[vertex] /* from VisualServer: ARRAY_VERTEX=0, ARRAY_NORMAL=1, ARRAY_TANGENT=2, ARRAY_COLOR=3, ARRAY_TEX_UV=4, ARRAY_TEX_UV2=5, ARRAY_BONES=6, ARRAY_WEIGHTS=7, ARRAY_INDEX=8, */ //hack to use uv if no uv present so it works with lightmap /* INPUT ATTRIBS */ layout(location=0) in highp vec4 vertex_attrib; layout(location=1) in vec3 normal_attrib; layout(location=2) in vec4 tangent_attrib; layout(location=3) in vec4 color_attrib; layout(location=4) in vec2 uv_attrib; layout(location=5) in vec2 uv2_attrib; uniform float normal_mult; #ifdef USE_SKELETON layout(location=6) mediump ivec4 bone_indices; // attrib:6 layout(location=7) mediump vec4 bone_weights; // attrib:7 uniform highp sampler2D skeleton_matrices; #endif #ifdef USE_ATTRIBUTE_INSTANCING layout(location=8) in highp vec4 instance_xform0; layout(location=9) in highp vec4 instance_xform1; layout(location=10) in highp vec4 instance_xform2; layout(location=11) in lowp vec4 instance_color; #endif layout(std140) uniform SceneData { //ubo:0 highp mat4 projection_matrix; highp mat4 camera_inverse_matrix; highp mat4 camera_matrix; highp vec4 time; highp vec4 ambient_light_color; highp vec4 bg_color; float ambient_energy; float bg_energy; float shadow_z_offset; float shadow_z_slope_scale; float shadow_dual_paraboloid_render_zfar; float shadow_dual_paraboloid_render_side; vec2 shadow_atlas_pixel_size; vec2 directional_shadow_pixel_size; }; uniform highp mat4 world_transform; #ifdef USE_FORWARD_LIGHTING layout(std140) uniform LightData { //ubo:3 highp vec4 light_pos_inv_radius; mediump vec4 light_direction_attenuation; mediump vec4 light_color_energy; mediump vec4 light_params; //cone attenuation, specular, shadow darkening, mediump vec4 light_clamp; mediump vec4 shadow_split_offsets; highp mat4 shadow_matrix1; highp mat4 shadow_matrix2; highp mat4 shadow_matrix3; highp mat4 shadow_matrix4; }; #endif /* Varyings */ out highp vec3 vertex_interp; out vec3 normal_interp; #if defined(ENABLE_COLOR_INTERP) out vec4 color_interp; #endif #if defined(ENABLE_UV_INTERP) out vec2 uv_interp; #endif #if defined(ENABLE_UV2_INTERP) out vec2 uv2_interp; #endif #if defined(ENABLE_TANGENT_INTERP) out vec3 tangent_interp; out vec3 binormal_interp; #endif #if !defined(USE_DEPTH_SHADOWS) && defined(USE_SHADOW_PASS) varying vec4 position_interp; #endif VERTEX_SHADER_GLOBALS #if defined(USE_MATERIAL) layout(std140) uniform UniformData { //ubo:1 MATERIAL_UNIFORMS }; #endif #ifdef RENDER_SHADOW_DUAL_PARABOLOID out highp float dp_clip; #endif void main() { highp vec4 vertex = vertex_attrib; // vec4(vertex_attrib.xyz * data_attrib.x,1.0); highp mat4 modelview = camera_inverse_matrix * world_transform; vec3 normal = normal_attrib * normal_mult; #if defined(ENABLE_TANGENT_INTERP) vec3 tangent = tangent_attrib.xyz; tangent*=normal_mult; float binormalf = tangent_attrib.a; #endif #ifdef USE_SKELETON { //skeleton transform highp mat4 