/**************************************************************************/ /* visual_server_scene.h */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #ifndef VISUAL_SERVER_SCENE_H #define VISUAL_SERVER_SCENE_H #include "servers/visual/rasterizer.h" #include "core/math/bvh.h" #include "core/math/geometry.h" #include "core/math/octree.h" #include "core/os/semaphore.h" #include "core/os/thread.h" #include "core/safe_refcount.h" #include "core/self_list.h" #include "portals/portal_renderer.h" #include "servers/arvr/arvr_interface.h" class VisualServerScene { public: enum { MAX_INSTANCE_CULL = 65536, MAX_LIGHTS_CULLED = 4096, MAX_REFLECTION_PROBES_CULLED = 4096, MAX_ROOM_CULL = 32, MAX_EXTERIOR_PORTALS = 128, }; uint64_t render_pass; static VisualServerScene *singleton; /* EVENT QUEUING */ void tick(); void pre_draw(bool p_will_draw); /* CAMERA API */ struct Scenario; struct Camera : public RID_Data { enum Type { PERSPECTIVE, ORTHOGONAL, FRUSTUM }; Type type; float fov; float znear, zfar; float size; Vector2 offset; uint32_t visible_layers; RID env; // transform_prev is only used when using fixed timestep interpolation Transform transform; Transform transform_prev; bool interpolated : 1; bool on_interpolate_transform_list : 1; bool vaspect : 1; TransformInterpolator::Method interpolation_method : 3; int32_t previous_room_id_hint; Transform get_transform_interpolated() const; Camera() { visible_layers = 0xFFFFFFFF; fov = 70; type = PERSPECTIVE; znear = 0.05; zfar = 100; size = 1.0; offset = Vector2(); vaspect = false; previous_room_id_hint = -1; interpolated = true; on_interpolate_transform_list = false; interpolation_method = TransformInterpolator::INTERP_LERP; } }; mutable RID_Owner camera_owner; virtual RID camera_create(); virtual void camera_set_perspective(RID p_camera, float p_fovy_degrees, float p_z_near, float p_z_far); virtual void camera_set_orthogonal(RID p_camera, float p_size, float p_z_near, float p_z_far); virtual void camera_set_frustum(RID p_camera, float p_size, Vector2 p_offset, float p_z_near, float p_z_far); virtual void camera_set_transform(RID p_camera, const Transform &p_transform); virtual void camera_set_interpolated(RID p_camera, bool p_interpolated); virtual void camera_reset_physics_interpolation(RID p_camera); virtual void camera_set_cull_mask(RID p_camera, uint32_t p_layers); virtual void camera_set_environment(RID p_camera, RID p_env); virtual void camera_set_use_vertical_aspect(RID p_camera, bool p_enable); /* SCENARIO API */ struct Instance; // common interface for all spatial partitioning schemes // this is a bit excessive boilerplatewise but can be removed if we decide to stick with one method // note this is actually the BVH id +1, so that visual server can test against zero // for validity to maintain compatibility with octree (where 0 indicates invalid) typedef uint32_t SpatialPartitionID; class SpatialPartitioningScene { public: virtual SpatialPartitionID create(Instance *p_userdata, const AABB &p_aabb = AABB(), int p_subindex = 0, bool p_pairable = false, uint32_t p_pairable_type = 0, uint32_t pairable_mask = 1) = 0; virtual void erase(SpatialPartitionID p_handle) = 0; virtual void move(SpatialPartitionID p_handle, const AABB &p_aabb) = 0; virtual void activate(SpatialPartitionID p_handle, const AABB &p_aabb) {} virtual void deactivate(SpatialPartitionID p_handle) {} virtual void force_collision_check(SpatialPartitionID p_handle) {} virtual void update() {} virtual void update_collisions() {} virtual void set_pairable(Instance *p_instance, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask) = 0; virtual int cull_convex(const Vector &p_convex, Instance **p_result_array, int p_result_max, uint32_t p_mask = 0xFFFFFFFF) = 0; virtual int cull_aabb(const AABB &p_aabb, Instance **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF) = 0; virtual int cull_segment(const Vector3 &p_from, const Vector3 &p_to, Instance **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF) = 0; typedef void *(*PairCallback)(void *, uint32_t, Instance *, int, uint32_t, Instance *, int); typedef void (*UnpairCallback)(void *, uint32_t, Instance *, int, uint32_t, Instance *, int, void *); virtual void set_pair_callback(PairCallback p_callback, void *p_userdata) = 0; virtual void set_unpair_callback(UnpairCallback p_callback, void *p_userdata) = 0; // bvh specific virtual void params_set_node_expansion(real_t p_value) {} virtual void params_set_pairing_expansion(real_t p_value) {} // octree specific virtual void set_balance(float p_balance) {} virtual ~SpatialPartitioningScene() {} }; class SpatialPartitioningScene_Octree : public SpatialPartitioningScene { Octree_CL _octree; public: SpatialPartitionID create(Instance *p_userdata, const AABB &p_aabb = AABB(), int p_subindex = 0, bool p_pairable = false, uint32_t p_pairable_type = 0, uint32_t pairable_mask = 1); void erase(SpatialPartitionID p_handle); void move(SpatialPartitionID p_handle, const AABB &p_aabb); void set_pairable(Instance *p_instance, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask); int cull_convex(const Vector &p_convex, Instance **p_result_array, int p_result_max, uint32_t p_mask = 0xFFFFFFFF); int cull_aabb(const AABB &p_aabb, Instance **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF); int cull_segment(const Vector3 &p_from, const Vector3 &p_to, Instance **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF); void set_pair_callback(PairCallback p_callback, void *p_userdata); void set_unpair_callback(UnpairCallback p_callback, void *p_userdata); void set_balance(float p_balance); }; class SpatialPartitioningScene_BVH : public SpatialPartitioningScene { template class UserPairTestFunction { public: static bool user_pair_check(const T *p_a, const T *p_b) { // return false if no collision, decided by masks etc return true; } }; template class UserCullTestFunction { // write this logic once for use in all routines // double check this as a possible source of bugs in future. static bool _cull_pairing_mask_test_hit(uint32_t p_maskA, uint32_t p_typeA, uint32_t p_maskB, uint32_t p_typeB) { // double check this as a possible source of bugs in future. bool A_match_B = p_maskA & p_typeB; if (!A_match_B) { bool B_match_A = p_maskB & p_typeA; if (!B_match_A) { return false; } } return true; } public: static bool user_cull_check(const T *p_a, const T *p_b) { DEV_ASSERT(p_a); DEV_ASSERT(p_b); uint32_t a_mask = p_a->bvh_pairable_mask; uint32_t a_type = p_a->bvh_pairable_type; uint32_t b_mask = p_b->bvh_pairable_mask; uint32_t b_type = p_b->bvh_pairable_type; if (!_cull_pairing_mask_test_hit(a_mask, a_type, b_mask, b_type)) { return false; } return true; } }; private: // Note that SpatialPartitionIDs are +1 based when stored in visual server, to enable 0 to indicate invalid ID. BVH_Manager, UserCullTestFunction> _bvh; Instance *_dummy_cull_object; public: SpatialPartitioningScene_BVH(); ~SpatialPartitioningScene_BVH(); SpatialPartitionID create(Instance *p_userdata, const AABB &p_aabb = AABB(), int p_subindex = 0, bool p_pairable = false, uint32_t p_pairable_type = 0, uint32_t p_pairable_mask = 1); void erase(SpatialPartitionID p_handle); void move(SpatialPartitionID p_handle, const AABB &p_aabb); void activate(SpatialPartitionID p_handle, const AABB &p_aabb); void deactivate(SpatialPartitionID p_handle); void force_collision_check(SpatialPartitionID p_handle); void update(); void update_collisions(); void set_pairable(Instance *p_instance, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask); int cull_convex(const Vector &p_convex, Instance **p_result_array, int p_result_max, uint32_t p_mask = 0xFFFFFFFF); int cull_aabb(const AABB &p_aabb, Instance **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF); int cull_segment(const Vector3 &p_from, const Vector3 &p_to, Instance **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF); void set_pair_callback(PairCallback p_callback, void *p_userdata); void set_unpair_callback(UnpairCallback p_callback, void *p_userdata); void params_set_node_expansion(real_t p_value) { _bvh.params_set_node_expansion(p_value); } void