// Copyright 2009-2021 Intel Corporation // SPDX-License-Identifier: Apache-2.0 #pragma once #include "../common/ray.h" #include "../common/scene_subdiv_mesh.h" #include "../bvh/bvh.h" #include "../subdiv/tessellation.h" #include "../subdiv/tessellation_cache.h" #include "subdivpatch1.h" namespace embree { namespace isa { class GridSOA { public: /*! GridSOA constructor */ GridSOA(const SubdivPatch1Base* patches, const unsigned time_steps, const unsigned x0, const unsigned x1, const unsigned y0, const unsigned y1, const unsigned swidth, const unsigned sheight, const SubdivMesh* const geom, const size_t totalBvhBytes, const size_t gridBytes, BBox3fa* bounds_o = nullptr); /*! Subgrid creation */ template<typename Allocator> static GridSOA* create(const SubdivPatch1Base* patches, const unsigned time_steps, unsigned x0, unsigned x1, unsigned y0, unsigned y1, const Scene* scene, Allocator& alloc, BBox3fa* bounds_o = nullptr) { const unsigned width = x1-x0+1; const unsigned height = y1-y0+1; const GridRange range(0,width-1,0,height-1); size_t bvhBytes = 0; if (time_steps == 1) bvhBytes = getBVHBytes(range,sizeof(BVH4::AABBNode),0); else { bvhBytes = (time_steps-1)*getBVHBytes(range,sizeof(BVH4::AABBNodeMB),0); bvhBytes += getTemporalBVHBytes(make_range(0,int(time_steps-1)),sizeof(BVH4::AABBNodeMB4D)); } const size_t gridBytes = 4*size_t(width)*size_t(height)*sizeof(float); size_t rootBytes = time_steps*sizeof(BVH4::NodeRef); #if !defined(__64BIT__) rootBytes += 4; // We read 2 elements behind the grid. As we store at least 8 root bytes after the grid we are fine in 64 bit mode. But in 32 bit mode we have to do additional padding. #endif void* data = alloc(offsetof(GridSOA,data)+bvhBytes+time_steps*gridBytes+rootBytes); assert(data); return new (data) GridSOA(patches,time_steps,x0,x1,y0,y1,patches->grid_u_res,patches->grid_v_res,scene->get<SubdivMesh>(patches->geomID()),bvhBytes,gridBytes,bounds_o); } /*! Grid creation */ template<typename Allocator> static GridSOA* create(const SubdivPatch1Base* const patches, const unsigned time_steps, const Scene* scene, const Allocator& alloc, BBox3fa* bounds_o = nullptr) { return create(patches,time_steps,0,patches->grid_u_res-1,0,patches->grid_v_res-1,scene,alloc,bounds_o); } /*! returns reference to root */ __forceinline BVH4::NodeRef& root(size_t t = 0) { return (BVH4::NodeRef&)data[rootOffset + t*sizeof(BVH4::NodeRef)]; } __forceinline const BVH4::NodeRef& root(size_t t = 0) const { return (BVH4::NodeRef&)data[rootOffset + t*sizeof(BVH4::NodeRef)]; } /*! returns pointer to BVH array */ __forceinline char* bvhData() { return &data[0]; } __forceinline const char* bvhData() const { return &data[0]; } /*! returns pointer to Grid array */ __forceinline float* gridData(size_t t = 0) { return (float*) &data[gridOffset + t*gridBytes]; } __forceinline const float* gridData(size_t t = 0) const { return (float*) &data[gridOffset + t*gridBytes]; } __forceinline void* encodeLeaf(size_t u, size_t v) { return (void*) (16*(v * width + u + 1)); // +1 to not create empty leaf } __forceinline float* decodeLeaf(size_t