m=mat4(texture2D(skeleton_matrices,vec2((bone_indices.x*3.0+0.0)*skeltex_pixel_size,0.0)),texture2D(skeleton_matrices,vec2((bone_indices.x*3.0+1.0)*skeltex_pixel_size,0.0)),texture2D(skeleton_matrices,vec2((bone_indices.x*3.0+2.0)*skeltex_pixel_size,0.0)),vec4(0.0,0.0,0.0,1.0))*bone_weights.x; m+=mat4(texture2D(skeleton_matrices,vec2((bone_indices.y*3.0+0.0)*skeltex_pixel_size,0.0)),texture2D(skeleton_matrices,vec2((bone_indices.y*3.0+1.0)*skeltex_pixel_size,0.0)),texture2D(skeleton_matrices,vec2((bone_indices.y*3.0+2.0)*skeltex_pixel_size,0.0)),vec4(0.0,0.0,0.0,1.0))*bone_weights.y; m+=mat4(texture2D(skeleton_matrices,vec2((bone_indices.z*3.0+0.0)*skeltex_pixel_size,0.0)),texture2D(skeleton_matrices,vec2((bone_indices.z*3.0+1.0)*skeltex_pixel_size,0.0)),texture2D(skeleton_matrices,vec2((bone_indices.z*3.0+2.0)*skeltex_pixel_size,0.0)),vec4(0.0,0.0,0.0,1.0))*bone_weights.z; m+=mat4(texture2D(skeleton_matrices,vec2((bone_indices.w*3.0+0.0)*skeltex_pixel_size,0.0)),texture2D(skeleton_matrices,vec2((bone_indices.w*3.0+1.0)*skeltex_pixel_size,0.0)),texture2D(skeleton_matrices,vec2((bone_indices.w*3.0+2.0)*skeltex_pixel_size,0.0)),vec4(0.0,0.0,0.0,1.0))*bone_weights.w; vertex = vertex_in * m; normal = (vec4(normal,0.0) * m).xyz; #if defined(ENABLE_TANGENT_INTERP) tangent = (vec4(tangent,0.0) * m).xyz; #endif } #endif #if !defined(SKIP_TRANSFORM_USED) vertex = modelview * vertex; normal = normalize((modelview * vec4(normal,0.0)).xyz); #endif #if defined(ENABLE_TANGENT_INTERP) # if !defined(SKIP_TRANSFORM_USED) tangent=normalize((modelview * vec4(tangent,0.0)).xyz); # endif vec3 binormal = normalize( cross(normal,tangent) * binormalf ); #endif #if defined(ENABLE_COLOR_INTERP) color_interp = color_attrib; #endif #if defined(ENABLE_UV_INTERP) uv_interp = uv_attrib; #endif #if defined(ENABLE_UV2_INTERP) uv2_interp = uv2_attrib; #endif { VERTEX_SHADER_CODE } vertex_interp = vertex.xyz; normal_interp = normal; #if defined(ENABLE_TANGENT_INTERP) tangent_interp = tangent; binormal_interp = binormal; #endif #ifdef RENDER_SHADOW #ifdef RENDER_SHADOW_DUAL_PARABOLOID vertex_interp.z*= shadow_dual_paraboloid_render_side; normal_interp.z*= shadow_dual_paraboloid_render_side; dp_clip=vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias //for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges highp vec3 vtx = vertex_interp+normalize(vertex_interp)*shadow_z_offset; highp float distance = length(vtx); vtx = normalize(vtx); vtx.xy/=1.0-vtx.z; vtx.z=(distance/shadow_dual_paraboloid_render_zfar); vtx.z=vtx.z * 2.0 - 1.0; vertex.xyz=vtx; vertex.w=1.0; #else float z_ofs = shadow_z_offset; z_ofs += (1.0-abs(normal_interp.z))*shadow_z_slope_scale; vertex_interp.z-=z_ofs; #endif //RENDER_SHADOW_DUAL_PARABOLOID #endif //RENDER_SHADOW #if !defined(SKIP_TRANSFORM_USED) && !defined(RENDER_SHADOW_DUAL_PARABOLOID) gl_Position = projection_matrix * vec4(vertex_interp,1.0); #else gl_Position = vertex; #endif } [fragment] #define M_PI 3.14159265359 /* Varyings */ #if defined(ENABLE_COLOR_INTERP) in vec4 color_interp; #endif #if defined(ENABLE_UV_INTERP) in vec2 uv_interp; #endif #if defined(ENABLE_UV2_INTERP) in vec2 uv2_interp; #endif #if defined(ENABLE_TANGENT_INTERP) in vec3 tangent_interp; in vec3 binormal_interp; #endif in highp vec3 vertex_interp; in vec3 normal_interp; /* PBR CHANNELS */ //used on forward mainly uniform bool no_ambient_light; #ifdef USE_RADIANCE_CUBEMAP uniform sampler2D brdf_texture; //texunit:-1 uniform samplerCube radiance_cube; //texunit:-2 layout(std140) uniform Radiance { //ubo:2 mat4 radiance_inverse_xform; vec3 radiance_box_min; vec3 radiance_box_max; float radiance_ambient_contribution; }; #endif /* Material Uniforms */ FRAGMENT_SHADER_GLOBALS #if defined(USE_MATERIAL) layout(std140) uniform UniformData { MATERIAL_UNIFORMS }; #endif layout(std140) uniform