/**************************************************************************/ /* ustring.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "ustring.h" #include "core/crypto/crypto_core.h" #include "core/math/color.h" #include "core/math/math_funcs.h" #include "core/os/memory.h" #include "core/string/print_string.h" #include "core/string/string_name.h" #include "core/string/translation.h" #include "core/string/ucaps.h" #include "core/variant/variant.h" #include "core/version_generated.gen.h" #include #include #include #ifdef _MSC_VER #define _CRT_SECURE_NO_WARNINGS // to disable build-time warning which suggested to use strcpy_s instead strcpy #endif #if defined(MINGW_ENABLED) || defined(_MSC_VER) #define snprintf _snprintf_s #endif static const int MAX_DECIMALS = 32; static _FORCE_INLINE_ char32_t lower_case(char32_t c) { return (is_ascii_upper_case(c) ? (c + ('a' - 'A')) : c); } const char CharString::_null = 0; const char16_t Char16String::_null = 0; const char32_t String::_null = 0; const char32_t String::_replacement_char = 0xfffd; bool select_word(const String &p_s, int p_col, int &r_beg, int &r_end) { const String &s = p_s; int beg = CLAMP(p_col, 0, s.length()); int end = beg; if (s[beg] > 32 || beg == s.length()) { bool symbol = beg < s.length() && is_symbol(s[beg]); while (beg > 0 && s[beg - 1] > 32 && (symbol == is_symbol(s[beg - 1]))) { beg--; } while (end < s.length() && s[end + 1] > 32 && (symbol == is_symbol(s[end + 1]))) { end++; } if (end < s.length()) { end += 1; } r_beg = beg; r_end = end; return true; } else { return false; } } /*************************************************************************/ /* Char16String */ /*************************************************************************/ bool Char16String::operator<(const Char16String &p_right) const { if (length() == 0) { return p_right.length() != 0; } return is_str_less(get_data(), p_right.get_data()); } Char16String &Char16String::operator+=(char16_t p_char) { const int lhs_len = length(); resize(lhs_len + 2); char16_t *dst = ptrw(); dst[lhs_len] = p_char; dst[lhs_len + 1] = 0; return *this; } void Char16String::operator=(const char16_t *p_cstr) { copy_from(p_cstr); } const char16_t *Char16String::get_data() const { if (size()) { return &operator[](0); } else { return u""; } } void Char16String::copy_from(const char16_t *p_cstr) { if (!p_cstr) { resize(0); return; } const char16_t *s = p_cstr; for (; *s; s++) { } size_t len = s - p_cstr; if (len == 0) { resize(0); return; } Error err = resize(++len); // include terminating null char ERR_FAIL_COND_MSG(err != OK, "Failed to copy char16_t string."); memcpy(ptrw(), p_cstr, len * sizeof(char16_t)); } /*************************************************************************/ /* CharString */ /*************************************************************************/ bool CharString::operator<(const CharString &p_right) const { if (length() == 0) { return p_right.length() != 0; } return is_str_less(get_data(), p_right.get_data()); } bool CharString::operator==(const CharString &p_right) const { if (length() == 0) { // True if both have length 0, false if only p_right has a length return p_right.length() == 0; } else if (p_right.length() == 0) { // False due to unequal length return false; } return strcmp(ptr(), p_right.ptr()) == 0; } CharString &CharString::operator+=(char p_char) { const int lhs_len = length(); resize(lhs_len + 2); char *dst = ptrw(); dst[lhs_len] = p_char; dst[lhs_len + 1] = 0; return *this; } void CharString::operator=(const char *p_cstr) { copy_from(p_cstr); } const char *CharString::get_data() const { if (size()) { return &operator[](0); } else { return ""; } } void CharString::copy_from(const char *p_cstr) { if (!p_cstr) { resize(0); return; } size_t len = strlen(p_cstr); if (len == 0) { resize(0); return; } Error err = resize(++len); // include terminating null char ERR_FAIL_COND_MSG(err != OK, "Failed to copy C-string."); memcpy(ptrw(), p_cstr, len); } /*************************************************************************/ /* String */ /*************************************************************************/ Error String::parse_url(String &r_scheme, String &r_host, int &r_port, String &r_path) const { // Splits the URL into scheme, host, port, path. Strip credentials when present. String base = *this; r_scheme = ""; r_host = ""; r_port = 0; r_path = ""; int pos = base.find("://"); // Scheme if (pos != -1) { r_scheme = base.substr(0, pos + 3).to_lower(); base = base.substr(pos + 3, base.length() - pos - 3); } pos = base.find("/"); // Path if (pos != -1) { r_path = base.substr(pos, base.length() - pos); base = base.substr(0, pos); } // Host pos = base.find("@"); if (pos != -1) { // Strip credentials base = base.substr(pos + 1, base.length() - pos - 1); } if (base.begins_with("[")) { // Literal IPv6 pos = base.rfind("]"); if (pos == -1) { return ERR_INVALID_PARAMETER; } r_host = base.substr(1, pos - 1); base = base.substr(pos + 1, base.length() - pos - 1); } else { // Anything else if (base.get_slice_count(":") > 2) { return ERR_INVALID_PARAMETER; } pos = base.rfind(":"); if (pos == -1) { r_host = base; base = ""; } else { r_host = base.substr(0, pos); base = base.substr(pos, base.length() - pos); } } if (r_host.is_empty()) { return ERR_INVALID_PARAMETER; } r_host = r_host.to_lower(); // Port if (base.begins_with(":")) { base = base.substr(1, base.length() - 1); if (!base.is_valid_int()) { return ERR_INVALID_PARAMETER; } r_port = base.to_int(); if (r_port < 1 || r_port > 65535) { return ERR_INVALID_PARAMETER; } } return OK; } void String::copy_from(const char *p_cstr) { // copy Latin-1 encoded c-string directly if (!p_cstr) { resize(0); return; } const size_t len = strlen(p_cstr); if (len == 0) { resize(0); return; } resize(len + 1); // include 0 char32_t *dst = ptrw(); for (size_t i = 0; i <= len; i++) { #if CHAR_MIN == 0 uint8_t c = p_cstr[i]; #else uint8_t c = p_cstr[i] >= 0 ? p_cstr[i] : uint8_t(256 + p_cstr[i]); #endif if (c == 0 && i < len) { print_unicode_error("NUL character", true); dst[i] = _replacement_char; } else { dst[i] = c; } } } void String::copy_from(const char *p_cstr, const int p_clip_to) { // copy Latin-1 encoded c-string directly if (!p_cstr) { resize(0); return; } int len = 0; const char *ptr = p_cstr; while ((p_clip_to < 0 || len < p_clip_to) && *(ptr++) != 0) { len++; } if (len == 0) { resize(0); return; } resize(len + 1); // include 0 char32_t *dst = ptrw(); for (int i = 0; i < len; i++) { #if CHAR_MIN == 0 uint8_t c = p_cstr[i]; #else uint8_t c = p_cstr[i] >= 0 ? p_cstr[i] : uint8_t(256 + p_cstr[i]); #endif if (c == 0) { print_unicode_error("NUL character", true); dst[i] = _replacement_char; } else { dst[i] = c; } } dst[len] = 0; } void String::copy_from(const wchar_t *p_cstr) { #ifdef WINDOWS_ENABLED // wchar_t is 16-bit, parse as UTF-16 parse_utf16((const char16_t *)p_cstr); #else // wchar_t is 32-bit, copy directly copy_from((const char32_t *)p_cstr); #endif } void String::copy_from(const wchar_t *p_cstr, const int p_clip_to) { #ifdef WINDOWS_ENABLED // wchar_t is 16-bit, parse as UTF-16 parse_utf16((const char16_t *)p_cstr, p_clip_to); #else // wchar_t is 32-bit, copy directly copy_from((const char32_t *)p_cstr, p_clip_to); #endif } void String::copy_from(const char32_t &p_char) { if (p_char == 0) { print_unicode_error("NUL character", true); return; } resize(2); char32_t *dst = ptrw(); if ((p_char & 0xfffff800) == 0xd800) { print_unicode_error(vformat("Unpaired surrogate (%x)", (uint32_t)p_char)); dst[0] = _replacement_char; } else if (p_char > 0x10ffff) { print_unicode_error(vformat("Invalid unicode codepoint (%x)", (uint32_t)p_char)); dst[0] = _replacement_char; } else { dst[0] = p_char; } dst[1] = 0; } void String::copy_from(const char32_t *p_cstr) { if (!p_cstr) { resize(0); return; } int len = 0; const char32_t *ptr = p_cstr; while (*(ptr++) != 0) { len++; } if (len == 0) { resize(0); return; } copy_from_unchecked(p_cstr, len); } void String::copy_from(const char32_t *p_cstr, const int p_clip_to) { if (!p_cstr) { resize(0); return; } int len = 0; const char32_t *ptr = p_cstr; while ((p_clip_to < 0 || len < p_clip_to) && *(ptr++) != 0) { len++; } if (len == 0) { resize(0); return; } copy_from_unchecked(p_cstr, len); } // assumes the following have already been validated: // p_char != nullptr // p_length > 0 // p_length <= p_char strlen void String::copy_from_unchecked(const char32_t *p_char, const int p_length) { resize(p_length + 1); char32_t *dst = ptrw(); dst[p_length] = 0; for (int i = 0; i < p_length; i++) { if (p_char[i] == 0) { print_unicode_error("NUL character", true); dst[i] = _replacement_char; continue; } if ((p_char[i] & 0xfffff800) == 0xd800) { print_unicode_error(vformat("Unpaired surrogate (%x)", (uint32_t)p_char[i])); dst[i] = _replacement_char; continue; } if (p_char[i] > 0x10ffff) { print_unicode_error(vformat("Invalid unicode codepoint (%x)", (uint32_t)p_char[i])); dst[i] = _replacement_char; continue; } dst[i] = p_char[i]; } } void String::operator=(const char *p_str) { copy_from(p_str); } void String::operator=(const char32_t *p_str) { copy_from(p_str); } void String::operator=(const wchar_t *p_str) { copy_from(p_str); } String String::operator+(const String &p_str) const { String res = *this; res += p_str; return res; } String String::operator+(char32_t p_char) const { String res = *this; res += p_char; return res; } String operator+(const char *p_chr, const String &p_str) { String tmp = p_chr; tmp += p_str; return tmp; } String operator+(const wchar_t *p_chr, const String &p_str) { #ifdef WINDOWS_ENABLED // wchar_t is 16-bit String tmp = String::utf16((const char16_t *)p_chr); #else // wchar_t is 32-bit String tmp = (const char32_t *)p_chr; #endif tmp += p_str; return tmp; } String operator+(char32_t p_chr, const String &p_str) { return (String::chr(p_chr) + p_str); } String &String::operator+=(const String &p_str) { const int lhs_len = length(); if (lhs_len == 0) { *this = p_str; return *this; } const int rhs_len = p_str.length(); if (rhs_len == 0) { return *this; } resize(lhs_len + rhs_len + 1); const char32_t *src = p_str.ptr(); char32_t *dst = ptrw() + lhs_len; // Don't copy the terminating null with `memcpy` to avoid undefined behavior when string is being added to itself (it would overlap the destination). memcpy(dst, src, rhs_len * sizeof(char32_t)); *(dst + rhs_len) = _null; return *this; } String &String::operator+=(const char *p_str) { if (!p_str || p_str[0] == 0) { return *this; } const int lhs_len = length(); const size_t rhs_len = strlen(p_str); resize(lhs_len + rhs_len + 1); char32_t *dst = ptrw() + lhs_len; for (size_t i = 0; i <= rhs_len; i++) { #if CHAR_MIN == 0 uint8_t c = p_str[i]; #else uint8_t c = p_str[i] >= 0 ? p_str[i] : uint8_t(256 + p_str[i]); #endif if (c == 0 && i < rhs_len) { print_unicode_error("NUL character", true); dst[i] = _replacement_char; } else { dst[i] = c; } } return *this; } String &String::operator+=(const wchar_t *p_str) { #ifdef WINDOWS_ENABLED // wchar_t is 16-bit *this += String::utf16((const char16_t *)p_str); #else // wchar_t is 32-bit *this += String((const char32_t *)p_str); #endif return *this; } String &String::operator+=(const char32_t *p_str) { *this += String(p_str); return *this; } String &String::operator+=(char32_t p_char) { if (p_char == 0) { print_unicode_error("NUL character", true); return *this; } const int lhs_len = length(); resize(lhs_len + 2); char32_t *dst = ptrw(); if ((p_char & 0xfffff800) == 0xd800) { print_unicode_error(vformat("Unpaired surrogate (%x)", (uint32_t)p_char)); dst[lhs_len] = _replacement_char; } else if (p_char > 0x10ffff) { print_unicode_error(vformat("Invalid unicode codepoint (%x)", (uint32_t)p_char)); dst[lhs_len] = _replacement_char; } else { dst[lhs_len] = p_char; } dst[lhs_len + 1] = 0; return *this; } bool String::operator==(const char *p_str) const { // compare Latin-1 encoded c-string int len = 0; const char *aux = p_str; while (*(aux++) != 0) { len++; } if (length() != len) { return false; } if (is_empty()) { return true; } int l = length(); const char32_t *dst = get_data(); // Compare char by char for (int i = 0; i < l; i++) { if ((char32_t)p_str[i] != dst[i]) { return false; } } return true; } bool String::operator==(const wchar_t *p_str) const { #ifdef WINDOWS_ENABLED // wchar_t is 16-bit, parse as UTF-16 return *this == String::utf16((const char16_t *)p_str); #else // wchar_t is 32-bit, compare char by char return *this == (const char32_t *)p_str; #endif } bool String::operator==(const char32_t *p_str) const { int len = 0; const char32_t *aux = p_str; while (*(aux++) != 0) { len++; } if (length() != len) { return false; } if (is_empty()) { return true; } int l = length(); const char32_t *dst = get_data(); /* Compare char by char */ for (int i = 0; i < l; i++) { if (p_str[i] != dst[i]) { return false; } } return true; } bool String::operator==(const String &p_str) const { if (length() != p_str.length()) { return false; } if (is_empty()) { return true; } int l = length(); const char32_t *src = get_data(); const char32_t *dst = p_str.get_data(); /* Compare char by char */ for (int i = 0; i < l; i++) { if (src[i] != dst[i]) { return false; } } return true; } bool String::operator==(const StrRange &p_str_range) const { int len = p_str_range.len; if (length() != len) { return false; } if (is_empty()) { return true; } const char32_t *c_str = p_str_range.c_str; const char32_t *dst = &operator[](0); /* Compare char by char */ for (int i = 0; i < len; i++) { if (c_str[i] != dst[i]) { return false; } } return true; } bool operator==(const char *p_chr, const String &p_str) { return p_str == p_chr; } bool operator==(const wchar_t *p_chr, const String &p_str) { #ifdef WINDOWS_ENABLED // wchar_t is 16-bit return p_str == String::utf16((const char16_t *)p_chr); #else // wchar_t is 32-bi return p_str == String((const char32_t *)p_chr); #endif } bool operator!