uniform Buffer void RasterizerSceneGLES3::_setup_lights(const RenderDataGLES3 *p_render_data, bool p_using_shadows, uint32_t &r_directional_light_count, uint32_t &r_omni_light_count, uint32_t &r_spot_light_count, uint32_t &r_directional_shadow_count) { GLES3::LightStorage *light_storage = GLES3::LightStorage::get_singleton(); GLES3::Config *config = GLES3::Config::get_singleton(); const Transform3D inverse_transform = p_render_data->inv_cam_transform; const PagedArray &lights = *p_render_data->lights; r_directional_light_count = 0; r_omni_light_count = 0; r_spot_light_count = 0; r_directional_shadow_count = 0; int num_lights = lights.size(); for (int i = 0; i < num_lights; i++) { GLES3::LightInstance *li = GLES3::LightStorage::get_singleton()->get_light_instance(lights[i]); if (!li) { continue; } RID base = li->light; ERR_CONTINUE(base.is_null()); RS::LightType type = light_storage->light_get_type(base); switch (type) { case RS::LIGHT_DIRECTIONAL: { if (r_directional_light_count >= RendererSceneRender::MAX_DIRECTIONAL_LIGHTS || light_storage->light_directional_get_sky_mode(base) == RS::LIGHT_DIRECTIONAL_SKY_MODE_SKY_ONLY) { continue; } // If a DirectionalLight has shadows, we will add it to the end of the array and work in. bool has_shadow = light_storage->light_has_shadow(base); int index = r_directional_light_count - r_directional_shadow_count; if (has_shadow) { // Lights with shadow are incremented from the end of the array. index = MAX_DIRECTIONAL_LIGHTS - 1 - r_directional_shadow_count; } DirectionalLightData &light_data = scene_state.directional_lights[index]; Transform3D light_transform = li->transform; Vector3 direction = inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, 1))).normalized(); light_data.direction[0] = direction.x; light_data.direction[1] = direction.y; light_data.direction[2] = direction.z; light_data.bake_mode = light_storage->light_get_bake_mode(base); float sign = light_storage->light_is_negative(base) ? -1 : 1; light_data.energy = sign * light_storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY); if (is_using_physical_light_units()) { light_data.energy *= light_storage->light_get_param(base, RS::LIGHT_PARAM_INTENSITY); } else { light_data.energy *= Math_PI; } if (p_render_data->camera_attributes.is_valid()) { light_data.energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes); } Color linear_col = light_storage->light_get_color(base).srgb_to_linear(); light_data.color[0] = linear_col.r; light_data.color[1] = linear_col.g; light_data.color[2] = linear_col.b; float size = light_storage->light_get_param(base, RS::LIGHT_PARAM_SIZE); light_data.size = 1.0 - Math::cos(Math::deg_to_rad(size)); //angle to cosine offset light_data.specular = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR); light_data.shadow_opacity = (p_using_shadows && light_storage->light_has_shadow(base)) ? light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_OPACITY) : 0.0; if (has_shadow) { DirectionalShadowData &shadow_data = scene_state.directional_shadows[MAX_DIRECTIONAL_LIGHTS - 1 - r_directional_shadow_count]; RS::LightDirectionalShadowMode shadow_mode = light_storage->light_directional_get_shadow_mode(base); int limit = shadow_mode == RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL ? 0 : (shadow_mode == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS ? 1 : 3); shadow_data.shadow_atlas_pixel_size = 1.0 / light_storage->directional_shadow_get_size(); shadow_data.blend_splits = uint32_t((shadow_mode != RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL) && light_storage->light_directional_get_blend_splits(base)); for (int j = 0; j < 4; j++) { Rect2 atlas_rect = li->shadow_transform[j].atlas_rect; Projection matrix = li->shadow_transform[j].camera; float split = li->shadow_transform[MIN(limit, j)].split; Projection bias; bias.set_light_bias(); Projection rectm; rectm.set_light_atlas_rect(atlas_rect); Transform3D modelview = (inverse_transform * li->shadow_transform[j].transform).inverse(); shadow_data.direction[0] = light_data.direction[0]; shadow_data.direction[1] = light_data.direction[1]; shadow_data.direction[2] = light_data.direction[2]; Projection shadow_mtx = rectm * bias * matrix * modelview; shadow_data.shadow_split_offsets[j] = split; shadow_data.shadow_normal_bias[j] = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * li->shadow_transform[j].shadow_texel_size; GLES3::MaterialStorage::store_camera(shadow_mtx, shadow_data.shadow_matrices[j]); } float fade_start = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_FADE_START); shadow_data.fade_from = -shadow_data.shadow_split_offsets[3] * MIN(fade_start, 0.999); shadow_data.fade_to = -shadow_data.shadow_split_offsets[3]; r_directional_shadow_count++; } r_directional_light_count++; } break; case RS::LIGHT_OMNI: { if (r_omni_light_count >= (uint32_t)config->max_renderable_lights) { continue; } const real_t distance = p_render_data->cam_transform.origin.distance_to(li->transform.origin); if (light_storage->light_is_distance_fade_enabled(li->light)) { const float fade_begin = light_storage->light_get_distance_fade_begin(li->light); const float fade_length = light_storage->light_get_distance_fade_length(li->light); if (distance > fade_begin) { if (distance > fade_begin + fade_length) { // Out of range, don't draw this light to improve performance. continue; } } } scene_state.omni_light_sort[r_omni_light_count].instance = li; scene_state.omni_light_sort[r_omni_light_count].depth = distance; r_omni_light_count++; } break; case RS::LIGHT_SPOT: { if (r_spot_light_count >= (uint32_t)config->max_renderable_lights) { continue; } const real_t distance = p_render_data->cam_transform.origin.distance_to(li->transform.origin); if (light_storage->light_is_distance_fade_enabled(li->light)) { const float fade_begin = light_storage->light_get_distance_fade_begin(li->light); const float fade_length = light_storage->light_get_distance_fade_length(li->light); if (distance > fade_begin) { if (distance > fade_begin + fade_length) { // Out of range, don't draw this light to improve performance. continue; } } } scene_state.spot_light_sort[r_spot_light_count].instance = li; scene_state.spot_light_sort[r_spot_light_count].depth = distance; r_spot_light_count++; } break; } li->last_pass = RSG::rasterizer->get_frame_number(); } if (r_omni_light_count) { SortArray> sorter; sorter.sort(scene_state.omni_light_sort, r_omni_light_count); } if (r_spot_light_count) { SortArray> sorter; sorter.sort(scene_state.spot_light_sort, r_spot_light_count); } int num_positional_shadows = 0; for (uint32_t i = 0; i < (r_omni_light_count + r_spot_light_count); i++) { uint32_t index = (i < r_omni_light_count) ? i : i - (r_omni_light_count); LightData &light_data = (i < r_omni_light_count) ? scene_state.omni_lights[index] : scene_state.spot_lights[index]; RS::LightType type = (i < r_omni_light_count) ? RS::LIGHT_OMNI : RS::LIGHT_SPOT; GLES3::LightInstance *li = (i < r_omni_light_count) ? scene_state.omni_light_sort[index].instance : scene_state.spot_light_sort[index].instance; real_t distance = (i < r_omni_light_count) ? scene_state.omni_light_sort[index].depth : scene_state.spot_light_sort[index].depth; RID base = li->light; li->gl_id = index; Transform3D light_transform = li->transform; Vector3 pos = inverse_transform.xform(light_transform.origin); light_data.position[0] = pos.x; light_data.position[1] = pos.y; light_data.position[2] = pos.z; light_data.bake_mode = light_storage->light_get_bake_mode(base); float radius = MAX(0.001, light_storage->light_get_param(base, RS::LIGHT_PARAM_RANGE)); light_data.inv_radius = 1.0 / radius; Vector3 direction = inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, -1))).normalized(); light_data.direction[0] = direction.x; light_data.direction[1] = direction.y; light_data.direction[2] = direction.z; float size = light_storage->light_get_param(base, RS::LIGHT_PARAM_SIZE); light_data.size = size; float sign = light_storage->light_is_negative(base) ? -1 : 1; Color linear_col = light_storage->light_get_color(base).srgb_to_linear(); // Reuse fade begin, fade length and distance for shadow LOD determination later. float fade_begin = 0.0; float fade_shadow = 0.0; float fade_length = 0.0; float fade = 1.0; float shadow_opacity_fade = 1.0; if (light_storage->light_is_distance_fade_enabled(base)) { fade_begin = light_storage->light_get_distance_fade_begin(base); fade_shadow = light_storage->light_get_distance_fade_shadow(base); fade_length = light_storage->light_get_distance_fade_length(base); if (distance > fade_begin) { // Use `smoothstep()` to make opacity changes more gradual and less noticeable to the player. fade = Math::smoothstep(0.0f, 1.0f, 1.0f - float(distance - fade_begin) / fade_length); } if (distance > fade_shadow) { shadow_opacity_fade = Math::smoothstep(0.0f, 1.0f, 1.0f - float(distance - fade_shadow) / fade_length); } } float energy = sign * light_storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * fade; if (is_using_physical_light_units()) { energy *= light_storage->light_get_param(base, RS::LIGHT_PARAM_INTENSITY); // Convert from Luminous Power to Luminous Intensity if (type == RS::LIGHT_OMNI) { energy *= 1.0 / (Math_PI * 4.0); } else { // Spot Lights are not physically accurate, Luminous Intensity should change in relation to the cone angle. // We make this assumption to keep them easy to control. energy *= 1.0 / Math_PI; } } else { energy *= Math_PI; } if (p_render_data->camera_attributes.is_valid()) { energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes); } light_data.color[0] = linear_col.r * energy; light_data.color[1] = linear_col.g * energy; light_data.color[2] = linear_col.b * energy; light_data.attenuation = light_storage->light_get_param(base, RS::LIGHT_PARAM_ATTENUATION); light_data.inv_spot_attenuation = 1.0f / light_storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ATTENUATION); float spot_angle = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ANGLE); light_data.cos_spot_angle = Math::cos(Math::deg_to_rad(spot_angle)); light_data.specular_amount = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR) * 2.0; // Setup shadows const bool needs_shadow = p_using_shadows && light_storage->owns_shadow_atlas(p_render_data->shadow_atlas) && light_storage->shadow_atlas_owns_light_instance(p_render_data->shadow_atlas, li->self) && light_storage->light_has_shadow(base); bool in_shadow_range = true; if (needs_shadow && light_storage->light_is_distance_fade_enabled(base)) { if (distance > fade_shadow + fade_length) { // Out of range, don't draw shadows to improve performance. in_shadow_range = false; } } // Fill in the shadow information. if (needs_shadow && in_shadow_range) { if (num_positional_shadows >= config->max_renderable_lights) { continue; } ShadowData &shadow_data = scene_state.positional_shadows[num_positional_shadows]; li->shadow_id = num_positional_shadows; num_positional_shadows++; light_data.shadow_opacity = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_OPACITY) * shadow_opacity_fade; float shadow_texel_size = light_storage->light_instance_get_shadow_texel_size(li->self, p_render_data->shadow_atlas); shadow_data.shadow_atlas_pixel_size = shadow_texel_size; shadow_data.shadow_normal_bias = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * shadow_texel_size * 10.0; shadow_data.light_position[0] = light_data.position[0]; shadow_data.light_position[1] = light_data.position[1]; shadow_data.light_position[2] = light_data.position[2]; if (type == RS::LIGHT_OMNI) { Transform3D proj = (inverse_transform * light_transform).inverse(); GLES3::MaterialStorage::store_transform(proj, shadow_data.shadow_matrix); } else if (type == RS::LIGHT_SPOT) { Transform3D modelview = (inverse_transform * light_transform).inverse(); Projection bias; bias.set_light_bias(); Projection cm = li->shadow_transform[0].camera; Projection shadow_mtx = bias * cm * modelview; GLES3::MaterialStorage::store_camera(shadow_mtx, shadow_data.shadow_matrix); } } } // TODO, to avoid stalls, should rotate between 3 buffers based on frame index. // TODO, consider mapping the buffer as in 2D glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_OMNILIGHT_UNIFORM_LOCATION, scene_state.omni_light_buffer); if (r_omni_light_count) { glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(LightData) * r_omni_light_count, scene_state.omni_lights); } glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_SPOTLIGHT_UNIFORM_LOCATION, scene_state.spot_light_buffer); if (r_spot_light_count) { glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(LightData) * r_spot_light_count, scene_state.spot_lights); } glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_DIRECTIONAL_LIGHT_UNIFORM_LOCATION, scene_state.directional_light_buffer); if (r_directional_light_count) { glBufferData(GL_UNIFORM_BUFFER, sizeof(DirectionalLightData) * MAX_DIRECTIONAL_LIGHTS, scene_state.directional_lights, GL_STREAM_DRAW); } glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_POSITIONAL_SHADOW_UNIFORM_LOCATION, scene_state.positional_shadow_buffer); if (num_positional_shadows) { glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(ShadowData) * num_positional_shadows, scene_state.positional_shadows); } glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_DIRECTIONAL_SHADOW_UNIFORM_LOCATION, scene_state.directional_shadow_buffer); if (r_directional_shadow_count) { glBufferData(GL_UNIFORM_BUFFER, sizeof(DirectionalShadowData) * MAX_DIRECTIONAL_LIGHTS, scene_state.directional_shadows, GL_STREAM_DRAW); } glBindBuffer(GL_UNIFORM_BUFFER, 0); } // Render shadows void RasterizerSceneGLES3::_render_shadows(const RenderDataGLES3 *p_render_data, const Size2i &p_viewport_size) { GLES3::LightStorage *light_storage = GLES3::LightStorage::get_singleton(); LocalVector cube_shadows; LocalVector shadows; LocalVector directional_shadows; Plane camera_plane(-p_render_data->cam_transform.basis.get_column(Vector3::AXIS_Z), p_render_data->cam_transform.origin); float lod_distance_multiplier = p_render_data->cam_projection.get_lod_multiplier(); // Put lights into buckets for omni (cube shadows), directional, and spot. { for (int i = 0; i < p_render_data->render_shadow_count; i++) { RID li = p_render_data->render_shadows[i].light; RID base = light_storage->light_instance_get_base_light(li); if (light_storage->light_get_type(base) == RS::LIGHT_DIRECTIONAL) { directional_shadows.push_back(i); } else if (light_storage->light_get_type(base) == RS::LIGHT_OMNI && light_storage->light_omni_get_shadow_mode(base) == RS::LIGHT_OMNI_SHADOW_CUBE) { cube_shadows.push_back(i); } else { shadows.push_back(i); } } if (directional_shadows.size()) { light_storage->update_directional_shadow_atlas(); } } bool render_shadows = directional_shadows.size() || shadows.size() || cube_shadows.size(); if (render_shadows) { RENDER_TIMESTAMP("Render Shadows"); // Render cubemap shadows. for (const int &index : cube_shadows) { _render_shadow_pass(p_render_data->render_shadows[index].light, p_render_data->shadow_atlas, p_render_data->render_shadows[index].pass, p_render_data->render_shadows[index].instances, camera_plane, lod_distance_multiplier, p_render_data->screen_mesh_lod_threshold, p_render_data->render_info, p_viewport_size); } // Render directional shadows. for (uint32_t i = 0; i < directional_shadows.size(); i++) { _render_shadow_pass(p_render_data->render_shadows[directional_shadows[i]].light, p_render_data->shadow_atlas, p_render_data->render_shadows[directional_shadows[i]].pass, p_render_data->render_shadows[directional_shadows[i]].instances, camera_plane, lod_distance_multiplier, p_render_data->screen_mesh_lod_threshold, p_render_data->render_info, p_viewport_size); } // Render positional shadows (Spotlight and Omnilight with dual-paraboloid). for (uint32_t i = 0; i < shadows.size(); i++) { _render_shadow_pass(p_render_data->render_shadows[shadows[i]].light, p_render_data->shadow_atlas, p_render_data->render_shadows[shadows[i]].pass, p_render_data->render_shadows[shadows[i]].instances, camera_plane, lod_distance_multiplier, p_render_data->screen_mesh_lod_threshold, p_render_data->render_info, p_viewport_size); } } } void RasterizerSceneGLES3::_render_shadow_pass(RID p_light, RID p_shadow_atlas, int p_pass, const PagedArray &p_instances, const Plane &p_camera_plane, float p_lod_distance_multiplier, float p_screen_mesh_lod_threshold, RenderingMethod::RenderInfo *p_render_info, const Size2i &p_viewport_size) { GLES3::LightStorage *light_storage = GLES3::LightStorage::get_singleton(); ERR_FAIL_COND(!light_storage->owns_light_instance(p_light)); RID base = light_storage->light_instance_get_base_light(p_light); float zfar = 0.0; bool use_pancake = false; float shadow_bias = 0.0; bool reverse_cull = false; bool needs_clear = false; Projection light_projection; Transform3D light_transform; GLuint shadow_fb = 0; Rect2i atlas_rect; if (light_storage->light_get_type(base) == RS::LIGHT_DIRECTIONAL) { // Set pssm stuff. uint64_t last_scene_shadow_pass = light_storage->light_instance_get_shadow_pass(p_light); if (last_scene_shadow_pass != get_scene_pass()) { light_storage->light_instance_set_directional_rect(p_light, light_storage->get_directional_shadow_rect()); light_storage->directional_shadow_increase_current_light(); light_storage->light_instance_set_shadow_pass(p_light, get_scene_pass()); } atlas_rect = light_storage->light_instance_get_directional_rect(p_light); if (light_storage->light_directional_get_shadow_mode(base) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) { atlas_rect.size.width /= 2; atlas_rect.size.height /= 2; if (p_pass == 1) { atlas_rect.position.x += atlas_rect.size.width; } else if (p_pass == 2) { atlas_rect.position.y += atlas_rect.size.height; } else if (p_pass == 3) { atlas_rect.position += atlas_rect.size; } } else if (light_storage->light_directional_get_shadow_mode(base) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) { atlas_rect.size.height /= 2; if (p_pass == 0) { } else { atlas_rect.position.y += atlas_rect.size.height; } } use_pancake = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE) > 0; light_projection = light_storage->light_instance_get_shadow_camera(p_light, p_pass); light_transform = light_storage->light_instance_get_shadow_transform(p_light, p_pass); float directional_shadow_size = light_storage->directional_shadow_get_size(); Rect2 atlas_rect_norm = atlas_rect; atlas_rect_norm.position /= directional_shadow_size; atlas_rect_norm.size /= directional_shadow_size; light_storage->light_instance_set_directional_shadow_atlas_rect(p_light, p_pass, atlas_rect_norm); zfar = RSG::light_storage->light_get_param(base, RS::LIGHT_PARAM_RANGE); shadow_fb = light_storage->direction_shadow_get_fb(); reverse_cull = !light_storage->light_get_reverse_cull_face_mode(base); float bias_scale = light_storage->light_instance_get_shadow_bias_scale(p_light, p_pass); shadow_bias = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) / 100.0 * bias_scale; } else { // Set from shadow atlas. ERR_FAIL_COND(!light_storage->owns_shadow_atlas(p_shadow_atlas)); ERR_FAIL_COND(!light_storage->shadow_atlas_owns_light_instance(p_shadow_atlas, p_light)); uint32_t key = light_storage->shadow_atlas_get_light_instance_key(p_shadow_atlas, p_light); uint32_t quadrant = (key >> GLES3::LightStorage::QUADRANT_SHIFT) & 0x3; uint32_t shadow = key & GLES3::LightStorage::SHADOW_INDEX_MASK; ERR_FAIL_INDEX((int)shadow, light_storage->shadow_atlas_get_quadrant_shadows_length(p_shadow_atlas, quadrant)); int shadow_size = light_storage->shadow_atlas_get_quadrant_shadow_size(p_shadow_atlas, quadrant); shadow_fb = light_storage->shadow_atlas_get_quadrant_shadow_fb(p_shadow_atlas, quadrant, shadow); zfar = light_storage->light_get_param(base, RS::LIGHT_PARAM_RANGE); reverse_cull = !light_storage->light_get_reverse_cull_face_mode(base); if (light_storage->light_get_type(base) == RS::LIGHT_OMNI) { if (light_storage->light_omni_get_shadow_mode(base) == RS::LIGHT_OMNI_SHADOW_CUBE) { GLuint shadow_texture = light_storage->shadow_atlas_get_quadrant_shadow_texture(p_shadow_atlas, quadrant, shadow); glBindFramebuffer(GL_FRAMEBUFFER, shadow_fb); static GLenum cube_map_faces[6] = { GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X, // Flipped order for Y to match what the RD renderer expects // (and thus what is given to us by the Rendering Server). GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Z, GL_TEXTURE_CUBE_MAP_NEGATIVE_Z }; glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, cube_map_faces[p_pass], shadow_texture, 0); light_projection = light_storage->light_instance_get_shadow_camera(p_light, p_pass); light_transform = light_storage->light_instance_get_shadow_transform(p_light, p_pass); shadow_size = shadow_size / 2; } else { ERR_FAIL_MSG("Dual paraboloid shadow mode not supported in GL Compatibility renderer. Please use Cubemap shadow mode instead."); } shadow_bias = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS); } else if (light_storage->light_get_type(base) == RS::LIGHT_SPOT) { light_projection = light_storage->light_instance_get_shadow_camera(p_light, 0); light_transform = light_storage->light_instance_get_shadow_transform(p_light, 0); shadow_bias = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) / 10.0; // Prebake range into bias so we can scale based on distance easily. shadow_bias *= light_storage->light_get_param(base, RS::LIGHT_PARAM_RANGE); } atlas_rect.size.x = shadow_size; atlas_rect.size.y = shadow_size; needs_clear = true; } RenderDataGLES3 render_data; render_data.cam_projection = light_projection; render_data.cam_transform = light_transform; render_data.inv_cam_transform = light_transform.affine_inverse(); render_data.z_far = zfar; // Only used by OmniLights. render_data.z_near = 0.0; render_data.lod_distance_multiplier = p_lod_distance_multiplier; render_data.instances = &p_instances; render_data.render_info = p_render_info; _setup_environment(&render_data, true, p_viewport_size, false, Color(), use_pancake, shadow_bias); if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_DISABLE_LOD) { render_data.screen_mesh_lod_threshold = 0.0; } else { render_data.screen_mesh_lod_threshold = p_screen_mesh_lod_threshold; } _fill_render_list(RENDER_LIST_SECONDARY, &render_data, PASS_MODE_SHADOW); render_list[RENDER_LIST_SECONDARY].sort_by_key(); glBindFramebuffer(GL_FRAMEBUFFER, shadow_fb); glViewport(atlas_rect.position.x, atlas_rect.position.y, atlas_rect.size.x, atlas_rect.size.y); GLuint global_buffer = GLES3::MaterialStorage::get_singleton()->global_shader_parameters_get_uniform_buffer(); glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_GLOBALS_UNIFORM_LOCATION, global_buffer); glBindBuffer(GL_UNIFORM_BUFFER, 0); glDisable(GL_BLEND); glDepthMask(GL_TRUE); glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LESS); glDisable(GL_SCISSOR_TEST); glCullFace(GL_BACK); glEnable(GL_CULL_FACE); scene_state.cull_mode = GLES3::SceneShaderData::CULL_BACK; glColorMask(0, 0, 0, 0); RasterizerGLES3::clear_depth(1.0); if (needs_clear) { glClear(GL_DEPTH_BUFFER_BIT); } uint64_t spec_constant_base_flags = SceneShaderGLES3::DISABLE_LIGHTMAP | SceneShaderGLES3::DISABLE_LIGHT_DIRECTIONAL | SceneShaderGLES3::DISABLE_LIGHT_OMNI | SceneShaderGLES3::DISABLE_LIGHT_SPOT | SceneShaderGLES3::DISABLE_FOG | SceneShaderGLES3::RENDER_SHADOWS; if (light_storage->light_get_type(base) == RS::LIGHT_OMNI) { spec_constant_base_flags |= SceneShaderGLES3::RENDER_SHADOWS_LINEAR; } RenderListParameters render_list_params(render_list[RENDER_LIST_SECONDARY].elements.ptr(), render_list[RENDER_LIST_SECONDARY].elements.size(), reverse_cull, spec_constant_base_flags, false); _render_list_template(&render_list_params, &render_data, 0, render_list[RENDER_LIST_SECONDARY].elements.size()); glColorMask(1, 1, 1, 1); glDisable(GL_DEPTH_TEST); glDepthMask(GL_FALSE); glDisable(GL_CULL_FACE); scene_state.cull_mode = GLES3::SceneShaderData::CULL_DISABLED; glBindFramebuffer(GL_FRAMEBUFFER, 0); } void RasterizerSceneGLES3::render_scene(const Ref &p_render_buffers, const CameraData *p_camera_data, const CameraData *p_prev_camera_data, const PagedArray &p_instances, const PagedArray &p_lights, const PagedArray &p_reflection_probes, const PagedArray &p_voxel_gi_instances, const PagedArray &p_decals, const PagedArray &p_lightmaps, const PagedArray &p_fog_volumes, RID p_environment, RID p_camera_attributes, RID p_shadow_atlas, RID p_occluder_debug_tex, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass, float p_screen_mesh_lod_threshold, const RenderShadowData *p_render_shadows, int p_render_shadow_count, const RenderSDFGIData *p_render_sdfgi_regions, int p_render_sdfgi_region_count, const RenderSDFGIUpdateData *p_sdfgi_update_data, RenderingMethod::RenderInfo *r_render_info) { GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); GLES3::Config *config = GLES3::Config::get_singleton(); RENDER_TIMESTAMP("Setup 3D Scene"); Ref rb; if (p_render_buffers.is_valid()) { rb = p_render_buffers; ERR_FAIL_COND(rb.is_null()); } GLES3::RenderTarget *rt = texture_storage->get_render_target(rb->render_target); ERR_FAIL_NULL(rt); // Assign render data // Use the format from rendererRD RenderDataGLES3 render_data; { render_data.render_buffers = rb; render_data.transparent_bg = rb.is_valid() ? rt->is_transparent : false; // Our first camera is used by default render_data.cam_transform = p_camera_data->main_transform; render_data.inv_cam_transform = render_data.cam_transform.affine_inverse(); render_data.cam_projection = p_camera_data->main_projection; render_data.cam_orthogonal = p_camera_data->is_orthogonal; render_data.camera_visible_layers = p_camera_data->visible_layers; render_data.view_count = p_camera_data->view_count; for (uint32_t v = 0; v < p_camera_data->view_count; v++) { render_data.view_eye_offset[v] = p_camera_data->view_offset[v].origin; render_data.view_projection[v] = p_camera_data->view_projection[v]; } render_data.z_near = p_camera_data->main_projection.get_z_near(); render_data.z_far = p_camera_data->main_projection.get_z_far(); render_data.instances = &p_instances; render_data.lights = &p_lights; render_data.reflection_probes = &p_reflection_probes; render_data.environment = p_environment; render_data.camera_attributes = p_camera_attributes; render_data.shadow_atlas = p_shadow_atlas; render_data.reflection_probe = p_reflection_probe; render_data.reflection_probe_pass = p_reflection_probe_pass; // this should be the same for all cameras.. render_data.lod_distance_multiplier = p_camera_data->main_projection.get_lod_multiplier(); if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_DISABLE_LOD) { render_data.screen_mesh_lod_threshold = 0.0; } else { render_data.screen_mesh_lod_threshold = p_screen_mesh_lod_threshold; } render_data.render_info = r_render_info; render_data.render_shadows = p_render_shadows; render_data.render_shadow_count = p_render_shadow_count; } PagedArray empty; if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_UNSHADED) { render_data.lights = ∅ render_data.reflection_probes = ∅ } bool reverse_cull = render_data.cam_transform.basis.determinant() < 0; /////////// // Fill Light lists here ////////// GLuint global_buffer = GLES3::MaterialStorage::get_singleton()->global_shader_parameters_get_uniform_buffer(); glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_GLOBALS_UNIFORM_LOCATION, global_buffer); Color clear_color; if (p_render_buffers.is_valid()) { clear_color = texture_storage->render_target_get_clear_request_color(rb->render_target); } else { clear_color = texture_storage->get_default_clear_color(); } bool fb_cleared = false; Size2i screen_size = rb->internal_size; bool use_wireframe = get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_WIREFRAME; SceneState::TonemapUBO tonemap_ubo; if (render_data.environment.is_valid()) { tonemap_ubo.exposure = environment_get_exposure(render_data.environment); tonemap_ubo.white = environment_get_white(render_data.environment); tonemap_ubo.tonemapper = int32_t(environment_get_tone_mapper(render_data.environment)); } if (scene_state.tonemap_buffer == 0) { // Only create if using 3D glGenBuffers(1, &scene_state.tonemap_buffer); glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_TONEMAP_UNIFORM_LOCATION, scene_state.tonemap_buffer); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, scene_state.tonemap_buffer, sizeof(SceneState::TonemapUBO), &tonemap_ubo, GL_STREAM_DRAW, "Tonemap UBO"); } else { glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_TONEMAP_UNIFORM_LOCATION, scene_state.tonemap_buffer); glBufferData(GL_UNIFORM_BUFFER, sizeof(SceneState::TonemapUBO), &tonemap_ubo, GL_STREAM_DRAW); } glBindBuffer(GL_UNIFORM_BUFFER, 0); scene_state.ubo.emissive_exposure_normalization = -1.0; // Use default exposure normalization. bool flip_y = !render_data.reflection_probe.is_valid(); if (rt->overridden.color.is_valid()) { // If we've overridden the render target's color texture, then don't render upside down. // We're probably rendering directly to an XR device. flip_y = false; } if (!flip_y) { // If we're rendering right-side up, then we need to change the winding order. glFrontFace(GL_CW); } _render_shadows(&render_data, screen_size); _setup_lights(&render_data, true, render_data.directional_light_count, render_data.omni_light_count, render_data.spot_light_count, render_data.directional_shadow_count); _setup_environment(&render_data, render_data.reflection_probe.is_valid(), screen_size, flip_y, clear_color, false); _fill_render_list(RENDER_LIST_OPAQUE, &render_data, PASS_MODE_COLOR); render_list[RENDER_LIST_OPAQUE].sort_by_key(); render_list[RENDER_LIST_ALPHA].sort_by_reverse_depth_and_priority(); bool draw_sky = false; bool draw_sky_fog_only = false; bool keep_color = false; float sky_energy_multiplier = 1.0; if (unlikely(get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_OVERDRAW)) { clear_color = Color(0, 0, 0, 1); //in overdraw mode, BG should always be black } else if (render_data.environment.is_valid()) { RS::EnvironmentBG bg_mode = environment_get_background(render_data.environment); float bg_energy_multiplier = environment_get_bg_energy_multiplier(render_data.environment); bg_energy_multiplier *= environment_get_bg_intensity(render_data.environment); if (render_data.camera_attributes.is_valid()) { bg_energy_multiplier *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(render_data.camera_attributes); } switch (bg_mode) { case RS::ENV_BG_CLEAR_COLOR: { clear_color.r *= bg_energy_multiplier; clear_color.g *= bg_energy_multiplier; clear_color.b *= bg_energy_multiplier; if (environment_get_fog_enabled(render_data.environment)) { draw_sky_fog_only = true; GLES3::MaterialStorage::get_singleton()->material_set_param(sky_globals.fog_material, "clear_color", Variant(clear_color)); } } break; case RS::ENV_BG_COLOR: { clear_color = environment_get_bg_color(render_data.environment); clear_color.r *= bg_energy_multiplier; clear_color.g *= bg_energy_multiplier; clear_color.b *= bg_energy_multiplier; if (environment_get_fog_enabled(render_data.environment)) { draw_sky_fog_only = true; GLES3::MaterialStorage::get_singleton()->material_set_param(sky_globals.fog_material, "clear_color", Variant(clear_color)); } } break; case RS::ENV_BG_SKY: { draw_sky = true; } break; case RS::ENV_BG_CANVAS: { keep_color = true; } break; case RS::ENV_BG_KEEP: { keep_color = true; } break; case RS::ENV_BG_CAMERA_FEED: { } break; default: { } } // setup sky if used for ambient, reflections, or background if (draw_sky || draw_sky_fog_only || environment_get_reflection_source(render_data.environment) == RS::ENV_REFLECTION_SOURCE_SKY || environment_get_ambient_source(render_data.environment) == RS::ENV_AMBIENT_SOURCE_SKY) { RENDER_TIMESTAMP("Setup Sky"); Projection projection = render_data.cam_projection; if (render_data.reflection_probe.is_valid()) { Projection correction; correction.columns[1][1] = -1.0; projection = correction * render_data.cam_projection; } sky_energy_multiplier *= bg_energy_multiplier; _setup_sky(&render_data, *render_data.lights, projection, render_data.cam_transform, screen_size); if (environment_get_sky(render_data.environment).is_valid()) { if (environment_get_reflection_source(render_data.environment) == RS::ENV_REFLECTION_SOURCE_SKY || environment_get_ambient_source(render_data.environment) == RS::ENV_AMBIENT_SOURCE_SKY || (environment_get_reflection_source(render_data.environment) == RS::ENV_REFLECTION_SOURCE_BG && environment_get_background(render_data.environment) == RS::ENV_BG_SKY)) { _update_sky_radiance(render_data.environment, projection, render_data.cam_transform, sky_energy_multiplier); } } else { // do not try to draw sky if invalid draw_sky = false; } } } GLuint fbo = rb->get_render_fbo(); glBindFramebuffer(GL_FRAMEBUFFER, fbo); glViewport(0, 0, rb->internal_size.x, rb->internal_size.y); glCullFace(GL_BACK); glEnable(GL_CULL_FACE); scene_state.cull_mode = GLES3::SceneShaderData::CULL_BACK; // Do depth prepass if it's explicitly enabled bool use_depth_prepass = config->use_depth_prepass; // Don't do depth prepass we are rendering overdraw use_depth_prepass = use_depth_prepass && get_debug_draw_mode() != RS::VIEWPORT_DEBUG_DRAW_OVERDRAW; if (use_depth_prepass) { RENDER_TIMESTAMP("Depth Prepass"); //pre z pass glDisable(GL_BLEND); glDepthMask(GL_TRUE); glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LEQUAL); glDisable(GL_SCISSOR_TEST); glColorMask(0, 0, 0, 0); RasterizerGLES3::clear_depth(1.0); glClear(GL_DEPTH_BUFFER_BIT); uint64_t spec_constant = SceneShaderGLES3::DISABLE_FOG | SceneShaderGLES3::DISABLE_LIGHT_DIRECTIONAL | SceneShaderGLES3::DISABLE_LIGHTMAP | SceneShaderGLES3::DISABLE_LIGHT_OMNI | SceneShaderGLES3::DISABLE_LIGHT_SPOT; RenderListParameters render_list_params(render_list[RENDER_LIST_OPAQUE].elements.ptr(), render_list[RENDER_LIST_OPAQUE].elements.size(), reverse_cull, spec_constant, use_wireframe); _render_list_template(&render_list_params, &render_data, 0, render_list[RENDER_LIST_OPAQUE].elements.size()); glColorMask(1, 1, 1, 1); fb_cleared = true; scene_state.used_depth_prepass = true; } else { scene_state.used_depth_prepass = false; } glBlendEquation(GL_FUNC_ADD); if (render_data.transparent_bg) { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); glEnable(GL_BLEND); } else { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE); glDisable(GL_BLEND); } scene_state.current_blend_mode = GLES3::SceneShaderData::BLEND_MODE_MIX; glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LEQUAL); glDepthMask(GL_TRUE); scene_state.current_depth_test = GLES3::SceneShaderData::DEPTH_TEST_ENABLED; scene_state.current_depth_draw = GLES3::SceneShaderData::DEPTH_DRAW_ALWAYS; if (!fb_cleared) { RasterizerGLES3::clear_depth(1.0); glClear(GL_DEPTH_BUFFER_BIT); } if (!keep_color) { clear_color.a = render_data.transparent_bg ? 