params_set_pairing_expansion(real_t p_value) { _bvh.params_set_pairing_expansion(p_value); } }; struct Scenario : RID_Data { VS::ScenarioDebugMode debug; RID self; SpatialPartitioningScene *sps; PortalRenderer _portal_renderer; List directional_lights; RID environment; RID fallback_environment; RID reflection_probe_shadow_atlas; RID reflection_atlas; SelfList::List instances; Scenario(); ~Scenario() { memdelete(sps); } }; mutable RID_Owner scenario_owner; static void *_instance_pair(void *p_self, SpatialPartitionID, Instance *p_A, int, SpatialPartitionID, Instance *p_B, int); static void _instance_unpair(void *p_self, SpatialPartitionID, Instance *p_A, int, SpatialPartitionID, Instance *p_B, int, void *); virtual RID scenario_create(); virtual void scenario_set_debug(RID p_scenario, VS::ScenarioDebugMode p_debug_mode); virtual void scenario_set_environment(RID p_scenario, RID p_environment); virtual void scenario_set_fallback_environment(RID p_scenario, RID p_environment); virtual void scenario_set_reflection_atlas_size(RID p_scenario, int p_size, int p_subdiv); /* INSTANCING API */ struct InstanceBaseData { virtual ~InstanceBaseData() {} }; struct Instance : RasterizerScene::InstanceBase { RID self; //scenario stuff SpatialPartitionID spatial_partition_id; // rooms & portals OcclusionHandle occlusion_handle; // handle of instance in occlusion system (or 0) VisualServer::InstancePortalMode portal_mode; Scenario *scenario; SelfList scenario_item; //aabb stuff bool update_aabb; bool update_materials; SelfList update_item; AABB aabb; AABB transformed_aabb; AABB *custom_aabb; // would using aabb directly with a bool be better? float sorting_offset; bool use_aabb_center; float extra_margin; uint32_t object_id; float lod_begin; float lod_end; float lod_begin_hysteresis; float lod_end_hysteresis; RID lod_instance; // These are used for the user cull testing function // in the BVH, this is precached rather than recalculated each time. uint32_t bvh_pairable_mask; uint32_t bvh_pairable_type; uint64_t last_render_pass; uint64_t last_frame_pass; uint64_t version; // changes to this, and changes to base increase version InstanceBaseData *base_data; virtual void base_removed() { singleton->instance_set_base(self, RID()); } virtual void base_changed(bool p_aabb, bool p_materials) { singleton->_instance_queue_update(this, p_aabb, p_materials); } Instance() : scenario_item(this), update_item(this) { spatial_partition_id = 0; scenario = nullptr; update_aabb = false; update_materials = false; extra_margin = 0; object_id = 0; visible = true; occlusion_handle = 0; portal_mode = VisualServer::InstancePortalMode::INSTANCE_PORTAL_MODE_STATIC; lod_begin = 0; lod_end = 0; lod_begin_hysteresis = 0; lod_end_hysteresis = 0; bvh_pairable_mask = 0; bvh_pairable_type = 0; last_render_pass = 0; last_frame_pass = 0; version = 1; base_data = nullptr; custom_aabb = nullptr; sorting_offset = 0.0f; use_aabb_center = false; } ~Instance() { if (base_data) { memdelete(base_data); } if (custom_aabb) { memdelete(custom_aabb); } } }; SelfList::List _instance_update_list; // fixed timestep interpolation virtual void set_physics_interpolation_enabled(bool p_enabled); struct InterpolationData { void notify_free_camera(RID p_rid, Camera &r_camera); void notify_free_instance(RID p_rid, Instance &r_instance); LocalVector instance_interpolate_update_list; LocalVector instance_transform_update_lists[2]; LocalVector *instance_transform_update_list_curr = &instance_transform_update_lists[0]; LocalVector *instance_transform_update_list_prev = &instance_transform_update_lists[1]; LocalVector instance_teleport_list; LocalVector camera_transform_update_lists[2]; LocalVector *camera_transform_update_list_curr = &camera_transform_update_lists[0]; LocalVector *camera_transform_update_list_prev = &camera_transform_update_lists[1]; LocalVector camera_teleport_list; bool interpolation_enabled = false; } _interpolation_data; void _instance_queue_update(Instance *p_instance, bool p_update_aabb, bool p_update_materials = false); struct InstanceGeometryData : public