// jpge.cpp - C++ class for JPEG compression. Richard Geldreich <richgel99@gmail.com> // Supports grayscale, H1V1, H2V1, and H2V2 chroma subsampling factors, one or two pass Huffman table optimization, libjpeg-style quality 1-100 quality factors. // Also supports using luma quantization tables for chroma. // // Released under two licenses. You are free to choose which license you want: // License 1: // Public Domain // // License 2: // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // v1.01, Dec. 18, 2010 - Initial release // v1.02, Apr. 6, 2011 - Removed 2x2 ordered dither in H2V1 chroma subsampling method load_block_16_8_8(). (The rounding factor was 2, when it should have been 1. Either way, it wasn't helping.) // v1.03, Apr. 16, 2011 - Added support for optimized Huffman code tables, optimized dynamic memory allocation down to only 1 alloc. // Also from Alex Evans: Added RGBA support, linear memory allocator (no longer needed in v1.03). // v1.04, May. 19, 2012: Forgot to set m_pFile ptr to NULL in cfile_stream::close(). Thanks to Owen Kaluza for reporting this bug. // Code tweaks to fix VS2008 static code analysis warnings (all looked harmless). // Code review revealed method load_block_16_8_8() (used for the non-default H2V1 sampling mode to downsample chroma) somehow didn't get the rounding factor fix from v1.02. // v1.05, March 25, 2020: Added Apache 2.0 alternate license #include "jpge.h" #include <stdlib.h> #include <string.h> #define JPGE_MAX(a,b) (((a)>(b))?(a):(b)) #define JPGE_MIN(a,b) (((a)<(b))?(a):(b)) namespace jpge { static inline void* jpge_malloc(size_t nSize) { return malloc(nSize); } static inline void jpge_free(void* p) { free(p); } // Various JPEG enums and tables. enum { M_SOF0 = 0xC0, M_DHT = 0xC4, M_SOI = 0xD8, M_EOI = 0xD9, M_SOS = 0xDA, M_DQT = 0xDB, M_APP0 = 0xE0 }; enum { DC_LUM_CODES = 12, AC_LUM_CODES = 256, DC_CHROMA_CODES = 12, AC_CHROMA_CODES = 256, MAX_HUFF_SYMBOLS = 257, MAX_HUFF_CODESIZE = 32 }; static uint8 s_zag[64] = { 0,1,8,16,9,2,3,10,17,24,32,25,18,11,4,5,12,19,26,33,40,48,41,34,27,20,13,6,7,14,21,28,35,42,49,56,57,50,43,36,29,22,15,23,30,37,44,51,58,59,52,45,38,31,39,46,53,60,61,54,47,55,62,63 }; static int16 s_std_lum_quant[64] = { 16,11,12,14,12,10,16,14,13,14,18,17,16,19,24,40,26,24,22,22,24,49,35,37,29,40,58,51,61,60,57,51,56,55,64,72,92,78,64,68,87,69,55,56,80,109,81,87,95,98,103,104,103,62,77,113,121,112,100,120,92,101,103,99 }; static int16 s_std_croma_quant[64] = { 17,18,18,24,21,24,47,26,26,47,99,66,56,66,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99 }; // Table from http://www.imagemagick.org/discourse-server/viewtopic.php?f=22&t=20333&p=98008#p98008 // This is mozjpeg's default table, in zag order. static int16 s_alt_quant[64] = { 16,16,16,16,17,16,18,20,20,18,25,27,24,27,25,37,34,31,31,34,37,56,40,43,40,43,40,56,85,53,62,53,53,62,53,85,75,91,74,69,74,91,75,135,106,94,94,106,135,156,131,124,131,156,189,169,169,189,238,226,238,311,311,418 }; static uint8 s_dc_lum_bits[17] = { 0,0,1,5,1,1,1,1,1,1,0,0,0,0,0,0,0 }; static uint8 s_dc_lum_val[DC_LUM_CODES] = { 0,1,2,3,4,5,6,7,8,9,10,11 }; static uint8 s_ac_lum_bits[17] = { 0,0,2,1,3,3,2,4,3,5,5,4,4,0,0,1,0x7d }; static uint8 s_ac_lum_val[AC_LUM_CODES] = { 0x01,0x02,0x03,0x00,0x04,0x11,0x05,0x12,0x21,0x31,0x41,0x06,0x13,0x51,0x61,0x07,0x22,0x71,0x14,0x32,0x81,0x91,0xa1,0x08,0x23,0x42,0xb1,0xc1,0x15,0x52,0xd1,0xf0, 0x24,0x33,0x62,0x72,0x82,0x09,0x0a,0x16,0x17,0x18,0x19,0x1a,0x25,0x26,0x27,0x28,0x29,0x2a,0x34,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48,0x49, 0x4a,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x83,0x84,0x85,0x86,0x87,0x88,0x89, 0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xc2,0xc3,0xc4,0xc5, 0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xe1,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8, 0xf9,0xfa }; static uint8 s_dc_chroma_bits[17] = { 0,0,3,1,1,1,1,1,1,1,1,1,0,0,0,0,0 }; static uint8 s_dc_chroma_val[DC_CHROMA_CODES] = { 0,1,2,3,4,5,6,7,8,9,10,11 }; static uint8 s_ac_chroma_bits[17] = { 0,0,2,1,2,4,4,3,4,7,5,4,4,0,1,2,0x77 }; static uint8 s_ac_chroma_val[AC_CHROMA_CODES] = { 