0.0f : 1.0f; glClearBufferfv(GL_COLOR, 0, clear_color.components); } RENDER_TIMESTAMP("Render Opaque Pass"); uint64_t spec_constant_base_flags = 0; { // Specialization Constants that apply for entire rendering pass. if (render_data.directional_light_count == 0) { spec_constant_base_flags |= SceneShaderGLES3::DISABLE_LIGHT_DIRECTIONAL; } if (render_data.environment.is_null() || (render_data.environment.is_valid() && !environment_get_fog_enabled(render_data.environment))) { spec_constant_base_flags |= SceneShaderGLES3::DISABLE_FOG; } } // Render Opaque Objects. RenderListParameters render_list_params(render_list[RENDER_LIST_OPAQUE].elements.ptr(), render_list[RENDER_LIST_OPAQUE].elements.size(), reverse_cull, spec_constant_base_flags, use_wireframe); _render_list_template(&render_list_params, &render_data, 0, render_list[RENDER_LIST_OPAQUE].elements.size()); glDepthMask(GL_FALSE); scene_state.current_depth_draw = GLES3::SceneShaderData::DEPTH_DRAW_DISABLED; if (draw_sky) { RENDER_TIMESTAMP("Render Sky"); glEnable(GL_DEPTH_TEST); glDisable(GL_BLEND); glEnable(GL_CULL_FACE); glCullFace(GL_BACK); scene_state.current_depth_test = GLES3::SceneShaderData::DEPTH_TEST_ENABLED; scene_state.cull_mode = GLES3::SceneShaderData::CULL_BACK; _draw_sky(render_data.environment, render_data.cam_projection, render_data.cam_transform, sky_energy_multiplier, p_camera_data->view_count > 1, flip_y); } if (scene_state.used_screen_texture || scene_state.used_depth_texture) { Size2i size; GLuint backbuffer_fbo = 0; GLuint backbuffer = 0; GLuint backbuffer_depth = 0; if (rb->get_scaling_3d_mode() == RS::VIEWPORT_SCALING_3D_MODE_OFF) { texture_storage->check_backbuffer(rt, scene_state.used_screen_texture, scene_state.used_depth_texture); // note, badly names, this just allocates! size = rt->size; backbuffer_fbo = rt->backbuffer_fbo; backbuffer = rt->backbuffer; backbuffer_depth = rt->backbuffer_depth; } else { rb->check_backbuffer(scene_state.used_screen_texture, scene_state.used_depth_texture); size = rb->get_internal_size(); backbuffer_fbo = rb->get_backbuffer_fbo(); backbuffer = rb->get_backbuffer(); backbuffer_depth = rb->get_backbuffer_depth(); } if (backbuffer_fbo != 0) { glBindFramebuffer(GL_READ_FRAMEBUFFER, fbo); glReadBuffer(GL_COLOR_ATTACHMENT0); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, backbuffer_fbo); if (scene_state.used_screen_texture) { glBlitFramebuffer(0, 0, size.x, size.y, 0, 0, size.x, size.y, GL_COLOR_BUFFER_BIT, GL_NEAREST); glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 5); glBindTexture(GL_TEXTURE_2D, backbuffer); } if (scene_state.used_depth_texture) { glBlitFramebuffer(0, 0, size.x, size.y, 0, 0, size.x, size.y, GL_DEPTH_BUFFER_BIT, GL_NEAREST); glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 6); glBindTexture(GL_TEXTURE_2D, backbuffer_depth); } } // Bound framebuffer may have changed, so change it back glBindFramebuffer(GL_FRAMEBUFFER, fbo); } RENDER_TIMESTAMP("Render 3D Transparent Pass"); glEnable(GL_BLEND); //Render transparent pass RenderListParameters render_list_params_alpha(render_list[RENDER_LIST_ALPHA].elements.ptr(), render_list[RENDER_LIST_ALPHA].elements.size(), reverse_cull, spec_constant_base_flags, use_wireframe); _render_list_template(&render_list_params_alpha, &render_data, 0, render_list[RENDER_LIST_ALPHA].elements.size(), true); if (!flip_y) { // Restore the default winding order. glFrontFace(GL_CCW); } if (rb.is_valid()) { _render_buffers_debug_draw(rb, p_shadow_atlas, fbo); } glDisable(GL_BLEND); _render_post_processing(&render_data); texture_storage->render_target_disable_clear_request(rb->render_target); glActiveTexture(GL_TEXTURE0); } void RasterizerSceneGLES3::_render_post_processing(const RenderDataGLES3 *p_render_data) { GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); Ref rb = p_render_data->render_buffers; ERR_FAIL_COND(rb.is_null()); RID render_target = rb->get_render_target(); Size2i internal_size = rb->get_internal_size(); Size2i target_size = rb->get_target_size(); uint32_t view_count = rb->get_view_count(); // bool msaa2d_needs_resolve = texture_storage->render_target_get_msaa(render_target) != RS::VIEWPORT_MSAA_DISABLED && !GLES3::Config::get_singleton()->rt_msaa_supported; bool msaa3d_needs_resolve = rb->get_msaa_needs_resolve(); GLuint fbo_msaa_3d = rb->get_msaa3d_fbo(); GLuint fbo_int = rb->get_internal_fbo(); GLuint fbo_rt = texture_storage->render_target_get_fbo(render_target); // TODO if MSAA 2D is enabled and we're not using rt_msaa, get 2D render target here. if (view_count == 1) { // Resolve if needed. if (fbo_msaa_3d != 0 && msaa3d_needs_resolve) { // We can use blit to copy things over glBindFramebuffer(GL_READ_FRAMEBUFFER, fbo_msaa_3d); if (fbo_int != 0) { // We can't combine resolve and scaling, so resolve into our internal buffer glBindFramebuffer(GL_DRAW_FRAMEBUFFER, fbo_int); } else { glBindFramebuffer(GL_DRAW_FRAMEBUFFER, fbo_rt); } glBlitFramebuffer(0, 0, internal_size.x, internal_size.y, 0, 0, internal_size.x, internal_size.y, GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT, GL_NEAREST); } if (fbo_int != 0) { // TODO If we have glow or other post processing, we upscale only depth here, post processing will also do scaling. glBindFramebuffer(GL_READ_FRAMEBUFFER, fbo_int); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, fbo_rt); glBlitFramebuffer(0, 0, internal_size.x, internal_size.y, 0, 0, target_size.x, target_size.y, GL_COLOR_BUFFER_BIT, GL_LINEAR); glBlitFramebuffer(0, 0, internal_size.x, internal_size.y, 0, 0, target_size.x, target_size.y, GL_DEPTH_BUFFER_BIT, GL_NEAREST); } glBindFramebuffer(GL_FRAMEBUFFER, fbo_rt); } else if ((fbo_msaa_3d != 0 && msaa3d_needs_resolve) || (fbo_int != 0)) { // TODO investigate if it's smarter to cache these FBOs GLuint fbos[2]; // read and write glGenFramebuffers(2, fbos); glBindFramebuffer(GL_READ_FRAMEBUFFER, fbos[0]); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, fbos[1]); if (fbo_msaa_3d != 0 && msaa3d_needs_resolve) { GLuint read_color = rb->get_msaa3d_color(); GLuint read_depth = rb->get_msaa3d_depth(); GLuint write_color = 0; GLuint write_depth = 0; if (fbo_int != 0) { write_color = rb->get_internal_color(); write_depth = rb->get_internal_depth(); } else { write_color = texture_storage->render_target_get_color(render_target); write_depth = texture_storage->render_target_get_depth(render_target); } for (uint32_t v = 0; v < view_count; v++) { glFramebufferTextureLayer(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, read_color, 0, v); glFramebufferTextureLayer(GL_READ_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, read_depth, 0, v); glFramebufferTextureLayer(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, write_color, 0, v); glFramebufferTextureLayer(GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, write_depth, 0, v); glBlitFramebuffer(0, 0, internal_size.x, internal_size.y, 0, 0, internal_size.x, internal_size.y, GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT, GL_NEAREST); } } if (fbo_int != 0) { GLuint read_color = rb->get_internal_color(); GLuint read_depth = rb->get_internal_depth(); GLuint write_color = texture_storage->render_target_get_color(render_target); GLuint write_depth = texture_storage->render_target_get_depth(render_target); for (uint32_t v = 0; v < view_count; v++) { glFramebufferTextureLayer(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, read_color, 0, v); glFramebufferTextureLayer(GL_READ_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, read_depth, 0, v); glFramebufferTextureLayer(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, write_color, 0, v); glFramebufferTextureLayer(GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, write_depth, 0, v); glBlitFramebuffer(0, 0, internal_size.x, internal_size.y, 0, 0, target_size.x, target_size.y, GL_COLOR_BUFFER_BIT, GL_LINEAR); glBlitFramebuffer(0, 0, internal_size.x, internal_size.y, 0, 0, target_size.x, target_size.y, GL_DEPTH_BUFFER_BIT, GL_NEAREST); } } glBindFramebuffer(GL_FRAMEBUFFER, fbo_rt); glDeleteFramebuffers(2, fbos); } } template void RasterizerSceneGLES3::_render_list_template(RenderListParameters *p_params, const RenderDataGLES3 *p_render_data, uint32_t p_from_element, uint32_t p_to_element, bool p_alpha_pass) { GLES3::MeshStorage *mesh_storage = GLES3::MeshStorage::get_singleton(); GLES3::ParticlesStorage *particles_storage = GLES3::ParticlesStorage::get_singleton(); GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); GLuint prev_vertex_array_gl = 0; GLuint prev_index_array_gl = 0; GLES3::SceneMaterialData *prev_material_data = nullptr; GLES3::SceneShaderData *prev_shader = nullptr; GeometryInstanceGLES3 *prev_inst = nullptr; SceneShaderGLES3::ShaderVariant prev_variant = SceneShaderGLES3::ShaderVariant::MODE_COLOR; SceneShaderGLES3::ShaderVariant shader_variant = SceneShaderGLES3::MODE_COLOR; // Assigned to silence wrong -Wmaybe-initialized uint64_t prev_spec_constants = 0; // Specializations constants used by all instances in the scene. uint64_t base_spec_constants = p_params->spec_constant_base_flags; if constexpr (p_pass_mode == PASS_MODE_COLOR || p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) { GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); GLES3::Config *config = GLES3::Config::get_singleton(); glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 2); GLuint texture_to_bind = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_CUBEMAP_BLACK))->tex_id; if (p_render_data->environment.is_valid()) { Sky *sky = sky_owner.get_or_null(environment_get_sky(p_render_data->environment)); if (sky && sky->radiance != 0) { texture_to_bind = sky->radiance; base_spec_constants |= SceneShaderGLES3::USE_RADIANCE_MAP; } glBindTexture(GL_TEXTURE_CUBE_MAP, texture_to_bind); } } else if constexpr (p_pass_mode == PASS_MODE_DEPTH || p_pass_mode == PASS_MODE_SHADOW) { shader_variant = SceneShaderGLES3::MODE_DEPTH; } if (p_render_data->view_count > 1) { base_spec_constants |= SceneShaderGLES3::USE_MULTIVIEW; } bool should_request_redraw = false; if constexpr (p_pass_mode != PASS_MODE_DEPTH) { // Don't count elements during depth pre-pass to match the RD renderers. if (p_render_data->render_info) { p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_VISIBLE][RS::VIEWPORT_RENDER_INFO_OBJECTS_IN_FRAME] += p_to_element - p_from_element; } } for (uint32_t i = p_from_element; i < p_to_element; i++) { GeometryInstanceSurface *surf = p_params->elements[i]; GeometryInstanceGLES3 *inst = surf->owner; if (p_pass_mode == PASS_MODE_COLOR && !