SceneData { highp mat4 projection_matrix; highp mat4 camera_inverse_matrix; highp mat4 camera_matrix; highp vec4 time; highp vec4 ambient_light_color; highp vec4 bg_color; float ambient_energy; float bg_energy; float shadow_z_offset; float shadow_z_slope_scale; float shadow_dual_paraboloid_render_zfar; float shadow_dual_paraboloid_render_side; vec2 shadow_atlas_pixel_size; vec2 directional_shadow_pixel_size; }; #ifdef USE_FORWARD_LIGHTING layout(std140) uniform LightData { highp vec4 light_pos_inv_radius; mediump vec4 light_direction_attenuation; mediump vec4 light_color_energy; mediump vec4 light_params; //cone attenuation, specular, shadow darkening, shadow enabled mediump vec4 light_clamp; mediump vec4 shadow_split_offsets; highp mat4 shadow_matrix1; highp mat4 shadow_matrix2; highp mat4 shadow_matrix3; highp mat4 shadow_matrix4; }; #endif uniform highp sampler2DShadow directional_shadow; //texunit:-4 uniform highp sampler2DShadow shadow_atlas; //texunit:-3 #ifdef USE_MULTIPLE_RENDER_TARGETS layout(location=0) out vec4 diffuse_buffer; layout(location=1) out vec4 specular_buffer; layout(location=2) out vec4 normal_mr_buffer; #else layout(location=0) out vec4 frag_color; #endif // GGX Specular // Source: http://www.filmicworlds.com/images/ggx-opt/optimized-ggx.hlsl float G1V(float dotNV, float k) { return 1.0 / (dotNV * (1.0 - k) + k); } float specularGGX(vec3 N, vec3 V, vec3 L, float roughness, float F0) { float alpha = roughness * roughness; vec3 H = normalize(V + L); float dotNL = max(dot(N,L), 0.0 ); float dotNV = max(dot(N,V), 0.0 ); float dotNH = max(dot(N,H), 0.0 ); float dotLH = max(dot(L,H), 0.0 ); // D float alphaSqr = alpha * alpha; float pi = M_PI; float denom = dotNH * dotNH * (alphaSqr - 1.0) + 1.0; float D = alphaSqr / (pi * denom * denom); // F float dotLH5 = pow(1.0 - dotLH, 5.0); float F = F0 + (1.0 - F0) * (dotLH5); // V float k = alpha / 2.0f; float vis = G1V(dotNL, k) * G1V(dotNV, k); return dotNL * D * F * vis; } void light_compute(vec3 normal, vec3 light_vec,vec3 eye_vec,vec3 diffuse_color, vec3 specular_color, float roughness, float attenuation, inout vec3 diffuse, inout vec3 specular) { diffuse += max(0.0,dot(normal,light_vec)) * diffuse_color * attenuation; //specular += specular_ggx( roughness, max(0.0,dot(normal,eye_vec)) ) * specular_color * attenuation; float s = roughness > 0.0 ? specularGGX(normal,eye_vec,light_vec,roughness,1.0) : 0.0; specular += s * specular_color * attenuation; } float sample_shadow(highp sampler2DShadow shadow, vec2 shadow_pixel_size, vec2 pos, float depth, vec4 clamp_rect) { return textureProj(shadow,vec4(pos,depth,1.0)); } #ifdef RENDER_SHADOW_DUAL_PARABOLOID in highp float dp_clip; #endif void main() { #ifdef RENDER_SHADOW_DUAL_PARABOLOID if (dp_clip>0.0) discard; #endif //lay out everything, whathever is unused is optimized away anyway highp vec3 vertex = vertex_interp; vec3 albedo = vec3(0.8,0.8,0.8); vec3 specular = vec3(0.2,0.2,0.2); float roughness = 1.0; float alpha = 1.0; #ifdef METERIAL_DOUBLESIDED float side=float(gl_FrontFacing)*2.0-1.0; #else float side=1.0; #endif #if defined(ENABLE_TANGENT_INTERP) vec3 binormal = normalize(binormal_interp)*side; vec3 tangent = normalize(tangent_interp)*side; #endif vec3 normal = normalize(normal_interp)*side; #if defined(ENABLE_UV_INTERP) vec2 uv = uv_interp; #endif #if defined(ENABLE_UV2_INTERP) vec2 