0x00,0x01,0x02,0x03,0x11,0x04,0x05,0x21,0x31,0x06,0x12,0x41,0x51,0x07,0x61,0x71,0x13,0x22,0x32,0x81,0x08,0x14,0x42,0x91,0xa1,0xb1,0xc1,0x09,0x23,0x33,0x52,0xf0, 0x15,0x62,0x72,0xd1,0x0a,0x16,0x24,0x34,0xe1,0x25,0xf1,0x17,0x18,0x19,0x1a,0x26,0x27,0x28,0x29,0x2a,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48, 0x49,0x4a,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x82,0x83,0x84,0x85,0x86,0x87, 0x88,0x89,0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xc2,0xc3, 0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8, 0xf9,0xfa }; // Low-level helper functions. template <class T> inline void clear_obj(T& obj) { memset(&obj, 0, sizeof(obj)); } const int YR = 19595, YG = 38470, YB = 7471, CB_R = -11059, CB_G = -21709, CB_B = 32768, CR_R = 32768, CR_G = -27439, CR_B = -5329; static inline uint8 clamp(int i) { if (static_cast<uint>(i) > 255U) { if (i < 0) i = 0; else if (i > 255) i = 255; } return static_cast<uint8>(i); } static inline int left_shifti(int val, uint32 bits) { return static_cast<int>(static_cast<uint32>(val) << bits); } static void RGB_to_YCC(uint8* pDst, const uint8* pSrc, int num_pixels) { for (; num_pixels; pDst += 3, pSrc += 3, num_pixels--) { const int r = pSrc[0], g = pSrc[1], b = pSrc[2]; pDst[0] = static_cast<uint8>((r * YR + g * YG + b * YB + 32768) >> 16); pDst[1] = clamp(128 + ((r * CB_R + g * CB_G + b * CB_B + 32768) >> 16)); pDst[2] = clamp(128 + ((r * CR_R + g * CR_G + b * CR_B + 32768) >> 16)); } } static void RGB_to_Y(uint8* pDst, const uint8* pSrc, int num_pixels) { for (; num_pixels; pDst++, pSrc += 3, num_pixels--) pDst[0] = static_cast<uint8>((pSrc[0] * YR + pSrc[1] * YG + pSrc[2] * YB + 32768) >> 16); } static void RGBA_to_YCC(uint8* pDst, const uint8* pSrc, int num_pixels) { for (; num_pixels; pDst += 3, pSrc += 4, num_pixels--) { const int r = pSrc[0], g = pSrc[1], b = pSrc[2]; pDst[0] = static_cast<uint8>((r * YR + g * YG + b * YB + 32768) >> 16); pDst[1] = clamp(128 + ((r * CB_R + g * CB_G + b * CB_B + 32768) >> 16)); pDst[2] = clamp(128 + ((r * CR_R + g * CR_G + b * CR_B + 32768) >> 16)); } } static void RGBA_to_Y(uint8* pDst, const uint8* pSrc, int num_pixels) { for (; num_pixels; pDst++, pSrc += 4, num_pixels--) pDst[0] = static_cast<uint8>((pSrc[0] * YR + pSrc[1] * YG + pSrc[2] * YB + 32768) >> 16); } static void Y_to_YCC(uint8* pDst, const uint8* pSrc, int num_pixels) { for (; num_pixels; pDst += 3, pSrc++, num_pixels--) { pDst[0] = pSrc[0]; pDst[1] = 128; pDst[2] = 128; } } // Forward DCT - DCT derived from jfdctint. enum { CONST_BITS = 13, ROW_BITS = 2 }; #define DCT_DESCALE(x, n) (((x) + (((int32)1) << ((n) - 1))) >> (n)) #define DCT_MUL(var, c) (static_cast<int16>(var) * static_cast<int32>(c)) #define DCT1D(s0, s1, s2, s3, s4, s5, s6, s7) \ int32 t0 = s0 + s7, t7 = s0 - s7, t1 = s1 + s6, t6 = s1 - s6, t2 = s2 + s5, t5 = s2 - s5, t3 = s3 + s4, t4 = s3 - s4; \ int32 t10 = t0 + t3, t13 = t0 - t3, t11 = t1 + t2, t12 = t1 - t2; \ int32 u1 = DCT_MUL(t12 + t13, 4433); \ s2 = u1 + DCT_MUL(t13, 6270); \ s6 = u1 + DCT_MUL(t12, -15137); \ u1 = t4 + t7; \ int32 u2 = t5 + t6, u3 = t4 + t6, u4 = t5 + t7; \ int32 z5 = DCT_MUL(u3 + u4, 9633); \ t4 = DCT_MUL(t4, 2446); t5 = DCT_MUL(t5, 16819); \ t6 = DCT_MUL(t6, 25172); t7 = DCT_MUL(t7, 12299); \ u1 = DCT_MUL(u1, -7373); u2 = DCT_MUL(u2, -20995); \ u3 = DCT_MUL(u3, -16069); u4 = DCT_MUL(u4, -3196); \ u3 += z5; u4 += z5; \ s0 = t10 + t11; s1 = t7 + u1 + u4; s3 = t6 + u2 + u3; s4 = t10 - t11; s5 = t5 + u2 + u4; s7 = t4 + u1 + u3; static void DCT2D(int32* p) { int32 c, * q = p; for (c = 7; c >= 0; c--, q += 8) { int32 s0 = q[0], s1 = q[1], s2 = q[2], s3 = q[3], s4 = q[4], s5 = q[5], s6 = q[6], s7 = q[7]; DCT1D(s0, s1, s2, s3, s4, s5, s6, s7); q[0] = left_shifti(s0, ROW_BITS); q[1] = DCT_DESCALE(s1, CONST_BITS - ROW_BITS); q[2] = DCT_DESCALE(s2, CONST_BITS - ROW_BITS); q[3] = DCT_DESCALE(s3, CONST_BITS - ROW_BITS); q[4] = left_shifti(s4, ROW_BITS); q[5] = DCT_DESCALE(s5, CONST_BITS - ROW_BITS); q[6] = DCT_DESCALE(s6, CONST_BITS - ROW_BITS); q[7] = DCT_DESCALE(s7, CONST_BITS - ROW_BITS); } for (q = p, c = 7; c >= 0; c--, q++) { int32 s0 = q[0 * 8], s1 = q[1 * 8], s2 = q[2 * 8], s3 = q[3 * 8], s4 = q[4 * 8], s5 = q[5 * 8], s6 = q[6 * 8], s7 = q[7 * 8]; DCT1D(s0, s1, s2, s3, s4, s5, s6, s7); q[0 * 8] = DCT_DESCALE(s0, ROW_BITS + 3); q[1 * 8] = DCT_DESCALE(s1, CONST_BITS + ROW_BITS + 3); q[2 * 8] = DCT_DESCALE(s2, CONST_BITS + ROW_BITS + 3); q[3 * 8] = DCT_DESCALE(s3, CONST_BITS + ROW_BITS + 3); q[4 * 8] = DCT_DESCALE(s4, ROW_BITS + 3); q[5 * 8] = DCT_DESCALE(s5, CONST_BITS + ROW_BITS + 3); q[6 * 8] = DCT_DESCALE(s6, CONST_BITS + ROW_BITS + 3); q[7 * 8] = DCT_DESCALE(s7, CONST_BITS + ROW_BITS + 3); } } struct sym_freq { uint m_key, m_sym_index; }; // Radix sorts sym_freq[] array by 32-bit key m_key. Returns ptr to sorted values. static inline sym_freq* radix_sort_syms(uint num_syms, sym_freq* pSyms0, sym_freq* pSyms1) { const uint cMaxPasses = 4; uint32 hist[256 * cMaxPasses]; clear_obj(hist); for (uint i = 0; i < num_syms; i++) { uint freq = pSyms0[i].m_key; hist[freq & 0xFF]++; hist[256 + ((freq >> 8) & 0xFF)]++; hist[256 * 2 + ((freq >> 16) & 0xFF)]++; hist[256 * 3 + ((freq >> 24) & 0xFF)]++; } sym_freq* pCur_syms = pSyms0, * pNew_syms = pSyms1; uint total_passes = cMaxPasses; while ((total_passes > 1) && (num_syms == hist[(total_passes - 1) * 256])) total_passes--; for (uint pass_shift = 0, pass = 0; pass < total_passes; pass++, pass_shift += 8) { const uint32* pHist = &hist[pass << 8]; uint offsets[256], cur_ofs = 0; for (uint i = 0; i < 256; i++) { offsets[i] = cur_ofs; cur_ofs += pHist[i]; } for (uint i = 0; i < num_syms; i++) pNew_syms[offsets[(pCur_syms[i].m_key >> pass_shift) & 0xFF]++] = pCur_syms[i]; sym_freq* t = pCur_syms; pCur_syms = pNew_syms; pNew_syms = t; } return pCur_syms; } // calculate_minimum_redundancy() originally written by: Alistair Moffat, alistair@cs.mu.oz.au, Jyrki Katajainen, jyrki@diku.dk, November 1996. static void calculate_minimum_redundancy(sym_freq* A, int n) { int root, leaf, next, avbl, used, dpth; if (n == 0) return; else if (n == 1) { A[0].m_key = 1; return; } A[0].m_key += A[1].m_key; root = 0; leaf = 2; for (next = 1; next < n - 1; next++) { if (leaf >= n || A[root].m_key < A[leaf].m_key) { A[next].m_key = A[root].m_key; A[root++].m_key = next; } else A[next].m_key = A[leaf++].m_key; if (leaf >= n || (root < next && A[root].m_key < A[leaf].m_key)) { A[next].m_key += A[root].m_key; A[root++].m_key = next; } else A[next].m_key += A[leaf++].m_key; } A[n - 2].m_key = 0; for (next = n - 3; next >= 0; next--) A[next].m_key = A[A[next].m_key].m_key + 1; avbl = 1; used = dpth = 0; root = n - 2; next = n - 1; while (avbl > 0) { while (root >= 0 && (int)A[root].m_key == dpth) { used++; root--; } while (avbl > used) { A[next--].m_key = dpth; avbl--; } avbl = 2 * used; dpth++; used = 0; } } // Limits canonical Huffman code table's max code size to max_code_size. static void huffman_enforce_max_code_size(int* pNum_codes, int code_list_len, int max_code_size) { if (code_list_len <= 1) return; for (int i = max_code_size + 1; i <= MAX_HUFF_CODESIZE; i++) pNum_codes[max_code_size] += pNum_codes[i]; uint32 total = 0; for (int i = max_code_size; i > 0; i--) total += (((uint32)pNum_codes[i]) << (max_code_size - i)); while (total != (1UL << max_code_size)) { pNum_codes[max_code_size]--; for (int i = max_code_size - 1; i > 0; i--) { if (pNum_codes[i]) { pNum_codes[i]--; pNum_codes[i + 1] += 2; break; } } total--; } } // Generates an optimized offman table. void jpeg_encoder::optimize_huffman_table(int table_num, int table_len) { sym_freq syms0[MAX_HUFF_SYMBOLS], syms1[MAX_HUFF_SYMBOLS]; syms0[0].m_key = 1; syms0[0].m_sym_index = 0; // dummy symbol, assures that no valid code contains all 1's int num_used_syms = 1; const uint32* pSym_count = &m_huff_count[table_num][0]; for (int i = 0; i < table_len; i++) if (pSym_count[i]) { syms0[num_used_syms].m_key = pSym_count[i]; syms0[num_used_syms++].m_sym_index = i + 1; } sym_freq* pSyms = radix_sort_syms(num_used_syms, syms0, syms1); calculate_minimum_redundancy(pSyms, num_used_syms); // Count the # of symbols of each code size. int num_codes[1 + MAX_HUFF_CODESIZE]; clear_obj(num_codes); for (int i = 0; i < num_used_syms; i++) num_codes[pSyms[i].m_key]++; const