/**************************************************************************/ /* mesh.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "mesh.h" #include "core/math/convex_hull.h" #include "core/templates/pair.h" #include "scene/resources/surface_tool.h" #include "scene/resources/concave_polygon_shape_3d.h" #include "scene/resources/convex_polygon_shape_3d.h" void MeshConvexDecompositionSettings::set_max_concavity(real_t p_max_concavity) { max_concavity = CLAMP(p_max_concavity, 0.001, 1.0); } real_t MeshConvexDecompositionSettings::get_max_concavity() const { return max_concavity; }; void MeshConvexDecompositionSettings::set_symmetry_planes_clipping_bias(real_t p_symmetry_planes_clipping_bias) { symmetry_planes_clipping_bias = CLAMP(p_symmetry_planes_clipping_bias, 0.0, 1.0); }; real_t MeshConvexDecompositionSettings::get_symmetry_planes_clipping_bias() const { return symmetry_planes_clipping_bias; }; void MeshConvexDecompositionSettings::set_revolution_axes_clipping_bias(real_t p_revolution_axes_clipping_bias) { revolution_axes_clipping_bias = CLAMP(p_revolution_axes_clipping_bias, 0.0, 1.0); }; real_t MeshConvexDecompositionSettings::get_revolution_axes_clipping_bias() const { return revolution_axes_clipping_bias; }; void MeshConvexDecompositionSettings::set_min_volume_per_convex_hull(real_t p_min_volume_per_convex_hull) { min_volume_per_convex_hull = CLAMP(p_min_volume_per_convex_hull, 0.0001, 0.01); } real_t MeshConvexDecompositionSettings::get_min_volume_per_convex_hull() const { return min_volume_per_convex_hull; } void MeshConvexDecompositionSettings::set_resolution(uint32_t p_resolution) { resolution = p_resolution < 10'000 ? 10'000 : (p_resolution > 100'000 ? 100'000 : p_resolution); } uint32_t MeshConvexDecompositionSettings::get_resolution() const { return resolution; } void MeshConvexDecompositionSettings::set_max_num_vertices_per_convex_hull(uint32_t p_max_num_vertices_per_convex_hull) { max_num_vertices_per_convex_hull = p_max_num_vertices_per_convex_hull < 4 ? 4 : (p_max_num_vertices_per_convex_hull > 1024 ? 1024 : p_max_num_vertices_per_convex_hull); } uint32_t MeshConvexDecompositionSettings::get_max_num_vertices_per_convex_hull() const { return max_num_vertices_per_convex_hull; } void MeshConvexDecompositionSettings::set_plane_downsampling(uint32_t p_plane_downsampling) { plane_downsampling = p_plane_downsampling < 1 ? 1 : (p_plane_downsampling > 16 ? 16 : p_plane_downsampling); } uint32_t MeshConvexDecompositionSettings::get_plane_downsampling() const { return plane_downsampling; } void MeshConvexDecompositionSettings::set_convex_hull_downsampling(uint32_t p_convex_hull_downsampling) { convex_hull_downsampling = p_convex_hull_downsampling < 1 ? 1 : (p_convex_hull_downsampling > 16 ? 16 : p_convex_hull_downsampling); } uint32_t MeshConvexDecompositionSettings::get_convex_hull_downsampling() const { return convex_hull_downsampling; } void MeshConvexDecompositionSettings::set_normalize_mesh(bool p_normalize_mesh) { normalize_mesh = p_normalize_mesh; } bool MeshConvexDecompositionSettings::get_normalize_mesh() const { return normalize_mesh; } void MeshConvexDecompositionSettings::set_mode(Mode p_mode) { mode = p_mode; } MeshConvexDecompositionSettings::Mode MeshConvexDecompositionSettings::get_mode() const { return mode; } void MeshConvexDecompositionSettings::set_convex_hull_approximation(bool p_convex_hull_approximation) { convex_hull_approximation = p_convex_hull_approximation; } bool MeshConvexDecompositionSettings::get_convex_hull_approximation() const { return convex_hull_approximation; } void MeshConvexDecompositionSettings::set_max_convex_hulls(uint32_t p_max_convex_hulls) { max_convex_hulls = p_max_convex_hulls < 1 ? 1 : (p_max_convex_hulls > 32 ? 32 : p_max_convex_hulls); } uint32_t MeshConvexDecompositionSettings::get_max_convex_hulls() const { return max_convex_hulls; } void MeshConvexDecompositionSettings::set_project_hull_vertices(bool p_project_hull_vertices) { project_hull_vertices = p_project_hull_vertices; } bool MeshConvexDecompositionSettings::get_project_hull_vertices() const { return project_hull_vertices; } void MeshConvexDecompositionSettings::_bind_methods() { ClassDB::bind_method(D_METHOD("set_max_concavity", "max_concavity"), &MeshConvexDecompositionSettings::set_max_concavity); ClassDB::bind_method(D_METHOD("get_max_concavity"), &MeshConvexDecompositionSettings::get_max_concavity); ClassDB::bind_method(D_METHOD("set_symmetry_planes_clipping_bias", "symmetry_planes_clipping_bias"), &MeshConvexDecompositionSettings::set_symmetry_planes_clipping_bias); ClassDB::bind_method(D_METHOD("get_symmetry_planes_clipping_bias"), &MeshConvexDecompositionSettings::get_symmetry_planes_clipping_bias); ClassDB::bind_method(D_METHOD("set_revolution_axes_clipping_bias", "revolution_axes_clipping_bias"), &MeshConvexDecompositionSettings::set_revolution_axes_clipping_bias); ClassDB::bind_method(D_METHOD("get_revolution_axes_clipping_bias"), &MeshConvexDecompositionSettings::get_revolution_axes_clipping_bias); ClassDB::bind_method(D_METHOD("set_min_volume_per_convex_hull", "min_volume_per_convex_hull"), &MeshConvexDecompositionSettings::set_min_volume_per_convex_hull); ClassDB::bind_method(D_METHOD("get_min_volume_per_convex_hull"), &MeshConvexDecompositionSettings::get_min_volume_per_convex_hull); ClassDB::bind_method(D_METHOD("set_resolution", "min_volume_per_convex_hull"), &MeshConvexDecompositionSettings::set_resolution); ClassDB::bind_method(D_METHOD("get_resolution"), &MeshConvexDecompositionSettings::get_resolution); ClassDB::bind_method(D_METHOD("set_max_num_vertices_per_convex_hull", "max_num_vertices_per_convex_hull"), &MeshConvexDecompositionSettings::set_max_num_vertices_per_convex_hull); ClassDB::bind_method(D_METHOD("get_max_num_vertices_per_convex_hull"), &MeshConvexDecompositionSettings::get_max_num_vertices_per_convex_hull); ClassDB::bind_method(D_METHOD("set_plane_downsampling", "plane_downsampling"), &MeshConvexDecompositionSettings::set_plane_downsampling); ClassDB::bind_method(D_METHOD("get_plane_downsampling"), &MeshConvexDecompositionSettings::get_plane_downsampling); ClassDB::bind_method(D_METHOD("set_convex_hull_downsampling", "convex_hull_downsampling"), &MeshConvexDecompositionSettings::set_convex_hull_downsampling); ClassDB::bind_method(D_METHOD("get_convex_hull_downsampling"), &MeshConvexDecompositionSettings::get_convex_hull_downsampling); ClassDB::bind_method(D_METHOD("set_normalize_mesh", "normalize_mesh"), &MeshConvexDecompositionSettings::set_normalize_mesh); ClassDB::bind_method(D_METHOD("get_normalize_mesh"), &MeshConvexDecompositionSettings::get_normalize_mesh); ClassDB::bind_method(D_METHOD("set_mode", "mode"), &MeshConvexDecompositionSettings::set_mode); ClassDB::bind_method(D_METHOD("get_mode"), &MeshConvexDecompositionSettings::get_mode); ClassDB::bind_method(D_METHOD("set_convex_hull_approximation", "convex_hull_approximation"), &MeshConvexDecompositionSettings::set_convex_hull_approximation); ClassDB::bind_method(D_METHOD("get_convex_hull_approximation"), &MeshConvexDecompositionSettings::get_convex_hull_approximation); ClassDB::bind_method(D_METHOD("set_max_convex_hulls", "max_convex_hulls"), &MeshConvexDecompositionSettings::set_max_convex_hulls); ClassDB::bind_method(D_METHOD("get_max_convex_hulls"), &MeshConvexDecompositionSettings::get_max_convex_hulls); ClassDB::bind_method(D_METHOD("set_project_hull_vertices", "project_hull_vertices"), &MeshConvexDecompositionSettings::set_project_hull_vertices); ClassDB::bind_method(D_METHOD("get_project_hull_vertices"), &MeshConvexDecompositionSettings::get_project_hull_vertices); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "max_concavity", PROPERTY_HINT_RANGE, "0.001,1.0,0.001"), "set_max_concavity", "get_max_concavity"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "symmetry_planes_clipping_bias", PROPERTY_HINT_RANGE, "0.0,1.0,0.01"), "set_symmetry_planes_clipping_bias", "get_symmetry_planes_clipping_bias"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "revolution_axes_clipping_bias", PROPERTY_HINT_RANGE, "0.0,1.0,0.01"), "set_revolution_axes_clipping_bias", "get_revolution_axes_clipping_bias"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "min_volume_per_convex_hull", PROPERTY_HINT_RANGE, "0.0001,0.01,0.0001"), "set_min_volume_per_convex_hull", "get_min_volume_per_convex_hull"); ADD_PROPERTY(PropertyInfo(Variant::INT, "resolution"), "set_resolution", "get_resolution"); ADD_PROPERTY(PropertyInfo(Variant::INT, "max_num_vertices_per_convex_hull"), "set_max_num_vertices_per_convex_hull", "get_max_num_vertices_per_convex_hull"); ADD_PROPERTY(PropertyInfo(Variant::INT, "plane_downsampling", PROPERTY_HINT_RANGE, "1,16,1"), "set_plane_downsampling", "get_plane_downsampling"); ADD_PROPERTY(PropertyInfo(Variant::INT, "convex_hull_downsampling", PROPERTY_HINT_RANGE, "1,16,1"), "set_convex_hull_downsampling", "get_convex_hull_downsampling"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "normalize_mesh"), "set_normalize_mesh", "get_normalize_mesh"); ADD_PROPERTY(PropertyInfo(Variant::INT, "mode", PROPERTY_HINT_ENUM, "Voxel,Tetrahedron"), "set_mode", "get_mode"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "convex_hull_approximation"), "set_convex_hull_approximation", "get_convex_hull_approximation"); ADD_PROPERTY(PropertyInfo(Variant::INT, "max_convex_hulls"), "set_max_convex_hulls", "get_max_convex_hulls"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "project_hull_vertices"), "set_project_hull_vertices", "get_project_hull_vertices"); BIND_ENUM_CONSTANT(CONVEX_DECOMPOSITION_MODE_VOXEL); BIND_ENUM_CONSTANT(CONVEX_DECOMPOSITION_MODE_TETRAHEDRON); } Mesh::ConvexDecompositionFunc