uv2 = uv2_interp; #endif #if defined(ENABLE_COLOR_INTERP) vec4 color = color_interp; #endif #if defined(ENABLE_NORMALMAP) vec3 normalmap = vec3(0.0); #endif float normaldepth=1.0; #if defined(ENABLE_DISCARD) bool discard_=false; #endif { FRAGMENT_SHADER_CODE } #if defined(ENABLE_NORMALMAP) normal = normalize( mix(normal_interp,tangent_interp * normalmap.x + binormal_interp * normalmap.y + normal_interp * normalmap.z,normaldepth) ) * side; #endif #if defined(ENABLE_DISCARD) if (discard_) { //easy to eliminate dead code discard; } #endif #ifdef ENABLE_CLIP_ALPHA if (diffuse.a<0.99) { //used for doublepass and shadowmapping discard; } #endif /////////////////////// LIGHTING ////////////////////////////// vec3 specular_light = vec3(0.0,0.0,0.0); vec3 ambient_light; vec3 diffuse_light = vec3(0.0,0.0,0.0); vec3 eye_vec = -normalize( vertex_interp ); #ifdef USE_RADIANCE_CUBEMAP if (no_ambient_light) { ambient_light=vec3(0.0,0.0,0.0); } else { { float ndotv = clamp(dot(normal,eye_vec),0.0,1.0); vec2 brdf = texture(brdf_texture, vec2(roughness, ndotv)).xy; float lod = roughness * 5.0; vec3 r = reflect(-eye_vec,normal); //2.0 * ndotv * normal - view; // reflect(v, n); r=normalize((radiance_inverse_xform * vec4(r,0.0)).xyz); vec3 radiance = textureLod(radiance_cube, r, lod).xyz * ( brdf.x + brdf.y); specular_light=mix(albedo,radiance,specular); } { vec3 ambient_dir=normalize((radiance_inverse_xform * vec4(normal,0.0)).xyz); vec3 env_ambient=textureLod(radiance_cube, ambient_dir, 5.0).xyz; ambient_light=mix(ambient_light_color.rgb,env_ambient,radiance_ambient_contribution); } } #else if (no_ambient_light){ ambient_light=vec3(0.0,0.0,0.0); } else { ambient_light=ambient_light_color.rgb; } #endif #ifdef USE_FORWARD_DIRECTIONAL float light_attenuation=1.0; #ifdef LIGHT_DIRECTIONAL_SHADOW if (gl_FragCoord.w > shadow_split_offsets.w) { vec3 pssm_coord; #ifdef LIGHT_USE_PSSM_BLEND float pssm_blend; vec3 pssm_coord2; bool use_blend=true; vec3 light_pssm_split_inv = 1.0/shadow_split_offsets.xyz; float w_inv = 1.0/gl_FragCoord.w; #endif #ifdef LIGHT_USE_PSSM4 if (gl_FragCoord.w > shadow_split_offsets.y) { if (gl_FragCoord.w > shadow_split_offsets.x) { highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0)); pssm_coord=splane.xyz/splane.w; ambient_light=vec3(1.0,0.4,0.4); #if defined(LIGHT_USE_PSSM_BLEND) splane=(shadow_matrix2 * vec4(vertex,1.0)); pssm_coord2=splane.xyz/splane.w; pssm_blend=smoothstep(0.0,light_pssm_split_inv.x,w_inv); #endif } else { highp vec4 splane=(shadow_matrix2 * vec4(vertex,1.0)); pssm_coord=splane.xyz/splane.w; ambient_light=vec3(0.4,1.0,0.4); #if defined(LIGHT_USE_PSSM_BLEND) splane=(shadow_matrix3 * vec4(vertex,1.0)); pssm_coord2=splane.xyz/splane.w; pssm_blend=smoothstep(light_pssm_split_inv.x,light_pssm_split_inv.y,w_inv); #endif } } else { if (gl_FragCoord.w > shadow_split_offsets.z) { highp vec4 splane=(shadow_matrix3 * vec4(vertex,1.0)); pssm_coord=splane.xyz/splane.w; ambient_light=vec3(0.4,0.4,1.0); #if defined(LIGHT_USE_PSSM_BLEND) splane=(shadow_matrix4 * vec4(vertex,1.0)); pssm_coord2=splane.xyz/splane.w; pssm_blend=smoothstep(light_pssm_split_inv.y,light_pssm_split_inv.z,w_inv); #endif } else { highp vec4 splane=(shadow_matrix4 * vec4(vertex,1.0)); pssm_coord=splane.xyz/splane.w; diffuse_light*=vec3(1.0,0.4,1.0); #if defined(LIGHT_USE_PSSM_BLEND) use_blend=false; #endif } } #endif //LIGHT_USE_PSSM4 #ifdef LIGHT_USE_PSSM2 if (gl_FragCoord.w > shadow_split_offsets.x) { highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0)); pssm_coord=splane.xyz/splane.w; #if defined(LIGHT_USE_PSSM_BLEND) splane=(shadow_matrix2 * vec4(vertex,1.0)); pssm_coord2=splane.xyz/splane.w; pssm_blend=smoothstep(0.0,light_pssm_split_inv.x,w_inv); #endif } else { highp vec4 splane=(shadow_matrix2 * vec4(vertex,1.0)); pssm_coord=splane.xyz/splane.w; #if defined(LIGHT_USE_PSSM_BLEND) use_blend=false; #endif } #endif //LIGHT_USE_PSSM2 #if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2) { //regular orthogonal highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0)); pssm_coord=splane.xyz/splane.w; } #endif //one one sample light_attenuation=sample_shadow(directional_shadow,directional_shadow_pixel_size,pssm_coord.xy,pssm_coord.z,light_clamp); #if defined(LIGHT_USE_PSSM_BLEND) if (use_blend) { float light_attenuation2=sample_shadow(directional_shadow,directional_shadow_pixel_size,pssm_coord2.xy,pssm_coord2.z,light_clamp); light_attenuation=mix(light_attenuation,light_attenuation2,pssm_blend); } #endif } #endif //LIGHT_DIRECTIONAL_SHADOW light_compute(normal,-light_direction_attenuation.xyz,eye_vec,albedo,specular,roughness,light_attenuation,diffuse_light,specular_light); #endif //USE_FORWARD_DIRECTIONAL #ifdef USE_FORWARD_OMNI vec3 light_rel_vec = light_pos_inv_radius.xyz-vertex; float normalized_distance = length( light_rel_vec )*light_pos_inv_radius.w; float light_attenuation = pow( max(1.0 - normalized_distance, 0.0), light_direction_attenuation.w ); if (light_params.w>0.5) { //there is a shadowmap highp vec3 splane=(shadow_matrix1 * vec4(vertex,1.0)).xyz; float shadow_len=length(splane); splane=normalize(splane); vec4 clamp_rect=light_clamp; if (splane.z>=0.0) { splane.z+=1.0; clamp_rect.y+=clamp_rect.w; } else { splane.z=1.0 - splane.z; //if (clamp_rect.z0.5) { //there is a shadowmap highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0)); splane.xyz/=splane.w; // splane.xy=splane.xy*0.5+0.5; //splane.xy=light_clamp.xy+splane.xy*light_clamp.zw; light_attenuation*=sample_shadow(shadow_atlas,shadow_atlas_pixel_size,splane.xy,splane.z,light_clamp); } light_compute(normal,normalize(light_rel_vec),eye_vec,albedo,specular,roughness,light_attenuation,diffuse_light,specular_light); #endif //USE_FORWARD_SPOT #if defined(USE_LIGHT_SHADER_CODE) //light is written by the light shader { LIGHT_SHADER_CODE } #endif #ifdef RENDER_SHADOW //nothing happens, so a tree-ssa optimizer will result in no fragment shader :) #else #ifdef USE_MULTIPLE_RENDER_TARGETS //approximate ambient scale for SSAO, since we will lack full ambient float max_ambient=max(ambient_light.r,max(ambient_light.g,ambient_light.b)); float max_diffuse=max(diffuse_light.r,max(diffuse_light.g,diffuse_light.b)); float total_ambient = max_ambient+max_diffuse; float ambient_scale = (total_ambient>0.0) ? max_ambient/total_ambient : 0.0; diffuse_buffer=vec4(diffuse_light+ambient_light,ambient_scale); specular_buffer=vec4(specular_light,0.0); normal_mr_buffer=vec4(normal.x,normal.y,max(specular.r,max(specular.g,specular.b)),roughness); #else #ifdef SHADELESS frag_color=vec4(albedo,alpha); #else frag_color=vec4(ambient_light+diffuse_light+specular_light,alpha); #endif //SHADELESS #endif //USE_MULTIPLE_RENDER_TARGETS #endif //RENDER_SHADOW }