uint JPGE_CODE_SIZE_LIMIT = 16; // the maximum possible size of a JPEG Huffman code (valid range is [9,16] - 9 vs. 8 because of the dummy symbol) huffman_enforce_max_code_size(num_codes, num_used_syms, JPGE_CODE_SIZE_LIMIT); // Compute m_huff_bits array, which contains the # of symbols per code size. clear_obj(m_huff_bits[table_num]); for (int i = 1; i <= (int)JPGE_CODE_SIZE_LIMIT; i++) m_huff_bits[table_num][i] = static_cast<uint8>(num_codes[i]); // Remove the dummy symbol added above, which must be in largest bucket. for (int i = JPGE_CODE_SIZE_LIMIT; i >= 1; i--) { if (m_huff_bits[table_num][i]) { m_huff_bits[table_num][i]--; break; } } // Compute the m_huff_val array, which contains the symbol indices sorted by code size (smallest to largest). for (int i = num_used_syms - 1; i >= 1; i--) m_huff_val[table_num][num_used_syms - 1 - i] = static_cast<uint8>(pSyms[i].m_sym_index - 1); } // JPEG marker generation. void jpeg_encoder::emit_byte(uint8 i) { m_all_stream_writes_succeeded = m_all_stream_writes_succeeded && m_pStream->put_obj(i); } void jpeg_encoder::emit_word(uint i) { emit_byte(uint8(i >> 8)); emit_byte(uint8(i & 0xFF)); } void jpeg_encoder::emit_marker(int marker) { emit_byte(uint8(0xFF)); emit_byte(uint8(marker)); } // Emit JFIF marker void jpeg_encoder::emit_jfif_app0() { emit_marker(M_APP0); emit_word(2 + 4 + 1 + 2 + 1 + 2 + 2 + 1 + 1); emit_byte(0x4A); emit_byte(0x46); emit_byte(0x49); emit_byte(0x46); /* Identifier: ASCII "JFIF" */ emit_byte(0); emit_byte(1); /* Major version */ emit_byte(1); /* Minor version */ emit_byte(0); /* Density unit */ emit_word(1); emit_word(1); emit_byte(0); /* No thumbnail image */ emit_byte(0); } // Emit quantization tables void jpeg_encoder::emit_dqt() { for (int i = 0; i < ((m_num_components == 3) ? 2 : 1); i++) { emit_marker(M_DQT); emit_word(64 + 1 + 2); emit_byte(static_cast<uint8>(i)); for (int j = 0; j < 64; j++) emit_byte(static_cast<uint8>(m_quantization_tables[i][j])); } } // Emit start of frame marker void jpeg_encoder::emit_sof() { emit_marker(M_SOF0); /* baseline */ emit_word(3 * m_num_components + 2 + 5 + 1); emit_byte(8); /* precision */ emit_word(m_image_y); emit_word(m_image_x); emit_byte(m_num_components); for (int i = 0; i < m_num_components; i++) { emit_byte(static_cast<uint8>(i + 1)); /* component ID */ emit_byte((m_comp_h_samp[i] << 4) + m_comp_v_samp[i]); /* h and v sampling */ emit_byte(i > 0); /* quant. table num */ } } // Emit Huffman table. void jpeg_encoder::emit_dht(uint8* bits, uint8* val, int index, bool ac_flag) { emit_marker(M_DHT); int length = 0; for (int i = 1; i <= 16; i++) length += bits[i]; emit_word(length + 2 + 1 + 16); emit_byte(static_cast<uint8>(index + (ac_flag << 4))); for (int i = 1; i <= 16; i++) emit_byte(bits[i]); for (int i = 0; i < length; i++) emit_byte(val[i]); } // Emit all Huffman tables. void jpeg_encoder::emit_dhts() { emit_dht(m_huff_bits[0 + 0], m_huff_val[0 + 0], 0, false); emit_dht(m_huff_bits[2 + 0], m_huff_val[2 + 0], 0, true); if (m_num_components == 3) { emit_dht(m_huff_bits[0 + 1], m_huff_val[0 + 1], 1, false); emit_dht(m_huff_bits[2 + 1], m_huff_val[2 + 1], 1, true); } } // emit start of scan void jpeg_encoder::emit_sos() { emit_marker(M_SOS); emit_word(2 * m_num_components + 2 + 1 + 3); emit_byte(m_num_components); for (int i = 0; i < m_num_components; i++) { emit_byte(static_cast<uint8>(i + 1)); if (i == 0) emit_byte((0 << 4) + 0); else emit_byte((1 << 4) + 1); } emit_byte(0); /* spectral selection */ emit_byte(63); emit_byte(0); } // Emit all markers at beginning of image file. void jpeg_encoder::emit_markers() { emit_marker(M_SOI); emit_jfif_app0(); emit_dqt(); emit_sof(); emit_dhts(); emit_sos(); } // Compute the actual canonical Huffman codes/code sizes given the JPEG huff bits and val arrays. void jpeg_encoder::compute_huffman_table(uint* codes, uint8* code_sizes, uint8* bits, uint8* val) { int i, l, last_p, si; uint8 huff_size[257]; uint huff_code[257]; uint code; int p = 0; for (l = 1; l <= 16; l++) for (i = 1; i <= bits[l]; i++) huff_size[p++] = (char)l; huff_size[p] = 0; last_p = p; // write sentinel code = 0; si = huff_size[0]; p = 0; while (huff_size[p]) { while (huff_size[p] == si) huff_code[p++] = code++; code <<= 1; si++; } memset(codes, 0, sizeof(codes[0]) * 256); memset(code_sizes, 0, sizeof(code_sizes[0]) * 256); for (p = 0; p < last_p; p++) { codes[val[p]] = huff_code[p]; code_sizes[val[p]] = huff_size[p]; } } // Quantization table generation. void jpeg_encoder::compute_quant_table(int32* pDst, int16* pSrc) { int32 q; if (m_params.m_quality < 50) q = 5000 / m_params.m_quality; else q = 200 - m_params.m_quality * 2; for (int i = 0; i < 64; i++) { int32 j = *pSrc++; j = (j * q + 50L) / 100L; *pDst++ = JPGE_MIN(JPGE_MAX(j, 1), 255); } } // Higher-level methods. void jpeg_encoder::first_pass_init() { m_bit_buffer = 0; m_bits_in = 0; memset(m_last_dc_val, 0, 3 * sizeof(m_last_dc_val[0])); m_mcu_y_ofs = 0; m_pass_num = 1; } bool jpeg_encoder::second_pass_init() { compute_huffman_table(&m_huff_codes[0 + 0][0], &m_huff_code_sizes[0 + 0][0], m_huff_bits[0 + 0], m_huff_val[0 + 0]); compute_huffman_table(&m_huff_codes[2 + 0][0], &m_huff_code_sizes[2 + 0][0], m_huff_bits[2 + 0], m_huff_val[2 + 0]); if (m_num_components > 1) { compute_huffman_table(&m_huff_codes[0 + 1][0], &m_huff_code_sizes[0 + 1][0], m_huff_bits[0 + 1], m_huff_val[0 + 1]); compute_huffman_table(&m_huff_codes[2 + 1][0], &m_huff_code_sizes[2 + 1][0], m_huff_bits[2 + 1], m_huff_val[2 + 1]); } first_pass_init(); emit_markers(); m_pass_num = 2; return true; } bool jpeg_encoder::jpg_open(int p_x_res, int p_y_res, int src_channels) { m_num_components = 3; switch (m_params.m_subsampling) { case Y_ONLY: { m_num_components = 1; m_comp_h_samp[0] = 1; m_comp_v_samp[0] = 1; m_mcu_x = 8; m_mcu_y = 8; break; } case H1V1: { m_comp_h_samp[0] = 1; m_comp_v_samp[0] = 1; m_comp_h_samp[1] = 1; m_comp_v_samp[1] = 1; m_comp_h_samp[2] = 1; m_comp_v_samp[2] = 1; m_mcu_x = 8; m_mcu_y = 8; break; } case H2V1: { m_comp_h_samp[0] = 2; m_comp_v_samp[0] = 1; m_comp_h_samp[1] = 1; m_comp_v_samp[1] = 1; m_comp_h_samp[2] = 1; m_comp_v_samp[2] = 1; m_mcu_x = 16; m_mcu_y = 8; break; } case H2V2: { m_comp_h_samp[0] = 2; m_comp_v_samp[0] = 2; m_comp_h_samp[1] = 1; m_comp_v_samp[1] = 1; m_comp_h_samp[2] = 1; m_comp_v_samp[2] = 1; m_mcu_x = 16; m_mcu_y = 16; } } m_image_x = p_x_res; m_image_y = p_y_res; m_image_bpp = src_channels; m_image_bpl = m_image_x * src_channels; m_image_x_mcu = (m_image_x + m_mcu_x - 1) & (~(m_mcu_x - 1)); m_image_y_mcu = (m_image_y + m_mcu_y - 1) & (~(m_mcu_y - 1)); m_image_bpl_xlt = m_image_x * m_num_components; m_image_bpl_mcu = m_image_x_mcu * m_num_components; m_mcus_per_row = m_image_x_mcu / m_mcu_x; if ((m_mcu_lines[0] = static_cast<uint8*>(jpge_malloc(m_image_bpl_mcu * m_mcu_y))) == NULL) return false; for (int i = 1; i < m_mcu_y; i++) m_mcu_lines[i] = m_mcu_lines[i - 1] + m_image_bpl_mcu; if (m_params.m_use_std_tables) { compute_quant_table(m_quantization_tables[0], s_std_lum_quant); compute_quant_table(m_quantization_tables[1], m_params.m_no_chroma_discrim_flag ? s_std_lum_quant : s_std_croma_quant); } else { compute_quant_table(m_quantization_tables[0], s_alt_quant); memcpy(m_quantization_tables[1], m_quantization_tables[0], sizeof(m_quantization_tables[1])); } m_out_buf_left = JPGE_OUT_BUF_SIZE; m_pOut_buf = m_out_buf; if (m_params.m_two_pass_flag) { clear_obj(m_huff_count); first_pass_init(); } else { memcpy(m_huff_bits[0 + 0], s_dc_lum_bits, 17); memcpy(m_huff_val[0 + 0], s_dc_lum_val, DC_LUM_CODES); memcpy(m_huff_bits[2 + 0], s_ac_lum_bits, 17); memcpy(m_huff_val[2 + 0], s_ac_lum_val, AC_LUM_CODES); memcpy(m_huff_bits[0 + 1], s_dc_chroma_bits, 17); memcpy(m_huff_val[0 + 1], s_dc_chroma_val, DC_CHROMA_CODES); memcpy(m_huff_bits[2 + 1], s_ac_chroma_bits, 17); memcpy(m_huff_val[2 + 1], s_ac_chroma_val, AC_CHROMA_CODES); if (!second_pass_init()) return false; // in effect, skip over the first pass } return m_all_stream_writes_succeeded; } void jpeg_encoder::load_block_8_8_grey(int x) { uint8* pSrc; sample_array_t* pDst = m_sample_array; x <<= 3; for (int i = 0; i < 8; i++, pDst += 8) { pSrc = m_mcu_lines[i] + x; pDst[0] = pSrc[0] - 128; pDst[1] = pSrc[1] - 128; pDst[2] = pSrc[2] - 128; pDst[3] = pSrc[3] - 128; pDst[4] = pSrc[4] - 