(surf->flags & GeometryInstanceSurface::FLAG_PASS_OPAQUE)) { continue; // Objects with "Depth-prepass" transparency are included in both render lists, but should only be rendered in the transparent pass } if (inst->instance_count == 0) { continue; } GLES3::SceneShaderData *shader; GLES3::SceneMaterialData *material_data; void *mesh_surface; if constexpr (p_pass_mode == PASS_MODE_SHADOW) { shader = surf->shader_shadow; material_data = surf->material_shadow; mesh_surface = surf->surface_shadow; } else { if (unlikely(get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_OVERDRAW)) { material_data = overdraw_material_data_ptr; shader = material_data->shader_data; } else if (unlikely(get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_LIGHTING)) { material_data = default_material_data_ptr; shader = material_data->shader_data; } else { shader = surf->shader; material_data = surf->material; } mesh_surface = surf->surface; } if (!mesh_surface) { continue; } //request a redraw if one of the shaders uses TIME if (shader->uses_time) { should_request_redraw = true; } if constexpr (p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) { if (scene_state.current_depth_test != shader->depth_test) { if (shader->depth_test == GLES3::SceneShaderData::DEPTH_TEST_DISABLED) { glDisable(GL_DEPTH_TEST); } else { glEnable(GL_DEPTH_TEST); } scene_state.current_depth_test = shader->depth_test; } } if constexpr (p_pass_mode != PASS_MODE_SHADOW) { if (scene_state.current_depth_draw != shader->depth_draw) { switch (shader->depth_draw) { case GLES3::SceneShaderData::DEPTH_DRAW_OPAQUE: { glDepthMask((p_pass_mode == PASS_MODE_COLOR && !GLES3::Config::get_singleton()->use_depth_prepass) || p_pass_mode == PASS_MODE_DEPTH); } break; case GLES3::SceneShaderData::DEPTH_DRAW_ALWAYS: { glDepthMask(GL_TRUE); } break; case GLES3::SceneShaderData::DEPTH_DRAW_DISABLED: { glDepthMask(GL_FALSE); } break; } } scene_state.current_depth_draw = shader->depth_draw; } bool uses_additive_lighting = (inst->light_passes.size() + p_render_data->directional_shadow_count) > 0; uses_additive_lighting = uses_additive_lighting && !shader->unshaded; // TODOS /* * Still a bug when atlas space is limited. Somehow need to evict light when it doesn't have a spot on the atlas, current check isn't enough * Disable depth draw */ for (int32_t pass = 0; pass < MAX(1, int32_t(inst->light_passes.size() + p_render_data->directional_shadow_count)); pass++) { if constexpr (p_pass_mode == PASS_MODE_DEPTH || p_pass_mode == PASS_MODE_SHADOW) { if (pass > 0) { // Don't render shadow passes when doing depth or shadow pass. break; } } if constexpr (p_pass_mode == PASS_MODE_COLOR || p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) { if (!uses_additive_lighting && pass == 1) { // Don't render additive passes if not using additive lighting. break; } if (uses_additive_lighting && pass == 1 && !p_render_data->transparent_bg) { // Enable blending if in opaque pass and not already enabled. glEnable(GL_BLEND); } if (pass < int32_t(inst->light_passes.size())) { RID light_instance_rid = inst->light_passes[pass].light_instance_rid; if (!GLES3::LightStorage::get_singleton()->light_instance_has_shadow_atlas(light_instance_rid, p_render_data->shadow_atlas)) { // Shadow wasn't able to get a spot on the atlas. So skip it. continue; } } else if (pass > 0) { uint32_t shadow_id = MAX_DIRECTIONAL_LIGHTS - 1 - (pass - int32_t(inst->light_passes.size())); if (inst->lightmap_instance.is_valid() && scene_state.directional_lights[shadow_id].bake_mode == RenderingServer::LIGHT_BAKE_STATIC) { // Skip shadows for static lights on meshes with a lightmap. continue; } } } if constexpr (p_pass_mode == PASS_MODE_COLOR || p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) { GLES3::SceneShaderData::BlendMode desired_blend_mode; if (pass > 0) { desired_blend_mode = GLES3::SceneShaderData::BLEND_MODE_ADD; } else { desired_blend_mode = shader->blend_mode; } if (desired_blend_mode != scene_state.current_blend_mode) { switch (desired_blend_mode) { case GLES3::SceneShaderData::BLEND_MODE_MIX: { glBlendEquation(GL_FUNC_ADD); if (p_render_data->transparent_bg) { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); } else { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE); } } break; case GLES3::SceneShaderData::BLEND_MODE_ADD: { glBlendEquation(GL_FUNC_ADD); glBlendFunc(p_pass_mode == PASS_MODE_COLOR_TRANSPARENT ? GL_SRC_ALPHA : GL_ONE, GL_ONE); } break; case GLES3::SceneShaderData::BLEND_MODE_SUB: { glBlendEquation(GL_FUNC_REVERSE_SUBTRACT); glBlendFunc(GL_SRC_ALPHA, GL_ONE); } break; case GLES3::SceneShaderData::BLEND_MODE_MUL: { glBlendEquation(GL_FUNC_ADD); if (p_render_data->transparent_bg) { glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_DST_ALPHA, GL_ZERO); } else { glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_ZERO, GL_ONE); } } break; case GLES3::SceneShaderData::BLEND_MODE_ALPHA_TO_COVERAGE: { // Do nothing for now. } break; } scene_state.current_blend_mode = desired_blend_mode; } } // Find cull variant. GLES3::SceneShaderData::Cull cull_mode = shader->cull_mode; if ((surf->flags & GeometryInstanceSurface::FLAG_USES_DOUBLE_SIDED_SHADOWS)) { cull_mode = GLES3::SceneShaderData::CULL_DISABLED; } else { bool mirror = inst->mirror; if (p_params->reverse_cull) { mirror = !mirror; } if (cull_mode == GLES3::SceneShaderData::CULL_FRONT && mirror) { cull_mode = GLES3::SceneShaderData::CULL_BACK; } else if (cull_mode == GLES3::SceneShaderData::CULL_BACK && mirror) { cull_mode = GLES3::SceneShaderData::CULL_FRONT; } } if (scene_state.cull_mode != cull_mode) { if (cull_mode == GLES3::SceneShaderData::CULL_DISABLED) { glDisable(GL_CULL_FACE); } else { if (scene_state.cull_mode == GLES3::SceneShaderData::CULL_DISABLED) { // Last time was disabled, so enable and set proper face. glEnable(GL_CULL_FACE); } glCullFace(cull_mode == GLES3::SceneShaderData::CULL_FRONT ? GL_FRONT : GL_BACK); } scene_state.cull_mode = cull_mode; } RS::PrimitiveType primitive = surf->primitive; if (shader->uses_point_size) { primitive = RS::PRIMITIVE_POINTS; } static const GLenum prim[5] = { GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_TRIANGLES, GL_TRIANGLE_STRIP }; GLenum primitive_gl = prim[int(primitive)]; GLuint vertex_array_gl = 0; GLuint index_array_gl = 0; uint64_t vertex_input_mask = shader->vertex_input_mask; if (inst->lightmap_instance.is_valid()) { vertex_input_mask |= 1 << RS::ARRAY_TEX_UV2; } // Skeleton and blend shapes. if (surf->owner->mesh_instance.is_valid()) { mesh_storage->mesh_instance_surface_get_vertex_arrays_and_format(surf->owner->mesh_instance, surf->surface_index, vertex_input_mask, vertex_array_gl); } else { mesh_storage->mesh_surface_get_vertex_arrays_and_format(mesh_surface, vertex_input_mask, vertex_array_gl); } index_array_gl = mesh_storage->mesh_surface_get_index_buffer(mesh_surface, surf->lod_index); if (prev_vertex_array_gl != vertex_array_gl) { if (vertex_array_gl != 0) { glBindVertexArray(vertex_array_gl); } prev_vertex_array_gl = vertex_array_gl; // Invalidate the previous index array prev_index_array_gl = 0; } bool use_wireframe = false; if (p_params->force_wireframe) { GLuint wireframe_index_array_gl = mesh_storage->mesh_surface_get_index_buffer_wireframe(mesh_surface); if (wireframe_index_array_gl) { index_array_gl = wireframe_index_array_gl; use_wireframe = true; } } bool use_index_buffer = index_array_gl != 0; if (prev_index_array_gl != index_array_gl) { if (index_array_gl != 0) { // Bind index each time so we can use LODs glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, index_array_gl); } prev_index_array_gl = index_array_gl; } Transform3D world_transform; if (inst->store_transform_cache) { world_transform = inst->transform; } if (prev_material_data != material_data) { material_data->bind_uniforms(); prev_material_data = material_data; } SceneShaderGLES3::ShaderVariant instance_variant = shader_variant; if (inst->instance_count > 0) { // Will need to use instancing to draw (either MultiMesh or Particles). instance_variant = SceneShaderGLES3::ShaderVariant(1 + int(instance_variant)); } uint64_t spec_constants = base_spec_constants; // Set up spec constants for lighting. if constexpr (p_pass_mode == PASS_MODE_COLOR || p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) { // Only check during color passes as light shader code is compiled out during depth-only pass anyway. if (pass == 0) { spec_constants |= SceneShaderGLES3::BASE_PASS; if (inst->omni_light_gl_cache.size() == 0) { spec_constants |= SceneShaderGLES3::DISABLE_LIGHT_OMNI; } if (inst->spot_light_gl_cache.size() == 0) { spec_constants |= SceneShaderGLES3::DISABLE_LIGHT_SPOT; } if (p_render_data->directional_light_count == p_render_data->directional_shadow_count) { spec_constants |= SceneShaderGLES3::DISABLE_LIGHT_DIRECTIONAL; } if (inst->lightmap_instance.is_valid()) { spec_constants |= SceneShaderGLES3::USE_LIGHTMAP; GLES3::LightmapInstance *li = GLES3::LightStorage::get_singleton()->get_lightmap_instance(inst->lightmap_instance); GLES3::Lightmap *lm = GLES3::LightStorage::get_singleton()->get_lightmap(li->lightmap); if (lm->uses_spherical_harmonics) { spec_constants |= SceneShaderGLES3::USE_SH_LIGHTMAP; } } else if (inst->lightmap_sh) { spec_constants |= SceneShaderGLES3::USE_LIGHTMAP_CAPTURE; } else { spec_constants |= SceneShaderGLES3::DISABLE_LIGHTMAP; } } else { // Only base pass uses the radiance map. spec_constants &= ~SceneShaderGLES3::USE_RADIANCE_MAP; spec_constants |= SceneShaderGLES3::DISABLE_LIGHT_OMNI; spec_constants |= SceneShaderGLES3::DISABLE_LIGHT_SPOT; spec_constants |= SceneShaderGLES3::DISABLE_LIGHT_DIRECTIONAL; spec_constants |= SceneShaderGLES3::DISABLE_LIGHTMAP; } if (uses_additive_lighting) { spec_constants |= SceneShaderGLES3::USE_ADDITIVE_LIGHTING; if (pass < int32_t(inst->light_passes.size())) { // Rendering positional lights. if (inst->light_passes[pass].is_omni) { spec_constants |= SceneShaderGLES3::ADDITIVE_OMNI; } else { spec_constants |= SceneShaderGLES3::ADDITIVE_SPOT; } if (scene_state.positional_shadow_quality >= RS::SHADOW_QUALITY_SOFT_HIGH) { spec_constants |= SceneShaderGLES3::SHADOW_MODE_PCF_13; } else if (scene_state.positional_shadow_quality >= RS::SHADOW_QUALITY_SOFT_LOW) { spec_constants |= SceneShaderGLES3::SHADOW_MODE_PCF_5; } } else { // Render directional lights. uint32_t shadow_id = MAX_DIRECTIONAL_LIGHTS - 1 - (pass - int32_t(inst->light_passes.size())); if (pass == 0 && inst->lightmap_instance.is_valid() && scene_state.directional_lights[shadow_id].bake_mode == RenderingServer::LIGHT_BAKE_STATIC) { // Disable additive lighting with a static light and a lightmap. spec_constants &= ~SceneShaderGLES3::USE_ADDITIVE_LIGHTING; } if (scene_state.directional_shadows[shadow_id].shadow_split_offsets[0] == scene_state.directional_shadows[shadow_id].shadow_split_offsets[1]) { // Orthogonal, do nothing. } else if (scene_state.directional_shadows[shadow_id].shadow_split_offsets[1] == scene_state.directional_shadows[shadow_id].shadow_split_offsets[2]) { spec_constants |= SceneShaderGLES3::LIGHT_USE_PSSM2; } else { spec_constants |= SceneShaderGLES3::LIGHT_USE_PSSM4; } if (scene_state.directional_shadows[shadow_id].blend_splits) { spec_constants |= SceneShaderGLES3::LIGHT_USE_PSSM_BLEND; } if (scene_state.directional_shadow_quality >= RS::SHADOW_QUALITY_SOFT_HIGH) { spec_constants |= SceneShaderGLES3::SHADOW_MODE_PCF_13; } else if (scene_state.directional_shadow_quality >= RS::SHADOW_QUALITY_SOFT_LOW) { spec_constants |= SceneShaderGLES3::SHADOW_MODE_PCF_5; } } } } if (prev_shader != shader || prev_variant != instance_variant || spec_constants != prev_spec_constants) { bool success = material_storage->shaders.scene_shader.version_bind_shader(shader->version, instance_variant, spec_constants); if (!success) { break; } float opaque_prepass_threshold = 0.0; if constexpr (p_pass_mode == PASS_MODE_DEPTH) { opaque_prepass_threshold = 0.99; } else if constexpr (p_pass_mode == PASS_MODE_SHADOW) { opaque_prepass_threshold = 0.1; } material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::OPAQUE_PREPASS_THRESHOLD, opaque_prepass_threshold, shader->version, instance_variant, spec_constants); prev_shader = shader; prev_variant = instance_variant; prev_spec_constants = spec_constants; } // Pass in lighting uniforms. if constexpr (p_pass_mode == PASS_MODE_COLOR || p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) { GLES3::Config *config = GLES3::Config::get_singleton(); // Pass light and shadow index and bind shadow texture. if (uses_additive_lighting) { if (pass < int32_t(inst->light_passes.size())) { int32_t shadow_id = inst->light_passes[pass].shadow_id; if (shadow_id >= 0) { uint32_t light_id = inst->light_passes[pass].light_id; bool is_omni = inst->light_passes[pass].is_omni; SceneShaderGLES3::Uniforms uniform_name = is_omni ? SceneShaderGLES3::OMNI_LIGHT_INDEX : SceneShaderGLES3::SPOT_LIGHT_INDEX; material_storage->shaders.scene_shader.version_set_uniform(uniform_name, uint32_t(light_id), shader->version, instance_variant, spec_constants); material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::POSITIONAL_SHADOW_INDEX, uint32_t(shadow_id), shader->version, instance_variant, spec_constants); glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 3); RID light_instance_rid = inst->light_passes[pass].light_instance_rid; GLuint tex = GLES3::LightStorage::get_singleton()->light_instance_get_shadow_texture(light_instance_rid, p_render_data->shadow_atlas); if (is_omni) { glBindTexture(GL_TEXTURE_CUBE_MAP, tex); } else { glBindTexture(GL_TEXTURE_2D, tex); } } } else { uint32_t shadow_id = MAX_DIRECTIONAL_LIGHTS - 1 - (pass - int32_t(inst->light_passes.size())); material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::DIRECTIONAL_SHADOW_INDEX, shadow_id, shader->version, instance_variant, spec_constants); GLuint tex = GLES3::LightStorage::get_singleton()->directional_shadow_get_texture(); glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 3); glBindTexture(GL_TEXTURE_2D, tex); } } // Pass light count and array of light indices for base pass. if ((prev_inst != inst || prev_shader != shader || prev_variant != instance_variant) && pass == 0) { // Rebind the light indices. material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::OMNI_LIGHT_COUNT, inst->omni_light_gl_cache.size(), shader->version, instance_variant, spec_constants); material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::SPOT_LIGHT_COUNT, inst->spot_light_gl_cache.size(), shader->version, instance_variant, spec_constants); if (inst->omni_light_gl_cache.size()) { glUniform1uiv(material_storage->shaders.scene_shader.version_get_uniform(SceneShaderGLES3::OMNI_LIGHT_INDICES, shader->version, instance_variant, spec_constants), inst->omni_light_gl_cache.size(), inst->omni_light_gl_cache.ptr()); } if (inst->spot_light_gl_cache.size()) { glUniform1uiv(material_storage->shaders.scene_shader.version_get_uniform(SceneShaderGLES3::SPOT_LIGHT_INDICES, shader->version, instance_variant, spec_constants), inst->spot_light_gl_cache.size(), inst->spot_light_gl_cache.ptr()); } if (inst->lightmap_instance.is_valid()) { GLES3::LightmapInstance *li = GLES3::LightStorage::get_singleton()->get_lightmap_instance(inst->lightmap_instance); GLES3::Lightmap *lm = GLES3::LightStorage::get_singleton()->get_lightmap(li->lightmap); GLuint tex = GLES3::TextureStorage::get_singleton()->texture_get_texid(lm->light_texture); glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 4); glBindTexture(GL_TEXTURE_2D_ARRAY, tex); material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::LIGHTMAP_SLICE, inst->lightmap_slice_index, shader->version, instance_variant, spec_constants); Vector4 uv_scale(inst->lightmap_uv_scale.position.x, inst->lightmap_uv_scale.position.y, inst->lightmap_uv_scale.size.x, inst->lightmap_uv_scale.size.y); material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::LIGHTMAP_UV_SCALE, uv_scale, shader->version, instance_variant, spec_constants); float exposure_normalization = 1.0; if (p_render_data->camera_attributes.is_valid()) { float enf = RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes); exposure_normalization = enf / lm->baked_exposure; } material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::LIGHTMAP_EXPOSURE_NORMALIZATION, exposure_normalization, shader->version, instance_variant, spec_constants); if (lm->uses_spherical_harmonics) { Basis to_lm = li->transform.basis.inverse() * p_render_data->cam_transform.basis; to_lm = to_lm.inverse().transposed(); GLfloat matrix[9] = { (GLfloat)to_lm.rows[0][0], (GLfloat)to_lm.rows[1][0], (GLfloat)to_lm.rows[2][0], (GLfloat)to_lm.rows[0][1], (GLfloat)to_lm.rows[1][1], (GLfloat)to_lm.rows[2][1], (GLfloat)to_lm.rows[0][2], (GLfloat)to_lm.rows[1][2], (GLfloat)to_lm.rows[2][2], }; glUniformMatrix3fv(material_storage->shaders.scene_shader.version_get_uniform(SceneShaderGLES3::LIGHTMAP_NORMAL_XFORM, shader->version, instance_variant, spec_constants), 1, GL_FALSE, matrix); } } else if (inst->lightmap_sh) { glUniform4fv(material_storage->shaders.scene_shader.version_get_uniform(SceneShaderGLES3::LIGHTMAP_CAPTURES, shader->version, instance_variant, spec_constants), 9, reinterpret_cast(inst->lightmap_sh->sh)); } prev_inst = inst; } } material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::WORLD_TRANSFORM, world_transform, shader->version, instance_variant, spec_constants); { GLES3::Mesh::Surface *s = reinterpret_cast(surf->surface); if (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) { material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::COMPRESSED_AABB_POSITION, s->aabb.position, shader->version, instance_variant, spec_constants); material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::COMPRESSED_AABB_SIZE, s->aabb.size, shader->version, instance_variant, spec_constants); material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::UV_SCALE, s->uv_scale, shader->version, instance_variant, spec_constants); } else { material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::COMPRESSED_AABB_POSITION, Vector3(0.0, 0.0, 0.0), shader->version, instance_variant, spec_constants); material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::COMPRESSED_AABB_SIZE, Vector3(1.0, 1.0, 1.0), shader->version, instance_variant, spec_constants); material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::UV_SCALE, Vector4(0.0, 0.0, 0.0, 0.0), shader->version, instance_variant, spec_constants); } } material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::MODEL_FLAGS, inst->flags_cache, shader->version, instance_variant, spec_constants); // Can be index count or vertex count uint32_t count = 0; if (surf->lod_index > 0) { count = surf->index_count; } else { count = mesh_storage->mesh_surface_get_vertices_drawn_count(mesh_surface); } if (use_wireframe) { // In this case we are using index count, and we need double the indices for the wireframe mesh. count = count * 2; } if constexpr (p_pass_mode != PASS_MODE_DEPTH) { // Don't count draw calls during depth pre-pass to match the RD renderers. if (p_render_data->render_info) { p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_VISIBLE][RS::VIEWPORT_RENDER_INFO_DRAW_CALLS_IN_FRAME]++; } } if (inst->instance_count > 0) { // Using MultiMesh or Particles. // Bind instance buffers. GLuint instance_buffer = 0; uint32_t stride = 0; if (inst->flags_cache & INSTANCE_DATA_FLAG_PARTICLES) { instance_buffer = particles_storage->particles_get_gl_buffer(inst->data->base); stride = 16; // 12 bytes for instance transform and 4 bytes for packed color and custom. } else { instance_buffer = mesh_storage->multimesh_get_gl_buffer(inst->data->base); stride = mesh_storage->multimesh_get_stride(inst->data->base); } if (instance_buffer == 0) { // Instance buffer not initialized yet. Skip rendering for now. break; } glBindBuffer(GL_ARRAY_BUFFER, instance_buffer); glEnableVertexAttribArray(12); glVertexAttribPointer(12, 4, GL_FLOAT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(0)); glVertexAttribDivisor(12, 1); glEnableVertexAttribArray(13); glVertexAttribPointer(13, 4, GL_FLOAT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4)); glVertexAttribDivisor(13, 1); if (!(inst->flags_cache & INSTANCE_DATA_FLAG_MULTIMESH_FORMAT_2D)) { glEnableVertexAttribArray(14); glVertexAttribPointer(14, 4, GL_FLOAT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(sizeof(float) * 8)); glVertexAttribDivisor(14, 1); } if ((inst->flags_cache & INSTANCE_DATA_FLAG_MULTIMESH_HAS_COLOR) || (inst->flags_cache & INSTANCE_DATA_FLAG_MULTIMESH_HAS_CUSTOM_DATA)) { uint32_t color_custom_offset = inst->flags_cache & INSTANCE_DATA_FLAG_MULTIMESH_FORMAT_2D ? 