InstanceBaseData { List lighting; bool lighting_dirty; bool can_cast_shadows; bool material_is_animated; List reflection_probes; bool reflection_dirty; List gi_probes; bool gi_probes_dirty; List lightmap_captures; InstanceGeometryData() { lighting_dirty = true; reflection_dirty = true; can_cast_shadows = true; material_is_animated = true; gi_probes_dirty = true; } }; struct InstanceReflectionProbeData : public InstanceBaseData { Instance *owner; struct PairInfo { List::Element *L; //reflection iterator in geometry Instance *geometry; }; List geometries; RID instance; bool reflection_dirty; SelfList update_list; int render_step; int32_t previous_room_id_hint; InstanceReflectionProbeData() : update_list(this) { reflection_dirty = true; render_step = -1; previous_room_id_hint = -1; } }; SelfList::List reflection_probe_render_list; struct InstanceLightData : public InstanceBaseData { struct PairInfo { List::Element *L; //light iterator in geometry Instance *geometry; }; RID instance; uint64_t last_version; List::Element *D; // directional light in scenario bool shadow_dirty; List geometries; Instance *baked_light; int32_t previous_room_id_hint; InstanceLightData() { shadow_dirty = true; D = nullptr; last_version = 0; baked_light = nullptr; previous_room_id_hint = -1; } }; struct InstanceGIProbeData : public InstanceBaseData { Instance *owner; struct PairInfo { List::Element *L; //gi probe iterator in geometry Instance *geometry; }; List geometries; Set lights; struct LightCache { VS::LightType type; Transform transform; Color color; float energy; float radius; float attenuation; float spot_angle; float spot_attenuation; bool visible; bool operator==(const LightCache &p_cache) { return (type == p_cache.type && transform == p_cache.transform && color == p_cache.color && energy == p_cache.energy && radius == p_cache.radius && attenuation == p_cache.attenuation && spot_angle == p_cache.spot_angle && spot_attenuation == p_cache.spot_attenuation && visible == p_cache.visible); } bool operator!=(const LightCache &p_cache) { return !operator==(p_cache); } LightCache() { type = VS::LIGHT_DIRECTIONAL; energy = 1.0; radius = 1.0; attenuation = 1.0; spot_angle = 1.0; spot_attenuation = 1.0; visible = true; } }; struct LocalData { uint16_t pos[3]; uint16_t energy[3]; //using 0..1024 for float range 0..1. integer is needed for deterministic add/remove of lights }; struct CompBlockS3TC { uint32_t offset; //offset in mipmap uint32_t source_count; //sources uint32_t sources[16]; //id for each source uint8_t alpha[8]; //alpha block is pre-computed }; struct Dynamic { Map light_cache; Map light_cache_changes; PoolVector light_data; PoolVector local_data; Vector> level_cell_lists; RID probe_data; bool enabled; int bake_dynamic_range; RasterizerStorage::GIProbeCompression compression; Vector> mipmaps_3d; Vector> mipmaps_s3tc; //for s3tc int updating_stage; float propagate; int grid_size[3]; Transform light_to_cell_xform; } dynamic; RID probe_instance; bool invalid; uint32_t base_version; SelfList update_element; InstanceGIProbeData() : update_element(this) { invalid = true; base_version = 0; dynamic.updating_stage = GI_UPDATE_STAGE_CHECK; } }; SelfList::List gi_probe_update_list; struct InstanceLightmapCaptureData : public InstanceBaseData { struct PairInfo { List::Element *L; //iterator in geometry Instance *geometry; }; List geometries; Set users; InstanceLightmapCaptureData() { } }; int instance_cull_count; Instance *instance_cull_result[MAX_INSTANCE_CULL]; Instance *instance_shadow_cull_result[MAX_INSTANCE_CULL]; //used for generating shadowmaps Instance *light_cull_result[MAX_LIGHTS_CULLED]; RID light_instance_cull_result[MAX_LIGHTS_CULLED]; int light_cull_count; int directional_light_count; RID reflection_probe_instance_cull_result[MAX_REFLECTION_PROBES_CULLED]; int reflection_probe_cull_count; RID_Owner instance_owner; virtual RID instance_create(); virtual void instance_set_base(RID p_instance, RID p_base); virtual void instance_set_scenario(RID p_instance, RID p_scenario); virtual void instance_set_layer_mask(RID