128; pDst[5] = pSrc[5] - 128; pDst[6] = pSrc[6] - 128; pDst[7] = pSrc[7] - 128; } } void jpeg_encoder::load_block_8_8(int x, int y, int c) { uint8* pSrc; sample_array_t* pDst = m_sample_array; x = (x * (8 * 3)) + c; y <<= 3; for (int i = 0; i < 8; i++, pDst += 8) { pSrc = m_mcu_lines[y + i] + x; pDst[0] = pSrc[0 * 3] - 128; pDst[1] = pSrc[1 * 3] - 128; pDst[2] = pSrc[2 * 3] - 128; pDst[3] = pSrc[3 * 3] - 128; pDst[4] = pSrc[4 * 3] - 128; pDst[5] = pSrc[5 * 3] - 128; pDst[6] = pSrc[6 * 3] - 128; pDst[7] = pSrc[7 * 3] - 128; } } void jpeg_encoder::load_block_16_8(int x, int c) { uint8* pSrc1, * pSrc2; sample_array_t* pDst = m_sample_array; x = (x * (16 * 3)) + c; for (int i = 0; i < 16; i += 2, pDst += 8) { pSrc1 = m_mcu_lines[i + 0] + x; pSrc2 = m_mcu_lines[i + 1] + x; pDst[0] = ((pSrc1[0 * 3] + pSrc1[1 * 3] + pSrc2[0 * 3] + pSrc2[1 * 3] + 2) >> 2) - 128; pDst[1] = ((pSrc1[2 * 3] + pSrc1[3 * 3] + pSrc2[2 * 3] + pSrc2[3 * 3] + 2) >> 2) - 128; pDst[2] = ((pSrc1[4 * 3] + pSrc1[5 * 3] + pSrc2[4 * 3] + pSrc2[5 * 3] + 2) >> 2) - 128; pDst[3] = ((pSrc1[6 * 3] + pSrc1[7 * 3] + pSrc2[6 * 3] + pSrc2[7 * 3] + 2) >> 2) - 128; pDst[4] = ((pSrc1[8 * 3] + pSrc1[9 * 3] + pSrc2[8 * 3] + pSrc2[9 * 3] + 2) >> 2) - 128; pDst[5] = ((pSrc1[10 * 3] + pSrc1[11 * 3] + pSrc2[10 * 3] + pSrc2[11 * 3] + 2) >> 2) - 128; pDst[6] = ((pSrc1[12 * 3] + pSrc1[13 * 3] + pSrc2[12 * 3] + pSrc2[13 * 3] + 2) >> 2) - 128; pDst[7] = ((pSrc1[14 * 3] + pSrc1[15 * 3] + pSrc2[14 * 3] + pSrc2[15 * 3] + 2) >> 2) - 128; } } void jpeg_encoder::load_block_16_8_8(int x, int c) { uint8* pSrc1; sample_array_t* pDst = m_sample_array; x = (x * (16 * 3)) + c; for (int i = 0; i < 8; i++, pDst += 8) { pSrc1 = m_mcu_lines[i + 0] + x; pDst[0] = ((pSrc1[0 * 3] + pSrc1[1 * 3] + 1) >> 1) - 128; pDst[1] = ((pSrc1[2 * 3] + pSrc1[3 * 3] + 1) >> 1) - 128; pDst[2] = ((pSrc1[4 * 3] + pSrc1[5 * 3] + 1) >> 1) - 128; pDst[3] = ((pSrc1[6 * 3] + pSrc1[7 * 3] + 1) >> 1) - 128; pDst[4] = ((pSrc1[8 * 3] + pSrc1[9 * 3] + 1) >> 1) - 128; pDst[5] = ((pSrc1[10 * 3] + pSrc1[11 * 3] + 1) >> 1) - 128; pDst[6] = ((pSrc1[12 * 3] + pSrc1[13 * 3] + 1) >> 1) - 128; pDst[7] = ((pSrc1[14 * 3] + pSrc1[15 * 3] + 1) >> 1) - 128; } } void jpeg_encoder::load_quantized_coefficients(int component_num) { int32* q = m_quantization_tables[component_num > 0]; int16* pDst = m_coefficient_array; for (int i = 0; i < 64; i++) { sample_array_t j = m_sample_array[s_zag[i]]; if (j < 0) { if ((j = -j + (*q >> 1)) < *q) *pDst++ = 0; else *pDst++ = static_cast<int16>(-(j / *q)); } else { if ((j = j + (*q >> 1)) < *q) *pDst++ = 0; else *pDst++ = static_cast<int16>((j / *q)); } q++; } } void jpeg_encoder::flush_output_buffer() { if (m_out_buf_left != JPGE_OUT_BUF_SIZE) m_all_stream_writes_succeeded = m_all_stream_writes_succeeded && m_pStream->put_buf(m_out_buf, JPGE_OUT_BUF_SIZE - m_out_buf_left); m_pOut_buf = m_out_buf; m_out_buf_left = JPGE_OUT_BUF_SIZE; } void jpeg_encoder::put_bits(uint bits, uint len) { m_bit_buffer |= ((uint32)bits << (24 - (m_bits_in += len))); while (m_bits_in >= 8) { uint8 c; #define JPGE_PUT_BYTE(c) { *m_pOut_buf++ = (c); if (--m_out_buf_left == 0) flush_output_buffer(); } JPGE_PUT_BYTE(c = (uint8)((m_bit_buffer >> 16) & 0xFF)); if (c == 0xFF) JPGE_PUT_BYTE(0); m_bit_buffer <<= 8; m_bits_in -= 8; } } void jpeg_encoder::code_coefficients_pass_one(int component_num) { if (component_num >= 3) return; // just to shut up static analysis int i, run_len, nbits, temp1; int16* src = m_coefficient_array; uint32* dc_count = component_num ? m_huff_count[0 + 1] : m_huff_count[0 + 0], * ac_count = component_num ? m_huff_count[2 + 1] : m_huff_count[2 + 0]; temp1 = src[0] - m_last_dc_val[component_num]; m_last_dc_val[component_num] = src[0]; if (temp1 < 0) temp1 = -temp1; nbits = 0; while (temp1) { nbits++; temp1 >>= 1; } dc_count[nbits]++; for (run_len = 0, i = 1; i < 64; i++) { if ((temp1 = m_coefficient_array[i]) == 0) run_len++; else { while (run_len >= 16) { ac_count[0xF0]++; run_len -= 16; } if (temp1 < 0) temp1 = -temp1; nbits = 1; while (temp1 >>= 1) nbits++; ac_count[(run_len << 4) + nbits]++; run_len = 0; } } if (run_len) ac_count[0]++; } void