=(const char *p_chr, const String &p_str) { return !(p_str == p_chr); } bool operator!=(const wchar_t *p_chr, const String &p_str) { #ifdef WINDOWS_ENABLED // wchar_t is 16-bit return !(p_str == String::utf16((const char16_t *)p_chr)); #else // wchar_t is 32-bi return !(p_str == String((const char32_t *)p_chr)); #endif } bool String::operator!=(const char *p_str) const { return (!(*this == p_str)); } bool String::operator!=(const wchar_t *p_str) const { return (!(*this == p_str)); } bool String::operator!=(const char32_t *p_str) const { return (!(*this == p_str)); } bool String::operator!=(const String &p_str) const { return !((*this == p_str)); } bool String::operator<=(const String &p_str) const { return !(p_str < *this); } bool String::operator>(const String &p_str) const { return p_str < *this; } bool String::operator>=(const String &p_str) const { return !(*this < p_str); } bool String::operator<(const char *p_str) const { if (is_empty() && p_str[0] == 0) { return false; } if (is_empty()) { return true; } return is_str_less(get_data(), p_str); } bool String::operator<(const wchar_t *p_str) const { if (is_empty() && p_str[0] == 0) { return false; } if (is_empty()) { return true; } #ifdef WINDOWS_ENABLED // wchar_t is 16-bit return is_str_less(get_data(), String::utf16((const char16_t *)p_str).get_data()); #else // wchar_t is 32-bit return is_str_less(get_data(), (const char32_t *)p_str); #endif } bool String::operator<(const char32_t *p_str) const { if (is_empty() && p_str[0] == 0) { return false; } if (is_empty()) { return true; } return is_str_less(get_data(), p_str); } bool String::operator<(const String &p_str) const { return operator<(p_str.get_data()); } signed char String::nocasecmp_to(const String &p_str) const { if (is_empty() && p_str.is_empty()) { return 0; } if (is_empty()) { return -1; } if (p_str.is_empty()) { return 1; } const char32_t *that_str = p_str.get_data(); const char32_t *this_str = get_data(); while (true) { if (*that_str == 0 && *this_str == 0) { // If both strings are at the end, they are equal. return 0; } else if (*this_str == 0) { // If at the end of this, and not of other, we are less. return -1; } else if (*that_str == 0) { // If at end of other, and not of this, we are greater. return 1; } else if (_find_upper(*this_str) < _find_upper(*that_str)) { // If current character in this is less, we are less. return -1; } else if (_find_upper(*this_str) > _find_upper(*that_str)) { // If current character in this is greater, we are greater. return 1; } this_str++; that_str++; } } signed char String::casecmp_to(const String &p_str) const { if (is_empty() && p_str.is_empty()) { return 0; } if (is_empty()) { return -1; } if (p_str.is_empty()) { return 1; } const char32_t *that_str = p_str.get_data(); const char32_t *this_str = get_data(); while (true) { if (*that_str == 0 && *this_str == 0) { // If both strings are at the end, they are equal. return 0; } else if (*this_str == 0) { // If at the end of this, and not of other, we are less. return -1; } else if (*that_str == 0) { // If at end of other, and not of this, we are greater. return 1; } else if (*this_str < *that_str) { // If current character in this is less, we are less. return -1; } else if (*this_str > *that_str) { // If current character in this is greater, we are greater. return 1; } this_str++; that_str++; } } static _FORCE_INLINE_ signed char natural_cmp_common(const char32_t *&r_this_str, const char32_t *&r_that_str) { // Keep ptrs to start of numerical sequences. const char32_t *this_substr = r_this_str; const char32_t *that_substr = r_that_str; // Compare lengths of both numerical sequences, ignoring leading zeros. while (is_digit(*r_this_str)) { r_this_str++; } while (is_digit(*r_that_str)) { r_that_str++; } while (*this_substr == '0') { this_substr++; } while (*that_substr == '0') { that_substr++; } int this_len = r_this_str - this_substr; int that_len = r_that_str - that_substr; if (this_len < that_len) { return -1; } else if (this_len > that_len) { return 1; } // If lengths equal, compare lexicographically. while (this_substr != r_this_str && that_substr != r_that_str) { if (*this_substr < *that_substr) { return -1; } else if (*this_substr > *that_substr) { return 1; } this_substr++; that_substr++; } return 0; } static _FORCE_INLINE_ signed char naturalcasecmp_to_base(const char32_t *p_this_str, const char32_t *p_that_str) { if (p_this_str && p_that_str) { while (*p_this_str == '.' || *p_that_str == '.') { if (*p_this_str++ != '.') { return 1; } if (*p_that_str++ != '.') { return -1; } if (!*p_that_str) { return 1; } if (!*p_this_str) { return -1; } } while (*p_this_str) { if (!*p_that_str) { return 1; } else if (is_digit(*p_this_str)) { if (!is_digit(*p_that_str)) { return -1; } signed char ret = natural_cmp_common(p_this_str, p_that_str); if (ret) { return ret; } } else if (is_digit(*p_that_str)) { return 1; } else { if (*p_this_str < *p_that_str) { // If current character in this is less, we are less. return -1; } else if (*p_this_str > *p_that_str) { // If current character in this is greater, we are greater. return 1; } p_this_str++; p_that_str++; } } if (*p_that_str) { return -1; } } return 0; } signed char String::naturalcasecmp_to(const String &p_str) const { const char32_t *this_str = get_data(); const char32_t *that_str = p_str.get_data(); return naturalcasecmp_to_base(this_str, that_str); } static _FORCE_INLINE_ signed char naturalnocasecmp_to_base(const char32_t *p_this_str, const char32_t *p_that_str) { if (p_this_str && p_that_str) { while (*p_this_str == '.' || *p_that_str == '.') { if (*p_this_str++ != '.') { return 1; } if (*p_that_str++ != '.') { return -1; } if (!*p_that_str) { return 1; } if (!*p_this_str) { return -1; } } while (*p_this_str) { if (!*p_that_str) { return 1; } else if (is_digit(*p_this_str)) { if (!is_digit(*p_that_str)) { return -1; } signed char ret = natural_cmp_common(p_this_str, p_that_str); if (ret) { return ret; } } else if (is_digit(*p_that_str)) { return 1; } else { if (_find_upper(*p_this_str) < _find_upper(*p_that_str)) { // If current character in this is less, we are less. return -1; } else if (_find_upper(*p_this_str) > _find_upper(*p_that_str)) { // If current character in this is greater, we are greater. return 1; } p_this_str++; p_that_str++; } } if (*p_that_str) { return -1; } } return 0; } signed char String::naturalnocasecmp_to(const String &p_str) const { const char32_t *this_str = get_data(); const char32_t *that_str = p_str.get_data(); return naturalnocasecmp_to_base(this_str, that_str); } static _FORCE_INLINE_ signed char file_cmp_common(const char32_t *&r_this_str, const char32_t *&r_that_str) { // Compare leading `_` sequences. while (*r_this_str && *r_that_str) { // Sort `_` lower than everything except `.` if (*r_this_str != '_' && *r_that_str == '_') { return *r_this_str == '.' ? -1 : 1; } if (*r_this_str == '_' && *r_that_str != '_') { return *r_that_str == '.' ? 1 : -1; } r_this_str++; r_that_str++; } return 0; } signed char String::filecasecmp_to(const String &p_str) const { const char32_t *this_str = get_data(); const char32_t *that_str = p_str.get_data(); signed char ret = file_cmp_common(this_str, that_str); if (ret) { return ret; } return naturalcasecmp_to_base(this_str, that_str); } signed char String::filenocasecmp_to(const String &p_str) const { const char32_t *this_str = get_data(); const char32_t *that_str = p_str.get_data(); signed char ret = file_cmp_common(this_str, that_str); if (ret) { return ret; } return naturalnocasecmp_to_base(this_str, that_str); } const char32_t *String::get_data() const { static const char32_t zero = 0; return size() ? &operator[](0) : &zero; } String String::_camelcase_to_underscore() const { const char32_t *cstr = get_data(); String new_string; int start_index = 0; for (int i = 1; i < size(); i++) { bool is_prev_upper = is_unicode_upper_case(cstr[i - 1]); bool is_prev_lower = is_unicode_lower_case(cstr[i - 1]); bool is_prev_digit = is_digit(cstr[i - 1]); bool is_curr_upper = is_unicode_upper_case(cstr[i]); bool is_curr_lower = is_unicode_lower_case(cstr[i]); bool is_curr_digit = is_digit(cstr[i]); bool is_next_lower = false; if (i + 1 < size()) { is_next_lower = is_unicode_lower_case(cstr[i + 1]); } const bool cond_a = is_prev_lower && is_curr_upper; // aA const bool cond_b = (is_prev_upper || is_prev_digit) && is_curr_upper && is_next_lower; // AAa, 2Aa const bool cond_c = is_prev_digit && is_curr_lower && is_next_lower; // 2aa const bool cond_d = (is_prev_upper || is_prev_lower) && is_curr_digit; // A2, a2 if (cond_a || cond_b || cond_c || cond_d) { new_string += substr(start_index, i - start_index) + "_"; start_index = i; } } new_string += substr(start_index, size() - start_index); return new_string.to_lower(); } String String::capitalize() const { String aux = _camelcase_to_underscore().replace("_", " ").strip_edges(); String cap; for (int i = 0; i < aux.get_slice_count(" "); i++) { String slice = aux.get_slicec(' ', i); if (slice.length() > 0) { slice[0] = _find_upper(slice[0]); if (i > 0) { cap += " "; } cap += slice; } } return cap; } String String::to_camel_case() const { String s = to_pascal_case(); if (!s.is_empty()) { s[0] = _find_lower(s[0]); } return s; } String String::to_pascal_case() const { return capitalize().replace(" ", ""); } String String::to_snake_case() const { return _camelcase_to_underscore().replace(" ", "_").strip_edges(); } String String::get_with_code_lines() const { const Vector lines = split("\n"); String ret; for (int i = 0; i < lines.size(); i++) { if (i > 0) { ret += "\n"; } ret += vformat("%4d | %s", i + 1, lines[i]); } return ret; } int String::get_slice_count(const String &p_splitter) const { if (is_empty()) { return 0; } if (p_splitter.is_empty()) { return 0; } int pos = 0; int slices = 1; while ((pos = find(p_splitter, pos)) >= 0) { slices++; pos += p_splitter.length(); } return slices; } String String::get_slice(const String &p_splitter, int p_slice) const { if (is_empty() || p_splitter.is_empty()) { return ""; } int pos = 0; int prev_pos = 0; //int slices=1; if (p_slice < 0) { return ""; } if (find(p_splitter) == -1) { return *this; } int i = 0; while (true) { pos = find(p_splitter, pos); if (pos == -1) { pos = length(); //reached end } int from = prev_pos; //int to=pos; if (p_slice == i) { return substr(from, pos - from); } if (pos == length()) { //reached end and no find break; } pos += p_splitter.length(); prev_pos = pos; i++; } return ""; //no find! } String String::get_slicec(char32_t p_splitter, int p_slice) const { if (is_empty()) { return String(); } if (p_slice < 0) { return String(); } const char32_t *c = ptr(); int i = 0; int prev = 0; int count = 0; while (true) { if (c[i] == 0 || c[i] == p_splitter) { if (p_slice == count) { return substr(prev, i - prev); } else if (c[i] == 0) { return String(); } else { count++; prev = i + 1; } } i++; } } Vector String::split_spaces() const { Vector ret; int from = 0; int i = 0; int len = length(); if (len == 0) { return ret; } bool inside = false; while (true) { bool empty = operator[](i) < 33; if (i == 0) { inside = !empty; } if (!empty && !inside) { inside = true; from = i; } if (empty && inside) { ret.push_back(substr(from, i - from)); inside = false; } if (i == len) { break; } i++; } return ret; } Vector String::split(const String &p_splitter, bool p_allow_empty, int p_maxsplit) const { Vector ret; if (is_empty()) { if (p_allow_empty) { ret.push_back(""); } return ret; } int from = 0; int len = length(); while (true) { int end; if (p_splitter.is_empty()) { end = from + 1; } else { end = find(p_splitter, from); if (end < 0) { end = len; } } if (p_allow_empty || (end > from)) { if (p_maxsplit <= 0) { ret.push_back(substr(from, end - from)); } else { // Put rest of the string and leave cycle. if (p_maxsplit == ret.size()) { ret.push_back(substr(from, len)); break; } // Otherwise, push items until positive limit is reached. ret.push_back(substr(from, end - from)); } } if (end == len) { break; } from = end + p_splitter.length(); } return ret; } Vector String::rsplit(const String &p_splitter, bool p_allow_empty, int p_maxsplit) const { Vector ret; const int len = length(); int remaining_len = len; while (true) { if (remaining_len < p_splitter.length() || (p_maxsplit > 0 && p_maxsplit == ret.size())) { // no room for another splitter or hit max splits, push what's left and we're done if (p_allow_empty || remaining_len > 0) { ret.push_back(substr(0, remaining_len)); } break; } int left_edge; if (p_splitter.is_empty()) { left_edge = remaining_len - 1; if (left_edge == 0) { left_edge--; // Skip to the < 0 condition. } } else { left_edge = rfind(p_splitter, remaining_len - p_splitter.length()); } if (left_edge < 0) { // no more splitters, we're done ret.push_back(substr(0, remaining_len)); break; } int substr_start = left_edge + p_splitter.length(); if (p_allow_empty || substr_start < remaining_len) { ret.push_back(substr(substr_start, remaining_len - substr_start)); } remaining_len = left_edge; } ret.reverse(); return ret; } Vector String::split_floats(const String &p_splitter, bool p_allow_empty) const { Vector ret; int from = 0; int len = length(); while (true) { int end = find(p_splitter, from); if (end < 0) { end = len; } if (p_allow_empty || (end > from)) { ret.push_back(String::to_float(&get_data()[from])); } if (end == len) { break; } from = end + p_splitter.length(); } return ret; } Vector String::split_floats_mk(const Vector &p_splitters, bool p_allow_empty) const { Vector ret; int from = 0; int len = length(); while (true) { int idx; int end = findmk(p_splitters, from, &idx); int spl_len = 1; if (end < 0) { end = len; } else { spl_len = p_splitters[idx].length(); } if (p_allow_empty || (end > from)) { ret.push_back(String::to_float(&get_data()[from])); } if (end == len) { break; } from = end + spl_len; } return ret; } Vector String::split_ints(const String &p_splitter, bool p_allow_empty) const { Vector ret; int from = 0; int len = length(); while (true) { int end = find(p_splitter, from); if (end < 0) { end = len; } if (p_allow_empty || (end > from)) { ret.push_back(String::to_int(&get_data()[from], end - from)); } if (end == len) { break; } from = end + p_splitter.length(); } return ret; } Vector String::split_ints_mk(const Vector &p_splitters, bool p_allow_empty) const { Vector ret; int from = 0; int len = length(); while (true) { int idx; int end = findmk(p_splitters, from, &idx); int spl_len = 1; if (end < 0) { end = len; } else { spl_len = p_splitters[idx].length(); } if (p_allow_empty || (end > from)) { ret.push_back(String::to_int(&get_data()[from], end - from)); } if (end == len) { break; } from = end + spl_len; } return ret; } String String::join(const Vector &parts) const { String ret; for (int i = 0; i < parts.size(); ++i) { if (i > 0) { ret += *this; } ret += parts[i]; } return ret; } char32_t String::char_uppercase(char32_t p_char) { return _find_upper(p_char); } char32_t String::char_lowercase(char32_t p_char) { return _find_lower(p_char); } String String::to_upper() const { String upper = *this; for (int i = 0; i < upper.size(); i++) { const char32_t s = upper[i]; const char32_t t = _find_upper(s); if (s != t) { // avoid copy on write upper[i] = t; } } return upper; } String String::to_lower() const { String lower = *this; for (int i = 0; i < lower.size(); i++) { const char32_t s = lower[i]; const char32_t t = _find_lower(s); if (s != t) { // avoid copy on write lower[i] = t; } } return lower; } String String::chr(char32_t p_char) { char32_t c[2] = { p_char, 0 }; return String(c); } String String::num(double p_num, int p_decimals) { if (Math::is_nan(p_num)) { return "nan"; } if (Math::is_inf(p_num)) { if (signbit(p_num)) { return "-inf"; } else { return "inf"; } } if (p_decimals < 0) { p_decimals = 14; const double abs_num = Math::abs(p_num); if (abs_num > 10) { // We want to align the digits to the above reasonable default, so we only // need to subtract log10 for numbers with a positive power of ten. p_decimals -= (int)floor(log10(abs_num)); } } if (p_decimals > MAX_DECIMALS) { p_decimals = MAX_DECIMALS; } char fmt[7]; fmt[0] = '%'; fmt[1] = '.'; if (p_decimals < 0) { fmt[1] = 'l'; fmt[2] = 'f'; fmt[3] = 0; } else if (p_decimals < 10) { fmt[2] = '0' + p_decimals; fmt[3] = 'l'; fmt[4] = 'f'; fmt[5] = 0; } else { fmt[2] = '0' + (p_decimals / 10); fmt[3] = '0' + (p_decimals % 10); fmt[4] = 'l'; fmt[5] = 'f'; fmt[6] = 0; } // if we want to convert a double with as much decimal places as // DBL_MAX or DBL_MIN then we would theoretically need a buffer of at least // DBL_MAX_10_EXP + 2 for DBL_MAX and DBL_MAX_10_EXP + 4 for DBL_MIN. // BUT those values where still giving me exceptions, so I tested from // DBL_MAX_10_EXP + 10 incrementing one by one and DBL_MAX_10_EXP + 17 (325) // was the first buffer size not to throw an exception char buf[325]; #if defined(__GNUC__) || defined(_MSC_VER) // PLEASE NOTE that, albeit vcrt online reference states that snprintf // should safely truncate the output to the given buffer size, we have // found a case where this is not true, so we should create a buffer // as big as needed snprintf(buf, 325, fmt, p_num); #else sprintf(buf, fmt, p_num); #endif buf[324] = 0; //destroy trailing zeroes { bool period = false; int z = 0; while (buf[z]) { if (buf[z] == '.') { period = true; } z++; } if (period) { z--; while (z > 0) { if (buf[z] == '0') { buf[z] = 0; } else if (buf[z] == '.') { buf[z] = 0; break; } else { break; } z--; } } } return buf; } String String::num_int64(int64_t p_num, int base, bool capitalize_hex) { bool sign = p_num < 0; int64_t n = p_num; int chars = 0; do { n /= base; chars++; } while (n); if (sign) { chars++; } String s; s.resize(chars + 1); char32_t *c = s.ptrw(); c[chars] = 0; n = p_num; do { int mod = ABS(n % base); if (mod >= 10) { char a = (capitalize_hex ? 'A' : 'a'); c[--chars] = a + (mod - 10); } else { c[--chars] = '0' + mod; } n /= base; } while (n); if (sign) { c[0] = '-'; } return s; } String String::num_uint64(uint64_t p_num, int base, bool capitalize_hex) { uint64_t n = p_num; int chars = 0; do { n /= base; chars++; } while (n); String s; s.resize(chars + 1); char32_t *c = s.ptrw(); c[chars] = 0; n = p_num; do { int mod = n % base; if (mod >= 10) { char a = (capitalize_hex ? 'A' : 'a'); c[--chars] = a + (mod - 10); } else { c[--chars] = '0' + mod; } n /= base; } while (n); return s; } String String::num_real(double p_num, bool p_trailing) { if (p_num == (double)(int64_t)p_num) { if (p_trailing) { return num_int64((int64_t)p_num) + ".0"; } else { return num_int64((int64_t)p_num); } } #ifdef REAL_T_IS_DOUBLE int decimals = 14; #else int decimals = 6; #endif // We want to align the digits to the above sane default, so we only need // to subtract log10 for numbers with a positive power of ten magnitude. double abs_num = Math::abs(p_num); if (abs_num > 10) { decimals -= (int)floor(log10(abs_num)); } return num(p_num, decimals); } String String::num_scientific(double p_num) { if (Math::is_nan(p_num)) { return "nan"; } if (Math::is_inf(p_num)) { if (signbit(p_num)) { return "-inf"; } else { return "inf"; } } char buf[256]; #if defined(__GNUC__) || defined(_MSC_VER) #if defined(__MINGW32__) && defined(_TWO_DIGIT_EXPONENT) && !defined(_UCRT) // MinGW requires _set_output_format() to conform to C99 output for printf unsigned int old_exponent_format = _set_output_format(_TWO_DIGIT_EXPONENT); #endif snprintf(buf, 256, "%lg", p_num); #if defined(__MINGW32__) && defined(_TWO_DIGIT_EXPONENT) && !defined(_UCRT) _set_output_format(old_exponent_format); #endif #else sprintf(buf, "%.16lg", p_num); #endif buf[255] = 0; return buf; } String String::md5(const uint8_t *p_md5) { return String::hex_encode_buffer(p_md5, 16); } String String::hex_encode_buffer(const uint8_t *p_buffer, int p_len) { static const char hex[16] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' }; String ret; char v[2] = { 0, 0 }; for (int i = 0; i < p_len; i++) { v[0] = hex[p_buffer[i] >> 4]; ret += v; v[0] = hex[p_buffer[i] & 0xF]; ret += v; } return ret; } Vector String::hex_decode() const { ERR_FAIL_COND_V_MSG(length() % 2 != 0, Vector(), "Hexadecimal string of uneven length."); #define HEX_TO_BYTE(m_output, m_index) \ uint8_t m_output; \ c = operator[](m_index); \ if (is_digit(c)) { \ m_output = c - '0'; \ } else if (c >= 'a' && c <= 'f') { \ m_output = c - 'a' + 10; \ } else if (c >= 'A' && c <= 'F') { \ m_output = c - 'A' + 10; \ } else { \ ERR_FAIL_V_MSG(Vector(), "Invalid hexadecimal character \"" + chr(c) + "\" at index " + m_index + "."); \ } Vector out; int len = length() / 2; out.resize(len); for (int i = 0; i < len; i++) { char32_t c; HEX_TO_BYTE(first, i * 2); HEX_TO_BYTE(second, i * 2 + 1); out.write[i] = first * 16 + second; } return out; #undef HEX_TO_BYTE } void String::print_unicode_error(const String &p_message, bool p_critical) const { if (p_critical) { print_error(vformat(U"Unicode parsing error, some characters were replaced with � (U+FFFD): %s", p_message)); } else { print_error(vformat("Unicode parsing error: %s", p_message)); } } CharString String::ascii(bool p_allow_extended) const { if (!length()) { return CharString(); } CharString cs; cs.resize(size()); for (int i = 0; i < size(); i++) { char32_t c = operator[](i); if ((c <= 0x7f) || (c <= 0xff && p_allow_extended)) { cs[i] = c; } else { print_unicode_error(vformat("Invalid unicode codepoint (%x), cannot represent as ASCII/Latin-1", (uint32_t)c)); cs[i] = 0x20; // ascii doesn't have a replacement character like unicode, 0x1a is sometimes used but is kinda arcane } } return cs; } String String::utf8(const char *p_utf8, int p_len) { String ret; ret.parse_utf8(p_utf8, p_len); return ret; } Error String::parse_utf8(const char *p_utf8, int p_len, bool p_skip_cr) { if (!p_utf8) { return ERR_INVALID_DATA; } String aux; int cstr_size = 0; int str_size = 0; /* HANDLE BOM (Byte Order Mark) */ if (p_len < 0 || p_len >= 3) { bool has_bom = uint8_t(p_utf8[0]) == 0xef && uint8_t(p_utf8[1]) == 0xbb && uint8_t(p_utf8[2]) == 0xbf; if (has_bom) { //8-bit encoding, byte order has no meaning in UTF-8, just skip it if (p_len >= 0) { p_len -= 3; } p_utf8 += 3; } } bool decode_error = false; bool decode_failed = false; { const char *ptrtmp = p_utf8; const char *ptrtmp_limit = &p_utf8[p_len]; int skip = 0; uint8_t c_start = 0; while (ptrtmp != ptrtmp_limit && *ptrtmp) { #if CHAR_MIN == 0 uint8_t c = *ptrtmp; #else uint8_t c = *ptrtmp >= 0 ? *ptrtmp : uint8_t(256 + *ptrtmp); #endif if (skip == 0) { if (p_skip_cr && c == '\r') { ptrtmp++; continue; } /* Determine the number of characters in sequence */ if ((c & 0x80) == 0) { skip = 0; } else if ((c & 0xe0) == 0xc0) { skip = 1; } else if ((c & 0xf0) == 0xe0) { skip = 2; } else if ((c & 0xf8) == 0xf0) { skip = 3; } else if ((c & 0xfc) == 0xf8) { skip = 4; } else if ((c & 0xfe) == 0xfc) { skip = 5; } else { skip = 0; print_unicode_error(vformat("Invalid UTF-8 leading byte (%x)", c), true); decode_failed = true; } c_start = c; if (skip == 1 && (c & 0x1e) == 0) { print_unicode_error(vformat("Overlong encoding (%x ...)", c)); decode_error = true; } str_size++; } else { if ((c_start == 0xe0 && skip == 2 && c < 0xa0) || (c_start == 0xf0 && skip == 3 && c < 0x90) || (c_start == 0xf8 && skip == 4 && c < 0x88) || (c_start == 0xfc && skip == 5 && c < 0x84)) { print_unicode_error(vformat("Overlong encoding (%x %x ...)", c_start, c)); decode_error = true; } if (c < 0x80 || c > 0xbf) { print_unicode_error(vformat("Invalid UTF-8 continuation byte (%x ... %x ...)", c_start, c), true); decode_failed = true; skip = 0; } else { --skip; } } cstr_size++; ptrtmp++; } if (skip) { print_unicode_error(vformat("Missing %d UTF-8 continuation byte(s)", skip), true); decode_failed = true; } } if (str_size == 0) { clear(); return OK; // empty string } resize(str_size + 1); char32_t *dst = ptrw(); dst[str_size] = 0; int skip = 0; uint32_t unichar = 0; while (cstr_size) { #if CHAR_MIN == 0 uint8_t c = *p_utf8; #else uint8_t c = *p_utf8 >= 0 ? *p_utf8 : uint8_t(256 + *p_utf8); #endif if (skip == 0) { if (p_skip_cr && c == '\r') { p_utf8++; continue; } /* Determine the number of characters in sequence */ if ((c & 0x80) == 0) { *(dst++) = c; unichar = 0; skip = 0; } else if ((c & 0xe0) == 0xc0) { unichar = (0xff >> 3) & c; skip = 1; } else if ((c & 0xf0) == 0xe0) { unichar = (0xff >> 4) & c; skip = 2; } else if ((c & 0xf8) == 0xf0) { unichar = (0xff >> 5) & c; skip = 3; } else if ((c & 0xfc) == 0xf8) { unichar = (0xff >> 6) & c; skip = 4; } else if ((c & 0xfe) == 0xfc) { unichar = (0xff >> 7) & c; skip = 5; } else { *(dst++) = _replacement_char; unichar = 0; skip = 0; } } else { if (c < 0x80 || c > 0xbf) { *(dst++) = _replacement_char; skip = 0; } else { unichar = (unichar << 6) | (c & 0x3f); --skip; if (skip == 0) { if (unichar == 0) { print_unicode_error("NUL character", true); decode_failed = true; unichar = _replacement_char; } else if ((unichar & 0xfffff800) == 0xd800) { print_unicode_error(vformat("Unpaired surrogate (%x)", unichar), true); decode_failed = true; unichar = _replacement_char; } else if (unichar > 0x10ffff) { print_unicode_error(vformat("Invalid unicode codepoint (%x)", unichar), true); decode_failed = true; unichar = _replacement_char; } *(dst++) = unichar; } } } cstr_size--; p_utf8++; } if (skip) { *(dst++) = 0x20; } if (decode_failed) { return ERR_INVALID_DATA; } else if (decode_error) { return ERR_PARSE_ERROR; } else { return OK; } } CharString String::utf8() const { int l = length(); if (!l) { return CharString(); } const char32_t *d = &operator[](0); int fl = 0; for (int i = 0; i < l; i++) { uint32_t c = d[i]; if (c <= 0x7f) { // 7 bits. fl += 1; } else if (c <= 0x7ff) { // 11 bits fl += 2; } else if (c <= 0xffff) { // 16 bits fl += 3; } else if (c <= 0x001fffff) { // 21 bits fl += 4; } else if (c <= 0x03ffffff) { // 26 bits fl += 5; print_unicode_error(vformat("Invalid unicode codepoint (%x)", c)); } else if (c <= 0x7fffffff) { // 31 bits fl += 6; print_unicode_error(vformat("Invalid unicode codepoint (%x)", c)); } else { fl += 1; print_unicode_error(vformat("Invalid unicode codepoint (%x), cannot represent as UTF-8", c), true); } } CharString utf8s; if (fl == 0) { return utf8s; } utf8s.resize(fl + 1); uint8_t *cdst = (uint8_t *)utf8s.get_data(); #define APPEND_CHAR(m_c) *(cdst++) = m_c for (int i = 0; i < l; i++) { uint32_t c = d[i]; if (c <= 0x7f) { // 7 bits. APPEND_CHAR(c); } else if (c <= 0x7ff) { // 11 bits APPEND_CHAR(uint32_t(0xc0 | ((c >> 6) & 0x1f))); // Top 5 bits. APPEND_CHAR(uint32_t(0x80 | (c & 0x3f))); // Bottom 6 bits. } else if (c <= 0xffff) { // 16 bits APPEND_CHAR(uint32_t(0xe0 | ((c >> 12) & 0x0f))); // Top 4 bits. APPEND_CHAR(uint32_t(0x80 | ((c >> 6) & 0x3f))); // Middle 6 bits. APPEND_CHAR(uint32_t(0x80 | (c & 0x3f))); // Bottom 6 bits. } else if (c <= 0x001fffff) { // 21 bits APPEND_CHAR(uint32_t(0xf0 | ((c >> 18) & 0x07))); // Top 3 bits. APPEND_CHAR(uint32_t(0x80 | ((c >> 12) & 0x3f))); // Upper middle 6 bits. APPEND_CHAR(uint32_t(0x80 | ((c >> 6) & 0x3f))); // Lower middle 6 bits. APPEND_CHAR(uint32_t(0x80 | (c & 0x3f))); // Bottom 6 bits. } else if (c <= 0x03ffffff) { // 26 bits APPEND_CHAR(uint32_t(0xf8 | ((c >> 24) & 0x03))); // Top 2 bits. APPEND_CHAR(uint32_t(0x80 | ((c >> 18) & 0x3f))); // Upper middle 6 bits. APPEND_CHAR(uint32_t(0x80 | ((c >> 12) & 0x3f))); // middle 6 bits. APPEND_CHAR(uint32_t(0x80 | ((c >> 6) & 0x3f))); // Lower middle 6 bits. APPEND_CHAR(uint32_t(0x80 | (c & 0x3f))); // Bottom 6 bits. } else if (c <= 0x7fffffff) { // 31 bits APPEND_CHAR(uint32_t(0xfc | ((c >> 30) & 0x01))); // Top 1 bit. APPEND_CHAR(uint32_t(0x80 | ((c >> 24) & 0x3f))); // Upper upper middle 6 bits. APPEND_CHAR(uint32_t(0x80 | ((c >> 18) & 0x3f))); // Lower upper middle 6 bits. APPEND_CHAR(uint32_t(0x80 | ((c >> 12) & 0x3f))); // Upper lower middle 6 bits. APPEND_CHAR(uint32_t(0x80 | ((c >> 6) & 0x3f))); // Lower lower middle 6 bits. APPEND_CHAR(uint32_t(0x80 | (c & 0x3f))); // Bottom 6 bits. } else { // the string is a valid UTF32, so it should never happen ... print_unicode_error(vformat("Non scalar value (%x)", c), true); APPEND_CHAR(uint32_t(0xe0 | ((_replacement_char >> 12) & 0x0f))); // Top 4 bits. APPEND_CHAR(uint32_t(0x80 | ((_replacement_char >> 6) & 0x3f))); // Middle 6 bits. APPEND_CHAR(uint32_t(0x80 | (_replacement_char & 0x3f))); // Bottom 6 bits. } } #undef APPEND_CHAR *cdst = 0; //trailing zero return utf8s; } String String::utf16(const char16_t *p_utf16, int p_len) { String ret; ret.parse_utf16(p_utf16, p_len); return ret; } Error String::parse_utf16(const char16_t *p_utf16, int p_len) { if (!p_utf16) { return ERR_INVALID_DATA; } String aux; int cstr_size = 0; int str_size = 0; /* HANDLE BOM (Byte Order Mark) */ bool byteswap = false; // assume correct endianness if no BOM found if (p_len < 0 || p_len >= 1) { bool has_bom = false; if (uint16_t(p_utf16[0]) == 0xfeff) { // correct BOM, read as is has_bom = true; byteswap = false; } else if (uint16_t(p_utf16[0]) == 0xfffe) { // backwards BOM, swap bytes has_bom = true; byteswap = true; } if (has_bom) { if (p_len >= 0) { p_len -= 1; } p_utf16 += 1; } } bool decode_error = false; { const char16_t *ptrtmp = p_utf16; const char16_t *ptrtmp_limit = &p_utf16[p_len]; uint32_t c_prev = 0; bool skip = false; while (ptrtmp != ptrtmp_limit && *ptrtmp) { uint32_t c = (byteswap) ? BSWAP16(*ptrtmp) : *ptrtmp; if ((c & 0xfffffc00) == 0xd800) { // lead surrogate if (skip) { print_unicode_error(vformat("Unpaired lead surrogate (%x [trail?] %x)", c_prev, c)); decode_error = true; } skip = true; } else if ((c & 0xfffffc00) == 0xdc00) { // trail surrogate if (skip) { str_size--; } else { print_unicode_error(vformat("Unpaired trail surrogate (%x [lead?] %x)", c_prev, c)); decode_error = true; } skip = false; } else { skip = false; } c_prev = c; str_size++; cstr_size++; ptrtmp++; } if (skip) { print_unicode_error(vformat("Unpaired lead surrogate (%x [eol])", c_prev)); decode_error = true; } } if (str_size == 0) { clear(); return OK; // empty string } resize(str_size + 1); char32_t *dst = ptrw(); dst[str_size] = 0; bool skip = false; uint32_t c_prev = 0; while (cstr_size) { uint32_t c = (byteswap) ? BSWAP16(*p_utf16) : *p_utf16; if ((c & 0xfffffc00) == 0xd800) { // lead surrogate if (skip) { *(dst++) = c_prev; // unpaired, store as is } skip = true; } else if ((c & 0xfffffc00) == 0xdc00) { // trail surrogate if (skip) { *(dst++) = (c_prev << 10UL) + c - ((0xd800 << 10UL) + 0xdc00 - 0x10000); // decode pair } else { *(dst++) = c; // unpaired, store as is } skip = false; } else { *(dst++) = c; skip = false; } cstr_size--; p_utf16++; c_prev = c; } if (skip) { *(dst++) = c_prev; } if (decode_error) { return ERR_PARSE_ERROR; } else { return OK; } } Char16String String::utf16() const { int l = length(); if (!l) { return Char16String(); } const char32_t *d = &operator[](0); int fl = 0; for (int i = 0; i < l; i++) { uint32_t c = d[i]; if (c <= 0xffff) { // 16 bits. fl += 1; if ((c & 0xfffff800) == 0xd800) { print_unicode_error(vformat("Unpaired surrogate (%x)", c)); } } else if (c <= 0x10ffff) { // 32 bits. fl += 2; } else { print_unicode_error(vformat("Invalid unicode codepoint (%x), cannot represent as UTF-16", c), true); fl += 1; } } Char16String utf16s; if (fl == 0) { return utf16s; } utf16s.resize(fl + 1); uint16_t *cdst = (uint16_t *)utf16s.get_data(); #define APPEND_CHAR(m_c) *(cdst++) = m_c for (int i = 0; i < l; i++) { uint32_t c = d[i]; if (c <= 0xffff) { // 16 bits. APPEND_CHAR(c); } else if (c <= 0x10ffff) { // 32 bits. APPEND_CHAR(uint32_t((c >> 10) + 0xd7c0)); // lead surrogate. APPEND_CHAR(uint32_t((c & 0x3ff) | 0xdc00)); // trail surrogate. } else { // the string is a valid UTF32, so it should never happen ... APPEND_CHAR(uint32_t((_replacement_char >> 10) + 0xd7c0)); APPEND_CHAR(uint32_t((_replacement_char & 0x3ff) | 0xdc00)); } } #undef APPEND_CHAR *cdst = 0; //trailing zero return utf16s; } String::String(const char *p_str) { copy_from(p_str); } String::String(const wchar_t *p_str) { copy_from(p_str); } String::String(const char32_t *p_str) { copy_from(p_str); } String::String(const char *p_str, int p_clip_to_len) { copy_from(p_str, p_clip_to_len); } String::String(const wchar_t *p_str, int p_clip_to_len) { copy_from(p_str, p_clip_to_len); } String::String(const char32_t *p_str, int p_clip_to_len) { copy_from(p_str, p_clip_to_len); } String::String(const StrRange &p_range) { if (!p_range.c_str) { return; } copy_from(p_range.c_str, p_range.len); } int64_t String::hex_to_int() const { int len = length(); if (len == 0) { return 0; } const char32_t *s = ptr(); int64_t sign = s[0] == '-' ? -1 : 1; if (sign < 0) { s++; } if (len > 2 && s[0] == '0' && lower_case(s[1]) == 'x') { s += 2; } int64_t hex = 0; while (*s) { char32_t c = lower_case(*s); int64_t n; if (is_digit(c)) { n = c - '0'; } else if (c >= 'a' && c <= 'f') { n = (c - 'a') + 10; } else { ERR_FAIL_V_MSG(0, vformat(R"(Invalid hexadecimal notation character "%c" (U+%04X) in string "%s".)", *s, static_cast(*s), *this)); } // Check for overflow/underflow, with special case to ensure INT64_MIN does not result in error bool overflow = ((hex > INT64_MAX / 16) && (sign == 1 || (sign == -1 && hex != (INT64_MAX >> 4) + 1))) || (sign == -1 && hex == (INT64_MAX >> 4) + 1 && c > '0'); ERR_FAIL_COND_V_MSG(overflow, sign == 1 ? INT64_MAX : INT64_MIN, "Cannot represent " + *this + " as a 64-bit signed integer, since the value is " + (sign == 1 ? "too large." : "too small.")); hex *= 16; hex += n; s++; } return hex * sign; } int64_t String::bin_to_int() const { int len = length(); if (len == 0) { return 0; } const char32_t *s = ptr(); int64_t sign = s[0] == '-' ? -1 : 1; if (sign < 0) { s++; } if (len > 2 && s[0] == '0' && lower_case(s[1]) == 'b') { s += 2; } int64_t binary = 0; while (*s) { char32_t c = lower_case(*s); int64_t n; if (c == '0' || c == '1') { n = c - '0'; } else { return 0; } // Check for overflow/underflow, with special case to ensure INT64_MIN does not result in error bool overflow = ((binary > INT64_MAX / 2) && (sign == 1 || (sign == -1 && binary != (INT64_MAX >> 1) + 1))) || (sign == -1 && binary == (INT64_MAX >> 1) + 1 && c > '0'); ERR_FAIL_COND_V_MSG(overflow, sign == 1 ? INT64_MAX : INT64_MIN, "Cannot represent " + *this + " as a 64-bit signed integer, since the value is " + (sign == 1 ? "too large." : "too small.")); binary *= 2; binary += n; s++; } return binary * sign; } int64_t String::to_int() const { if (length() == 0) { return 0; } int to = (find(".") >= 0) ? find(".") : length(); int64_t integer = 0; int64_t sign = 1; for (int i = 0; i < to; i++) { char32_t c = operator[](i); if (is_digit(c)) { bool overflow = (integer > INT64_MAX / 10) || (integer == INT64_MAX / 10 && ((sign == 1 && c > '7') || (sign == -1 && c > '8'))); ERR_FAIL_COND_V_MSG(overflow, sign == 1 ? INT64_MAX : INT64_MIN, "Cannot represent " + *this + " as a 64-bit signed integer, since the value is " + (sign == 1 ? "too large." : "too small.")); integer *= 10; integer += c - '0'; } else if (integer == 0 && c == '-') { sign = -sign; } } return integer * sign; } int64_t String::to_int(const char *p_str, int p_len) { int to = 0; if (p_len >= 0) { to = p_len; } else { while (p_str[to] != 0 && p_str[to] != '.') { to++; } } int64_t integer = 0; int64_t sign = 1; for (int i = 0; i < to; i++) { char c = p_str[i]; if (is_digit(c)) { bool overflow = (integer > INT64_MAX / 10) || (integer == INT64_MAX / 10 && ((sign == 1 && c > '7') || (sign == -1 && c > '8'))); ERR_FAIL_COND_V_MSG(overflow, sign == 1 ? INT64_MAX : INT64_MIN, "Cannot represent " + String(p_str).substr(0, to) + " as a 64-bit signed integer, since the value is " + (sign == 1 ? "too large." : "too small.")); integer *= 10; integer += c - '0'; } else if (c == '-' && integer == 0) { sign = -sign; } else if (c != ' ') { break; } } return integer * sign; } int64_t String::to_int(const wchar_t *p_str, int p_len) { int to = 0; if (p_len >= 0) { to = p_len; } else { while (p_str[to] != 0 && p_str[to] != '.') { to++; } } int64_t integer = 0; int64_t sign = 1; for (int i = 0; i < to; i++) { wchar_t c = p_str[i]; if (is_digit(c)) { bool overflow = (integer > INT64_MAX / 10) || (integer == INT64_MAX / 10 && ((sign == 1 && c > '7') || (sign == -1 && c > '8'))); ERR_FAIL_COND_V_MSG(overflow, sign == 1 ? INT64_MAX : INT64_MIN, "Cannot represent " + String(p_str).substr(0, to) + " as a 64-bit signed integer, since the value is " + (sign == 1 ? "too large." : "too small.")); integer *= 10; integer += c - '0'; } else if (c == '-' && integer == 0) { sign = -sign; } else if (c != ' ') { break; } } return integer * sign; } bool String::is_numeric() const { if (length() == 0) { return false; } int s = 0; if (operator[](0) == '-') { ++s; } bool dot = false; for (int i = s; i < length(); i++) { char32_t c = operator[](i); if (c == '.') { if (dot) { return false; } dot = true; } else if (!is_digit(c)) { return false; } } return true; // TODO: Use the parser below for this instead } template static double built_in_strtod( /* A decimal ASCII floating-point number, * optionally preceded by white space. Must * have form "-I.FE-X", where I is the integer * part of the mantissa, F is the fractional * part of the mantissa, and X is the * exponent. Either of the signs may be "+", * "-", or omitted. Either I or F may be * omitted, or both. The decimal point isn't * necessary unless F is present. The "E" may * actually be an "e". E and X may both be * omitted (but not just one). */ const C *string, /* If non-nullptr, store terminating Cacter's * address here. */ C **endPtr = nullptr) { /* Largest possible base 10 exponent. Any * exponent larger than this will already * produce underflow or overflow, so there's * no need to worry about additional digits. */ static const int maxExponent = 511; /* Table giving binary powers of 10. Entry * is 10^2^i. Used to convert decimal * exponents into floating-point numbers. */ static const double powersOf10[] = { 10., 100., 1.0e4, 1.0e8, 1.0e16, 1.0e32, 1.0e64, 1.0e128, 1.0e256 }; bool sign, expSign = false; double fraction, dblExp; const double *d; const C *p; int c; /* Exponent read from "EX" field. */ int exp = 0; /* Exponent that derives from the fractional * part. Under normal circumstances, it is * the negative of the number of digits in F. * However, if I is very long, the last digits * of I get dropped (otherwise a long I with a * large negative exponent could cause an * unnecessary overflow on I alone). In this * case, fracExp is incremented one for each * dropped digit. */ int fracExp = 0; /* Number of digits in mantissa. */ int mantSize; /* Number of mantissa digits BEFORE decimal point. */ int decPt; /* Temporarily holds location of exponent in string. */ const C *pExp; /* * Strip off leading blanks and check for a sign. */ p = string; while (*p == ' ' || *p == '\t' || *p == '\n') { p += 1; } if (*p == '-') { sign = true; p += 1; } else { if (*p == '+') { p += 1; } sign = false; } /* * Count the number of digits in the mantissa (including the decimal * point), and also locate the decimal point. */ decPt = -1; for (mantSize = 0;; mantSize += 1) { c = *p; if (!is_digit(c)) { if ((c != '.') || (decPt >= 0)) { break; } decPt = mantSize; } p += 1; } /* * Now suck up the digits in the mantissa. Use two integers to collect 9 * digits each (this is faster than using floating-point). If the mantissa * has more than 18 digits, ignore the extras, since they can't affect the * value anyway. */ pExp = p; p -= mantSize; if (decPt < 0) { decPt = mantSize; } else { mantSize -= 1; /* One of the digits was the point. */ } if (mantSize > 18) { fracExp = decPt - 18; mantSize = 18; } else { fracExp = decPt - mantSize; } if (mantSize == 0) { fraction = 0.0; p = string; goto done; } else { int frac1, frac2; frac1 = 0; for (; mantSize > 9; mantSize -= 1) { c = *p; p += 1; if (c == '.') { c = *p; p += 1; } frac1 = 10 * frac1 + (c - '0'); } frac2 = 0; for (; mantSize > 0; mantSize -= 1) { c = *p; p += 1; if (c == '.') { c = *p; p += 1; } frac2 = 10 * frac2 + (c - '0'); } fraction = (1.0e9 * frac1) + frac2; } /* * Skim off the exponent. */ p = pExp; if ((*p == 'E') || (*p == 'e')) { p += 1; if (*p == '-') { expSign = true; p += 1; } else { if (*p == '+') { p += 1; } expSign = false; } if (!is_digit(char32_t(*p))) { p = pExp; goto done; } while (is_digit(char32_t(*p))) { exp = exp * 10 + (*p - '0'); p += 1; } } if (expSign) { exp = fracExp - exp; } else { exp = fracExp + exp; } /* * Generate a floating-point number that represents the exponent. Do this * by processing the exponent one bit at a time to combine many powers of * 2 of 10. Then combine the exponent with the fraction. */ if (exp < 0) { expSign = true; exp = -exp; } else { expSign = false; } if (exp > maxExponent) { exp = maxExponent; WARN_PRINT("Exponent too high"); } dblExp = 1.0; for (d = powersOf10; exp != 0; exp >>= 1, ++d) { if (exp & 01) { dblExp *= *d; } } if (expSign) { fraction /= dblExp; } else { fraction *= dblExp; } done: if (endPtr != nullptr) { *endPtr = (C *)p; } if (sign) { return -fraction; } return fraction; } #define READING_SIGN 0 #define READING_INT 1 #define READING_DEC 2 #define READING_EXP 3 #define READING_DONE 4 double String::to_float(const char *p_str) { return built_in_strtod(p_str); } double String::to_float(const char32_t *p_str, const char32_t **r_end) { return built_in_strtod(p_str, (char32_t **)r_end); } double String::to_float(const wchar_t *p_str, const wchar_t **r_end) { return built_in_strtod(p_str, (wchar_t **)r_end); } uint32_t String::num_characters(int64_t p_int) { int r = 1; if (p_int < 