8 : 12; glEnableVertexAttribArray(15); glVertexAttribIPointer(15, 4, GL_UNSIGNED_INT, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(color_custom_offset * sizeof(float))); glVertexAttribDivisor(15, 1); } else { // Set all default instance color and custom data values to 1.0 or 0.0 using a compressed format. uint16_t zero = Math::make_half_float(0.0f); uint16_t one = Math::make_half_float(1.0f); GLuint default_color = (uint32_t(one) << 16) | one; GLuint default_custom = (uint32_t(zero) << 16) | zero; glVertexAttribI4ui(15, default_color, default_color, default_custom, default_custom); } if (use_wireframe) { glDrawElementsInstanced(GL_LINES, count, GL_UNSIGNED_INT, 0, inst->instance_count); } else { if (use_index_buffer) { glDrawElementsInstanced(primitive_gl, count, mesh_storage->mesh_surface_get_index_type(mesh_surface), 0, inst->instance_count); } else { glDrawArraysInstanced(primitive_gl, 0, count, inst->instance_count); } } } else { // Using regular Mesh. if (use_wireframe) { glDrawElements(GL_LINES, count, GL_UNSIGNED_INT, 0); } else { if (use_index_buffer) { glDrawElements(primitive_gl, count, mesh_storage->mesh_surface_get_index_type(mesh_surface), 0); } else { glDrawArrays(primitive_gl, 0, count); } } } if (inst->instance_count > 0) { glDisableVertexAttribArray(12); glDisableVertexAttribArray(13); glDisableVertexAttribArray(14); glDisableVertexAttribArray(15); } } if constexpr (p_pass_mode == PASS_MODE_COLOR) { if (uses_additive_lighting && !p_render_data->transparent_bg) { // Disable additive blending if enabled for additive lights. glDisable(GL_BLEND); } } } // Make the actual redraw request if (should_request_redraw) { RenderingServerDefault::redraw_request(); } } void RasterizerSceneGLES3::render_material(const Transform3D &p_cam_transform, const Projection &p_cam_projection, bool p_cam_orthogonal, const PagedArray &p_instances, RID p_framebuffer, const Rect2i &p_region) { } void RasterizerSceneGLES3::render_particle_collider_heightfield(RID p_collider, const Transform3D &p_transform, const PagedArray &p_instances) { GLES3::ParticlesStorage *particles_storage = GLES3::ParticlesStorage::get_singleton(); ERR_FAIL_COND(!particles_storage->particles_collision_is_heightfield(p_collider)); Vector3 extents = particles_storage->particles_collision_get_extents(p_collider) * p_transform.basis.get_scale(); Projection cm; cm.set_orthogonal(-extents.x, extents.x, -extents.z, extents.z, 0, extents.y * 2.0); Vector3 cam_pos = p_transform.origin; cam_pos.y += extents.y; Transform3D cam_xform; cam_xform.set_look_at(cam_pos, cam_pos - p_transform.basis.get_column(Vector3::AXIS_Y), -p_transform.basis.get_column(Vector3::AXIS_Z).normalized()); GLuint fb = particles_storage->particles_collision_get_heightfield_framebuffer(p_collider); Size2i fb_size = particles_storage->particles_collision_get_heightfield_size(p_collider); RENDER_TIMESTAMP("Setup GPUParticlesCollisionHeightField3D"); RenderDataGLES3 render_data; render_data.cam_projection = cm; render_data.cam_transform = cam_xform; render_data.view_projection[0] = cm; render_data.inv_cam_transform = render_data.cam_transform.affine_inverse(); render_data.cam_orthogonal = true; render_data.z_near = 0.0; render_data.z_far = cm.get_z_far(); render_data.instances = &p_instances; _setup_environment(&render_data, true, Vector2(fb_size), true, Color(), false); PassMode pass_mode = PASS_MODE_SHADOW; _fill_render_list(RENDER_LIST_SECONDARY, &render_data, pass_mode); render_list[RENDER_LIST_SECONDARY].sort_by_key(); RENDER_TIMESTAMP("Render Collider Heightfield"); glBindFramebuffer(GL_FRAMEBUFFER, fb); glViewport(0, 0, fb_size.width, fb_size.height); GLuint global_buffer = GLES3::MaterialStorage::get_singleton()->global_shader_parameters_get_uniform_buffer(); glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_GLOBALS_UNIFORM_LOCATION, global_buffer); glBindBuffer(GL_UNIFORM_BUFFER, 0); glDisable(GL_BLEND); glDepthMask(GL_TRUE); glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LESS); glDisable(GL_SCISSOR_TEST); glCullFace(GL_BACK); glEnable(GL_CULL_FACE); scene_state.cull_mode = GLES3::SceneShaderData::CULL_BACK; glColorMask(0, 0, 0, 0); RasterizerGLES3::clear_depth(1.0); glClear(GL_DEPTH_BUFFER_BIT); RenderListParameters render_list_params(render_list[RENDER_LIST_SECONDARY].elements.ptr(), render_list[RENDER_LIST_SECONDARY].elements.size(), false, 31, false); _render_list_template(&render_list_params, &render_data, 0, render_list[RENDER_LIST_SECONDARY].elements.size()); glColorMask(1, 1, 1, 1); glBindFramebuffer(GL_FRAMEBUFFER, 0); } void RasterizerSceneGLES3::set_time(double p_time, double p_step) { time = p_time; time_step = p_step; } void RasterizerSceneGLES3::set_debug_draw_mode(RS::ViewportDebugDraw p_debug_draw) { debug_draw = p_debug_draw; } Ref RasterizerSceneGLES3::render_buffers_create() { Ref rb; rb.instantiate(); return rb; } void RasterizerSceneGLES3::_render_buffers_debug_draw(Ref p_render_buffers, RID p_shadow_atlas, GLuint p_fbo) { GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); GLES3::LightStorage *light_storage = GLES3::LightStorage::get_singleton(); GLES3::CopyEffects *copy_effects = GLES3::CopyEffects::get_singleton(); ERR_FAIL_COND(p_render_buffers.is_null()); RID render_target = p_render_buffers->render_target; GLES3::RenderTarget *rt = texture_storage->get_render_target(render_target); ERR_FAIL_NULL(rt); if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SHADOW_ATLAS) { if (p_shadow_atlas.is_valid()) { // Get or create debug textures to display shadow maps as an atlas. GLuint shadow_atlas_texture = light_storage->shadow_atlas_get_debug_texture(p_shadow_atlas); GLuint shadow_atlas_fb = light_storage->shadow_atlas_get_debug_fb(p_shadow_atlas); uint32_t shadow_atlas_size = light_storage->shadow_atlas_get_size(p_shadow_atlas); uint32_t quadrant_size = shadow_atlas_size >> 1; glBindFramebuffer(GL_FRAMEBUFFER, shadow_atlas_fb); glViewport(0, 0, shadow_atlas_size, shadow_atlas_size); glActiveTexture(GL_TEXTURE0); glDepthMask(GL_TRUE); glDepthFunc(GL_ALWAYS); glDisable(GL_CULL_FACE); scene_state.cull_mode = GLES3::SceneShaderData::CULL_DISABLED; // Loop through quadrants and copy shadows over. for (int quadrant = 0; quadrant < 4; quadrant++) { uint32_t subdivision = light_storage->shadow_atlas_get_quadrant_subdivision(p_shadow_atlas, quadrant); if (subdivision == 0) { continue; } Rect2i atlas_rect; Rect2 atlas_uv_rect; uint32_t shadow_size = (quadrant_size / subdivision); float size = float(shadow_size) / float(shadow_atlas_size); uint32_t length = light_storage->shadow_atlas_get_quadrant_shadows_allocated(p_shadow_atlas, quadrant); for (uint32_t shadow_idx = 0; shadow_idx < length; shadow_idx++) { bool is_omni = light_storage->shadow_atlas_get_quadrant_shadow_is_omni(p_shadow_atlas, quadrant, shadow_idx); // Calculate shadow's position in the debug atlas. atlas_rect.position.x = (quadrant & 1) * quadrant_size; atlas_rect.position.y = (quadrant >> 1) * quadrant_size; atlas_rect.position.x += (shadow_idx % subdivision) * shadow_size; atlas_rect.position.y += (shadow_idx / subdivision) * shadow_size; atlas_uv_rect.position = Vector2(atlas_rect.position) / float(shadow_atlas_size); atlas_uv_rect.size = Vector2(size, size); GLuint shadow_tex = light_storage->shadow_atlas_get_quadrant_shadow_texture(p_shadow_atlas, quadrant, shadow_idx); // Copy from shadowmap to debug atlas. if (is_omni) { glBindTexture(GL_TEXTURE_CUBE_MAP, shadow_tex); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_COMPARE_MODE, GL_NONE); copy_effects->copy_cube_to_rect(atlas_uv_rect); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_COMPARE_FUNC, GL_LESS); } else { glBindTexture(GL_TEXTURE_2D, shadow_tex); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE); copy_effects->copy_to_rect(atlas_uv_rect); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LESS); } } } // Set back to FBO glBindFramebuffer(GL_FRAMEBUFFER, p_fbo); Size2i size = p_render_buffers->get_internal_size(); glViewport(0, 0, size.width, size.height); glBindTexture(GL_TEXTURE_2D, shadow_atlas_texture); copy_effects->copy_to_rect(Rect2(Vector2(), Vector2(0.5, 0.5))); glBindTexture(GL_TEXTURE_2D, 0); glBindFramebuffer(GL_FRAMEBUFFER, 0); } } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DIRECTIONAL_SHADOW_ATLAS) { if (light_storage->directional_shadow_get_texture() != 0) { GLuint shadow_atlas_texture = light_storage->directional_shadow_get_texture(); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, shadow_atlas_texture); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_R, GL_RED); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_G, GL_RED); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_B, GL_RED); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_A, GL_ONE); glDisable(GL_DEPTH_TEST); glDepthMask(GL_FALSE); copy_effects->copy_to_rect(Rect2(Vector2(), Vector2(0.5, 0.5))); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_R, GL_RED); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_G, GL_GREEN); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_B, GL_BLUE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_A, GL_ALPHA); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LESS); glBindTexture(GL_TEXTURE_2D, 0); } } } void RasterizerSceneGLES3::gi_set_use_half_resolution(bool p_enable) { } void RasterizerSceneGLES3::screen_space_roughness_limiter_set_active(bool p_enable, float p_amount, float p_curve) { } bool RasterizerSceneGLES3::screen_space_roughness_limiter_is_active() const { return false; } void RasterizerSceneGLES3::sub_surface_scattering_set_quality(RS::SubSurfaceScatteringQuality p_quality) { } void RasterizerSceneGLES3::sub_surface_scattering_set_scale(float p_scale, float p_depth_scale) { } TypedArray RasterizerSceneGLES3::bake_render_uv2(RID p_base, const TypedArray &p_material_overrides, const Size2i &p_image_size) { return TypedArray(); } bool RasterizerSceneGLES3::free(RID p_rid) { if (is_environment(p_rid)) { environment_free(p_rid); } else if (sky_owner.owns(p_rid)) { Sky *sky = sky_owner.get_or_null(p_rid); ERR_FAIL_NULL_V(sky, false); _free_sky_data(sky); sky_owner.free(p_rid); } else if (GLES3::LightStorage::get_singleton()->owns_light_instance(p_rid)) { GLES3::LightStorage::get_singleton()->light_instance_free(p_rid); } else if (RSG::camera_attributes->owns_camera_attributes(p_rid)) { //not much to delete, just free it RSG::camera_attributes->camera_attributes_free(p_rid); } else { return false; } return true; } void RasterizerSceneGLES3::update() { _update_dirty_skys(); } void RasterizerSceneGLES3::sdfgi_set_debug_probe_select(const Vector3 &p_position, const Vector3 &p_dir) { } void RasterizerSceneGLES3::decals_set_filter(RS::DecalFilter p_filter) { } void RasterizerSceneGLES3::light_projectors_set_filter(RS::LightProjectorFilter p_filter) { } RasterizerSceneGLES3::RasterizerSceneGLES3() { singleton = this; GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); GLES3::Config *config = GLES3::Config::get_singleton(); // Quality settings. use_physical_light_units = GLOBAL_GET("rendering/lights_and_shadows/use_physical_light_units"); positional_soft_shadow_filter_set_quality((RS::ShadowQuality)(int)GLOBAL_GET("rendering/lights_and_shadows/positional_shadow/soft_shadow_filter_quality")); directional_soft_shadow_filter_set_quality((RS::ShadowQuality)(int)GLOBAL_GET("rendering/lights_and_shadows/directional_shadow/soft_shadow_filter_quality")); { // Setup Lights config->max_renderable_lights = MIN(config->max_renderable_lights, config->max_uniform_buffer_size / (int)sizeof(RasterizerSceneGLES3::LightData)); config->max_lights_per_object = MIN(config->max_lights_per_object, config->max_renderable_lights); uint32_t light_buffer_size = config->max_renderable_lights * sizeof(LightData); scene_state.omni_lights = memnew_arr(LightData, config->max_renderable_lights); scene_state.omni_light_sort = memnew_arr(InstanceSort, config->max_renderable_lights); glGenBuffers(1, &scene_state.omni_light_buffer); glBindBuffer(GL_UNIFORM_BUFFER, scene_state.omni_light_buffer); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, scene_state.omni_light_buffer, light_buffer_size, nullptr, GL_STREAM_DRAW, "OmniLight UBO"); scene_state.spot_lights = memnew_arr(LightData, config->max_renderable_lights); scene_state.spot_light_sort = memnew_arr(InstanceSort, config->max_renderable_lights); glGenBuffers(1, &scene_state.spot_light_buffer); glBindBuffer(GL_UNIFORM_BUFFER, scene_state.spot_light_buffer); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, scene_state.spot_light_buffer, light_buffer_size, nullptr, GL_STREAM_DRAW, "SpotLight UBO"); uint32_t directional_light_buffer_size = MAX_DIRECTIONAL_LIGHTS * sizeof(DirectionalLightData); scene_state.directional_lights = memnew_arr(DirectionalLightData, MAX_DIRECTIONAL_LIGHTS); glGenBuffers(1, &scene_state.directional_light_buffer); glBindBuffer(GL_UNIFORM_BUFFER, scene_state.directional_light_buffer); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, scene_state.directional_light_buffer, directional_light_buffer_size, nullptr, GL_STREAM_DRAW, "DirectionalLight UBO"); uint32_t shadow_buffer_size = config->max_renderable_lights * sizeof(ShadowData) * 2; scene_state.positional_shadows = memnew_arr(ShadowData, config->max_renderable_lights * 2); glGenBuffers(1, &scene_state.positional_shadow_buffer); glBindBuffer(GL_UNIFORM_BUFFER, scene_state.positional_shadow_buffer); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, scene_state.positional_shadow_buffer, shadow_buffer_size, nullptr, GL_STREAM_DRAW, "Positional Shadow UBO"); uint32_t directional_shadow_buffer_size = MAX_DIRECTIONAL_LIGHTS * sizeof(DirectionalShadowData); scene_state.directional_shadows = memnew_arr(DirectionalShadowData, MAX_DIRECTIONAL_LIGHTS); glGenBuffers(1, &scene_state.directional_shadow_buffer); glBindBuffer(GL_UNIFORM_BUFFER, scene_state.directional_shadow_buffer); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, scene_state.directional_shadow_buffer, directional_shadow_buffer_size, nullptr, GL_STREAM_DRAW, "Directional Shadow UBO"); glBindBuffer(GL_UNIFORM_BUFFER, 0); } { sky_globals.max_directional_lights = 4; uint32_t directional_light_buffer_size = sky_globals.max_directional_lights * sizeof(DirectionalLightData); sky_globals.directional_lights = memnew_arr(DirectionalLightData, sky_globals.max_directional_lights); sky_globals.last_frame_directional_lights = memnew_arr(DirectionalLightData, sky_globals.max_directional_lights); sky_globals.last_frame_directional_light_count = sky_globals.max_directional_lights + 1; glGenBuffers(1, &sky_globals.directional_light_buffer); glBindBuffer(GL_UNIFORM_BUFFER, sky_globals.directional_light_buffer); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, sky_globals.directional_light_buffer, directional_light_buffer_size, nullptr, GL_STREAM_DRAW, "Sky DirectionalLight UBO"); glBindBuffer(GL_UNIFORM_BUFFER, 0); } { String global_defines; global_defines += "#define MAX_GLOBAL_SHADER_UNIFORMS 256\n"; // TODO: this is arbitrary for now global_defines += "\n#define MAX_LIGHT_DATA_STRUCTS " + itos(config->max_renderable_lights) + "\n"; global_defines += "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(MAX_DIRECTIONAL_LIGHTS) + "\n"; global_defines += "\n#define MAX_FORWARD_LIGHTS " + itos(config->max_lights_per_object) + "u\n"; material_storage->shaders.scene_shader.initialize(global_defines); scene_globals.shader_default_version = material_storage->shaders.scene_shader.version_create(); material_storage->shaders.scene_shader.version_bind_shader(scene_globals.shader_default_version, SceneShaderGLES3::MODE_COLOR); } { //default material and shader scene_globals.default_shader = material_storage->shader_allocate(); material_storage->shader_initialize(scene_globals.default_shader); material_storage->shader_set_code(scene_globals.default_shader, R"( // Default 3D material shader. shader_type spatial; void vertex() { ROUGHNESS = 0.8; } void fragment() { ALBEDO = vec3(0.6); ROUGHNESS = 0.8; METALLIC = 0.2; } )"); scene_globals.default_material = material_storage->material_allocate(); material_storage->material_initialize(scene_globals.default_material); material_storage->material_set_shader(scene_globals.default_material, scene_globals.default_shader); default_material_data_ptr = static_cast(GLES3::MaterialStorage::get_singleton()->material_get_data(scene_globals.default_material, RS::SHADER_SPATIAL)); } { // Overdraw material and shader. scene_globals.overdraw_shader = material_storage->shader_allocate(); material_storage->shader_initialize(scene_globals.overdraw_shader); material_storage->shader_set_code(scene_globals.overdraw_shader, R"( // 3D editor Overdraw debug draw mode shader. shader_type spatial; render_mode blend_add, unshaded; void fragment() { ALBEDO = vec3(0.4, 0.8, 0.8); ALPHA = 0.2; } )"); scene_globals.overdraw_material = material_storage->material_allocate(); material_storage->material_initialize(scene_globals.overdraw_material); material_storage->material_set_shader(scene_globals.overdraw_material, scene_globals.overdraw_shader); overdraw_material_data_ptr = static_cast(GLES3::MaterialStorage::get_singleton()->material_get_data(scene_globals.overdraw_material, RS::SHADER_SPATIAL)); } { // Initialize Sky stuff sky_globals.roughness_layers = GLOBAL_GET("rendering/reflections/sky_reflections/roughness_layers"); sky_globals.ggx_samples = GLOBAL_GET("rendering/reflections/sky_reflections/ggx_samples"); String global_defines; global_defines += "#define MAX_GLOBAL_SHADER_UNIFORMS 256\n"; // TODO: this is arbitrary for now global_defines += "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(sky_globals.max_directional_lights) + "\n"; material_storage->shaders.sky_shader.initialize(global_defines); sky_globals.shader_default_version = material_storage->shaders.sky_shader.version_create(); } { String global_defines; global_defines += "\n#define MAX_SAMPLE_COUNT " + itos(sky_globals.ggx_samples) + "\n"; material_storage->shaders.cubemap_filter_shader.initialize(global_defines); scene_globals.cubemap_filter_shader_version = material_storage->shaders.cubemap_filter_shader.version_create(); } { sky_globals.default_shader = material_storage->shader_allocate(); material_storage->shader_initialize(sky_globals.default_shader); material_storage->shader_set_code(sky_globals.default_shader, R"( // Default sky shader. shader_type sky; void sky() { COLOR = vec3(0.0); } )"); sky_globals.default_material = material_storage->material_allocate(); material_storage->material_initialize(sky_globals.default_material); material_storage->material_set_shader(sky_globals.default_material, sky_globals.default_shader); } { sky_globals.fog_shader = material_storage->shader_allocate(); material_storage->shader_initialize(sky_globals.fog_shader); material_storage->shader_set_code(sky_globals.fog_shader, R"( // Default clear color sky shader. shader_type sky; uniform vec4 clear_color; void sky() { COLOR = clear_color.rgb; } )"); sky_globals.fog_material = material_storage->material_allocate(); material_storage->material_initialize(sky_globals.fog_material); material_storage->material_set_shader(sky_globals.fog_material, sky_globals.fog_shader); } { glGenVertexArrays(1, &sky_globals.screen_triangle_array); glBindVertexArray(sky_globals.screen_triangle_array); glGenBuffers(1, &sky_globals.screen_triangle); glBindBuffer(GL_ARRAY_BUFFER, sky_globals.screen_triangle); const float qv[6] = { -1.0f, -1.0f, 3.0f, -1.0f, -1.0f, 3.0f, }; GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, sky_globals.screen_triangle, sizeof(float) * 6, qv, GL_STATIC_DRAW, "Screen triangle vertex buffer"); glVertexAttribPointer(RS::ARRAY_VERTEX, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 2, nullptr); glEnableVertexAttribArray(RS::ARRAY_VERTEX); glBindVertexArray(0); glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind } #ifdef GL_API_ENABLED if (RasterizerGLES3::is_gles_over_gl()) { glEnable(_EXT_TEXTURE_CUBE_MAP_SEAMLESS); } #endif // GL_API_ENABLED // MultiMesh may read from color when color is disabled, so make sure that the color defaults to white instead of black; glVertexAttrib4f(RS::ARRAY_COLOR, 1.0, 1.0, 1.0, 1.0); } RasterizerSceneGLES3::~RasterizerSceneGLES3() { GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.directional_light_buffer); GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.omni_light_buffer); GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.spot_light_buffer); GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.positional_shadow_buffer); GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.directional_shadow_buffer); memdelete_arr(scene_state.directional_lights); memdelete_arr(scene_state.omni_lights); memdelete_arr(scene_state.spot_lights); memdelete_arr(scene_state.omni_light_sort); memdelete_arr(scene_state.spot_light_sort); memdelete_arr(scene_state.positional_shadows); memdelete_arr(scene_state.directional_shadows); // Scene Shader GLES3::MaterialStorage::get_singleton()->shaders.scene_shader.version_free(scene_globals.shader_default_version); GLES3::MaterialStorage::get_singleton()->shaders.cubemap_filter_shader.version_free(scene_globals.cubemap_filter_shader_version); RSG::material_storage->material_free(scene_globals.default_material); RSG::material_storage->shader_free(scene_globals.default_shader); // Overdraw Shader RSG::material_storage->material_free(scene_globals.overdraw_material); RSG::material_storage->shader_free(scene_globals.overdraw_shader); // Sky Shader GLES3::MaterialStorage::get_singleton()->shaders.sky_shader.version_free(sky_globals.shader_default_version); RSG::material_storage->material_free(sky_globals.default_material); RSG::material_storage->shader_free(sky_globals.default_shader); RSG::material_storage->material_free(sky_globals.fog_material); RSG::material_storage->shader_free(sky_globals.fog_shader); GLES3::Utilities::get_singleton()->buffer_free_data(sky_globals.screen_triangle); glDeleteVertexArrays(1, &sky_globals.screen_triangle_array); glDeleteTextures(1, &sky_globals.radical_inverse_vdc_cache_tex); GLES3::Utilities::get_singleton()->buffer_free_data(sky_globals.directional_light_buffer); memdelete_arr(sky_globals.directional_lights); memdelete_arr(sky_globals.last_frame_directional_lights); // UBOs if (scene_state.ubo_buffer != 0) { GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.ubo_buffer); } if (scene_state.multiview_buffer != 0) { GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.multiview_buffer); } if (scene_state.tonemap_buffer != 0) { GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.tonemap_buffer); } singleton = nullptr; } #endif // GLES3_ENABLED