Mesh::convex_decomposition_function = nullptr; int Mesh::get_surface_count() const { int ret = 0; GDVIRTUAL_REQUIRED_CALL(_get_surface_count, ret); return ret; } int Mesh::surface_get_array_len(int p_idx) const { int ret = 0; GDVIRTUAL_REQUIRED_CALL(_surface_get_array_len, p_idx, ret); return ret; } int Mesh::surface_get_array_index_len(int p_idx) const { int ret = 0; GDVIRTUAL_REQUIRED_CALL(_surface_get_array_index_len, p_idx, ret); return ret; } Array Mesh::surface_get_arrays(int p_surface) const { Array ret; GDVIRTUAL_REQUIRED_CALL(_surface_get_arrays, p_surface, ret); return ret; } TypedArray Mesh::surface_get_blend_shape_arrays(int p_surface) const { TypedArray ret; GDVIRTUAL_REQUIRED_CALL(_surface_get_blend_shape_arrays, p_surface, ret); return ret; } Dictionary Mesh::surface_get_lods(int p_surface) const { Dictionary ret; GDVIRTUAL_REQUIRED_CALL(_surface_get_lods, p_surface, ret); return ret; } BitField Mesh::surface_get_format(int p_idx) const { uint32_t ret = 0; GDVIRTUAL_REQUIRED_CALL(_surface_get_format, p_idx, ret); return ret; } Mesh::PrimitiveType Mesh::surface_get_primitive_type(int p_idx) const { uint32_t ret = PRIMITIVE_MAX; GDVIRTUAL_REQUIRED_CALL(_surface_get_primitive_type, p_idx, ret); return (Mesh::PrimitiveType)ret; } void Mesh::surface_set_material(int p_idx, const Ref &p_material) { GDVIRTUAL_REQUIRED_CALL(_surface_set_material, p_idx, p_material); } Ref Mesh::surface_get_material(int p_idx) const { Ref ret; GDVIRTUAL_REQUIRED_CALL(_surface_get_material, p_idx, ret); return ret; } int Mesh::get_blend_shape_count() const { int ret = 0; GDVIRTUAL_REQUIRED_CALL(_get_blend_shape_count, ret); return ret; } StringName Mesh::get_blend_shape_name(int p_index) const { StringName ret; GDVIRTUAL_REQUIRED_CALL(_get_blend_shape_name, p_index, ret); return ret; } void Mesh::set_blend_shape_name(int p_index, const StringName &p_name) { GDVIRTUAL_REQUIRED_CALL(_set_blend_shape_name, p_index, p_name); } AABB Mesh::get_aabb() const { AABB ret; GDVIRTUAL_REQUIRED_CALL(_get_aabb, ret); return ret; } Ref Mesh::generate_triangle_mesh() const { if (triangle_mesh.is_valid()) { return triangle_mesh; } int faces_size = 0; for (int i = 0; i < get_surface_count(); i++) { switch (surface_get_primitive_type(i)) { case PRIMITIVE_TRIANGLES: { int len = (surface_get_format(i) & ARRAY_FORMAT_INDEX) ? surface_get_array_index_len(i) : surface_get_array_len(i); // Don't error if zero, it's valid (we'll just skip it later). ERR_CONTINUE_MSG((len % 3) != 0, vformat("Ignoring surface %d, incorrect %s count: %d (for PRIMITIVE_TRIANGLES).", i, (surface_get_format(i) & ARRAY_FORMAT_INDEX) ? "index" : "vertex", len)); faces_size += len; } break; case PRIMITIVE_TRIANGLE_STRIP: { int len = (surface_get_format(i) & ARRAY_FORMAT_INDEX) ? surface_get_array_index_len(i) : surface_get_array_len(i); // Don't error if zero, it's valid (we'll just skip it later). ERR_CONTINUE_MSG(len != 0 && len < 3, vformat("Ignoring surface %d, incorrect %s count: %d (for PRIMITIVE_TRIANGLE_STRIP).", i, (surface_get_format(i) & ARRAY_FORMAT_INDEX) ? "index" : "vertex", len)); faces_size += (len == 0) ? 0 : (len - 2) * 3; } break; default: { } break; } } if (faces_size == 0) { return triangle_mesh; } Vector faces; faces.resize(faces_size); Vector surface_indices; surface_indices.resize(faces_size / 3); Vector3 *facesw = faces.ptrw(); int32_t *surface_indicesw = surface_indices.ptrw(); int widx = 0; for (int i = 0; i < get_surface_count(); i++) { Mesh::PrimitiveType primitive = surface_get_primitive_type(i); if (primitive != PRIMITIVE_TRIANGLES && primitive != PRIMITIVE_TRIANGLE_STRIP) { continue; } int len = (surface_get_format(i) & ARRAY_FORMAT_INDEX) ? surface_get_array_index_len(i) : surface_get_array_len(i); if ((primitive == PRIMITIVE_TRIANGLES && (len == 0 || (len % 3) != 0)) || (primitive == PRIMITIVE_TRIANGLE_STRIP && len < 3) || (surface_get_format(i) & ARRAY_FLAG_USES_EMPTY_VERTEX_ARRAY)) { // Error was already shown, just skip (including zero). continue; } Array a = surface_get_arrays(i); ERR_FAIL_COND_V(a.is_empty(), Ref()); int vc = surface_get_array_len(i); Vector vertices = a[ARRAY_VERTEX]; ERR_FAIL_COND_V(vertices.is_empty(), Ref()); const Vector3 *vr = vertices.ptr(); int32_t from_index = widx / 3; if (surface_get_format(i) & ARRAY_FORMAT_INDEX) { int ic = surface_get_array_index_len(i); Vector indices = a[ARRAY_INDEX]; const int *ir = indices.ptr(); if (primitive == PRIMITIVE_TRIANGLES) { for (int j = 0; j < ic; j++) { int index = ir[j]; ERR_FAIL_COND_V(index >= vc, Ref()); facesw[widx++] = vr[index]; } } else { // PRIMITIVE_TRIANGLE_STRIP for (int j = 2; j < ic; j++) { facesw[widx++] = vr[ir[j - 2]]; facesw[widx++] = vr[ir[j - 1]]; facesw[widx++] = vr[ir[j]]; } } } else { if (primitive == PRIMITIVE_TRIANGLES) { for (int j = 0; j < vc; j++) { facesw[widx++] = vr[j]; } } else { // PRIMITIVE_TRIANGLE_STRIP for (int j = 2; j < vc; j++) { facesw[widx++] = vr[j - 2]; facesw[widx++] = vr[j - 1]; facesw[widx++] = vr[j]; } } } int32_t to_index = widx / 3; for (int j = from_index; j < to_index; j++) { surface_indicesw[j] = i; } } triangle_mesh = Ref(memnew(TriangleMesh)); triangle_mesh->create(faces); return triangle_mesh; } Ref Mesh::generate_surface_triangle_mesh(int p_surface) const { ERR_FAIL_INDEX_V(p_surface, get_surface_count(), Ref()); if (surface_triangle_meshes.size() != get_surface_count()) { surface_triangle_meshes.resize(get_surface_count()); } if (surface_triangle_meshes[p_surface].is_valid()) { return surface_triangle_meshes[p_surface]; } int facecount = 0; if (surface_get_primitive_type(p_surface) != PRIMITIVE_TRIANGLES) { return Ref(); } if (surface_get_format(p_surface) & ARRAY_FORMAT_INDEX) { facecount += surface_get_array_index_len(p_surface); } else { facecount += surface_get_array_len(p_surface); } Vector faces; faces.resize(facecount); Vector3 *facesw = faces.ptrw(); Array a = surface_get_arrays(p_surface); ERR_FAIL_COND_V(a.is_empty(), Ref()); int vc = surface_get_array_len(p_surface); Vector vertices = a[ARRAY_VERTEX]; const Vector3 *vr = vertices.ptr(); int widx = 0; if (surface_get_format(p_surface) & ARRAY_FORMAT_INDEX) { int ic = surface_get_array_index_len(p_surface); Vector indices = a[ARRAY_INDEX]; const int *ir = indices.ptr(); for (int j = 0; j < ic; j++) { int index = ir[j]; facesw[widx++] = vr[index]; } } else { for (int j = 0; j < vc; j++) { facesw[widx++] = vr[j]; } } Ref tr_mesh = Ref(memnew(TriangleMesh)); tr_mesh->create(faces); surface_triangle_meshes.set(p_surface, tr_mesh); return tr_mesh; } void Mesh::generate_debug_mesh_lines(Vector &r_lines) { if (debug_lines.size() > 0) { r_lines = debug_lines; return; } Ref tm = generate_triangle_mesh(); if (tm.is_null()) { return; } Vector triangle_indices; tm->get_indices(&triangle_indices); const int triangles_num = tm->get_triangles().size(); Vector vertices = tm->get_vertices(); debug_lines.resize(tm->get_triangles().size() * 6); // 3 lines x 2 points each line const int *ind_r = triangle_indices.ptr(); const Vector3 *ver_r = vertices.ptr(); for (int j = 0, x = 0, i = 0; i < triangles_num; j += 6, x += 3, ++i) { // Triangle line 1 debug_lines.write[j + 0] = ver_r[ind_r[x + 0]]; debug_lines.write[j + 1] = ver_r[ind_r[x + 1]]; // Triangle line 2 debug_lines.write[j + 2] = ver_r[ind_r[x + 1]]; debug_lines.write[j + 3] = ver_r[ind_r[x + 2]]; // Triangle line 3 debug_lines.write[j + 4] = ver_r[ind_r[x + 2]]; debug_lines.write[j + 5] = ver_r[ind_r[x + 0]]; } r_lines = debug_lines; } void Mesh::generate_debug_mesh_indices(Vector &r_points) { Ref tm = generate_triangle_mesh(); if (tm.is_null()) { return; } Vector vertices = tm->get_vertices(); int vertices_size = vertices.size(); r_points.resize(vertices_size); for (int i = 0; i < vertices_size; ++i) { r_points.write[i] = vertices[i]; } } Vector Mesh::_get_faces() const { return Variant(get_faces()); } Vector Mesh::get_faces() const { Ref tm = generate_triangle_mesh(); if (tm.is_valid()) { return tm->get_faces(); } return Vector(); } Vector Mesh::get_surface_faces(int p_surface) const { Ref tm = generate_surface_triangle_mesh(p_surface); if (tm.is_valid()) { return tm->get_faces(); } return Vector(); } Ref Mesh::create_convex_shape(bool p_clean, bool p_simplify) const { if (p_simplify) { Ref settings = Ref(); settings.instantiate(); settings->set_max_convex_hulls(1); settings->set_max_concavity(1.0); Vector> decomposed = convex_decompose(settings); if (decomposed.size() == 1) { return decomposed[0]; } else { ERR_PRINT("Convex shape simplification failed, falling back to simpler process."); } } Vector vertices; for (int i = 0; i < get_surface_count(); i++) { Array a = surface_get_arrays(i); ERR_FAIL_COND_V(a.is_empty(), Ref()); Vector v = a[ARRAY_VERTEX]; vertices.append_array(v); } Ref shape = memnew(ConvexPolygonShape3D); if (p_clean) { Geometry3D::MeshData md; Error err = ConvexHullComputer::convex_hull(vertices, md); if (err == OK) { shape->set_points(md.vertices); return shape; } else { ERR_PRINT("Convex shape cleaning failed, falling back to simpler process."); } } shape->set_points(vertices); return shape; } Ref