p_instance, uint32_t p_mask); virtual void instance_set_pivot_data(RID p_instance, float p_sorting_offset, bool p_use_aabb_center); virtual void instance_set_transform(RID p_instance, const Transform &p_transform); virtual void instance_set_interpolated(RID p_instance, bool p_interpolated); virtual void instance_reset_physics_interpolation(RID p_instance); virtual void instance_attach_object_instance_id(RID p_instance, ObjectID p_id); virtual void instance_set_blend_shape_weight(RID p_instance, int p_shape, float p_weight); virtual void instance_set_surface_material(RID p_instance, int p_surface, RID p_material); virtual void instance_set_visible(RID p_instance, bool p_visible); virtual void instance_set_use_lightmap(RID p_instance, RID p_lightmap_instance, RID p_lightmap, int p_lightmap_slice, const Rect2 &p_lightmap_uv_rect); virtual void instance_set_custom_aabb(RID p_instance, AABB p_aabb); virtual void instance_attach_skeleton(RID p_instance, RID p_skeleton); virtual void instance_set_exterior(RID p_instance, bool p_enabled); virtual void instance_set_extra_visibility_margin(RID p_instance, real_t p_margin); // Portals virtual void instance_set_portal_mode(RID p_instance, VisualServer::InstancePortalMode p_mode); bool _instance_get_transformed_aabb(RID p_instance, AABB &r_aabb); bool _instance_get_transformed_aabb_for_occlusion(VSInstance *p_instance, AABB &r_aabb) const { r_aabb = ((Instance *)p_instance)->transformed_aabb; return ((Instance *)p_instance)->portal_mode != VisualServer::INSTANCE_PORTAL_MODE_GLOBAL; } void *_instance_get_from_rid(RID p_instance); bool _instance_cull_check(VSInstance *p_instance, uint32_t p_cull_mask) const { uint32_t pairable_type = 1 << ((Instance *)p_instance)->base_type; return pairable_type & p_cull_mask; } ObjectID _instance_get_object_ID(VSInstance *p_instance) const { if (p_instance) { return ((Instance *)p_instance)->object_id; } return 0; } private: void _instance_create_occlusion_rep(Instance *p_instance); void _instance_destroy_occlusion_rep(Instance *p_instance); public: struct Ghost : RID_Data { // all interactions with actual ghosts are indirect, as the ghost is part of the scenario Scenario *scenario = nullptr; uint32_t object_id = 0; RGhostHandle rghost_handle = 0; // handle in occlusion system (or 0) AABB aabb; virtual ~Ghost() { if (scenario) { if (rghost_handle) { scenario->_portal_renderer.rghost_destroy(rghost_handle); rghost_handle = 0; } scenario = nullptr; } } }; RID_Owner ghost_owner; virtual RID ghost_create(); virtual void ghost_set_scenario(RID p_ghost, RID p_scenario, ObjectID p_id, const AABB &p_aabb); virtual void ghost_update(RID p_ghost, const AABB &p_aabb); private: void _ghost_create_occlusion_rep(Ghost *p_ghost); void _ghost_destroy_occlusion_rep(Ghost *p_ghost); public: /* PORTALS API */ struct Portal : RID_Data { // all interactions with actual portals are indirect, as the portal is part of the scenario uint32_t scenario_portal_id = 0; Scenario *scenario = nullptr; virtual ~Portal() { if (scenario) { scenario->_portal_renderer.portal_destroy(scenario_portal_id); scenario = nullptr; scenario_portal_id = 0; } } }; RID_Owner portal_owner; virtual RID portal_create(); virtual void portal_set_scenario(RID p_portal, RID p_scenario); virtual void portal_set_geometry(RID p_portal, const Vector &p_points, real_t p_margin); virtual void portal_link(RID p_portal, RID p_room_from, RID p_room_to, bool p_two_way); virtual void portal_set_active(RID p_portal, bool p_active); /* ROOMGROUPS API */ struct RoomGroup : RID_Data { // all interactions with actual roomgroups are indirect, as the roomgroup is part of the scenario uint32_t scenario_roomgroup_id = 0; Scenario *scenario = nullptr; virtual ~RoomGroup() { if (scenario) { scenario->_portal_renderer.roomgroup_destroy(scenario_roomgroup_id); scenario = nullptr; scenario_roomgroup_id = 0; } } }; RID_Owner roomgroup_owner; virtual RID roomgroup_create(); virtual void roomgroup_prepare(RID p_roomgroup, ObjectID p_roomgroup_object_id); virtual void roomgroup_set_scenario(RID