jpeg_encoder::code_coefficients_pass_two(int component_num) { int i, j, run_len, nbits, temp1, temp2; int16* pSrc = m_coefficient_array; uint* codes[2]; uint8* code_sizes[2]; if (component_num == 0) { codes[0] = m_huff_codes[0 + 0]; codes[1] = m_huff_codes[2 + 0]; code_sizes[0] = m_huff_code_sizes[0 + 0]; code_sizes[1] = m_huff_code_sizes[2 + 0]; } else { codes[0] = m_huff_codes[0 + 1]; codes[1] = m_huff_codes[2 + 1]; code_sizes[0] = m_huff_code_sizes[0 + 1]; code_sizes[1] = m_huff_code_sizes[2 + 1]; } temp1 = temp2 = pSrc[0] - m_last_dc_val[component_num]; m_last_dc_val[component_num] = pSrc[0]; if (temp1 < 0) { temp1 = -temp1; temp2--; } nbits = 0; while (temp1) { nbits++; temp1 >>= 1; } put_bits(codes[0][nbits], code_sizes[0][nbits]); if (nbits) put_bits(temp2 & ((1 << nbits) - 1), nbits); for (run_len = 0, i = 1; i < 64; i++) { if ((temp1 = m_coefficient_array[i]) == 0) run_len++; else { while (run_len >= 16) { put_bits(codes[1][0xF0], code_sizes[1][0xF0]); run_len -= 16; } if ((temp2 = temp1) < 0) { temp1 = -temp1; temp2--; } nbits = 1; while (temp1 >>= 1) nbits++; j = (run_len << 4) + nbits; put_bits(codes[1][j], code_sizes[1][j]); put_bits(temp2 & ((1 << nbits) - 1), nbits); run_len = 0; } } if (run_len) put_bits(codes[1][0], code_sizes[1][0]); } void jpeg_encoder::code_block(int component_num) { DCT2D(m_sample_array); load_quantized_coefficients(component_num); if (m_pass_num == 1) code_coefficients_pass_one(component_num); else code_coefficients_pass_two(component_num); } void jpeg_encoder::process_mcu_row() { if (m_num_components == 1) { for (int i = 0; i < m_mcus_per_row; i++) { load_block_8_8_grey(i); code_block(0); } } else if ((m_comp_h_samp[0] == 1) && (m_comp_v_samp[0] == 1)) { for (int i = 0; i < m_mcus_per_row; i++) { load_block_8_8(i, 0, 0); code_block(0); load_block_8_8(i, 0, 1); code_block(1); load_block_8_8(i, 0, 2); code_block(2); } } else if ((m_comp_h_samp[0] == 2) && (m_comp_v_samp[0] == 1)) { for (int i = 0; i < m_mcus_per_row; i++) { load_block_8_8(i * 2 + 0, 0, 0); code_block(0); load_block_8_8(i * 2 + 1, 0, 0); code_block(0); load_block_16_8_8(i, 1); code_block(1); load_block_16_8_8(i, 2); code_block(2); } } else if ((m_comp_h_samp[0] == 2) && (m_comp_v_samp[0] == 2)) { for (int i = 0; i < m_mcus_per_row; i++) { load_block_8_8(i * 2 + 0, 0, 0); code_block(0); load_block_8_8(i * 2 + 1, 0, 0); code_block(0); load_block_8_8(i * 2 + 0, 1, 0); code_block(0); load_block_8_8(i * 2 + 1, 1, 0); code_block(0); load_block_16_8(i, 1); code_block(1); load_block_16_8(i, 2); code_block(2); } } } bool jpeg_encoder::terminate_pass_one() { optimize_huffman_table(0 + 0, DC_LUM_CODES); optimize_huffman_table(2 + 0, AC_LUM_CODES); if (m_num_components > 1) { optimize_huffman_table(0 + 1, DC_CHROMA_CODES); optimize_huffman_table(2 + 1, AC_CHROMA_CODES); } return second_pass_init(); } bool jpeg_encoder::terminate_pass_two() { put_bits(0x7F, 7); flush_output_buffer(); emit_marker(M_EOI); m_pass_num++; // purposely bump up m_pass_num, for debugging return true; } bool jpeg_encoder::process_end_of_image() { if (m_mcu_y_ofs) { if (m_mcu_y_ofs < 16) // check here just to shut up static analysis { for (int i = m_mcu_y_ofs; i < m_mcu_y; i++) memcpy(m_mcu_lines[i], m_mcu_lines[m_mcu_y_ofs - 1], m_image_bpl_mcu); } process_mcu_row(); } if (m_pass_num == 1) return terminate_pass_one(); else return terminate_pass_two(); } void jpeg_encoder::load_mcu(const void* pSrc) { const uint8* Psrc = reinterpret_cast<const uint8*>(pSrc); uint8* pDst = m_mcu_lines[m_mcu_y_ofs]; // OK to write up to m_image_bpl_xlt bytes to pDst if (m_num_components == 1) { if (m_image_bpp == 4) RGBA_to_Y(pDst, Psrc, m_image_x); else if (m_image_bpp == 3) RGB_to_Y(pDst, Psrc, m_image_x); else memcpy(pDst, Psrc, m_image_x); } else { if (m_image_bpp == 4) RGBA_to_YCC(pDst, Psrc, m_image_x); else if (m_image_bpp == 3) RGB_to_YCC(pDst, Psrc, m_image_x); else Y_to_YCC(pDst, Psrc, m_image_x); } // Possibly duplicate pixels at end of scanline if not a multiple of 8 or 16 if (m_num_components == 1) memset(m_mcu_lines[m_mcu_y_ofs] + m_image_bpl_xlt, pDst[m_image_bpl_xlt - 1], m_image_x_mcu - m_image_x); else { const uint8 y = pDst[m_image_bpl_xlt - 3 + 0], cb = pDst[m_image_bpl_xlt - 3 + 1], cr = pDst[m_image_bpl_xlt - 3 + 2]; uint8* q = m_mcu_lines[m_mcu_y_ofs] + m_image_bpl_xlt; for (int i = m_image_x; i < m_image_x_mcu; i++) { *q++ = y; *q++ = cb; *q++ = cr; } } if (++m_mcu_y_ofs == m_mcu_y) { process_mcu_row(); m_mcu_y_ofs = 0; } } void jpeg_encoder::clear() { m_mcu_lines[0] = NULL; m_pass_num = 0; m_all_stream_writes_succeeded = true; } jpeg_encoder::jpeg_encoder() { clear(); } jpeg_encoder::~jpeg_encoder() { deinit(); } bool jpeg_encoder::init(output_stream* pStream, int width, int height, int src_channels, const params& comp_params) { deinit(); if (((!pStream) || (width < 1) || (height < 1)) || ((src_channels != 1) && (src_channels != 3) && (src_channels != 4)) || (!comp_params.check())) return false; m_pStream = pStream; m_params = comp_params; return jpg_open(width, height, src_channels); } void jpeg_encoder::deinit() { jpge_free(m_mcu_lines[0]); clear(); } bool jpeg_encoder::process_scanline(const void* pScanline) { if ((m_pass_num < 1) || (m_pass_num > 2)) return false; if (m_all_stream_writes_succeeded) { if (!pScanline) { if (!process_end_of_image()) return false; } else { load_mcu(pScanline); } } return m_all_stream_writes_succeeded; } // Higher level wrappers/examples (optional). #include <stdio.h> class cfile_stream : public output_stream { cfile_stream(const cfile_stream&); cfile_stream& operator= (const cfile_stream&); FILE* m_pFile; bool m_bStatus; public: cfile_stream() : m_pFile(NULL), m_bStatus(false) { } virtual ~cfile_stream() { close(); } bool open(const char* pFilename) { close(); m_pFile = fopen(pFilename, "wb"); m_bStatus = (m_pFile != NULL); return m_bStatus; } bool close() { if (m_pFile) { if (fclose(m_pFile) == EOF) { m_bStatus = false; } m_pFile = NULL; } return m_bStatus; } virtual bool put_buf(const void* pBuf, int len) { m_bStatus = m_bStatus && (fwrite(pBuf, len, 1, m_pFile) == 1); return m_bStatus; } uint get_size() const { return m_pFile ? ftell(m_pFile) : 0; } }; // Writes JPEG image to file. bool compress_image_to_jpeg_file(const char* pFilename, int width, int height, int num_channels, const uint8* pImage_data, const params& comp_params) { cfile_stream dst_stream; if (!dst_stream.open(pFilename)) return false; jpge::jpeg_encoder dst_image; if (!dst_image.init(&dst_stream, width, height, num_channels, comp_params)) return false; for (uint pass_index = 0; pass_index < dst_image.get_total_passes(); pass_index++) { for (int i = 0; i < height; i++) { const uint8* pBuf = pImage_data + i * width * num_channels; if (!dst_image.process_scanline(pBuf)) return false; } if (!dst_image.process_scanline(NULL)) return false; } dst_image.deinit(); return dst_stream.close(); } class memory_stream : public output_stream { memory_stream(const memory_stream&); memory_stream& operator= (const memory_stream&); uint8* m_pBuf; uint m_buf_size, m_buf_ofs; public: memory_stream(void* pBuf, uint buf_size) : m_pBuf(static_cast<uint8*>(pBuf)), m_buf_size(buf_size), m_buf_ofs(0) { } virtual ~memory_stream() { } virtual bool put_buf(const void* pBuf, int len) { uint buf_remaining = m_buf_size - m_buf_ofs; if ((uint)len > buf_remaining) return false; memcpy(m_pBuf + m_buf_ofs, pBuf, len); m_buf_ofs += len; return true; } uint get_size() const { return m_buf_ofs; } }; bool compress_image_to_jpeg_file_in_memory(void* pDstBuf, int& buf_size, int width, int height, int num_channels, const uint8* pImage_data, const params& comp_params) { if ((!pDstBuf) || (!buf_size)) return false; memory_stream dst_stream(pDstBuf, buf_size); buf_size = 0; jpge::jpeg_encoder dst_image; if (!dst_image.init(&dst_stream, width, height, num_channels, comp_params)) return false; for (uint pass_index = 0; pass_index < dst_image.get_total_passes(); pass_index++) { for (int i = 0; i < height; i++) { const uint8* pScanline = pImage_data + i * width * num_channels; if (!dst_image.process_scanline(pScanline)) return false; } if (!dst_image.process_scanline(NULL)) return false; } dst_image.deinit(); buf_size = dst_stream.get_size(); return true; } } // namespace jpge