0) { r += 1; if (p_int == INT64_MIN) { p_int = INT64_MAX; } else { p_int = -p_int; } } while (p_int >= 10) { p_int /= 10; r++; } return r; } int64_t String::to_int(const char32_t *p_str, int p_len, bool p_clamp) { if (p_len == 0 || !p_str[0]) { return 0; } ///@todo make more exact so saving and loading does not lose precision int64_t integer = 0; int64_t sign = 1; int reading = READING_SIGN; const char32_t *str = p_str; const char32_t *limit = &p_str[p_len]; while (*str && reading != READING_DONE && str != limit) { char32_t c = *(str++); switch (reading) { case READING_SIGN: { if (is_digit(c)) { reading = READING_INT; // let it fallthrough } else if (c == '-') { sign = -1; reading = READING_INT; break; } else if (c == '+') { sign = 1; reading = READING_INT; break; } else { break; } [[fallthrough]]; } case READING_INT: { if (is_digit(c)) { if (integer > INT64_MAX / 10) { String number(""); str = p_str; while (*str && str != limit) { number += *(str++); } if (p_clamp) { if (sign == 1) { return INT64_MAX; } else { return INT64_MIN; } } else { ERR_FAIL_V_MSG(sign == 1 ? INT64_MAX : INT64_MIN, "Cannot represent " + number + " as a 64-bit signed integer, since the value is " + (sign == 1 ? "too large." : "too small.")); } } integer *= 10; integer += c - '0'; } else { reading = READING_DONE; } } break; } } return sign * integer; } double String::to_float() const { if (is_empty()) { return 0; } return built_in_strtod(get_data()); } uint32_t String::hash(const char *p_cstr) { // static_cast: avoid negative values on platforms where char is signed. uint32_t hashv = 5381; uint32_t c = static_cast(*p_cstr++); while (c) { hashv = ((hashv << 5) + hashv) + c; /* hash * 33 + c */ c = static_cast(*p_cstr++); } return hashv; } uint32_t String::hash(const char *p_cstr, int p_len) { uint32_t hashv = 5381; for (int i = 0; i < p_len; i++) { // static_cast: avoid negative values on platforms where char is signed. hashv = ((hashv << 5) + hashv) + static_cast(p_cstr[i]); /* hash * 33 + c */ } return hashv; } uint32_t String::hash(const wchar_t *p_cstr, int p_len) { // Avoid negative values on platforms where wchar_t is signed. Account for different sizes. using wide_unsigned = std::conditional::type; uint32_t hashv = 5381; for (int i = 0; i < p_len; i++) { hashv = ((hashv << 5) + hashv) + static_cast(p_cstr[i]); /* hash * 33 + c */ } return hashv; } uint32_t String::hash(const wchar_t *p_cstr) { // Avoid negative values on platforms where wchar_t is signed. Account for different sizes. using wide_unsigned = std::conditional::type; uint32_t hashv = 5381; uint32_t c = static_cast(*p_cstr++); while (c) { hashv = ((hashv << 5) + hashv) + c; /* hash * 33 + c */ c = static_cast(*p_cstr++); } return hashv; } uint32_t String::hash(const char32_t *p_cstr, int p_len) { uint32_t hashv = 5381; for (int i = 0; i < p_len; i++) { hashv = ((hashv << 5) + hashv) + p_cstr[i]; /* hash * 33 + c */ } return hashv; } uint32_t String::hash(const char32_t *p_cstr) { uint32_t hashv = 5381; uint32_t c = *p_cstr++; while (c) { hashv = ((hashv << 5) + hashv) + c; /* hash * 33 + c */ c = *p_cstr++; } return hashv; } uint32_t String::hash() const { /* simple djb2 hashing */ const char32_t *chr = get_data(); uint32_t hashv = 5381; uint32_t c = *chr++; while (c) { hashv = ((hashv << 5) + hashv) + c; /* hash * 33 + c */ c = *chr++; } return hashv; } uint64_t String::hash64() const { /* simple djb2 hashing */ const char32_t *chr = get_data(); uint64_t hashv = 5381; uint64_t c = *chr++; while (c) { hashv = ((hashv << 5) + hashv) + c; /* hash * 33 + c */ c = *chr++; } return hashv; } String String::md5_text() const { CharString cs = utf8(); unsigned char hash[16]; CryptoCore::md5((unsigned char *)cs.ptr(), cs.length(), hash); return String::hex_encode_buffer(hash, 16); } String String::sha1_text() const { CharString cs = utf8(); unsigned char hash[20]; CryptoCore::sha1((unsigned char *)cs.ptr(), cs.length(), hash); return String::hex_encode_buffer(hash, 20); } String String::sha256_text() const { CharString cs = utf8(); unsigned char hash[32]; CryptoCore::sha256((unsigned char *)cs.ptr(), cs.length(), hash); return String::hex_encode_buffer(hash, 32); } Vector String::md5_buffer() const { CharString cs = utf8(); unsigned char hash[16]; CryptoCore::md5((unsigned char *)cs.ptr(), cs.length(), hash); Vector ret; ret.resize(16); for (int i = 0; i < 16; i++) { ret.write[i] = hash[i]; } return ret; } Vector String::sha1_buffer() const { CharString cs = utf8(); unsigned char hash[20]; CryptoCore::sha1((unsigned char *)cs.ptr(), cs.length(), hash); Vector ret; ret.resize(20); for (int i = 0; i < 20; i++) { ret.write[i] = hash[i]; } return ret; } Vector String::sha256_buffer() const { CharString cs = utf8(); unsigned char hash[32]; CryptoCore::sha256((unsigned char *)cs.ptr(), cs.length(), hash); Vector ret; ret.resize(32); for (int i = 0; i < 32; i++) { ret.write[i] = hash[i]; } return ret; } String String::insert(int p_at_pos, const String &p_string) const { if (p_at_pos < 0) { return *this; } if (p_at_pos > length()) { p_at_pos = length(); } String pre; if (p_at_pos > 0) { pre = substr(0, p_at_pos); } String post; if (p_at_pos < length()) { post = substr(p_at_pos, length() - p_at_pos); } return pre + p_string + post; } String String::erase(int p_pos, int p_chars) const { ERR_FAIL_COND_V_MSG(p_pos < 0, "", vformat("Invalid starting position for `String.erase()`: %d. Starting position must be positive or zero.", p_pos)); ERR_FAIL_COND_V_MSG(p_chars < 0, "", vformat("Invalid character count for `String.erase()`: %d. Character count must be positive or zero.", p_chars)); return left(p_pos) + substr(p_pos + p_chars); } String String::substr(int p_from, int p_chars) const { if (p_chars == -1) { p_chars = length() - p_from; } if (is_empty() || p_from < 0 || p_from >= length() || p_chars <= 0) { return ""; } if ((p_from + p_chars) > length()) { p_chars = length() - p_from; } if (p_from == 0 && p_chars >= length()) { return String(*this); } String s; s.copy_from_unchecked(&get_data()[p_from], p_chars); return s; } int String::find(const String &p_str, int p_from) const { if (p_from < 0) { return -1; } const int src_len = p_str.length(); const int len = length(); if (src_len == 0 || len == 0) { return -1; // won't find anything! } const char32_t *src = get_data(); const char32_t *str = p_str.get_data(); for (int i = p_from; i <= (len - src_len); i++) { bool found = true; for (int j = 0; j < src_len; j++) { int read_pos = i + j; if (read_pos >= len) { ERR_PRINT("read_pos>=len"); return -1; } if (src[read_pos] != str[j]) { found = false; break; } } if (found) { return i; } } return -1; } int String::find(const char *p_str, int p_from) const { if (p_from < 0) { return -1; } const int len = length(); if (len == 0) { return -1; // won't find anything! } const char32_t *src = get_data(); int src_len = 0; while (p_str[src_len] != '\0') { src_len++; } if (src_len == 1) { const char32_t needle = p_str[0]; for (int i = p_from; i < len; i++) { if (src[i] == needle) { return i; } } } else { for (int i = p_from; i <= (len - src_len); i++) { bool found = true; for (int j = 0; j < src_len; j++) { int read_pos = i + j; if (read_pos >= len) { ERR_PRINT("read_pos>=len"); return -1; } if (src[read_pos] != (char32_t)p_str[j]) { found = false; break; } } if (found) { return i; } } } return -1; } int String::find_char(const char32_t &p_char, int p_from) const { return _cowdata.find(p_char, p_from); } int String::findmk(const Vector &p_keys, int p_from, int *r_key) const { if (p_from < 0) { return -1; } if (p_keys.size() == 0) { return -1; } //int src_len=p_str.length(); const String *keys = &p_keys[0]; int key_count = p_keys.size(); int len = length(); if (len == 0) { return -1; // won't find anything! } const char32_t *src = get_data(); for (int i = p_from; i < len; i++) { bool found = true; for (int k = 0; k < key_count; k++) { found = true; if (r_key) { *r_key = k; } const char32_t *cmp = keys[k].get_data(); int l = keys[k].length(); for (int j = 0; j < l; j++) { int read_pos = i + j; if (read_pos >= len) { found = false; break; } if (src[read_pos] != cmp[j]) { found = false; break; } } if (found) { break; } } if (found) { return i; } } return -1; } int String::findn(const String &p_str, int p_from) const { if (p_from < 0) { return -1; } int src_len = p_str.length(); if (src_len == 0 || length() == 0) { return -1; // won't find anything! } const char32_t *srcd = get_data(); for (int i = p_from; i <= (length() - src_len); i++) { bool found = true; for (int j = 0; j < src_len; j++) { int read_pos = i + j; if (read_pos >= length()) { ERR_PRINT("read_pos>=length()"); return -1; } char32_t src = _find_lower(srcd[read_pos]); char32_t dst = _find_lower(p_str[j]); if (src != dst) { found = false; break; } } if (found) { return i; } } return -1; } int String::rfind(const String &p_str, int p_from) const { // establish a limit int limit = length() - p_str.length(); if (limit < 0) { return -1; } // establish a starting point if (p_from < 0) { p_from = limit; } else if (p_from > limit) { p_from = limit; } int src_len = p_str.length(); int len = length(); if (src_len == 0 || len == 0) { return -1; // won't find anything! } const char32_t *src = get_data(); for (int i = p_from; i >= 0; i--) { bool found = true; for (int j = 0; j < src_len; j++) { int read_pos = i + j; if (read_pos >= len) { ERR_PRINT("read_pos>=len"); return -1; } if (src[read_pos] != p_str[j]) { found = false; break; } } if (found) { return i; } } return -1; } int String::rfindn(const String &p_str, int p_from) const { // establish a limit int limit = length() - p_str.length(); if (limit < 0) { return -1; } // establish a starting point if (p_from < 0) { p_from = limit; } else if (p_from > limit) { p_from = limit; } int src_len = p_str.length(); int len = length(); if (src_len == 0 || len == 0) { return -1; // won't find anything! } const char32_t *src = get_data(); for (int i = p_from; i >= 0; i--) { bool found = true; for (int j = 0; j < src_len; j++) { int read_pos = i + j; if (read_pos >= len) { ERR_PRINT("read_pos>=len"); return -1; } char32_t srcc = _find_lower(src[read_pos]); char32_t dstc = _find_lower(p_str[j]); if (srcc != dstc) { found = false; break; } } if (found) { return i; } } return -1; } bool String::ends_with(const String &p_string) const { int l = p_string.length(); if (l > length()) { return false; } if (l == 0) { return true; } const char32_t *p = &p_string[0]; const char32_t *s = &operator[](length() - l); for (int i = 0; i < l; i++) { if (p[i] != s[i]) { return false; } } return true; } bool String::begins_with(const String &p_string) const { int l = p_string.length(); if (l > length()) { return false; } if (l == 0) { return true; } const char32_t *p = &p_string[0]; const char32_t *s = &operator[](0); for (int i = 0; i < l; i++) { if (p[i] != s[i]) { return false; } } return true; } bool String::begins_with(const char *p_string) const { int l = length(); if (!p_string) { return false; } if (l == 0) { return *p_string == 0; } const char32_t *str = &operator[](0); int i = 0; while (*p_string && i < l) { if ((char32_t)*p_string != str[i]) { return false; } i++; p_string++; } return *p_string == 0; } bool String::is_enclosed_in(const String &p_string) const { return begins_with(p_string) && ends_with(p_string); } bool String::is_subsequence_of(const String &p_string) const { return _base_is_subsequence_of(p_string, false); } bool String::is_subsequence_ofn(const String &p_string) const { return _base_is_subsequence_of(p_string, true); } bool String::is_quoted() const { return is_enclosed_in("\"") || is_enclosed_in("'"); } int String::_count(const String &p_string, int p_from, int p_to, bool p_case_insensitive) const { if (p_string.is_empty()) { return 0; } int len = length(); int slen = p_string.length(); if (len < slen) { return 0; } String str; if (p_from >= 0 && p_to >= 0) { if (p_to == 0) { p_to = len; } else if (p_from >= p_to) { return 0; } if (p_from == 0 && p_to == len) { str = String(); str.copy_from_unchecked(&get_data()[0], len); } else { str = substr(p_from, p_to - p_from); } } else { return 0; } int c = 0; int idx = -1; do { idx = p_case_insensitive ? str.findn(p_string) : str.find(p_string); if (idx != -1) { str = str.substr(idx + slen, str.length() - slen); ++c; } } while (idx != -1); return c; } int String::count(const String &p_string, int p_from, int p_to) const { return _count(p_string, p_from, p_to, false); } int String::countn(const String &p_string, int p_from, int p_to) const { return _count(p_string, p_from, p_to, true); } bool String::_base_is_subsequence_of(const String &p_string, bool case_insensitive) const { int len = length(); if (len == 0) { // Technically an empty string is subsequence of any string return true; } if (len > p_string.length()) { return false; } const char32_t *src = &operator[](0); const char32_t *tgt = &p_string[0]; for (; *src && *tgt; tgt++) { bool match = false; if (case_insensitive) { char32_t srcc = _find_lower(*src); char32_t tgtc = _find_lower(*tgt); match = srcc == tgtc; } else { match = *src == *tgt; } if (match) { src++; if (!*src) { return true; } } } return false; } Vector String::bigrams() const { int n_pairs = length() - 1; Vector b; if (n_pairs <= 0) { return b; } b.resize(n_pairs); for (int i = 0; i < n_pairs; i++) { b.write[i] = substr(i, 2); } return b; } // Similarity according to Sorensen-Dice coefficient float String::similarity(const String &p_string) const { if (operator==(p_string)) { // Equal strings are totally similar return 1.0f; } if (length() < 2 || p_string.length() < 2) { // No way to calculate similarity without a single bigram return 0.0f; } Vector src_bigrams = bigrams(); Vector tgt_bigrams = p_string.bigrams(); int src_size = src_bigrams.size(); int tgt_size = tgt_bigrams.size(); int sum = src_size + tgt_size; int inter = 0; for (int i = 0; i < src_size; i++) { for (int j = 0; j < tgt_size; j++) { if (src_bigrams[i] == tgt_bigrams[j]) { inter++; break; } } } return (2.0f * inter) / sum; } static bool _wildcard_match(const char32_t *p_pattern, const char32_t *p_string, bool p_case_sensitive) { switch (*p_pattern) { case '\0': return !