t, const void* ptr) { return gridData(t) + (((size_t) (ptr) >> 4) - 1); } /*! returns the size of the BVH over the grid in bytes */ static size_t getBVHBytes(const GridRange& range, const size_t nodeBytes, const size_t leafBytes); /*! returns the size of the temporal BVH over the time range BVHs */ static size_t getTemporalBVHBytes(const range<int> time_range, const size_t nodeBytes); /*! calculates bounding box of grid range */ __forceinline BBox3fa calculateBounds(size_t time, const GridRange& range) const { const float* const grid_array = gridData(time); const float* const grid_x_array = grid_array + 0 * dim_offset; const float* const grid_y_array = grid_array + 1 * dim_offset; const float* const grid_z_array = grid_array + 2 * dim_offset; /* compute the bounds just for the range! */ BBox3fa bounds( empty ); for (unsigned v = range.v_start; v<=range.v_end; v++) { for (unsigned u = range.u_start; u<=range.u_end; u++) { const float x = grid_x_array[ v * width + u]; const float y = grid_y_array[ v * width + u]; const float z = grid_z_array[ v * width + u]; bounds.extend( Vec3fa(x,y,z) ); } } assert(is_finite(bounds)); return bounds; } /*! Evaluates grid over patch and builds BVH4 tree over the grid. */ std::pair<BVH4::NodeRef,BBox3fa> buildBVH(BBox3fa* bounds_o); /*! Create BVH4 tree over grid. */ std::pair<BVH4::NodeRef,BBox3fa> buildBVH(const GridRange& range, size_t& allocator); /*! Evaluates grid over patch and builds MSMBlur BVH4 tree over the grid. */ std::pair<BVH4::NodeRef,LBBox3fa> buildMSMBlurBVH(const range<int> time_range, BBox3fa* bounds_o); /*! Create MBlur BVH4 tree over grid. */ std::pair<BVH4::NodeRef,LBBox3fa> buildMBlurBVH(size_t time, const GridRange& range, size_t& allocator); /*! Create MSMBlur BVH4 tree over grid. */ std::pair<BVH4::NodeRef,LBBox3fa> buildMSMBlurBVH(const range<int> time_range, size_t& allocator, BBox3fa* bounds_o); template<typename Loader> struct MapUV { typedef typename Loader::vfloat vfloat; const float* const grid_uv; size_t line_offset; size_t lines; __forceinline MapUV(const float* const grid_uv, size_t line_offset, const size_t lines) : grid_uv(grid_uv), line_offset(line_offset), lines(lines) {} __forceinline void operator() (vfloat& u, vfloat& v, Vec3<vfloat>& Ng) const { const Vec3<vfloat> tri_v012_uv = Loader::gather(grid_uv,line_offset,lines); const Vec2<vfloat> uv0 = GridSOA::decodeUV(tri_v012_uv[0]); const Vec2<vfloat> uv1 = GridSOA::decodeUV(tri_v012_uv[1]); const Vec2<vfloat> uv2 = GridSOA::decodeUV(tri_v012_uv[2]); const Vec2<vfloat> uv = u * uv1 + v * uv2 + (1.0f-u-v) * uv0; u = uv[0];v = uv[1]; } }; struct Gather2x3 { enum { M = 4 }; typedef vbool4 vbool; typedef vint4 vint; typedef vfloat4 vfloat; static __forceinline const Vec3vf4 gather(const float* const grid, const size_t line_offset, const size_t lines) { vfloat4 r0 = vfloat4::loadu(grid + 0*line_offset); vfloat4 r1 = vfloat4::loadu(grid + 1*line_offset); // this accesses 2 elements too much in case of 2x2 grid, but this is ok as we ensure enough padding after the grid if (unlikely(line_offset == 2)) { r0 = shuffle<0,1,1,1>(r0); r1 = shuffle<0,1,1,1>(r1); } return Vec3vf4(unpacklo(r0,r1), // r00, r10, r01, r11 shuffle<1,1,2,2>(r0), // r01, r01, r02, r02 shuffle<0,1,1,2>(r1)); // r10, r11, r11, r12 } static __forceinline void gather(const float* const grid_x, const float* const grid_y, const float* const grid_z, const size_t line_offset, const size_t lines, Vec3vf4& v0_o, Vec3vf4& v1_o, Vec3vf4& v2_o) { const Vec3vf4 tri_v012_x = gather(grid_x,line_offset,lines); const Vec3vf4 tri_v012_y = gather(grid_y,line_offset,lines); const Vec3vf4 tri_v012_z = gather(grid_z,line_offset,lines); v0_o = Vec3vf4(tri_v012_x[0],tri_v012_y[0],tri_v012_z[0]); v1_o = Vec3vf4(tri_v012_x[1],tri_v012_y[1],tri_v012_z[1]); v2_o = Vec3vf4(tri_v012_x[2],tri_v012_y[2],tri_v012_z[2]); } }; #if defined (__AVX__) struct Gather3x3 { enum { M = 8 }; typedef vbool8 vbool; typedef vint8 vint; typedef vfloat8 vfloat; static __forceinline const Vec3vf8 gather(const float* const grid, const size_t line_offset, const size_t lines) { vfloat4 ra = vfloat4::loadu(grid + 0*line_offset); vfloat4 rb = vfloat4::loadu(grid + 1*line_offset); // this accesses 2 elements too much in case of 2x2 grid, but this is ok as we ensure enough padding after the grid vfloat4 rc; if (likely(lines > 2)) rc = vfloat4::loadu(grid + 2*line_offset); else rc = rb; if (unlikely(line_offset == 2)) { ra = shuffle<0,1,1,1>(ra); rb = shuffle<0,1,1,1>(rb); rc = shuffle<0,1,1,1>(rc); } const vfloat8 r0 = vfloat8(ra,rb); const vfloat8 r1 = vfloat8(rb,rc); return Vec3vf8(unpacklo(r0,r1), // r00, r10, r01, r11, r10, r20, r11, r21 shuffle<1,1,2,2>(r0), // r01, r01, r02, r02, r11, r11, r12, r12 shuffle<0,1,1,2>(r1)); // r10, r11, r11, r12, r20, r21, r21, r22 } static __forceinline void gather(const float* const grid_x, const float* const grid_y, const float* const grid_z, const size_t line_offset, const size_t lines, Vec3vf8& v0_o, Vec3vf8& v1_o, Vec3vf8& v2_o) { const Vec3vf8 tri_v012_x = gather(grid_x,line_offset,lines); const Vec3vf8 tri_v012_y = gather(grid_y,line_offset,lines); const Vec3vf8 tri_v012_z = gather(grid_z,line_offset,lines); v0_o = Vec3vf8(tri_v012_x[0],tri_v012_y[0],tri_v012_z[0]); v1_o = Vec3vf8(tri_v012_x[1],tri_v012_y[1],tri_v012_z[1]); v2_o = Vec3vf8(tri_v012_x[2],tri_v012_y[2],tri_v012_z[2]); } }; #endif template<typename vfloat> static __forceinline Vec2<vfloat> decodeUV(const vfloat& uv) { typedef typename vfloat::Int vint; const vint iu = asInt(uv) & 0xffff; const vint iv = srl(asInt(uv),16); const vfloat u = (vfloat)iu * vfloat(8.0f/0x10000); const vfloat v = (vfloat)iv * vfloat(8.0f/0x10000); return Vec2<vfloat>(u,v); } __forceinline unsigned int geomID() const { return _geomID; } __forceinline unsigned int primID() const { return _primID; } public: BVH4::NodeRef troot; #if !defined(__64BIT__) unsigned align1; #endif unsigned time_steps; unsigned width; unsigned height; unsigned dim_offset; unsigned _geomID; unsigned _primID; unsigned align2; unsigned gridOffset; unsigned gridBytes; unsigned rootOffset; char data[1]; //!< after the struct we first store the BVH, then the grid, and finally the roots }; } }