/**************************************************************************/ /* quaternion.h */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #ifndef QUATERNION_H #define QUATERNION_H #include "core/math/math_funcs.h" #include "core/math/vector3.h" #include "core/string/ustring.h" struct [[nodiscard]] Quaternion { union { struct { real_t x; real_t y; real_t z; real_t w; }; real_t components[4] = { 0, 0, 0, 1.0 }; }; _FORCE_INLINE_ real_t &operator[](int p_idx) { return components[p_idx]; } _FORCE_INLINE_ const real_t &operator[](int p_idx) const { return components[p_idx]; } _FORCE_INLINE_ real_t length_squared() const; bool is_equal_approx(const Quaternion &p_quaternion) const; bool is_finite() const; real_t length() const; void normalize(); Quaternion normalized() const; bool is_normalized() const; Quaternion inverse() const; Quaternion log() const; Quaternion exp() const; _FORCE_INLINE_ real_t dot(const Quaternion &p_q) const; real_t angle_to(const Quaternion &p_to) const; Vector3 get_euler(EulerOrder p_order = EulerOrder::YXZ) const; static Quaternion from_euler(const Vector3 &p_euler); Quaternion slerp(const Quaternion &p_to, real_t p_weight) const; Quaternion slerpni(const Quaternion &p_to, real_t p_weight) const; Quaternion spherical_cubic_interpolate(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, real_t p_weight) const; Quaternion spherical_cubic_interpolate_in_time(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, real_t p_weight, real_t p_b_t, real_t p_pre_a_t, real_t p_post_b_t) const; Vector3 get_axis() const; real_t get_angle() const; _FORCE_INLINE_ void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { r_angle = 2 * Math::acos(w); real_t r = ((real_t)1) / Math::sqrt(1 - w * w); r_axis.x = x * r; r_axis.y = y * r; r_axis.z = z * r; } void operator*=(const Quaternion &p_q); Quaternion operator*(const Quaternion &p_q) const; _FORCE_INLINE_ Vector3 xform(const Vector3 &p_v) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V_MSG(!is_normalized(), p_v, "The quaternion " + operator String() + " must be normalized."); #endif Vector3 u(x, y, z); Vector3 uv = u.cross(p_v); return p_v + ((uv * w) + u.cross(uv)) * ((real_t)2); } _FORCE_INLINE_ Vector3 xform_inv(const Vector3 &p_v) const { return inverse().xform(p_v); } _FORCE_INLINE_ void operator+=(const Quaternion &p_q); _FORCE_INLINE_ void operator-=(const Quaternion &p_q); _FORCE_INLINE_ void operator*=(real_t p_s); _FORCE_INLINE_ void operator/=(real_t p_s); _FORCE_INLINE_ Quaternion operator+(const Quaternion &p_q2) const; _FORCE_INLINE_ Quaternion operator-(const Quaternion &p_q2) const; _FORCE_INLINE_ Quaternion operator-() const; _FORCE_INLINE_ Quaternion operator*(real_t p_s) const; _FORCE_INLINE_ Quaternion operator/(real_t p_s) const; _FORCE_INLINE_ bool operator==(const Quaternion &p_quaternion) const; _FORCE_INLINE_ bool operator!=(const Quaternion &p_quaternion) const; operator String() const; _FORCE_INLINE_ Quaternion() {} _FORCE_INLINE_ Quaternion(real_t p_x, real_t p_y, real_t p_z, real_t p_w) : x(p_x), y(p_y), z(p_z), w(p_w) { } Quaternion(const Vector3 &p_axis, real_t p_angle); Quaternion(const Quaternion &p_q) : x(p_q.x), y(p_q.y), z(p_q.z), w(p_q.w) { } void operator=(const Quaternion &p_q) { x = p_q.x; y = p_q.y; z = p_q.z; w = p_q.w; } Quaternion(const Vector3 &p_v0, const Vector3 &p_v1) { // Shortest arc. Vector3 c = p_v0.cross(p_v1); real_t d = p_v0.dot(p_v1); if (d < -1.0f + (real_t)CMP_EPSILON) { x = 0; y = 1; z = 0; w = 0; } else { real_t s = Math::sqrt((1.0f + d) * 2.0f); real_t rs = 1.0f / s; x = c.x * rs; y = c.y * rs; z = c.z * rs; w = s * 0.5f; } } }; real_t Quaternion::dot(const Quaternion &p_q) const { return x * p_q.x + y * p_q.y + z * p_q.z + w * p_q.w; } real_t Quaternion::length_squared() const { return dot(*this); } void Quaternion::operator+=(const Quaternion &p_q) { x += p_q.x; y += p_q.y; z += p_q.z; w += p_q.w; } void Quaternion::operator-=(const Quaternion &p_q) { x -= p_q.x; y -= p_q.y; z -= p_q.z; w -= p_q.w; } void Quaternion::operator*=(real_t p_s) { x *= p_s; y *= p_s; z *= p_s; w *= p_s; } void Quaternion::operator/=(real_t p_s) { *this *= 1.0f / p_s; } Quaternion Quaternion::operator+(const Quaternion &p_q2) const { const Quaternion &q1 = *this; return Quaternion(q1.x + p_q2.x, q1.y + p_q2.y, q1.z + p_q2.z, q1.w + p_q2.w); } Quaternion Quaternion::operator-(const Quaternion &p_q2) const { const Quaternion &q1 = *this; return Quaternion(q1.x - p_q2.x, q1.y - p_q2.y, q1.z - p_q2.z, q1.w - p_q2.w); } Quaternion Quaternion::operator-() const { const Quaternion &q2 = *this; return Quaternion(-q2.x, -q2.y, -q2.z, -q2.w); } Quaternion Quaternion::operator*(real_t p_s) const { return Quaternion(x * p_s, y * p_s, z * p_s, w * p_s); } Quaternion Quaternion::operator/(real_t p_s) const { return *this * (1.0f / p_s); } bool Quaternion::operator==(const Quaternion &p_quaternion) const { return x == p_quaternion.x && y == p_quaternion.y && z == p_quaternion.z && w == p_quaternion.w; } bool Quaternion::operator!=(const Quaternion &p_quaternion) const { return x != p_quaternion.x || y != p_quaternion.y || z != p_quaternion.z || w != p_quaternion.w; } _FORCE_INLINE_ Quaternion operator*(real_t p_real, const Quaternion &p_quaternion) { return p_quaternion * p_real; } #endif // QUATERNION_H