*p_string; case '*': return _wildcard_match(p_pattern + 1, p_string, p_case_sensitive) || (*p_string && _wildcard_match(p_pattern, p_string + 1, p_case_sensitive)); case '?': return *p_string && (*p_string != '.') && _wildcard_match(p_pattern + 1, p_string + 1, p_case_sensitive); default: return (p_case_sensitive ? (*p_string == *p_pattern) : (_find_upper(*p_string) == _find_upper(*p_pattern))) && _wildcard_match(p_pattern + 1, p_string + 1, p_case_sensitive); } } bool String::match(const String &p_wildcard) const { if (!p_wildcard.length() || !length()) { return false; } return _wildcard_match(p_wildcard.get_data(), get_data(), true); } bool String::matchn(const String &p_wildcard) const { if (!p_wildcard.length() || !length()) { return false; } return _wildcard_match(p_wildcard.get_data(), get_data(), false); } String String::format(const Variant &values, const String &placeholder) const { String new_string = String(ptr()); if (values.get_type() == Variant::ARRAY) { Array values_arr = values; for (int i = 0; i < values_arr.size(); i++) { String i_as_str = String::num_int64(i); if (values_arr[i].get_type() == Variant::ARRAY) { //Array in Array structure [["name","RobotGuy"],[0,"godot"],["strength",9000.91]] Array value_arr = values_arr[i]; if (value_arr.size() == 2) { Variant v_key = value_arr[0]; String key = v_key; Variant v_val = value_arr[1]; String val = v_val; new_string = new_string.replace(placeholder.replace("_", key), val); } else { ERR_PRINT(String("STRING.format Inner Array size != 2 ").ascii().get_data()); } } else { //Array structure ["RobotGuy","Logis","rookie"] Variant v_val = values_arr[i]; String val = v_val; if (placeholder.find("_") > -1) { new_string = new_string.replace(placeholder.replace("_", i_as_str), val); } else { new_string = new_string.replace_first(placeholder, val); } } } } else if (values.get_type() == Variant::DICTIONARY) { Dictionary d = values; List keys; d.get_key_list(&keys); for (const Variant &key : keys) { new_string = new_string.replace(placeholder.replace("_", key), d[key]); } } else { ERR_PRINT(String("Invalid type: use Array or Dictionary.").ascii().get_data()); } return new_string; } String String::replace(const String &p_key, const String &p_with) const { String new_string; int search_from = 0; int result = 0; while ((result = find(p_key, search_from)) >= 0) { new_string += substr(search_from, result - search_from); new_string += p_with; search_from = result + p_key.length(); } if (search_from == 0) { return *this; } new_string += substr(search_from, length() - search_from); return new_string; } String String::replace(const char *p_key, const char *p_with) const { String new_string; int search_from = 0; int result = 0; while ((result = find(p_key, search_from)) >= 0) { new_string += substr(search_from, result - search_from); new_string += p_with; int k = 0; while (p_key[k] != '\0') { k++; } search_from = result + k; } if (search_from == 0) { return *this; } new_string += substr(search_from, length() - search_from); return new_string; } String String::replace_first(const String &p_key, const String &p_with) const { int pos = find(p_key); if (pos >= 0) { return substr(0, pos) + p_with + substr(pos + p_key.length(), length()); } return *this; } String String::replacen(const String &p_key, const String &p_with) const { String new_string; int search_from = 0; int result = 0; while ((result = findn(p_key, search_from)) >= 0) { new_string += substr(search_from, result - search_from); new_string += p_with; search_from = result + p_key.length(); } if (search_from == 0) { return *this; } new_string += substr(search_from, length() - search_from); return new_string; } String String::repeat(int p_count) const { ERR_FAIL_COND_V_MSG(p_count < 0, "", "Parameter count should be a positive number."); if (p_count == 0) { return ""; } if (p_count == 1) { return *this; } int len = length(); String new_string = *this; new_string.resize(p_count * len + 1); char32_t *dst = new_string.ptrw(); int offset = 1; int stride = 1; while (offset < p_count) { memcpy(dst + offset * len, dst, stride * len * sizeof(char32_t)); offset += stride; stride = MIN(stride * 2, p_count - offset); } dst[p_count * len] = _null; return new_string; } String String::reverse() const { int len = length(); if (len <= 1) { return *this; } String new_string; new_string.resize(len + 1); const char32_t *src = ptr(); char32_t *dst = new_string.ptrw(); for (int i = 0; i < len; i++) { dst[i] = src[len - i - 1]; } dst[len] = _null; return new_string; } String String::left(int p_len) const { if (p_len < 0) { p_len = length() + p_len; } if (p_len <= 0) { return ""; } if (p_len >= length()) { return *this; } String s; s.copy_from_unchecked(&get_data()[0], p_len); return s; } String String::right(int p_len) const { if (p_len < 0) { p_len = length() + p_len; } if (p_len <= 0) { return ""; } if (p_len >= length()) { return *this; } String s; s.copy_from_unchecked(&get_data()[length() - p_len], p_len); return s; } char32_t String::unicode_at(int p_idx) const { ERR_FAIL_INDEX_V(p_idx, length(), 0); return operator[](p_idx); } String String::indent(const String &p_prefix) const { String new_string; int line_start = 0; for (int i = 0; i < length(); i++) { const char32_t c = operator[](i); if (c == '\n') { if (i == line_start) { new_string += c; // Leave empty lines empty. } else { new_string += p_prefix + substr(line_start, i - line_start + 1); } line_start = i + 1; } } if (line_start != length()) { new_string += p_prefix + substr(line_start); } return new_string; } String String::dedent() const { String new_string; String indent; bool has_indent = false; bool has_text = false; int line_start = 0; int indent_stop = -1; for (int i = 0; i < length(); i++) { char32_t c = operator[](i); if (c == '\n') { if (has_text) { new_string += substr(indent_stop, i - indent_stop); } new_string += "\n"; has_text = false; line_start = i + 1; indent_stop = -1; } else if (!has_text) { if (c > 32) { has_text = true; if (!has_indent) { has_indent = true; indent = substr(line_start, i - line_start); indent_stop = i; } } if (has_indent && indent_stop < 0) { int j = i - line_start; if (j >= indent.length() || c != indent[j]) { indent_stop = i; } } } } if (has_text) { new_string += substr(indent_stop, length() - indent_stop); } return new_string; } String String::strip_edges(bool left, bool right) const { int len = length(); int beg = 0, end = len; if (left) { for (int i = 0; i < len; i++) { if (operator[](i) <= 32) { beg++; } else { break; } } } if (right) { for (int i = len - 1; i >= 0; i--) { if (operator[](i) <= 32) { end--; } else { break; } } } if (beg == 0 && end == len) { return *this; } return substr(beg, end - beg); } String String::strip_escapes() const { String new_string; for (int i = 0; i < length(); i++) { // Escape characters on first page of the ASCII table, before 32 (Space). if (operator[](i) < 32) { continue; } new_string += operator[](i); } return new_string; } String String::lstrip(const String &p_chars) const { int len = length(); int beg; for (beg = 0; beg < len; beg++) { if (p_chars.find_char(get(beg)) == -1) { break; } } if (beg == 0) { return *this; } return substr(beg, len - beg); } String String::rstrip(const String &p_chars) const { int len = length(); int end; for (end = len - 1; end >= 0; end--) { if (p_chars.find_char(get(end)) == -1) { break; } } if (end == len - 1) { return *this; } return substr(0, end + 1); } bool String::is_network_share_path() const { return begins_with("//") || begins_with("\\\\"); } String String::simplify_path() const { String s = *this; String drive; // Check if we have a special path (like res://) or a protocol identifier. int p = s.find("://"); bool found = false; if (p > 0) { bool only_chars = true; for (int i = 0; i < p; i++) { if (!is_ascii_alphanumeric_char(s[i])) { only_chars = false; break; } } if (only_chars) { found = true; drive = s.substr(0, p + 3); s = s.substr(p + 3); } } if (!found) { if (is_network_share_path()) { // Network path, beginning with // or \\. drive = s.substr(0, 2); s = s.substr(2); } else if (s.begins_with("/") || s.begins_with("\\")) { // Absolute path. drive = s.substr(0, 1); s = s.substr(1); } else { // Windows-style drive path, like C:/ or C:\. p = s.find(":/"); if (p == -1) { p = s.find(":\\"); } if (p != -1 && p < s.find("/")) { drive = s.substr(0, p + 2); s = s.substr(p + 2); } } } s = s.replace("\\", "/"); while (true) { // in case of using 2 or more slash String compare = s.replace("//", "/"); if (s == compare) { break; } else { s = compare; } } Vector dirs = s.split("/", false); for (int i = 0; i < dirs.size(); i++) { String d = dirs[i]; if (d == ".") { dirs.remove_at(i); i--; } else if (d == "..") { if (i == 0) { dirs.remove_at(i); i--; } else { dirs.remove_at(i); dirs.remove_at(i - 1); i -= 2; } } } s = ""; for (int i = 0; i < dirs.size(); i++) { if (i > 0) { s += "/"; } s += dirs[i]; } return drive + s; } static int _humanize_digits(int p_num) { if (p_num < 100) { return 2; } else if (p_num < 1024) { return 1; } else { return 0; } } String String::humanize_size(uint64_t p_size) { int magnitude = 0; uint64_t _div = 1; while (p_size > _div * 1024 && magnitude < 6) { _div *= 1024; magnitude++; } if (magnitude == 0) { return String::num(p_size) + " " + RTR("B"); } else { String suffix; switch (magnitude) { case 1: suffix = RTR("KiB"); break; case 2: suffix = RTR("MiB"); break; case 3: suffix = RTR("GiB"); break; case 4: suffix = RTR("TiB"); break; case 5: suffix = RTR("PiB"); break; case 6: suffix = RTR("EiB"); break; } const double divisor = _div; const int digits = _humanize_digits(p_size / _div); return String::num(p_size / divisor).pad_decimals(digits) + " " + suffix; } } bool String::is_absolute_path() const { if (length() > 1) { return (operator[](0) == '/' || operator[](0) == '\\' || find(":/") != -1 || find(":\\") != -1); } else if ((length()) == 1) { return (operator[](0) == '/' || operator[](0) == '\\'); } else { return false; } } String String::validate_identifier() const { if (is_empty()) { return "_"; // Empty string is not a valid identifier; } String result; if (is_digit(operator[](0))) { result = "_" + *this; } else { result = *this; } int len = result.length(); char32_t *buffer = result.ptrw(); for (int i = 0; i < len; i++) { if (!is_ascii_identifier_char(buffer[i])) { buffer[i] = '_'; } } return result; } bool String::is_valid_identifier() const { int len = length(); if (len == 0) { return false; } if (is_digit(operator[](0))) { return false; } const char32_t *str = &operator[](0); for (int i = 0; i < len; i++) { if (!is_ascii_identifier_char(str[i])) { return false; } } return true; } bool String::is_valid_string() const { int l = length(); const char32_t *src = get_data(); bool valid = true; for (int i = 0; i < l; i++) { valid = valid && (src[i] < 0xd800 || (src[i] > 0xdfff && src[i] <= 0x10ffff)); } return valid; } String String::uri_encode() const { const CharString temp = utf8(); String res; for (int i = 0; i < temp.length(); ++i) { uint8_t ord = temp[i]; if (ord == '.' || ord == '-' || ord == '~' || is_ascii_identifier_char(ord)) { res += ord; } else { char p[4] = { '%', 0, 0, 0 }; static const char hex[16] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' }; p[1] = hex[ord >> 4]; p[2] = hex[ord & 0xF]; res += p; } } return res; } String String::uri_decode() const { CharString src = utf8(); CharString res; for (int i = 0; i < src.length(); ++i) { if (src[i] == '%' && i + 2 < src.length()) { char ord1 = src[i + 1]; if (is_digit(ord1) || is_ascii_upper_case(ord1)) { char ord2 = src[i + 2]; if (is_digit(ord2) || is_ascii_upper_case(ord2)) { char bytes[3] = { (char)ord1, (char)ord2, 0 }; res += (char)strtol(bytes, nullptr, 16); i += 2; } } else { res += src[i]; } } else if (src[i] == '+') { res += ' '; } else { res += src[i]; } } return String::utf8(res); } String String::c_unescape() const { String escaped = *this; escaped = escaped.replace("\\a", "\a"); escaped = escaped.replace("\\b", "\b"); escaped = escaped.replace("\\f", "\f"); escaped = escaped.replace("\\n", "\n"); escaped = escaped.replace("\\r", "\r"); escaped = escaped.replace("\\t", "\t"); escaped = escaped.replace("\\v", "\v"); escaped = escaped.replace("\\'", "\'"); escaped = escaped.replace("\\\"", "\""); escaped = escaped.replace("\\\\", "\\"); return escaped; } String String::c_escape() const { String escaped = *this; escaped = escaped.replace("\\", "\\\\"); escaped = escaped.replace("\a", "\\a"); escaped = escaped.replace("\b", "\\b"); escaped = escaped.replace("\f", "\\f"); escaped = escaped.replace("\n", "\\n"); escaped = escaped.replace("\r", "\\r"); escaped = escaped.replace("\t", "\\t"); escaped = escaped.replace("\v", "\\v"); escaped = escaped.replace("\'", "\\'"); escaped = escaped.replace("\"", "\\\""); return escaped; } String String::c_escape_multiline() const { String escaped = *this; escaped = escaped.replace("\\", "\\\\"); escaped = escaped.replace("\"", "\\\""); return escaped; } String String::json_escape() const { String escaped = *this; escaped = escaped.replace("\\", "\\\\"); escaped = escaped.replace("\b", "\\b"); escaped = escaped.replace("\f", "\\f"); escaped = escaped.replace("\n", "\\n"); escaped = escaped.replace("\r", "\\r"); escaped = escaped.replace("\t", "\\t"); escaped = escaped.replace("\v", "\\v"); escaped = escaped.replace("\"", "\\\""); return escaped; } String String::xml_escape(bool p_escape_quotes) const { String str = *this; str = str.replace("&", "&"); str = str.replace("<", "<"); str = str.replace(">", ">"); if (p_escape_quotes) { str = str.replace("'", "'"); str = str.replace("\"", """); } /* for (int i=1;i<32;i++) { char chr[2]={i,0}; str=str.replace(chr,"&#"+String::num(i)+";"); }*/ return str; } static _FORCE_INLINE_ int _xml_unescape(const char32_t *p_src, int p_src_len, char32_t *p_dst) { int len = 0; while (p_src_len) { if (*p_src == '&') { int eat = 0; if (p_src_len >= 4 && p_src[1] == '#') { char32_t c = 0; bool overflow = false; if (p_src[2] == 'x') { // Hex entity &#x; for (int i = 3; i < p_src_len; i++) { eat = i + 1; char32_t ct = p_src[i]; if (ct == ';') { break; } else if (is_digit(ct)) { ct = ct - '0'; } else if (ct >= 'a' && ct <= 'f') { ct = (ct - 'a') + 10; } else if (ct >= 'A' && ct <= 'F') { ct = (ct - 'A') + 10; } else { break; } if (c > (UINT32_MAX >> 4)) { overflow = true; break; } c <<= 4; c |= ct; } } else { // Decimal entity &#; for (int i = 2; i < p_src_len; i++) { eat = i + 1; char32_t ct = p_src[i]; if (ct == ';' || !is_digit(ct)) { break; } } if (p_src[eat - 1] == ';') { int64_t val = String::to_int(p_src + 2, eat - 3); if (val > 0 && val <= UINT32_MAX) { c = (char32_t)val; } else { overflow = true; } } } // Value must be non-zero, in the range of char32_t, // actually end with ';'. If invalid, leave the entity as-is if (c == '\0' || overflow || p_src[eat - 1] != ';') { eat = 1; c = *p_src; } if (p_dst) { *p_dst = c; } } else if (p_src_len >= 4 && p_src[1] == 'g' && p_src[2] == 't' && p_src[3] == ';') { if (p_dst) { *p_dst = '>'; } eat = 4; } else if (p_src_len >= 4 && p_src[1] == 'l' && p_src[2] == 't' && p_src[3] == ';') { if (p_dst) { *p_dst = '<'; } eat = 4; } else if (p_src_len >= 5 && p_src[1] == 'a' && p_src[2] == 'm' && p_src[3] == 'p' && p_src[4] == ';') { if (p_dst) { *p_dst = '&'; } eat = 5; } else if (p_src_len >= 6 && p_src[1] == 'q' && p_src[2] == 'u' && p_src[3] == 'o' && p_src[4] == 't' && p_src[5] == ';') { if (p_dst) { *p_dst = '"'; } eat = 6; } else if (p_src_len >= 6 && p_src[1] == 'a' && p_src[2] == 'p' && p_src[3] == 'o' && p_src[4] == 's' && p_src[5] == ';') { if (p_dst) { *p_dst = '\''; } eat = 6; } else { if (p_dst) { *p_dst = *p_src; } eat = 1; } if (p_dst) { p_dst++; } len++; p_src += eat; p_src_len -= eat; } else { if (p_dst) { *p_dst = *p_src; p_dst++; } len++; p_src++; p_src_len--; } } return len; } String String::xml_unescape() const { String str; int l = length(); int len = _xml_unescape(get_data(), l, nullptr); if (len == 0) { return String(); } str.resize(len + 1); _xml_unescape(get_data(), l, str.ptrw()); str[len] = 0; return str; } String String::pad_decimals(int p_digits) const { String s = *this; int c = s.find("."); if (c == -1) { if (p_digits <= 0) { return s; } s += "."; c = s.length() - 1; } else { if (p_digits <= 0) { return s.substr(0, c); } } if (s.length() - (c + 1) > p_digits) { return s.substr(0, c + p_digits + 1); } else { int zeros_to_add = p_digits - s.length() + (c + 1); return s + String("0").repeat(zeros_to_add); } } String String::pad_zeros(int p_digits) const { String s = *this; int end = s.find("."); if (end == -1) { end = s.length(); } if (end == 0) { return s; } int begin = 0; while (begin < end && !is_digit(s[begin])) { begin++; } int zeros_to_add = p_digits - (end - begin); if (zeros_to_add <= 0) { return s; } else { return s.insert(begin, String("0").repeat(zeros_to_add)); } } String String::trim_prefix(const String &p_prefix) const { String s = *this; if (s.begins_with(p_prefix)) { return s.substr(p_prefix.length(), s.length() - p_prefix.length()); } return s; } String String::trim_suffix(const String &p_suffix) const { String s = *this; if (s.ends_with(p_suffix)) { return s.substr(0, s.length() - p_suffix.length()); } return s; } bool String::is_valid_int() const { int len = length(); if (len == 0) { return false; } int from = 0; if (len != 1 && (operator[](0) == '+' || operator[](0) == '-')) { from++; } for (int i = from; i < len; i++) { if (!is_digit(operator[](i))) { return false; // no start with number plz } } return true; } bool String::is_valid_hex_number(bool p_with_prefix) const { int len = length(); if (len == 0) { return false; } int from = 0; if (len != 1 && (operator[](0) == '+' || operator[](0) == '-')) { from++; } if (p_with_prefix) { if (len < 3) { return false; } if (operator[](from) != '0' || operator[](from + 1) != 'x') { return false; } from += 2; } for (int i = from; i < len; i++) { char32_t c = operator[](i); if (is_hex_digit(c)) { continue; } return false; } return true; } bool String::is_valid_float() const { int len = length(); if (len == 0) { return false; } int from = 0; if (operator[](0) == '+' || operator[](0) == '-') { from++; } bool exponent_found = false; bool period_found = false; bool sign_found = false; bool exponent_values_found = false; bool numbers_found = false; for (int i = from; i < len; i++) { if (is_digit(operator[](i))) { if (exponent_found) { exponent_values_found = true; } else { numbers_found = true; } } else if (numbers_found && !exponent_found && operator[](i) == 'e') { exponent_found = true; } else if (!period_found && !exponent_found && operator[](i) == '.') { period_found = true; } else if ((operator[](i) == '-' || operator[](i) == '+') && exponent_found && !exponent_values_found && !sign_found) { sign_found = true; } else { return false; // no start with number plz } } return numbers_found; } String String::path_to_file(const String &p_path) const { // Don't get base dir for src, this is expected to be a dir already. String src = replace("\\", "/"); String dst = p_path.replace("\\", "/").get_base_dir(); String rel = src.path_to(dst); if (rel == dst) { // failed return p_path; } else { return rel + p_path.get_file(); } } String String::path_to(const String &p_path) const { String src = replace("\\", "/"); String dst = p_path.replace("\\", "/"); if (!src.ends_with("/")) { src += "/"; } if (!dst.ends_with("/")) { dst += "/"; } if (src.begins_with("res://") && dst.begins_with("res://")) { src = src.replace("res://", "/"); dst = dst.replace("res://", "/"); } else if (src.begins_with("user://") && dst.begins_with("user://")) { src = src.replace("user://", "/"); dst = dst.replace("user://", "/"); } else if (src.begins_with("/") && dst.begins_with("/")) { //nothing } else { //dos style String src_begin = src.get_slicec('/', 0); String dst_begin = dst.get_slicec('/', 0); if (src_begin != dst_begin) { return p_path; //impossible to do this } src = src.substr(src_begin.length(), src.length()); dst = dst.substr(dst_begin.length(), dst.length()); } //remove leading and trailing slash and split Vector src_dirs = src.substr(1, src.length() - 2).split("/"); Vector dst_dirs = dst.substr(1, dst.length() - 2).split("/"); //find common parent int common_parent = 0; while (true) { if (src_dirs.size() == common_parent) { break; } if (dst_dirs.size() == common_parent) { break; } if (src_dirs[common_parent] != dst_dirs[common_parent]) { break; } common_parent++; } common_parent--; int dirs_to_backtrack = (src_dirs.size() - 1) - common_parent; String dir = String("../").repeat(dirs_to_backtrack); for (int i = common_parent + 1; i < dst_dirs.size(); i++) { dir += dst_dirs[i] + "/"; } if (dir.length() == 0) { dir = "./"; } return dir; } bool String::is_valid_html_color() const { return Color::html_is_valid(*this); } // Changes made to the set of invalid filename characters must also be reflected in the String documentation for is_valid_filename. static const char *invalid_filename_characters = ": / \\ ? * \" | % < >"; bool String::is_valid_filename() const { String stripped = strip_edges(); if (*this != stripped) { return false; } if (stripped.is_empty()) { return false; } Vector chars = String(invalid_filename_characters).split(" "); for (const String &ch : chars) { if (contains(ch)) { return false; } } return true; } String String::validate_filename() const { Vector chars = String(invalid_filename_characters).split(" "); String name = strip_edges(); for (int i = 0; i < chars.size(); i++) { name = name.replace(chars[i], "_"); } return name; } bool String::is_valid_ip_address() const { if (find(":") >= 0) { Vector ip = split(":"); for (int i = 0; i < ip.size(); i++) { const String &n = ip[i]; if (n.is_empty()) { continue; } if (n.is_valid_hex_number(false)) { int64_t nint = n.hex_to_int(); if (nint < 0 || nint > 0xffff) { return false; } continue; } if (!n.is_valid_ip_address()) { return false; } } } else { Vector ip = split("."); if (ip.size() != 4) { return false; } for (int i = 0; i < ip.size(); i++) { const String &n = ip[i]; if (!n.is_valid_int()) { return false; } int val = n.to_int(); if (val < 0 || val > 255) { return false; } } } return true; } bool String::is_resource_file() const { return begins_with("res://") && find("::") == -1; } bool String::is_relative_path() const { return !is_absolute_path(); } String String::get_base_dir() const { int end = 0; // URL scheme style base. int basepos = find("://"); if (basepos != -1) { end = basepos + 3; } // Windows top level directory base. if (end == 0) { basepos = find(":/"); if (basepos == -1) { basepos = find(":\\"); } if (basepos != -1) { end = basepos + 2; } } // Windows UNC network share path. if (end == 0) { if (is_network_share_path()) { basepos = find("/", 2); if (basepos == -1) { basepos = find("\\", 2); } int servpos = find("/", basepos + 1); if (servpos == -1) { servpos = find("\\", basepos + 1); } if (servpos != -1) { end = servpos + 1; } } } // Unix root directory base. if (end == 0) { if (begins_with("/")) { end = 1; } } String rs; String base; if (end != 0) { rs = substr(end, length()); base = substr(0, end); } else { rs = *this; } int sep = MAX(rs.rfind("/"), rs.rfind("\\")); if (sep == -1) { return base; } return base + rs.substr(0, sep); } String String::get_file() const { int sep = MAX(rfind("/"), rfind("\\")); if (sep == -1) { return *this; } return substr(sep + 1, length()); } String String::get_extension() const { int pos = rfind("."); if (pos < 0 || pos < MAX(rfind("/"), rfind("\\"))) { return ""; } return substr(pos + 1, length()); } String String::path_join(const String &p_file) const { if (is_empty()) { return p_file; } if (operator[](length() - 1) == '/' || (p_file.size() > 0 && p_file.operator[](0) == '/')) { return *this + p_file; } return *this + "/" + p_file; } String String::property_name_encode() const { // Escape and quote strings with extended ASCII or further Unicode characters // as well as '"', '=' or ' ' (32) const char32_t *cstr = get_data(); for (int i = 0; cstr[i]; i++) { if (cstr[i] == '=' || cstr[i] == '"' || cstr[i] == ';' || cstr[i] == '[' || cstr[i] == ']' || cstr[i] < 33 || cstr[i] > 126) { return "\"" + c_escape_multiline() + "\""; } } // Keep as is return *this; } // Changes made to the set of invalid characters must also be reflected in the String documentation. static const char32_t invalid_node_name_characters[] = { '.', ':', '@', '/', '\"', UNIQUE_NODE_PREFIX[0], 0 }; String String::get_invalid_node_name_characters(bool p_allow_internal) { // Do not use this function for critical validation. String r; const char32_t *c = invalid_node_name_characters; while (*c) { if (p_allow_internal && *c == '@') { c++; continue; } if (c != invalid_node_name_characters) { r += " "; } r += String::chr(*c); c++; } return r; } String String::validate_node_name() const { // This is a critical validation in node addition, so it must be optimized. const char32_t *cn = ptr(); if (cn == nullptr) { return String(); } bool valid = true; uint32_t idx = 0; while (cn[idx]) { const char32_t *c = invalid_node_name_characters; while (*c) { if (cn[idx] == *c) { valid = false; break; } c++; } if (!valid) { break; } idx++; } if (valid) { return *this; } String validated = *this; char32_t *nn = validated.ptrw(); while (nn[idx]) { const char32_t *c = invalid_node_name_characters; while (*c) { if (nn[idx] == *c) { nn[idx] = '_'; break; } c++; } idx++; } return validated; } String String::get_basename() const { int pos = rfind("."); if (pos < 0 || pos < MAX(rfind("/"), rfind("\\"))) { return *this; } return substr(0, pos); } String itos(int64_t p_val) { return String::num_int64(p_val); } String uitos(uint64_t p_val) { return String::num_uint64(p_val); } String rtos(double p_val) { return String::num(p_val); } String rtoss(double p_val) { return String::num_scientific(p_val); } // Right-pad with a character. String String::rpad(int min_length, const String &character) const { String s = *this; int padding = min_length - s.length(); if (padding > 0) { s += character.repeat(padding); } return s; } // Left-pad with a character. String String::lpad(int min_length, const String &character) const { String s = *this; int padding = min_length - s.length(); if (padding > 0) { s = character.repeat(padding) + s; } return s; } // sprintf is implemented in GDScript via: // "fish %s pie" % "frog" // "fish %s %d pie" % ["frog", 12] // In case of an error, the string returned is the error description and "error" is true. String String::sprintf(const Array &values, bool *error) const { String formatted; char32_t *self = (char32_t *)get_data(); bool in_format = false; int value_index = 0; int min_chars = 0; int min_decimals = 0; bool in_decimals = false; bool pad_with_zeros = false; bool left_justified = false; bool show_sign = false; bool as_unsigned = false; if (error) { *error = true; } for (; *self; self++) { const char32_t c = *self; if (in_format) { // We have % - let's see what else we get. switch (c) { case '%': { // Replace %% with % formatted += chr(c); in_format = false; break; } case 'd': // Integer (signed) case 'o': // Octal case 'x': // Hexadecimal (lowercase) case 'X': { // Hexadecimal (uppercase) if (value_index >= values.size()) { return "not enough arguments for format string"; } if (!values[value_index].is_num()) { return "a number is required"; } int64_t value = values[value_index]; int base = 16; bool capitalize = false; switch (c) { case 'd': base = 10; break; case 'o': base = 8; break; case 'x': break; case 'X': capitalize = true; break; } // Get basic number. String str; if (!as_unsigned) { str = String::num_int64(ABS(value), base, capitalize); } else { uint64_t uvalue = *((uint64_t *)&value); // In unsigned hex, if the value fits in 32 bits, trim it down to that. if (base == 16 && value < 0 && value >= INT32_MIN) { uvalue &= 0xffffffff; } str = String::num_uint64(uvalue, base, capitalize); } int number_len = str.length(); bool negative = value < 0 && !as_unsigned; // Padding. int pad_chars_count = (negative || show_sign) ? min_chars - 1 : min_chars; String pad_char = pad_with_zeros ? String("0") : String(" "); if (left_justified) { str = str.rpad(pad_chars_count, pad_char); } else { str = str.lpad(pad_chars_count, pad_char); } // Sign. if (show_sign || negative) { String sign_char = negative ? "-" : "+"; if (left_justified) { str = str.insert(0, sign_char); } else { str = str.insert(pad_with_zeros ? 