Mesh::create_trimesh_shape() const { Vector faces = get_faces(); if (faces.size() == 0) { return Ref(); } Vector face_points; face_points.resize(faces.size() * 3); for (int i = 0; i < face_points.size(); i += 3) { Face3 f = faces.get(i / 3); face_points.set(i, f.vertex[0]); face_points.set(i + 1, f.vertex[1]); face_points.set(i + 2, f.vertex[2]); } Ref shape = memnew(ConcavePolygonShape3D); shape->set_faces(face_points); return shape; } Ref Mesh::create_outline(float p_margin) const { Array arrays; int index_accum = 0; for (int i = 0; i < get_surface_count(); i++) { if (surface_get_primitive_type(i) != PRIMITIVE_TRIANGLES) { continue; } Array a = surface_get_arrays(i); ERR_FAIL_COND_V(a.is_empty(), Ref()); if (i == 0) { arrays = a; Vector v = a[ARRAY_VERTEX]; index_accum += v.size(); } else { int vcount = 0; for (int j = 0; j < arrays.size(); j++) { if (arrays[j].get_type() == Variant::NIL || a[j].get_type() == Variant::NIL) { //mismatch, do not use arrays[j] = Variant(); continue; } switch (j) { case ARRAY_VERTEX: case ARRAY_NORMAL: { Vector dst = arrays[j]; Vector src = a[j]; if (j == ARRAY_VERTEX) { vcount = src.size(); } if (dst.size() == 0 || src.size() == 0) { arrays[j] = Variant(); continue; } dst.append_array(src); arrays[j] = dst; } break; case ARRAY_TANGENT: case ARRAY_BONES: case ARRAY_WEIGHTS: { Vector dst = arrays[j]; Vector src = a[j]; if (dst.size() == 0 || src.size() == 0) { arrays[j] = Variant(); continue; } dst.append_array(src); arrays[j] = dst; } break; case ARRAY_COLOR: { Vector dst = arrays[j]; Vector src = a[j]; if (dst.size() == 0 || src.size() == 0) { arrays[j] = Variant(); continue; } dst.append_array(src); arrays[j] = dst; } break; case ARRAY_TEX_UV: case ARRAY_TEX_UV2: { Vector dst = arrays[j]; Vector src = a[j]; if (dst.size() == 0 || src.size() == 0) { arrays[j] = Variant(); continue; } dst.append_array(src); arrays[j] = dst; } break; case ARRAY_INDEX: { Vector dst = arrays[j]; Vector src = a[j]; if (dst.size() == 0 || src.size() == 0) { arrays[j] = Variant(); continue; } { int ss = src.size(); int *w = src.ptrw(); for (int k = 0; k < ss; k++) { w[k] += index_accum; } } dst.append_array(src); arrays[j] = dst; index_accum += vcount; } break; } } } } ERR_FAIL_COND_V(arrays.size() != ARRAY_MAX, Ref()); { int *ir = nullptr; Vector indices = arrays[ARRAY_INDEX]; bool has_indices = false; Vector vertices = arrays[ARRAY_VERTEX]; int vc = vertices.size(); ERR_FAIL_COND_V(!vc, Ref()); Vector3 *r = vertices.ptrw(); if (indices.size()) { ERR_FAIL_COND_V(indices.size() % 3 != 0, Ref()); vc = indices.size(); ir = indices.ptrw(); has_indices = true; } else { // Ensure there are enough vertices to construct at least one triangle. ERR_FAIL_COND_V(vertices.size() % 3 != 0, Ref()); } HashMap normal_accum; //fill normals with triangle normals for (int i = 0; i < vc; i += 3) { Vector3 t[3]; if (has_indices) { t[0] = r[ir[i + 0]]; t[1] = r[ir[i + 1]]; t[2] = r[ir[i + 2]]; } else { t[0] = r[i + 0]; t[1] = r[i + 1]; t[2] = r[i + 2]; } Vector3 n = Plane(t[0], t[1], t[2]).normal; for (int j = 0; j < 3; j++) { HashMap::Iterator E = normal_accum.find(t[j]); if (!E) { normal_accum[t[j]] = n; } else { float d = n.dot(E->value); if (d < 1.0) { E->value += n * (1.0 - d); } //E->get()+=n; } } } //normalize for (KeyValue &E : normal_accum) { E.value.normalize(); } //displace normals int vc2 = vertices.size(); for (int i = 0; i < vc2; i++) { Vector3 t = r[i]; HashMap::Iterator E = normal_accum.find(t); ERR_CONTINUE(!E); t += E->value * p_margin; r[i] = t; } arrays[ARRAY_VERTEX] = vertices; if (!has_indices) { Vector new_indices; new_indices.resize(vertices.size()); int *iw = new_indices.ptrw(); for (int j = 0; j < vc2; j += 3) { iw[j] = j; iw[j + 1] = j + 2; iw[j + 2] = j + 1; } arrays[ARRAY_INDEX] = new_indices; } else { for (int j = 0; j < vc; j += 3) { SWAP(ir[j + 1], ir[j + 2]); } arrays[ARRAY_INDEX] = indices; } } Ref newmesh = memnew(ArrayMesh); newmesh->add_surface_from_arrays(PRIMITIVE_TRIANGLES, arrays); return newmesh; } void Mesh::set_lightmap_size_hint(const Size2i &p_size) { lightmap_size_hint = p_size; } Size2i Mesh::get_lightmap_size_hint() const { return lightmap_size_hint; } Ref Mesh::create_placeholder() const { Ref placeholder; placeholder.instantiate(); placeholder->set_aabb(get_aabb()); return placeholder; } void Mesh::_bind_methods() { ClassDB::bind_method(D_METHOD("set_lightmap_size_hint", "size"), &Mesh::set_lightmap_size_hint); ClassDB::bind_method(D_METHOD("get_lightmap_size_hint"), &Mesh::get_lightmap_size_hint); ClassDB::bind_method(D_METHOD("get_aabb"), &Mesh::get_aabb); ClassDB::bind_method(D_METHOD("get_faces"), &Mesh::_get_faces); ADD_PROPERTY(PropertyInfo(Variant::VECTOR2I, "lightmap_size_hint"), "set_lightmap_size_hint", "get_lightmap_size_hint"); ClassDB::bind_method(D_METHOD("get_surface_count"), &Mesh::get_surface_count); ClassDB::bind_method(D_METHOD("surface_get_arrays", "surf_idx"), &Mesh::surface_get_arrays); ClassDB::bind_method(D_METHOD("surface_get_blend_shape_arrays", "surf_idx"), &Mesh::surface_get_blend_shape_arrays); ClassDB::bind_method(D_METHOD("surface_set_material", "surf_idx", "material"), &Mesh::surface_set_material); ClassDB::bind_method(D_METHOD("surface_get_material", "surf_idx"), &Mesh::surface_get_material); ClassDB::bind_method(D_METHOD("create_placeholder"), &Mesh::create_placeholder); BIND_ENUM_CONSTANT(PRIMITIVE_POINTS); BIND_ENUM_CONSTANT(PRIMITIVE_LINES); BIND_ENUM_CONSTANT(PRIMITIVE_LINE_STRIP); BIND_ENUM_CONSTANT(PRIMITIVE_TRIANGLES); BIND_ENUM_CONSTANT(PRIMITIVE_TRIANGLE_STRIP); BIND_ENUM_CONSTANT(ARRAY_VERTEX); BIND_ENUM_CONSTANT(ARRAY_NORMAL); BIND_ENUM_CONSTANT(ARRAY_TANGENT); BIND_ENUM_CONSTANT(ARRAY_COLOR); BIND_ENUM_CONSTANT(ARRAY_TEX_UV); BIND_ENUM_CONSTANT(ARRAY_TEX_UV2); BIND_ENUM_CONSTANT(ARRAY_CUSTOM0); BIND_ENUM_CONSTANT(ARRAY_CUSTOM1); BIND_ENUM_CONSTANT(ARRAY_CUSTOM2); BIND_ENUM_CONSTANT(ARRAY_CUSTOM3); BIND_ENUM_CONSTANT(ARRAY_BONES); BIND_ENUM_CONSTANT(ARRAY_WEIGHTS); BIND_ENUM_CONSTANT(ARRAY_INDEX); BIND_ENUM_CONSTANT(ARRAY_MAX); BIND_ENUM_CONSTANT(ARRAY_CUSTOM_RGBA8_UNORM); BIND_ENUM_CONSTANT(ARRAY_CUSTOM_RGBA8_SNORM); BIND_ENUM_CONSTANT(ARRAY_CUSTOM_RG_HALF); BIND_ENUM_CONSTANT(ARRAY_CUSTOM_RGBA_HALF); BIND_ENUM_CONSTANT(ARRAY_CUSTOM_R_FLOAT); BIND_ENUM_CONSTANT(ARRAY_CUSTOM_RG_FLOAT); BIND_ENUM_CONSTANT(ARRAY_CUSTOM_RGB_FLOAT); BIND_ENUM_CONSTANT(ARRAY_CUSTOM_RGBA_FLOAT); BIND_ENUM_CONSTANT(ARRAY_CUSTOM_MAX); BIND_BITFIELD_FLAG(ARRAY_FORMAT_VERTEX); BIND_BITFIELD_FLAG(ARRAY_FORMAT_NORMAL); BIND_BITFIELD_FLAG(ARRAY_FORMAT_TANGENT); BIND_BITFIELD_FLAG(ARRAY_FORMAT_COLOR); BIND_BITFIELD_FLAG(ARRAY_FORMAT_TEX_UV); BIND_BITFIELD_FLAG(ARRAY_FORMAT_TEX_UV2); BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM0); BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM1); BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM2); BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM3); BIND_BITFIELD_FLAG(ARRAY_FORMAT_BONES); BIND_BITFIELD_FLAG(ARRAY_FORMAT_WEIGHTS); BIND_BITFIELD_FLAG(ARRAY_FORMAT_INDEX); BIND_BITFIELD_FLAG(ARRAY_FORMAT_BLEND_SHAPE_MASK); BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM_BASE); BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM_BITS); BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM0_SHIFT); BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM1_SHIFT); BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM2_SHIFT); BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM3_SHIFT); BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM_MASK); BIND_BITFIELD_FLAG(ARRAY_COMPRESS_FLAGS_BASE); BIND_BITFIELD_FLAG(ARRAY_FLAG_USE_2D_VERTICES); BIND_BITFIELD_FLAG(ARRAY_FLAG_USE_DYNAMIC_UPDATE); BIND_BITFIELD_FLAG(ARRAY_FLAG_USE_8_BONE_WEIGHTS); BIND_BITFIELD_FLAG(ARRAY_FLAG_USES_EMPTY_VERTEX_ARRAY); BIND_BITFIELD_FLAG(ARRAY_FLAG_COMPRESS_ATTRIBUTES); BIND_ENUM_CONSTANT(BLEND_SHAPE_MODE_NORMALIZED); BIND_ENUM_CONSTANT(BLEND_SHAPE_MODE_RELATIVE); GDVIRTUAL_BIND(_get_surface_count) GDVIRTUAL_BIND(_surface_get_array_len, "index") GDVIRTUAL_BIND(_surface_get_array_index_len, "index") GDVIRTUAL_BIND(_surface_get_arrays, "index") GDVIRTUAL_BIND(_surface_get_blend_shape_arrays, "index") GDVIRTUAL_BIND(_surface_get_lods, "index") GDVIRTUAL_BIND(_surface_get_format, "index") GDVIRTUAL_BIND(_surface_get_primitive_type, "index") GDVIRTUAL_BIND(_surface_set_material, "index", "material") GDVIRTUAL_BIND(_surface_get_material, "index") GDVIRTUAL_BIND(_get_blend_shape_count) GDVIRTUAL_BIND(_get_blend_shape_name, "index") GDVIRTUAL_BIND(_set_blend_shape_name, "index", "name") GDVIRTUAL_BIND(_get_aabb) } void Mesh::clear_cache() const { triangle_mesh.unref(); debug_lines.clear(); } Vector> Mesh::convex_decompose(const Ref &p_settings) const { ERR_FAIL_NULL_V(convex_decomposition_function, Vector>()); Ref tm = generate_triangle_mesh(); ERR_FAIL_COND_V(!tm.is_valid(), Vector>()); const Vector &triangles = tm->get_triangles(); int triangle_count = triangles.size(); Vector indices; { indices.resize(triangle_count * 3); uint32_t *w = indices.ptrw(); for (int i = 0; i < triangle_count; i++) { for (int j = 0; j < 3; j++) { w[i * 3 + j] = triangles[i].indices[j]; } } } const Vector &vertices = tm->get_vertices(); int vertex_count = vertices.size(); Vector> decomposed = convex_decomposition_function((real_t *)vertices.ptr(), vertex_count, indices.ptr(), triangle_count, p_settings, nullptr); Vector> ret; for (int i = 0; i < decomposed.size(); i++) { Ref shape; shape.instantiate(); shape->set_points(decomposed[i]); ret.push_back(shape); } return ret; } int Mesh::get_builtin_bind_pose_count() const { return 0; } Transform3D Mesh::get_builtin_bind_pose(int p_index) const { return Transform3D(); } Mesh::Mesh() { } enum OldArrayType { OLD_ARRAY_VERTEX, OLD_ARRAY_NORMAL, OLD_ARRAY_TANGENT, OLD_ARRAY_COLOR, OLD_ARRAY_TEX_UV, OLD_ARRAY_TEX_UV2, OLD_ARRAY_BONES, OLD_ARRAY_WEIGHTS, OLD_ARRAY_INDEX, OLD_ARRAY_MAX, }; enum OldArrayFormat { /* OLD_ARRAY FORMAT FLAGS */ OLD_ARRAY_FORMAT_VERTEX = 1 << OLD_ARRAY_VERTEX, // mandatory OLD_ARRAY_FORMAT_NORMAL = 1 << OLD_ARRAY_NORMAL, OLD_ARRAY_FORMAT_TANGENT = 1 << OLD_ARRAY_TANGENT, OLD_ARRAY_FORMAT_COLOR = 1 << OLD_ARRAY_COLOR, OLD_ARRAY_FORMAT_TEX_UV = 1 << OLD_ARRAY_TEX_UV, OLD_ARRAY_FORMAT_TEX_UV2 = 1 << OLD_ARRAY_TEX_UV2, OLD_ARRAY_FORMAT_BONES = 1 << OLD_ARRAY_BONES, OLD_ARRAY_FORMAT_WEIGHTS = 1 << OLD_ARRAY_WEIGHTS, OLD_ARRAY_FORMAT_INDEX = 1 << OLD_ARRAY_INDEX, OLD_ARRAY_COMPRESS_BASE = (OLD_ARRAY_INDEX + 1), OLD_ARRAY_COMPRESS_VERTEX = 1 << (OLD_ARRAY_VERTEX + OLD_ARRAY_COMPRESS_BASE), // mandatory OLD_ARRAY_COMPRESS_NORMAL = 1 << (OLD_ARRAY_NORMAL + OLD_ARRAY_COMPRESS_BASE), OLD_ARRAY_COMPRESS_TANGENT = 1 << (OLD_ARRAY_TANGENT + OLD_ARRAY_COMPRESS_BASE), OLD_ARRAY_COMPRESS_COLOR = 1 << (OLD_ARRAY_COLOR + OLD_ARRAY_COMPRESS_BASE), OLD_ARRAY_COMPRESS_TEX_UV = 1 << (OLD_ARRAY_TEX_UV + OLD_ARRAY_COMPRESS_BASE), OLD_ARRAY_COMPRESS_TEX_UV2 = 1 << (OLD_ARRAY_TEX_UV2 + OLD_ARRAY_COMPRESS_BASE), OLD_ARRAY_COMPRESS_BONES = 1 << (OLD_ARRAY_BONES + OLD_ARRAY_COMPRESS_BASE), OLD_ARRAY_COMPRESS_WEIGHTS = 1 << (OLD_ARRAY_WEIGHTS + OLD_ARRAY_COMPRESS_BASE), OLD_ARRAY_COMPRESS_INDEX = 1 << (OLD_ARRAY_INDEX + OLD_ARRAY_COMPRESS_BASE), OLD_ARRAY_FLAG_USE_2D_VERTICES = OLD_ARRAY_COMPRESS_INDEX << 1, OLD_ARRAY_FLAG_USE_16_BIT_BONES = OLD_ARRAY_COMPRESS_INDEX << 2, OLD_ARRAY_FLAG_USE_DYNAMIC_UPDATE = OLD_ARRAY_COMPRESS_INDEX << 3, OLD_ARRAY_FLAG_USE_OCTAHEDRAL_COMPRESSION = OLD_ARRAY_COMPRESS_INDEX << 4, }; #ifndef DISABLE_DEPRECATED static Array _convert_old_array(const Array &p_old) { Array new_array; new_array.resize(Mesh::ARRAY_MAX); new_array[Mesh::ARRAY_VERTEX] = p_old[OLD_ARRAY_VERTEX]; new_array[Mesh::ARRAY_NORMAL] = p_old[OLD_ARRAY_NORMAL]; new_array[Mesh::ARRAY_TANGENT] = p_old[OLD_ARRAY_TANGENT]; new_array[Mesh::ARRAY_COLOR] = p_old[OLD_ARRAY_COLOR]; new_array[Mesh::ARRAY_TEX_UV] = p_old[OLD_ARRAY_TEX_UV]; new_array[Mesh::ARRAY_TEX_UV2] = p_old[OLD_ARRAY_TEX_UV2]; new_array[Mesh::ARRAY_BONES] = p_old[OLD_ARRAY_BONES]; new_array[Mesh::ARRAY_WEIGHTS] = p_old[OLD_ARRAY_WEIGHTS]; new_array[Mesh::ARRAY_INDEX] = p_old[OLD_ARRAY_INDEX]; return new_array; } static Mesh::PrimitiveType _old_primitives[7] = { Mesh::PRIMITIVE_POINTS, Mesh::PRIMITIVE_LINES, Mesh::PRIMITIVE_LINE_STRIP, Mesh::PRIMITIVE_LINES, Mesh::PRIMITIVE_TRIANGLES, Mesh::PRIMITIVE_TRIANGLE_STRIP, Mesh::PRIMITIVE_TRIANGLE_STRIP }; #endif // DISABLE_DEPRECATED void _fix_array_compatibility(const Vector &p_src, uint64_t p_old_format, uint64_t p_new_format, uint32_t p_elements, Vector &vertex_data, Vector &attribute_data, Vector &skin_data) { uint32_t dst_vertex_stride; uint32_t dst_normal_tangent_stride; uint32_t dst_attribute_stride; uint32_t dst_skin_stride; uint32_t dst_offsets[Mesh::ARRAY_MAX]; RenderingServer::get_singleton()->mesh_surface_make_offsets_from_format(p_new_format & (~RS::ARRAY_FORMAT_INDEX), p_elements, 0, dst_offsets, dst_vertex_stride, dst_normal_tangent_stride, dst_attribute_stride, dst_skin_stride); vertex_data.resize((dst_vertex_stride + dst_normal_tangent_stride) * p_elements); attribute_data.resize(dst_attribute_stride * p_elements); skin_data.resize(dst_skin_stride * p_elements); uint8_t *dst_vertex_ptr = vertex_data.ptrw(); uint8_t *dst_attribute_ptr = attribute_data.ptrw(); uint8_t *dst_skin_ptr = skin_data.ptrw(); const uint8_t *src_vertex_ptr = p_src.ptr(); uint32_t src_vertex_stride = p_src.size() / p_elements; uint32_t src_offset = 0; for (uint32_t j = 0; j < OLD_ARRAY_INDEX; j++) { if (!(p_old_format & (1ULL << j))) { continue; } switch (j) { case OLD_ARRAY_VERTEX: { if (p_old_format & OLD_ARRAY_FLAG_USE_2D_VERTICES) { if (p_old_format & OLD_ARRAY_COMPRESS_VERTEX) { for (uint32_t i = 0; i < p_elements; i++) { const uint16_t *src = (const uint16_t *)&src_vertex_ptr[i * src_vertex_stride]; float *dst = (float *)&dst_vertex_ptr[i * dst_vertex_stride]; dst[0] = Math::half_to_float(src[0]); dst[1] = Math::half_to_float(src[1]); } src_offset += sizeof(uint16_t) * 2; } else { for (uint32_t i = 0; i < p_elements; i++) { const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride]; float *dst = (float *)&dst_vertex_ptr[i * dst_vertex_stride]; dst[0] = src[0]; dst[1] = src[1]; } src_offset += sizeof(float) * 2; } } else { if (p_old_format & OLD_ARRAY_COMPRESS_VERTEX) { for (uint32_t i = 0; i < p_elements; i++) { const uint16_t *src = (const uint16_t *)&src_vertex_ptr[i * src_vertex_stride]; float *dst = (float *)&dst_vertex_ptr[i * dst_vertex_stride]; dst[0] = Math::half_to_float(src[0]); dst[1] = Math::half_to_float(src[1]); dst[2] = Math::half_to_float(src[2]); } src_offset += sizeof(uint16_t) * 4; //+pad } else { for (uint32_t i = 0; i < p_elements; i++) { const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride]; float *dst = (float *)&dst_vertex_ptr[i * dst_vertex_stride]; dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; } src_offset += sizeof(float) * 3; } } } break; case OLD_ARRAY_NORMAL: { if (p_old_format & OLD_ARRAY_FLAG_USE_OCTAHEDRAL_COMPRESSION) { if ((p_old_format & OLD_ARRAY_COMPRESS_NORMAL) && (p_old_format & OLD_ARRAY_FORMAT_TANGENT) && (p_old_format & OLD_ARRAY_COMPRESS_TANGENT)) { for (uint32_t i = 0; i < p_elements; i++) { const int8_t *src = (const int8_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset]; int16_t *dst = (int16_t *)&dst_vertex_ptr[i * dst_normal_tangent_stride + dst_offsets[Mesh::ARRAY_NORMAL]]; dst[0] = (int16_t)CLAMP(src[0] / 127.0f * 32767, -32768, 32767); dst[1] = (int16_t)CLAMP(src[1] / 127.0f * 32767, -32768, 32767); } src_offset += sizeof(int8_t) * 2; } else { for (uint32_t i = 0; i < p_elements; i++) { const int16_t *src = (const int16_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset]; int16_t *dst = (int16_t *)&dst_vertex_ptr[i * dst_normal_tangent_stride + dst_offsets[Mesh::ARRAY_NORMAL]]; dst[0] = src[0]; dst[1] = src[1]; } src_offset += sizeof(int16_t) * 2; } } else { // No Octahedral compression if (p_old_format & OLD_ARRAY_COMPRESS_NORMAL) { for (uint32_t i = 0; i < p_elements; i++) { const int8_t *src = (const int8_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset]; const Vector3 original_normal(src[0], src[1], src[2]); Vector2 res = original_normal.octahedron_encode(); uint16_t *dst = (uint16_t *)&dst_vertex_ptr[i * dst_normal_tangent_stride + dst_offsets[Mesh::ARRAY_NORMAL]]; dst[0] = (uint16_t)CLAMP(res.x * 65535, 0, 65535); dst[1] = (uint16_t)CLAMP(res.y * 65535, 0, 65535); } src_offset += sizeof(uint8_t) * 4; // 1 byte padding } else { for (uint32_t i = 0; i < p_elements; i++) { const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride + src_offset]; const Vector3 original_normal(src[0], src[1], src[2]); Vector2 res = original_normal.octahedron_encode(); uint16_t *dst = (uint16_t *)&dst_vertex_ptr[i * dst_normal_tangent_stride + dst_offsets[Mesh::ARRAY_NORMAL]]; dst[0] = (uint16_t)CLAMP(res.x * 65535, 0, 65535); dst[1] = (uint16_t)CLAMP(res.y * 65535, 0, 65535); } src_offset += sizeof(float) * 3; } } } break; case OLD_ARRAY_TANGENT: { if (p_old_format & OLD_ARRAY_FLAG_USE_OCTAHEDRAL_COMPRESSION) { if (p_old_format & OLD_ARRAY_COMPRESS_TANGENT) { // int8 SNORM -> uint16 UNORM for (uint32_t i = 0; i < p_elements; i++) { const int8_t *src = (const int8_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset]; uint16_t *dst = (uint16_t *)&dst_vertex_ptr[i * dst_normal_tangent_stride + dst_offsets[Mesh::ARRAY_TANGENT]]; dst[0] = (uint16_t)CLAMP((src[0] / 127.0f * .5f + .5f) * 65535, 0, 65535); dst[1] = (uint16_t)CLAMP((src[1] / 127.0f * .5f + .5f) * 65535, 0, 65535); } src_offset += sizeof(uint8_t) * 2; } else { // int16 SNORM -> uint16 UNORM for (uint32_t i = 0; i < p_elements; i++) { const int16_t *src = (const int16_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset]; uint16_t *dst = (uint16_t *)&dst_vertex_ptr[i * dst_normal_tangent_stride + dst_offsets[Mesh::ARRAY_TANGENT]]; dst[0] = (uint16_t)CLAMP((src[0] / 32767.0f * .5f + .5f) * 65535, 0, 65535); dst[1] = (uint16_t)CLAMP((src[1] / 32767.0f * .5f + .5f) * 65535, 0, 65535); } src_offset += sizeof(uint16_t) * 2; } } else { // No Octahedral compression if (p_old_format & OLD_ARRAY_COMPRESS_TANGENT) { for (uint32_t i = 0; i < p_elements; i++) { const int8_t *src = (const int8_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset]; const Vector3 original_tangent(src[0], src[1], src[2]); Vector2 res = original_tangent.octahedron_tangent_encode(src[3]); uint16_t *dst = (uint16_t *)&dst_vertex_ptr[i * dst_normal_tangent_stride + dst_offsets[Mesh::ARRAY_NORMAL]]; dst[0] = (uint16_t)CLAMP(res.x * 65535, 0, 65535); dst[1] = (uint16_t)CLAMP(res.y * 65535, 0, 65535); if (dst[0] == 0 && dst[1] == 65535) { // (1, 1) and (0, 1) decode to the same value, but (0, 1) messes with our compression detection. // So we sanitize here. dst[0] = 65535; } } src_offset += sizeof(uint8_t) * 4; } else { for (uint32_t i = 0; i < p_elements; i++) { const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride + src_offset]; const Vector3 original_tangent(src[0], src[1], src[2]); Vector2 res = original_tangent.octahedron_tangent_encode(src[3]); uint16_t *dst = (uint16_t *)&dst_vertex_ptr[i * dst_normal_tangent_stride + dst_offsets[Mesh::ARRAY_NORMAL]]; dst[0] = (uint16_t)CLAMP(res.x * 65535, 0, 65535); dst[1] = (uint16_t)CLAMP(res.y * 65535, 0, 65535); if (dst[0] == 0 && dst[1] == 65535) { // (1, 1) and (0, 1) decode to the same value, but (0, 1) messes with our compression detection. // So we sanitize here. dst[0] = 65535; } } src_offset += sizeof(float) * 4; } } } break; case OLD_ARRAY_COLOR: { if (p_old_format & OLD_ARRAY_COMPRESS_COLOR) { for (uint32_t i = 0; i < p_elements; i++) { const uint32_t *src = (const uint32_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset]; uint32_t *dst = (uint32_t *)&dst_attribute_ptr[i * dst_attribute_stride + dst_offsets[Mesh::ARRAY_COLOR]]; *dst = *src; } src_offset += sizeof(uint32_t); } else { for (uint32_t i = 0; i < p_elements; i++) { const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride + src_offset]; uint8_t *dst = (uint8_t *)&dst_attribute_ptr[i * dst_attribute_stride + dst_offsets[Mesh::ARRAY_COLOR]]; dst[0] = uint8_t(CLAMP(src[0] * 255.0, 0.0, 255.0)); dst[1] = uint8_t(CLAMP(src[1] * 255.0, 0.0, 255.0)); dst[2] = uint8_t(CLAMP(src[2] * 255.0, 0.0, 255.0)); dst[3] = uint8_t(CLAMP(src[3] * 255.0, 0.0, 255.0)); } src_offset += sizeof(float) * 4; } } break; case OLD_ARRAY_TEX_UV: { if (p_old_format & OLD_ARRAY_COMPRESS_TEX_UV) { for (uint32_t i = 0; i < p_elements; i++) { const uint16_t *src = (const uint16_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset]; float *dst = (float *)&dst_attribute_ptr[i * dst_attribute_stride + dst_offsets[Mesh::ARRAY_TEX_UV]]; dst[0] = Math::half_to_float(src[0]); dst[1] = Math::half_to_float(src[1]); } src_offset += sizeof(uint16_t) * 2; } else { for (uint32_t i = 0; i < p_elements; i++) { const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride + src_offset]; float *dst = (float *)&dst_attribute_ptr[i * dst_attribute_stride + dst_offsets[Mesh::ARRAY_TEX_UV]]; dst[0] = src[0]; dst[1] = src[1]; } src_offset += sizeof(float) * 2; } } break; case OLD_ARRAY_TEX_UV2: { if (p_old_format & OLD_ARRAY_COMPRESS_TEX_UV2) { for (uint32_t i = 0; i < p_elements; i++) { const uint16_t *src = (const uint16_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset]; float *dst = (float *)&dst_attribute_ptr[i * dst_attribute_stride + dst_offsets[Mesh::ARRAY_TEX_UV2]]; dst[0] = Math::half_to_float(src[0]); dst[1] = Math::half_to_float(src[1]); } src_offset += sizeof(uint16_t) * 2; } else { for (uint32_t i = 0; i < p_elements; i++) { const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride + src_offset]; float *dst = (float *)&dst_attribute_ptr[i * dst_attribute_stride + dst_offsets[Mesh::ARRAY_TEX_UV2]]; dst[0] = src[0]; dst[1] = src[1]; } src_offset += sizeof(float) * 2; } } break; case OLD_ARRAY_BONES: { if (p_old_format & OLD_ARRAY_FLAG_USE_16_BIT_BONES) { for (uint32_t i = 0; i < p_elements; i++) { const uint16_t *src = (const uint16_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset]; uint16_t *dst = (uint16_t *)&dst_skin_ptr[i * dst_skin_stride + dst_offsets[Mesh::ARRAY_BONES]]; dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; } src_offset += sizeof(uint16_t) * 4; } else { for (uint32_t i = 0; i < p_elements; i++) { const uint8_t *src = (const uint8_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset]; uint16_t *dst = (uint16_t *)&dst_skin_ptr[i * dst_skin_stride + dst_offsets[Mesh::ARRAY_BONES]]; dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; } src_offset += sizeof(uint8_t) * 4; } } break; case OLD_ARRAY_WEIGHTS: { if (p_old_format & OLD_ARRAY_COMPRESS_WEIGHTS) { for (uint32_t i = 0; i < p_elements; i++) { const uint16_t *src = (const uint16_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset]; uint16_t *dst = (uint16_t *)&dst_skin_ptr[i * dst_skin_stride + dst_offsets[Mesh::ARRAY_WEIGHTS]]; dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; } src_offset += sizeof(uint16_t) * 4; } else { for (uint32_t i = 0; i < p_elements; i++) { const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride + src_offset]; uint16_t *dst = (uint16_t *)&dst_skin_ptr[i * dst_skin_stride + dst_offsets[Mesh::ARRAY_WEIGHTS]]; dst[0] = uint16_t(CLAMP(src[0] * 65535.0, 0, 65535.0)); dst[1] = uint16_t(CLAMP(src[1] * 65535.0, 0, 65535.0)); dst[2] = uint16_t(CLAMP(src[2] * 65535.0, 0, 65535.0)); dst[3] = uint16_t(CLAMP(src[3] * 65535.0, 0, 65535.0)); } src_offset += sizeof(float) * 4; } } break; default: { } } } } bool ArrayMesh::_set(const StringName &p_name, const Variant &p_value) { String sname = p_name; if (sname.begins_with("surface_")) { int sl = sname.find("/"); if (sl == -1) { return false; } int idx = sname.substr(8, sl - 8).to_int(); String what = sname.get_slicec('/', 1); if (what == "material") { surface_set_material(idx, p_value); } else if (what == "name") { surface_set_name(idx, p_value); } return true; } #ifndef DISABLE_DEPRECATED // Kept for compatibility from 3.x to 4.0. if (!sname.begins_with("surfaces")) { return false; } WARN_DEPRECATED_MSG(vformat( "Mesh uses old surface format, which is deprecated (and loads slower). Consider re-importing or re-saving the scene. Path: \"%s\"", get_path())); int idx = sname.get_slicec('/', 1).to_int(); String what = sname.get_slicec('/', 2); if (idx == surfaces.size()) { //create Dictionary d = p_value; ERR_FAIL_COND_V(!d.has("primitive"), false); if (d.has("arrays")) { //oldest format (2.x) ERR_FAIL_COND_V(!d.has("morph_arrays"), false); Array morph_arrays = d["morph_arrays"]; for (int i = 0; i < morph_arrays.size(); i++) { morph_arrays[i] = _convert_old_array(morph_arrays[i]); } add_surface_from_arrays(_old_primitives[int(d["primitive"])], _convert_old_array(d["arrays"]), morph_arrays); } else if (d.has("array_data")) { //print_line("array data (old style"); //older format (3.x) Vector array_data = d["array_data"]; Vector array_index_data; if (d.has("array_index_data")) { array_index_data = d["array_index_data"]; } ERR_FAIL_COND_V(!d.has("format"), false); uint64_t old_format = d["format"]; uint32_t primitive = d["primitive"]; primitive = _old_primitives[primitive]; //compatibility ERR_FAIL_COND_V(!d.has("vertex_count"), false); int vertex_count = d["vertex_count"]; uint64_t new_format = ARRAY_FORMAT_VERTEX | ARRAY_FLAG_FORMAT_CURRENT_VERSION; if (old_format & OLD_ARRAY_FORMAT_NORMAL) { new_format |= ARRAY_FORMAT_NORMAL; } if (old_format & OLD_ARRAY_FORMAT_TANGENT) { new_format |= ARRAY_FORMAT_TANGENT; } if (old_format & OLD_ARRAY_FORMAT_COLOR) { new_format |= ARRAY_FORMAT_COLOR; } if (old_format & OLD_ARRAY_FORMAT_TEX_UV) { new_format |= ARRAY_FORMAT_TEX_UV; } if (old_format & OLD_ARRAY_FORMAT_TEX_UV2) { new_format |= ARRAY_FORMAT_TEX_UV2; } if (old_format & OLD_ARRAY_FORMAT_BONES) { new_format |= ARRAY_FORMAT_BONES; } if (old_format & OLD_ARRAY_FORMAT_WEIGHTS) { new_format |= ARRAY_FORMAT_WEIGHTS; } if (old_format & OLD_ARRAY_FORMAT_INDEX) { new_format |= ARRAY_FORMAT_INDEX; } if (old_format & OLD_ARRAY_FLAG_USE_2D_VERTICES) { new_format |= OLD_ARRAY_FLAG_USE_2D_VERTICES; } Vector vertex_array; Vector attribute_array; Vector skin_array; _fix_array_compatibility(array_data, old_format, new_format, vertex_count, vertex_array, attribute_array, skin_array); int index_count = 0; if (d.has("index_count")) { index_count = d["index_count"]; } Vector blend_shapes_new; if (d.has("blend_shape_data")) { Array blend_shape_data = d["blend_shape_data"]; for (int i = 0; i < blend_shape_data.size(); i++) { Vector blend_vertex_array; Vector blend_attribute_array; Vector blend_skin_array; Vector shape = blend_shape_data[i]; _fix_array_compatibility(shape, old_format, new_format, vertex_count, blend_vertex_array, blend_attribute_array, blend_skin_array); blend_shapes_new.append_array(blend_vertex_array); } } //clear unused flags print_verbose("Mesh format pre-conversion: " + itos(old_format)); print_verbose("Mesh format post-conversion: " + itos(new_format)); ERR_FAIL_COND_V(!d.has("aabb"), false); AABB aabb_new = d["aabb"]; Vector bone_aabb; if (d.has("skeleton_aabb")) { Array baabb = d["skeleton_aabb"]; bone_aabb.resize(baabb.size()); for (int i = 0; i < baabb.size(); i++) { bone_aabb.write[i] = baabb[i]; } } add_surface(new_format, PrimitiveType(primitive), vertex_array, attribute_array, skin_array, vertex_count, array_index_data, index_count, aabb_new, blend_shapes_new, bone_aabb); } else { ERR_FAIL_V(false); } if (d.has("material")) { surface_set_material(idx, d["material"]); } if (d.has("name")) { surface_set_name(idx, d["name"]); } return true; } #endif // DISABLE_DEPRECATED return false; } void ArrayMesh::_set_blend_shape_names(const PackedStringArray &p_names) { ERR_FAIL_COND(surfaces.size() > 0); blend_shapes.resize(p_names.size()); for (int i = 0; i < p_names.size(); i++) { blend_shapes.write[i] = p_names[i]; } if (mesh.is_valid()) { RS::get_singleton()->mesh_set_blend_shape_count(mesh, blend_shapes.size()); } } PackedStringArray ArrayMesh::_get_blend_shape_names() const { PackedStringArray sarr; sarr.resize(blend_shapes.size()); for (int i = 0; i < blend_shapes.size(); i++) { sarr.write[i] = blend_shapes[i]; } return sarr; } Array ArrayMesh::_get_surfaces() const { if (mesh.is_null()) { return Array(); } Array ret; for (int i = 0; i < surfaces.size(); i++) { RenderingServer::SurfaceData surface = RS::get_singleton()->mesh_get_surface(mesh, i); Dictionary data; data["format"] = surface.format; data["primitive"] = surface.primitive; data["vertex_data"] = surface.vertex_data; data["vertex_count"] = surface.vertex_count; if (surface.skin_data.size()) { data["skin_data"] = surface.skin_data; } if (surface.attribute_data.size()) { data["attribute_data"] = surface.attribute_data; } data["aabb"] = surface.aabb; data["uv_scale"] = surface.uv_scale; if (surface.index_count) { data["index_data"] = surface.index_data; data["index_count"] = surface.index_count; }; Array lods; for (int j = 0; j < surface.lods.size(); j++) { lods.push_back(surface.lods[j].edge_length); lods.push_back(surface.lods[j].index_data); } if (lods.size()) { data["lods"] = lods; } Array bone_aabbs; for (int j = 0; j < surface.bone_aabbs.size(); j++) { bone_aabbs.push_back(surface.bone_aabbs[j]); } if (bone_aabbs.size()) { data["bone_aabbs"] = bone_aabbs; } if (surface.blend_shape_data.size()) { data["blend_shapes"] = surface.blend_shape_data; } if (surfaces[i].material.is_valid()) { data["material"] = surfaces[i].material; } if (!surfaces[i].name.is_empty()) { data["name"] = surfaces[i].name; } if (surfaces[i].is_2d) { data["2d"] = true; } ret.push_back(data); } return ret; } void ArrayMesh::_create_if_empty() const { if (!mesh.is_valid()) { mesh = RS::get_singleton()->mesh_create(); RS::get_singleton()->mesh_set_blend_shape_mode(mesh, (RS::BlendShapeMode)blend_shape_mode); RS::get_singleton()->mesh_set_blend_shape_count(mesh, blend_shapes.size()); } } void ArrayMesh::_set_surfaces(const Array &p_surfaces) { Vector surface_data; Vector> surface_materials; Vector surface_names; Vector surface_2d; for (int i = 0; i < p_surfaces.size(); i++) { RS::SurfaceData surface; Dictionary d = p_surfaces[i]; ERR_FAIL_COND(!d.has("format")); ERR_FAIL_COND(!d.has("primitive")); ERR_FAIL_COND(!d.has("vertex_data")); ERR_FAIL_COND(!d.has("vertex_count")); ERR_FAIL_COND(!d.has("aabb")); surface.format = d["format"]; surface.primitive = RS::PrimitiveType(int(d["primitive"])); surface.vertex_data = d["vertex_data"]; surface.vertex_count = d["vertex_count"]; if (d.has("attribute_data")) { surface.attribute_data = d["attribute_data"]; } if (d.has("skin_data")) { surface.skin_data = d["skin_data"]; } surface.aabb = d["aabb"]; if (d.has("uv_scale")) { surface.uv_scale = d["uv_scale"]; } if (d.has("index_data")) { ERR_FAIL_COND(!d.has("index_count")); surface.index_data = d["index_data"]; surface.index_count = d["index_count"]; } if (d.has("lods")) { Array lods = d["lods"]; ERR_FAIL_COND(lods.size() & 1); //must be even for (int j = 0; j < lods.size(); j += 2) { RS::SurfaceData::LOD lod; lod.edge_length = lods[j + 0]; lod.index_data = lods[j + 1]; surface.lods.push_back(lod); } } if (d.has("bone_aabbs")) { Array bone_aabbs = d["bone_aabbs"]; for (int j = 0; j < bone_aabbs.size(); j++) { surface.bone_aabbs.push_back(bone_aabbs[j]); } } if (d.has("blend_shapes")) { surface.blend_shape_data = d["blend_shapes"]; } Ref material; if (d.has("material")) { material = d["material"]; if (material.is_valid()) { surface.material = material->get_rid(); } } String surf_name; if (d.has("name")) { surf_name = d["name"]; } bool _2d = false; if (d.has("2d")) { _2d = d["2d"]; } #ifndef DISABLE_DEPRECATED uint64_t surface_version = surface.format & (ARRAY_FLAG_FORMAT_VERSION_MASK << ARRAY_FLAG_FORMAT_VERSION_SHIFT); if (surface_version != ARRAY_FLAG_FORMAT_CURRENT_VERSION) { RS::get_singleton()->fix_surface_compatibility(surface, get_path()); surface_version = surface.format & (RS::ARRAY_FLAG_FORMAT_VERSION_MASK << RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT); ERR_FAIL_COND_MSG(surface_version != RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION, vformat("Surface version provided (%d) does not match current version (%d).", (surface_version >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) & RS::ARRAY_FLAG_FORMAT_VERSION_MASK, (RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) & RS::ARRAY_FLAG_FORMAT_VERSION_MASK)); } #endif surface_data.push_back(surface); surface_materials.push_back(material); surface_names.push_back(surf_name); surface_2d.push_back(_2d); } if (mesh.is_valid()) { //if mesh exists, it needs to be updated RS::get_singleton()->mesh_clear(mesh); for (int i = 0; i < surface_data.size(); i++) { RS::get_singleton()->mesh_add_surface(mesh, surface_data[i]); } } else { // if mesh does not exist (first time this is loaded, most likely), // we can create it with a single call, which is a lot more efficient and thread friendly mesh = RS::get_singleton()->mesh_create_from_surfaces(surface_data, blend_shapes.size()); RS::get_singleton()->mesh_set_blend_shape_mode(mesh, (RS::BlendShapeMode)blend_shape_mode); } surfaces.clear(); aabb = AABB(); for (int i = 0; i < surface_data.size(); i++) { Surface s; s.aabb = surface_data[i].aabb; if (i == 0) { aabb = s.aabb; } else { aabb.merge_with(s.aabb); } s.material = surface_materials[i]; s.is_2d = surface_2d[i]; s.name = surface_names[i]; s.format = surface_data[i].format; s.primitive = PrimitiveType(surface_data[i].primitive); s.array_length = surface_data[i].vertex_count; s.index_array_length = surface_data[i].index_count; surfaces.push_back(s); } } bool ArrayMesh::_get(const StringName &p_name, Variant &r_ret) const { if (_is_generated()) { return false; } String sname = p_name; if (sname.begins_with("surface_")) { int sl = sname.find("/"); if (sl == -1) { return false; } int idx = sname.substr(8, sl - 8).to_int(); String what = sname.get_slicec('/', 1); if (what == "material") { r_ret = surface_get_material(idx); } else if (what == "name") { r_ret = surface_get_name(idx); } return true; } return false; } void ArrayMesh::reset_state() { clear_surfaces(); clear_blend_shapes(); aabb = AABB(); blend_shape_mode = BLEND_SHAPE_MODE_RELATIVE; custom_aabb = AABB(); } void ArrayMesh::_get_property_list(List *p_list) const { if (_is_generated()) { return; } for (int i = 0; i < surfaces.size(); i++) { p_list->push_back(PropertyInfo(Variant::STRING, "surface_" + itos(i) + "/name", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_EDITOR)); if (surfaces[i].is_2d) { p_list->push_back(PropertyInfo(Variant::OBJECT, "surface_" + itos(i) + "/material", PROPERTY_HINT_RESOURCE_TYPE, "CanvasItemMaterial,ShaderMaterial", PROPERTY_USAGE_EDITOR)); } else { p_list->push_back(PropertyInfo(Variant::OBJECT, "surface_" + itos(i) + "/material", PROPERTY_HINT_RESOURCE_TYPE, "BaseMaterial3D,ShaderMaterial", PROPERTY_USAGE_EDITOR)); } } } void ArrayMesh::_recompute_aabb() { // regenerate AABB aabb = AABB(); for (int i = 0; i < surfaces.size(); i++) { if (i == 0) { aabb = surfaces[i].aabb; } else { aabb.merge_with(surfaces[i].aabb); } } } // TODO: Need to add binding to add_surface using future MeshSurfaceData object. void ArrayMesh::add_surface(BitField p_format, PrimitiveType p_primitive, const Vector &p_array, const Vector &p_attribute_array, const Vector &p_skin_array, int p_vertex_count, const Vector &p_index_array, int p_index_count, const AABB &p_aabb, const Vector &p_blend_shape_data, const Vector &p_bone_aabbs, const Vector &p_lods, const Vector4 p_uv_scale) { ERR_FAIL_COND(surfaces.size() == RS::MAX_MESH_SURFACES); _create_if_empty(); Surface s; s.aabb = p_aabb; s.is_2d = p_format & ARRAY_FLAG_USE_2D_VERTICES; s.primitive = p_primitive; s.array_length = p_vertex_count; s.index_array_length = p_index_count; s.format = p_format; surfaces.push_back(s); _recompute_aabb(); RS::SurfaceData sd; sd.format = p_format; sd.primitive = RS::PrimitiveType(p_primitive); sd.aabb = p_aabb; sd.vertex_count = p_vertex_count; sd.vertex_data = p_array; sd.attribute_data = p_attribute_array; sd.skin_data = p_skin_array; sd.index_count = p_index_count; sd.index_data = p_index_array; sd.blend_shape_data = p_blend_shape_data; sd.bone_aabbs = p_bone_aabbs; sd.lods = p_lods; sd.uv_scale = p_uv_scale; RenderingServer::get_singleton()->mesh_add_surface(mesh, sd); clear_cache(); notify_property_list_changed(); emit_changed(); } void ArrayMesh::add_surface_from_arrays(PrimitiveType p_primitive, const Array &p_arrays, const TypedArray &p_blend_shapes, const Dictionary &p_lods, BitField p_flags) { ERR_FAIL_COND(p_blend_shapes.size() != blend_shapes.size()); ERR_FAIL_COND(p_arrays.size() != ARRAY_MAX); RS::SurfaceData surface; Error err = RS::get_singleton()->mesh_create_surface_data_from_arrays(&surface, (RenderingServer::PrimitiveType)p_primitive, p_arrays, p_blend_shapes, p_lods, p_flags); ERR_FAIL_COND(err != OK); /* Debug code. print_line("format: " + itos(surface.format)); print_line("aabb: " + surface.aabb); print_line("array size: " + itos(surface.vertex_data.size())); print_line("vertex count: " + itos(surface.vertex_count)); print_line("index size: " + itos(surface.index_data.size())); print_line("index count: " + itos(surface.index_count)); print_line("primitive: " + itos(surface.primitive)); */ add_surface(surface.format, PrimitiveType(surface.primitive), surface.vertex_data, surface.attribute_data, surface.skin_data, surface.vertex_count, surface.index_data, surface.index_count, surface.aabb, surface.blend_shape_data, surface.bone_aabbs, surface.lods, surface.uv_scale); } Array ArrayMesh::surface_get_arrays(int p_surface) const { ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Array()); return RenderingServer::get_singleton()->mesh_surface_get_arrays(mesh, p_surface); } TypedArray ArrayMesh::surface_get_blend_shape_arrays(int p_surface) const { ERR_FAIL_INDEX_V(p_surface, surfaces.size(), TypedArray()); return RenderingServer::get_singleton()->mesh_surface_get_blend_shape_arrays(mesh, p_surface); } Dictionary ArrayMesh::surface_get_lods(int p_surface) const { ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Dictionary()); return RenderingServer::get_singleton()->mesh_surface_get_lods(mesh, p_surface); } int ArrayMesh::get_surface_count() const { return surfaces.size(); } void ArrayMesh::add_blend_shape(const StringName &p_name) { ERR_FAIL_COND_MSG(surfaces.size(), "Can't add a shape key count if surfaces are already created."); StringName shape_name = p_name; if (blend_shapes.has(shape_name)) { int count = 2; do { shape_name = String(p_name) + " " + itos(count); count++; } while (blend_shapes.has(shape_name)); } blend_shapes.push_back(shape_name); if (mesh.is_valid()) { RS::get_singleton()->mesh_set_blend_shape_count(mesh, blend_shapes.size()); } } int ArrayMesh::get_blend_shape_count() const { return blend_shapes.size(); } StringName ArrayMesh::get_blend_shape_name(int p_index) const { ERR_FAIL_INDEX_V(p_index, blend_shapes.size(), StringName()); return blend_shapes[p_index]; } void ArrayMesh::set_blend_shape_name(int p_index, const StringName &p_name) { ERR_FAIL_INDEX(p_index, blend_shapes.size()); StringName shape_name = p_name; int found = blend_shapes.find(shape_name); if (found != -1 && found != p_index) { int count = 2; do { shape_name = String(p_name) + " " + itos(count); count++; } while (blend_shapes.find(shape_name) != -1); } blend_shapes.write[p_index] = shape_name; } void ArrayMesh::clear_blend_shapes() { ERR_FAIL_COND_MSG(surfaces.size(), "Can't set shape key count if surfaces are already created."); blend_shapes.clear(); if (mesh.is_valid()) { RS::get_singleton()->mesh_set_blend_shape_count(mesh, 0); } } void ArrayMesh::set_blend_shape_mode(BlendShapeMode p_mode) { blend_shape_mode = p_mode; if (mesh.is_valid()) { RS::get_singleton()->mesh_set_blend_shape_mode(mesh, (RS::BlendShapeMode)p_mode); } } ArrayMesh::BlendShapeMode ArrayMesh::get_blend_shape_mode() const { return blend_shape_mode; } int ArrayMesh::surface_get_array_len(int p_idx) const { ERR_FAIL_INDEX_V(p_idx, surfaces.size(), -1); return surfaces[p_idx].array_length; } int ArrayMesh::surface_get_array_index_len(int p_idx) const { ERR_FAIL_INDEX_V(p_idx, surfaces.size(), -1); return surfaces[p_idx].index_array_length; } BitField ArrayMesh::surface_get_format(int p_idx) const { ERR_FAIL_INDEX_V(p_idx, surfaces.size(), 0); return surfaces[p_idx].format; } ArrayMesh::PrimitiveType ArrayMesh::surface_get_primitive_type(int p_idx) const { ERR_FAIL_INDEX_V(p_idx, surfaces.size(), PRIMITIVE_LINES); return surfaces[p_idx].primitive; } void ArrayMesh::surface_set_material(int p_idx, const Ref &p_material) { ERR_FAIL_INDEX(p_idx, surfaces.size()); if (surfaces[p_idx].material == p_material) { return; } surfaces.write[p_idx].material = p_material; RenderingServer::get_singleton()->mesh_surface_set_material(mesh, p_idx, p_material.is_null() ? RID() : p_material->get_rid()); emit_changed(); } int ArrayMesh::surface_find_by_name(const String &p_name) const { for (int i = 0; i < surfaces.size(); i++) { if (surfaces[i].name == p_name) { return i; } } return -1; } void ArrayMesh::surface_set_name(int p_idx, const String &p_name) { ERR_FAIL_INDEX(p_idx, surfaces.size()); surfaces.write[p_idx].name = p_name; emit_changed(); } String ArrayMesh::surface_get_name(int p_idx) const { ERR_FAIL_INDEX_V(p_idx, surfaces.size(), String()); return surfaces[p_idx].name; } void ArrayMesh::surface_update_vertex_region(int p_surface, int p_offset, const Vector &p_data) { ERR_FAIL_INDEX(p_surface, surfaces.size()); RS::get_singleton()->mesh_surface_update_vertex_region(mesh, p_surface, p_offset, p_data); emit_changed(); } void ArrayMesh::surface_update_attribute_region(int p_surface, int p_offset, const Vector &p_data) { ERR_FAIL_INDEX(p_surface, surfaces.size()); RS::get_singleton()->mesh_surface_update_attribute_region(mesh, p_surface, p_offset, p_data); emit_changed(); } void ArrayMesh::surface_update_skin_region(int p_surface, int p_offset, const Vector &p_data) { ERR_FAIL_INDEX(p_surface, surfaces.size()); RS::get_singleton()->mesh_surface_update_skin_region(mesh, p_surface, p_offset, p_data); emit_changed(); } void ArrayMesh::surface_set_custom_aabb(int p_idx, const AABB &p_aabb) { ERR_FAIL_INDEX(p_idx, surfaces.size()); surfaces.write[p_idx].aabb = p_aabb; // set custom aabb too? emit_changed(); } Ref ArrayMesh::surface_get_material(int p_idx) const { ERR_FAIL_INDEX_V(p_idx, surfaces.size(), Ref()); return surfaces[p_idx].material; } RID ArrayMesh::get_rid() const { _create_if_empty(); return mesh; } AABB ArrayMesh::get_aabb() const { return aabb; } void ArrayMesh::clear_surfaces() { if (!mesh.is_valid()) { return; } RS::get_singleton()->mesh_clear(mesh); surfaces.clear(); aabb = AABB(); } void ArrayMesh::set_custom_aabb(const AABB &p_custom) { _create_if_empty(); custom_aabb = p_custom; RS::get_singleton()->mesh_set_custom_aabb(mesh, custom_aabb); emit_changed(); } AABB ArrayMesh::get_custom_aabb() const { return custom_aabb; } void ArrayMesh::regen_normal_maps() { if (surfaces.size() == 0) { return; } Vector> surfs; Vector formats; for (int i = 0; i < get_surface_count(); i++) { Ref st = memnew(SurfaceTool); st->create_from(Ref(this), i); surfs.push_back(st); formats.push_back(surface_get_format(i)); } clear_surfaces(); for (int i = 0; i < surfs.size(); i++) { surfs.write[i]->generate_tangents(); surfs.write[i]->commit(Ref(this), formats[i]); } } //dirty hack bool (*array_mesh_lightmap_unwrap_callback)(float p_texel_size, const float *p_vertices, const float *p_normals, int p_vertex_count, const int *p_indices, int p_index_count, const uint8_t *p_cache_data, bool *r_use_cache, uint8_t **r_mesh_cache, int *r_mesh_cache_size, float **r_uv, int **r_vertex, int *r_vertex_count, int **r_index, int *r_index_count, int *r_size_hint_x, int *r_size_hint_y) = nullptr; struct ArrayMeshLightmapSurface { Ref material; LocalVector vertices; Mesh::PrimitiveType primitive = Mesh::PrimitiveType::PRIMITIVE_MAX; uint64_t format = 0; }; Error ArrayMesh::lightmap_unwrap(const Transform3D &p_base_transform, float p_texel_size) { Vector null_cache; return lightmap_unwrap_cached(p_base_transform, p_texel_size, null_cache, null_cache, false); } Error ArrayMesh::lightmap_unwrap_cached(const Transform3D &p_base_transform, float p_texel_size, const Vector &p_src_cache, Vector &r_dst_cache, bool p_generate_cache) { ERR_FAIL_NULL_V(array_mesh_lightmap_unwrap_callback, ERR_UNCONFIGURED); ERR_FAIL_COND_V_MSG(blend_shapes.size() != 0, ERR_UNAVAILABLE, "Can't unwrap mesh with blend shapes."); ERR_FAIL_COND_V_MSG(p_texel_size <= 0.0f, ERR_PARAMETER_RANGE_ERROR, "Texel size must be greater than 0."); LocalVector vertices; LocalVector normals; LocalVector indices; LocalVector uv; LocalVector> uv_indices; Vector lightmap_surfaces; // Keep only the scale Basis basis = p_base_transform.get_basis(); Vector3 scale = Vector3(basis.get_column(0).length(), basis.get_column(1).length(), basis.get_column(2).length()); Transform3D transform; transform.scale(scale); Basis normal_basis = transform.basis.inverse().transposed(); for (int i = 0; i < get_surface_count(); i++) { ArrayMeshLightmapSurface s; s.primitive = surface_get_primitive_type(i); ERR_FAIL_COND_V_MSG(s.primitive != Mesh::PRIMITIVE_TRIANGLES, ERR_UNAVAILABLE, "Only triangles are supported for lightmap unwrap."); s.format = surface_get_format(i); ERR_FAIL_COND_V_MSG(!(s.format & ARRAY_FORMAT_NORMAL), ERR_UNAVAILABLE, "Normals are required for lightmap unwrap."); Array arrays = surface_get_arrays(i); s.material = surface_get_material(i); SurfaceTool::create_vertex_array_from_triangle_arrays(arrays, s.vertices, &s.format); PackedVector3Array rvertices = arrays[Mesh::ARRAY_VERTEX]; int vc = rvertices.size(); PackedVector3Array rnormals = arrays[Mesh::ARRAY_NORMAL]; int vertex_ofs = vertices.size() / 3; vertices.resize((vertex_ofs + vc) * 3); normals.resize((vertex_ofs + vc) * 3); uv_indices.resize(vertex_ofs + vc); for (int j = 0; j < vc; j++) { Vector3 v = transform.xform(rvertices[j]); Vector3 n = normal_basis.xform(rnormals[j]).normalized(); vertices[(j + vertex_ofs) * 3 + 0] = v.x; vertices[(j + vertex_ofs) * 3 + 1] = v.y; vertices[(j + vertex_ofs) * 3 + 2] = v.z; normals[(j + vertex_ofs) * 3 + 0] = n.x; normals[(j + vertex_ofs) * 3 + 1] = n.y; normals[(j + vertex_ofs) * 3 + 2] = n.z; uv_indices[j + vertex_ofs] = Pair(i, j); } PackedInt32Array rindices = arrays[Mesh::ARRAY_INDEX]; int ic = rindices.size(); float eps = 1.19209290e-7F; // Taken from xatlas.h if (ic == 0) { for (int j = 0; j < vc / 3; j++) { Vector3 p0 = transform.xform(rvertices[j * 3 + 0]); Vector3 p1 = transform.xform(rvertices[j * 3 + 1]); Vector3 p2 = transform.xform(rvertices[j * 3 + 2]); if ((p0 - p1).length_squared() < eps || (p1 - p2).length_squared() < eps || (p2 - p0).length_squared() < eps) { continue; } indices.push_back(vertex_ofs + j * 3 + 0); indices.push_back(vertex_ofs + j * 3 + 1); indices.push_back(vertex_ofs + j * 3 + 2); } } else { for (int j = 0; j < ic / 3; j++) { Vector3 p0 = transform.xform(rvertices[rindices[j * 3 + 0]]); Vector3 p1 = transform.xform(rvertices[rindices[j * 3 + 1]]); Vector3 p2 = transform.xform(rvertices[rindices[j * 3 + 2]]); if ((p0 - p1).length_squared() < eps || (p1 - p2).length_squared() < eps || (p2 - p0).length_squared() < eps) { continue; } indices.push_back(vertex_ofs + rindices[j * 3 + 0]); indices.push_back(vertex_ofs + rindices[j * 3 + 1]); indices.push_back(vertex_ofs + rindices[j * 3 + 2]); } } lightmap_surfaces.push_back(s); } //unwrap bool use_cache = p_generate_cache; // Used to request cache generation and to know if cache was used uint8_t *gen_cache; int gen_cache_size; float *gen_uvs; int *gen_vertices; int *gen_indices; int gen_vertex_count; int gen_index_count; int size_x; int size_y; bool ok = array_mesh_lightmap_unwrap_callback(p_texel_size, vertices.ptr(), normals.ptr(), vertices.size() / 3, indices.ptr(), indices.size(), p_src_cache.ptr(), &use_cache, &gen_cache, &gen_cache_size, &gen_uvs, &gen_vertices, &gen_vertex_count, &gen_indices, &gen_index_count, &size_x, &size_y); if (!ok) { return ERR_CANT_CREATE; } clear_surfaces(); //create surfacetools for each surface.. LocalVector> surfaces_tools; for (int i = 0; i < lightmap_surfaces.size(); i++) { Ref st; st.instantiate(); st->begin(Mesh::PRIMITIVE_TRIANGLES); st->set_material(lightmap_surfaces[i].material); surfaces_tools.push_back(st); //stay there } print_verbose("Mesh: Gen indices: " + itos(gen_index_count)); //go through all indices for (int i = 0; i < gen_index_count; i += 3) { ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 0]], (int)uv_indices.size(), ERR_BUG); ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 1]], (int)uv_indices.size(), ERR_BUG); ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 2]], (int)uv_indices.size(), ERR_BUG); ERR_FAIL_COND_V(uv_indices[gen_vertices[gen_indices[i + 0]]].first != uv_indices[gen_vertices[gen_indices[i + 1]]].first || uv_indices[gen_vertices[gen_indices[i + 0]]].first != uv_indices[gen_vertices[gen_indices[i + 2]]].first, ERR_BUG); int surface = uv_indices[gen_vertices[gen_indices[i + 0]]].first; for (int j = 0; j < 3; j++) { SurfaceTool::Vertex v = lightmap_surfaces[surface].vertices[uv_indices[gen_vertices[gen_indices[i + j]]].second]; if (lightmap_surfaces[surface].format & ARRAY_FORMAT_COLOR) { surfaces_tools[surface]->set_color(v.color); } if (lightmap_surfaces[surface].format & ARRAY_FORMAT_TEX_UV) { surfaces_tools[surface]->set_uv(v.uv); } if (lightmap_surfaces[surface].format & ARRAY_FORMAT_NORMAL) { surfaces_tools[surface]->set_normal(v.normal); } if (lightmap_surfaces[surface].format & ARRAY_FORMAT_TANGENT) { Plane t; t.normal = v.tangent; t.d = v.binormal.dot(v.normal.cross(v.tangent)) < 0 ? -1 : 1; surfaces_tools[surface]->set_tangent(t); } if (lightmap_surfaces[surface].format & ARRAY_FORMAT_BONES) { surfaces_tools[surface]->set_bones(v.bones); } if (lightmap_surfaces[surface].format & ARRAY_FORMAT_WEIGHTS) { surfaces_tools[surface]->set_weights(v.weights); } Vector2 uv2(gen_uvs[gen_indices[i + j] * 2 + 0], gen_uvs[gen_indices[i + j] * 2 + 1]); surfaces_tools[surface]->set_uv2(uv2); surfaces_tools[surface]->add_vertex(v.vertex); } } //generate surfaces for (unsigned int i = 0; i < surfaces_tools.size(); i++) { surfaces_tools[i]->index(); surfaces_tools[i]->commit(Ref((ArrayMesh *)this), lightmap_surfaces[i].format); } set_lightmap_size_hint(Size2(size_x, size_y)); if (gen_cache_size > 0) { r_dst_cache.resize(gen_cache_size); memcpy(r_dst_cache.ptrw(), gen_cache, gen_cache_size); memfree(gen_cache); } if (!use_cache) { // Cache was not used, free the buffers memfree(gen_vertices); memfree(gen_indices); memfree(gen_uvs); } return OK; } void ArrayMesh::set_shadow_mesh(const Ref &p_mesh) { shadow_mesh = p_mesh; if (shadow_mesh.is_valid()) { RS::get_singleton()->mesh_set_shadow_mesh(mesh, shadow_mesh->get_rid()); } else { RS::get_singleton()->mesh_set_shadow_mesh(mesh, RID()); } } Ref ArrayMesh::get_shadow_mesh() const { return shadow_mesh; } void ArrayMesh::_bind_methods() { ClassDB::bind_method(D_METHOD("add_blend_shape", "name"), &ArrayMesh::add_blend_shape); ClassDB::bind_method(D_METHOD("get_blend_shape_count"), &ArrayMesh::get_blend_shape_count); ClassDB::bind_method(D_METHOD("get_blend_shape_name", "index"), &ArrayMesh::get_blend_shape_name); ClassDB::bind_method(D_METHOD("set_blend_shape_name", "index", "name"), &ArrayMesh::set_blend_shape_name); ClassDB::bind_method(D_METHOD("clear_blend_shapes"), &ArrayMesh::clear_blend_shapes); ClassDB::bind_method(D_METHOD("set_blend_shape_mode", "mode"), &ArrayMesh::set_blend_shape_mode); ClassDB::bind_method(D_METHOD("get_blend_shape_mode"), &ArrayMesh::get_blend_shape_mode); ClassDB::bind_method(D_METHOD("add_surface_from_arrays", "primitive", "arrays", "blend_shapes", "lods", "flags"), &ArrayMesh::add_surface_from_arrays, DEFVAL(Array()), DEFVAL(Dictionary()), DEFVAL(0)); ClassDB::bind_method(D_METHOD("clear_surfaces"), &ArrayMesh::clear_surfaces); ClassDB::bind_method(D_METHOD("surface_update_vertex_region", "surf_idx", "offset", "data"), &ArrayMesh::surface_update_vertex_region); ClassDB::bind_method(D_METHOD("surface_update_attribute_region", "surf_idx", "offset", "data"), &ArrayMesh::surface_update_attribute_region); ClassDB::bind_method(D_METHOD("surface_update_skin_region", "surf_idx", "offset", "data"), &ArrayMesh::surface_update_skin_region); ClassDB::bind_method(D_METHOD("surface_get_array_len", "surf_idx"), &ArrayMesh::surface_get_array_len); ClassDB::bind_method(D_METHOD("surface_get_array_index_len", "surf_idx"), &ArrayMesh::surface_get_array_index_len); ClassDB::bind_method(D_METHOD("surface_get_format", "surf_idx"), &ArrayMesh::surface_get_format); ClassDB::bind_method(D_METHOD("surface_get_primitive_type", "surf_idx"), &ArrayMesh::surface_get_primitive_type); ClassDB::bind_method(D_METHOD("surface_find_by_name", "name"), &ArrayMesh::surface_find_by_name); ClassDB::bind_method(D_METHOD("surface_set_name", "surf_idx", "name"), &ArrayMesh::surface_set_name); ClassDB::bind_method(D_METHOD("surface_get_name", "surf_idx"), &ArrayMesh::surface_get_name); #ifndef _3D_DISABLED ClassDB::bind_method(D_METHOD("create_trimesh_shape"), &ArrayMesh::create_trimesh_shape); ClassDB::bind_method(D_METHOD("create_convex_shape", "clean", "simplify"), &ArrayMesh::create_convex_shape, DEFVAL(true), DEFVAL(false)); #endif // _3D_DISABLED ClassDB::bind_method(D_METHOD("create_outline", "margin"), &ArrayMesh::create_outline); ClassDB::bind_method(D_METHOD("regen_normal_maps"), &ArrayMesh::regen_normal_maps); ClassDB::set_method_flags(get_class_static(), _scs_create("regen_normal_maps"), METHOD_FLAGS_DEFAULT | METHOD_FLAG_EDITOR); ClassDB::bind_method(D_METHOD("lightmap_unwrap", "transform", "texel_size"), &ArrayMesh::lightmap_unwrap); ClassDB::set_method_flags(get_class_static(), _scs_create("lightmap_unwrap"), METHOD_FLAGS_DEFAULT | METHOD_FLAG_EDITOR); ClassDB::bind_method(D_METHOD("generate_triangle_mesh"), &ArrayMesh::generate_triangle_mesh); ClassDB::bind_method(D_METHOD("set_custom_aabb", "aabb"), &ArrayMesh::set_custom_aabb); ClassDB::bind_method(D_METHOD("get_custom_aabb"), &ArrayMesh::get_custom_aabb); ClassDB::bind_method(D_METHOD("set_shadow_mesh", "mesh"), &ArrayMesh::set_shadow_mesh); ClassDB::bind_method(D_METHOD("get_shadow_mesh"), &ArrayMesh::get_shadow_mesh); ClassDB::bind_method(D_METHOD("_set_blend_shape_names", "blend_shape_names"), &ArrayMesh::_set_blend_shape_names); ClassDB::bind_method(D_METHOD("_get_blend_shape_names"), &ArrayMesh::_get_blend_shape_names); ClassDB::bind_method(D_METHOD("_set_surfaces", "surfaces"), &ArrayMesh::_set_surfaces); ClassDB::bind_method(D_METHOD("_get_surfaces"), &ArrayMesh::_get_surfaces); ADD_PROPERTY(PropertyInfo(Variant::PACKED_STRING_ARRAY, "_blend_shape_names", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL), "_set_blend_shape_names", "_get_blend_shape_names"); ADD_PROPERTY(PropertyInfo(Variant::ARRAY, "_surfaces", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL), "_set_surfaces", "_get_surfaces"); ADD_PROPERTY(PropertyInfo(Variant::INT, "blend_shape_mode", PROPERTY_HINT_ENUM, "Normalized,Relative"), "set_blend_shape_mode", "get_blend_shape_mode"); ADD_PROPERTY(PropertyInfo(Variant::AABB, "custom_aabb", PROPERTY_HINT_NONE, "suffix:m"), "set_custom_aabb", "get_custom_aabb"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "shadow_mesh", PROPERTY_HINT_RESOURCE_TYPE, "ArrayMesh"), "set_shadow_mesh", "get_shadow_mesh"); } void ArrayMesh::reload_from_file() { RenderingServer::get_singleton()->mesh_clear(mesh); surfaces.clear(); clear_blend_shapes(); clear_cache(); Resource::reload_from_file(); notify_property_list_changed(); } ArrayMesh::ArrayMesh() { //mesh is now created on demand //mesh = RenderingServer::get_singleton()->mesh_create(); } ArrayMesh::~ArrayMesh() { if (mesh.is_valid()) { ERR_FAIL_NULL(RenderingServer::get_singleton()); RenderingServer::get_singleton()->free(mesh); } } /////////////// void PlaceholderMesh::_bind_methods() { ClassDB::bind_method(D_METHOD("set_aabb", "aabb"), &PlaceholderMesh::set_aabb); ADD_PROPERTY(PropertyInfo(Variant::AABB, "aabb", PROPERTY_HINT_NONE, "suffix:m"), "set_aabb", "get_aabb"); } PlaceholderMesh::PlaceholderMesh() { rid = RS::get_singleton()->mesh_create(); } PlaceholderMesh::~PlaceholderMesh() { ERR_FAIL_NULL(RenderingServer::get_singleton()); RS::get_singleton()->free(rid); }