p_roomgroup, RID p_scenario); virtual void roomgroup_add_room(RID p_roomgroup, RID p_room); /* OCCLUDERS API */ struct OccluderInstance : RID_Data { uint32_t scenario_occluder_id = 0; Scenario *scenario = nullptr; virtual ~OccluderInstance() { if (scenario) { scenario->_portal_renderer.occluder_instance_destroy(scenario_occluder_id); scenario = nullptr; scenario_occluder_id = 0; } } }; RID_Owner occluder_instance_owner; struct OccluderResource : RID_Data { uint32_t occluder_resource_id = 0; void destroy(PortalResources &r_portal_resources) { r_portal_resources.occluder_resource_destroy(occluder_resource_id); occluder_resource_id = 0; } virtual ~OccluderResource() { DEV_ASSERT(occluder_resource_id == 0); } }; RID_Owner occluder_resource_owner; virtual RID occluder_instance_create(); virtual void occluder_instance_set_scenario(RID p_occluder_instance, RID p_scenario); virtual void occluder_instance_link_resource(RID p_occluder_instance, RID p_occluder_resource); virtual void occluder_instance_set_transform(RID p_occluder_instance, const Transform &p_xform); virtual void occluder_instance_set_active(RID p_occluder_instance, bool p_active); virtual RID occluder_resource_create(); virtual void occluder_resource_prepare(RID p_occluder_resource, VisualServer::OccluderType p_type); virtual void occluder_resource_spheres_update(RID p_occluder_resource, const Vector &p_spheres); virtual void occluder_resource_mesh_update(RID p_occluder_resource, const Geometry::OccluderMeshData &p_mesh_data); virtual void set_use_occlusion_culling(bool p_enable); // editor only .. slow virtual Geometry::MeshData occlusion_debug_get_current_polys(RID p_scenario) const; const PortalResources &get_portal_resources() const { return _portal_resources; } PortalResources &get_portal_resources() { return _portal_resources; } /* ROOMS API */ struct Room : RID_Data { // all interactions with actual rooms are indirect, as the room is part of the scenario uint32_t scenario_room_id = 0; Scenario *scenario = nullptr; virtual ~Room() { if (scenario) { scenario->_portal_renderer.room_destroy(scenario_room_id); scenario = nullptr; scenario_room_id = 0; } } }; RID_Owner room_owner; virtual RID room_create(); virtual void room_set_scenario(RID p_room, RID p_scenario); virtual void room_add_instance(RID p_room, RID p_instance, const AABB &p_aabb, const Vector &p_object_pts); virtual void room_add_ghost(RID p_room, ObjectID p_object_id, const AABB &p_aabb); virtual void room_set_bound(RID p_room, ObjectID p_room_object_id, const Vector &p_convex, const AABB &p_aabb, const Vector &p_verts); virtual void room_prepare(RID p_room, int32_t p_priority); virtual void rooms_and_portals_clear(RID p_scenario); virtual void rooms_unload(RID p_scenario, String p_reason); virtual void rooms_finalize(RID p_scenario, bool p_generate_pvs, bool p_cull_using_pvs, bool p_use_secondary_pvs, bool p_use_signals, String p_pvs_filename, bool p_use_simple_pvs, bool p_log_pvs_generation); virtual void rooms_override_camera(RID p_scenario, bool p_override, const Vector3 &p_point, const Vector *p_convex); virtual void rooms_set_active(RID p_scenario, bool p_active); virtual void rooms_set_params(RID p_scenario, int p_portal_depth_limit, real_t p_roaming_expansion_margin); virtual void rooms_set_debug_feature(RID p_scenario, VisualServer::RoomsDebugFeature p_feature, bool p_active); virtual void rooms_update_gameplay_monitor(RID p_scenario, const Vector &p_camera_positions); // don't use this in a game virtual bool rooms_is_loaded(RID p_scenario) const; virtual void callbacks_register(VisualServerCallbacks *p_callbacks); VisualServerCallbacks *get_callbacks() const { return _visual_server_callbacks; } // don't use these in a game! virtual Vector instances_cull_aabb(const AABB &p_aabb, RID p_scenario = RID()) const; virtual Vector instances_cull_ray(const Vector3 &p_from, const Vector3 &p_to, RID p_scenario = RID()) const; virtual Vector instances_cull_convex(const Vector &p_convex, RID p_scenario = RID()) const; // internal (uses portals when available) int _cull_convex_from_point(Scenario *p_scenario, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, const Vector &p_convex, Instance **p_result_array, int p_result_max, int32_t &r_previous_room_id_hint, uint32_t p_mask = 0xFFFFFFFF); void _rooms_instance_update(Instance *p_instance, const AABB &p_aabb); virtual void instance_geometry_set_flag(RID p_instance, VS::InstanceFlags p_flags, bool p_enabled); virtual void instance_geometry_set_cast_shadows_setting(RID p_instance, VS::ShadowCastingSetting p_shadow_casting_setting); virtual void instance_geometry_set_material_override(RID p_instance, RID p_material); virtual void instance_geometry_set_material_overlay(RID p_instance, RID p_material); virtual void instance_geometry_set_draw_range(RID p_instance, float p_min, float p_max, float p_min_margin, float p_max_margin); virtual void instance_geometry_set_as_instance_lod(RID p_instance, RID p_as_lod_of_instance); _FORCE_INLINE_ void _update_instance(Instance *p_instance); _FORCE_INLINE_ void _update_instance_aabb(Instance *p_instance); _FORCE_INLINE_ void _update_dirty_instance(Instance *p_instance); _FORCE_INLINE_ void _update_instance_lightmap_captures(Instance *p_instance); _FORCE_INLINE_ bool _light_instance_update_shadow(Instance *p_instance, const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, RID p_shadow_atlas, Scenario *p_scenario); void _prepare_scene(const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, RID p_force_environment, uint32_t p_visible_layers, RID p_scenario, RID p_shadow_atlas, RID p_reflection_probe, int32_t &r_previous_room_id_hint); void _render_scene(const Transform p_cam_transform, const CameraMatrix &p_cam_projection, const int p_eye, bool p_cam_orthogonal, RID p_force_environment, RID p_scenario, RID p_shadow_atlas, RID p_reflection_probe, int p_reflection_probe_pass); void render_empty_scene(RID p_scenario, RID p_shadow_atlas); void render_camera(RID p_camera, RID p_scenario, Size2 p_viewport_size, RID p_shadow_atlas); void render_camera(Ref &p_interface, ARVRInterface::Eyes p_eye, RID p_camera, RID p_scenario, Size2 p_viewport_size, RID p_shadow_atlas); void update_dirty_instances(); // interpolation void update_interpolation_tick(bool p_process = true); void update_interpolation_frame(bool p_process = true); //probes struct GIProbeDataHeader { uint32_t version; uint32_t cell_subdiv; uint32_t width; uint32_t height; uint32_t depth; uint32_t cell_count; uint32_t leaf_cell_count; }; struct GIProbeDataCell { uint32_t children[8]; uint32_t albedo; uint32_t emission; uint32_t normal; uint32_t level_alpha; }; enum { GI_UPDATE_STAGE_CHECK, GI_UPDATE_STAGE_LIGHTING, GI_UPDATE_STAGE_UPLOADING, }; void _gi_probe_bake_thread(); static void _gi_probe_bake_threads(void *); bool probe_bake_thread_exit; Thread probe_bake_thread; Semaphore probe_bake_sem; Mutex probe_bake_mutex; List probe_bake_list; bool _render_reflection_probe_step(Instance *p_instance, int p_step); void _gi_probe_fill_local_data(int p_idx, int p_level, int p_x, int p_y, int p_z, const GIProbeDataCell *p_cell, const GIProbeDataHeader *p_header, InstanceGIProbeData::LocalData *p_local_data, Vector *prev_cell); _FORCE_INLINE_ uint32_t _gi_bake_find_cell(const GIProbeDataCell *cells, int x, int y, int z, int p_cell_subdiv); void _bake_gi_downscale_light(int p_idx, int p_level, const GIProbeDataCell *p_cells, const GIProbeDataHeader *p_header, InstanceGIProbeData::LocalData *p_local_data, float p_propagate); void _bake_gi_probe_light(const GIProbeDataHeader *header, const GIProbeDataCell *cells, InstanceGIProbeData::LocalData *local_data, const uint32_t *leaves, int p_leaf_count, const InstanceGIProbeData::LightCache &light_cache, int p_sign); void _bake_gi_probe(Instance *p_gi_probe); bool _check_gi_probe(Instance *p_gi_probe); void _setup_gi_probe(Instance *p_instance); void render_probes(); bool free(RID p_rid); private: bool _use_bvh; VisualServerCallbacks *_visual_server_callbacks; PortalResources _portal_resources; public: VisualServerScene(); virtual ~VisualServerScene(); }; #endif // VISUAL_SERVER_SCENE_H