0 : str.length() - number_len, sign_char); } } formatted += str; ++value_index; in_format = false; break; } case 'f': { // Float if (value_index >= values.size()) { return "not enough arguments for format string"; } if (!values[value_index].is_num()) { return "a number is required"; } double value = values[value_index]; bool is_negative = signbit(value); String str = String::num(Math::abs(value), min_decimals); const bool is_finite = Math::is_finite(value); // Pad decimals out. if (is_finite) { str = str.pad_decimals(min_decimals); } int initial_len = str.length(); // Padding. Leave room for sign later if required. int pad_chars_count = (is_negative || show_sign) ? min_chars - 1 : min_chars; String pad_char = (pad_with_zeros && is_finite) ? String("0") : String(" "); // Never pad NaN or inf with zeros if (left_justified) { str = str.rpad(pad_chars_count, pad_char); } else { str = str.lpad(pad_chars_count, pad_char); } // Add sign if needed. if (show_sign || is_negative) { String sign_char = is_negative ? "-" : "+"; if (left_justified) { str = str.insert(0, sign_char); } else { str = str.insert(pad_with_zeros ? 0 : str.length() - initial_len, sign_char); } } formatted += str; ++value_index; in_format = false; break; } case 'v': { // Vector2/3/4/2i/3i/4i if (value_index >= values.size()) { return "not enough arguments for format string"; } int count; switch (values[value_index].get_type()) { case Variant::VECTOR2: case Variant::VECTOR2I: { count = 2; } break; case Variant::VECTOR3: case Variant::VECTOR3I: { count = 3; } break; case Variant::VECTOR4: case Variant::VECTOR4I: { count = 4; } break; default: { return "%v requires a vector type (Vector2/3/4/2i/3i/4i)"; } } Vector4 vec = values[value_index]; String str = "("; for (int i = 0; i < count; i++) { double val = vec[i]; String number_str = String::num(Math::abs(val), min_decimals); const bool is_finite = Math::is_finite(val); // Pad decimals out. if (is_finite) { number_str = number_str.pad_decimals(min_decimals); } int initial_len = number_str.length(); // Padding. Leave room for sign later if required. int pad_chars_count = val < 0 ? min_chars - 1 : min_chars; String pad_char = (pad_with_zeros && is_finite) ? String("0") : String(" "); // Never pad NaN or inf with zeros if (left_justified) { number_str = number_str.rpad(pad_chars_count, pad_char); } else { number_str = number_str.lpad(pad_chars_count, pad_char); } // Add sign if needed. if (val < 0) { if (left_justified) { number_str = number_str.insert(0, "-"); } else { number_str = number_str.insert(pad_with_zeros ? 0 : number_str.length() - initial_len, "-"); } } // Add number to combined string str += number_str; if (i < count - 1) { str += ", "; } } str += ")"; formatted += str; ++value_index; in_format = false; break; } case 's': { // String if (value_index >= values.size()) { return "not enough arguments for format string"; } String str = values[value_index]; // Padding. if (left_justified) { str = str.rpad(min_chars); } else { str = str.lpad(min_chars); } formatted += str; ++value_index; in_format = false; break; } case 'c': { if (value_index >= values.size()) { return "not enough arguments for format string"; } // Convert to character. String str; if (values[value_index].is_num()) { int value = values[value_index]; if (value < 0) { return "unsigned integer is lower than minimum"; } else if (value >= 0xd800 && value <= 0xdfff) { return "unsigned integer is invalid Unicode character"; } else if (value > 0x10ffff) { return "unsigned integer is greater than maximum"; } str = chr(values[value_index]); } else if (values[value_index].get_type() == Variant::STRING) { str = values[value_index]; if (str.length() != 1) { return "%c requires number or single-character string"; } } else { return "%c requires number or single-character string"; } // Padding. if (left_justified) { str = str.rpad(min_chars); } else { str = str.lpad(min_chars); } formatted += str; ++value_index; in_format = false; break; } case '-': { // Left justify left_justified = true; break; } case '+': { // Show + if positive. show_sign = true; break; } case 'u': { // Treat as unsigned (for int/hex). as_unsigned = true; break; } case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { int n = c - '0'; if (in_decimals) { min_decimals *= 10; min_decimals += n; } else { if (c == '0' && min_chars == 0) { if (left_justified) { WARN_PRINT("'0' flag ignored with '-' flag in string format"); } else { pad_with_zeros = true; } } else { min_chars *= 10; min_chars += n; } } break; } case '.': { // Float/Vector separator. if (in_decimals) { return "too many decimal points in format"; } in_decimals = true; min_decimals = 0; // We want to add the value manually. break; } case '*': { // Dynamic width, based on value. if (value_index >= values.size()) { return "not enough arguments for format string"; } Variant::Type value_type = values[value_index].get_type(); if (!values[value_index].is_num() && value_type != Variant::VECTOR2 && value_type != Variant::VECTOR2I && value_type != Variant::VECTOR3 && value_type != Variant::VECTOR3I && value_type != Variant::VECTOR4 && value_type != Variant::VECTOR4I) { return "* wants number or vector"; } int size = values[value_index]; if (in_decimals) { min_decimals = size; } else { min_chars = size; } ++value_index; break; } default: { return "unsupported format character"; } } } else { // Not in format string. switch (c) { case '%': in_format = true; // Back to defaults: min_chars = 0; min_decimals = 6; pad_with_zeros = false; left_justified = false; show_sign = false; in_decimals = false; break; default: formatted += chr(c); } } } if (in_format) { return "incomplete format"; } if (value_index != values.size()) { return "not all arguments converted during string formatting"; } if (error) { *error = false; } return formatted; } String String::quote(const String "echar) const { return quotechar + *this + quotechar; } String String::unquote() const { if (!is_quoted()) { return *this; } return substr(1, length() - 2); } Vector String::to_ascii_buffer() const { const String *s = this; if (s->is_empty()) { return Vector(); } CharString charstr = s->ascii(); Vector retval; size_t len = charstr.length(); retval.resize(len); uint8_t *w = retval.ptrw(); memcpy(w, charstr.ptr(), len); return retval; } Vector String::to_utf8_buffer() const { const String *s = this; if (s->is_empty()) { return Vector(); } CharString charstr = s->utf8(); Vector retval; size_t len = charstr.length(); retval.resize(len); uint8_t *w = retval.ptrw(); memcpy(w, charstr.ptr(), len); return retval; } Vector String::to_utf16_buffer() const { const String *s = this; if (s->is_empty()) { return Vector(); } Char16String charstr = s->utf16(); Vector retval; size_t len = charstr.length() * sizeof(char16_t); retval.resize(len); uint8_t *w = retval.ptrw(); memcpy(w, (const void *)charstr.ptr(), len); return retval; } Vector String::to_utf32_buffer() const { const String *s = this; if (s->is_empty()) { return Vector(); } Vector retval; size_t len = s->length() * sizeof(char32_t); retval.resize(len); uint8_t *w = retval.ptrw(); memcpy(w, (const void *)s->ptr(), len); return retval; } Vector String::to_wchar_buffer() const { #ifdef WINDOWS_ENABLED return to_utf16_buffer(); #else return to_utf32_buffer(); #endif } #ifdef TOOLS_ENABLED /** * "Tools TRanslate". Performs string replacement for internationalization * within the editor. A translation context can optionally be specified to * disambiguate between identical source strings in translations. When * placeholders are desired, use `vformat(TTR("Example: %s"), some_string)`. * If a string mentions a quantity (and may therefore need a dynamic plural form), * use `TTRN()` instead of `TTR()`. * * NOTE: Only use `TTR()` in editor-only code (typically within the `editor/` folder). * For translations that can be supplied by exported projects, use `RTR()` instead. */ String TTR(const String &p_text, const String &p_context) { if (TranslationServer::get_singleton()) { return TranslationServer::get_singleton()->tool_translate(p_text, p_context); } return p_text; } /** * "Tools TRanslate for N items". Performs string replacement for * internationalization within the editor. A translation context can optionally * be specified to disambiguate between identical source strings in * translations. Use `TTR()` if the string doesn't need dynamic plural form. * When placeholders are desired, use * `vformat(TTRN("%d item", "%d items", some_integer), some_integer)`. * The placeholder must be present in both strings to avoid run-time warnings in `vformat()`. * * NOTE: Only use `TTRN()` in editor-only code (typically within the `editor/` folder). * For translations that can be supplied by exported projects, use `RTRN()` instead. */ String TTRN(const String &p_text, const String &p_text_plural, int p_n, const String &p_context) { if (TranslationServer::get_singleton()) { return TranslationServer::get_singleton()->tool_translate_plural(p_text, p_text_plural, p_n, p_context); } // Return message based on English plural rule if translation is not possible. if (p_n == 1) { return p_text; } return p_text_plural; } /** * "Docs TRanslate". Used for the editor class reference documentation, * handling descriptions extracted from the XML. * It also replaces `$DOCS_URL` with the actual URL to the documentation's branch, * to allow dehardcoding it in the XML and doing proper substitutions everywhere. */ String DTR(const String &p_text, const String &p_context) { // Comes straight from the XML, so remove indentation and any trailing whitespace. const String text = p_text.dedent().strip_edges(); if (TranslationServer::get_singleton()) { return String(TranslationServer::get_singleton()->doc_translate(text, p_context)).replace("$DOCS_URL", VERSION_DOCS_URL); } return text.replace("$DOCS_URL", VERSION_DOCS_URL); } /** * "Docs TRanslate for N items". Used for the editor class reference documentation * (with support for plurals), handling descriptions extracted from the XML. * It also replaces `$DOCS_URL` with the actual URL to the documentation's branch, * to allow dehardcoding it in the XML and doing proper substitutions everywhere. */ String DTRN(const String &p_text, const String &p_text_plural, int p_n, const String &p_context) { const String text = p_text.dedent().strip_edges(); const String text_plural = p_text_plural.dedent().strip_edges(); if (TranslationServer::get_singleton()) { return String(TranslationServer::get_singleton()->doc_translate_plural(text, text_plural, p_n, p_context)).replace("$DOCS_URL", VERSION_DOCS_URL); } // Return message based on English plural rule if translation is not possible. if (p_n == 1) { return text.replace("$DOCS_URL", VERSION_DOCS_URL); } return text_plural.replace("$DOCS_URL", VERSION_DOCS_URL); } #endif /** * "Run-time TRanslate". Performs string replacement for internationalization * without the editor. A translation context can optionally be specified to * disambiguate between identical source strings in translations. When * placeholders are desired, use `vformat(RTR("Example: %s"), some_string)`. * If a string mentions a quantity (and may therefore need a dynamic plural form), * use `RTRN()` instead of `RTR()`. * * NOTE: Do not use `RTR()` in editor-only code (typically within the `editor/` * folder). For editor translations, use `TTR()` instead. */ String RTR(const String &p_text, const String &p_context) { if (TranslationServer::get_singleton()) { String rtr = TranslationServer::get_singleton()->tool_translate(p_text, p_context); if (rtr.is_empty() || rtr == p_text) { return TranslationServer::get_singleton()->translate(p_text, p_context); } return rtr; } return p_text; } /** * "Run-time TRanslate for N items". Performs string replacement for * internationalization without the editor. A translation context can optionally * be specified to disambiguate between identical source strings in translations. * Use `RTR()` if the string doesn't need dynamic plural form. When placeholders * are desired, use `vformat(RTRN("%d item", "%d items", some_integer), some_integer)`. * The placeholder must be present in both strings to avoid run-time warnings in `vformat()`. * * NOTE: Do not use `RTRN()` in editor-only code (typically within the `editor/` * folder). For editor translations, use `TTRN()` instead. */ String RTRN(const String &p_text, const String &p_text_plural, int p_n, const String &p_context) { if (TranslationServer::get_singleton()) { String rtr = TranslationServer::get_singleton()->tool_translate_plural(p_text, p_text_plural, p_n, p_context); if (rtr.is_empty() || rtr == p_text || rtr == p_text_plural) { return TranslationServer::get_singleton()->translate_plural(p_text, p_text_plural, p_n, p_context); } return rtr; } // Return message based on English plural rule if translation is not possible. if (p_n == 1) { return p_text; } return p_text_plural; }