/**************************************************************************/ /* rasterizer_storage_gles3.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "rasterizer_storage_gles3.h" #include "core/engine.h" #include "core/os/os.h" #include "core/project_settings.h" #include "core/threaded_callable_queue.h" #include "main/main.h" #include "rasterizer_canvas_gles3.h" #include "rasterizer_scene_gles3.h" #include "servers/visual/visual_server_canvas.h" #include "servers/visual/visual_server_globals.h" #include "servers/visual_server.h" #if defined(IPHONE_ENABLED) || defined(ANDROID_ENABLED) #include #endif #ifdef TOOLS_ENABLED #include "editor/editor_settings.h" #endif /* TEXTURE API */ #define _EXT_COMPRESSED_RGB_PVRTC_4BPPV1_IMG 0x8C00 #define _EXT_COMPRESSED_RGB_PVRTC_2BPPV1_IMG 0x8C01 #define _EXT_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG 0x8C02 #define _EXT_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG 0x8C03 #define _EXT_COMPRESSED_SRGB_PVRTC_2BPPV1_EXT 0x8A54 #define _EXT_COMPRESSED_SRGB_PVRTC_4BPPV1_EXT 0x8A55 #define _EXT_COMPRESSED_SRGB_ALPHA_PVRTC_2BPPV1_EXT 0x8A56 #define _EXT_COMPRESSED_SRGB_ALPHA_PVRTC_4BPPV1_EXT 0x8A57 #define _EXT_COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1 #define _EXT_COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2 #define _EXT_COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3 #define _EXT_COMPRESSED_LUMINANCE_LATC1_EXT 0x8C70 #define _EXT_COMPRESSED_SIGNED_LUMINANCE_LATC1_EXT 0x8C71 #define _EXT_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT 0x8C72 #define _EXT_COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_EXT 0x8C73 #define _EXT_COMPRESSED_RED_RGTC1_EXT 0x8DBB #define _EXT_COMPRESSED_RED_RGTC1 0x8DBB #define _EXT_COMPRESSED_SIGNED_RED_RGTC1 0x8DBC #define _EXT_COMPRESSED_RG_RGTC2 0x8DBD #define _EXT_COMPRESSED_SIGNED_RG_RGTC2 0x8DBE #define _EXT_COMPRESSED_SIGNED_RED_RGTC1_EXT 0x8DBC #define _EXT_COMPRESSED_RED_GREEN_RGTC2_EXT 0x8DBD #define _EXT_COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT 0x8DBE #define _EXT_ETC1_RGB8_OES 0x8D64 #define _EXT_SLUMINANCE_NV 0x8C46 #define _EXT_SLUMINANCE_ALPHA_NV 0x8C44 #define _EXT_SRGB8_NV 0x8C41 #define _EXT_SLUMINANCE8_NV 0x8C47 #define _EXT_SLUMINANCE8_ALPHA8_NV 0x8C45 #define _EXT_COMPRESSED_SRGB_S3TC_DXT1_NV 0x8C4C #define _EXT_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_NV 0x8C4D #define _EXT_COMPRESSED_SRGB_ALPHA_S3TC_DXT3_NV 0x8C4E #define _EXT_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_NV 0x8C4F #define _EXT_ATC_RGB_AMD 0x8C92 #define _EXT_ATC_RGBA_EXPLICIT_ALPHA_AMD 0x8C93 #define _EXT_ATC_RGBA_INTERPOLATED_ALPHA_AMD 0x87EE #define _EXT_TEXTURE_CUBE_MAP_SEAMLESS 0x884F #define _GL_TEXTURE_MAX_ANISOTROPY_EXT 0x84FE #define _GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT 0x84FF #define _EXT_COMPRESSED_R11_EAC 0x9270 #define _EXT_COMPRESSED_SIGNED_R11_EAC 0x9271 #define _EXT_COMPRESSED_RG11_EAC 0x9272 #define _EXT_COMPRESSED_SIGNED_RG11_EAC 0x9273 #define _EXT_COMPRESSED_RGB8_ETC2 0x9274 #define _EXT_COMPRESSED_SRGB8_ETC2 0x9275 #define _EXT_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2 0x9276 #define _EXT_COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2 0x9277 #define _EXT_COMPRESSED_RGBA8_ETC2_EAC 0x9278 #define _EXT_COMPRESSED_SRGB8_ALPHA8_ETC2_EAC 0x9279 #define _EXT_COMPRESSED_RGBA_BPTC_UNORM 0x8E8C #define _EXT_COMPRESSED_SRGB_ALPHA_BPTC_UNORM 0x8E8D #define _EXT_COMPRESSED_RGB_BPTC_SIGNED_FLOAT 0x8E8E #define _EXT_COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT 0x8E8F #define _GL_TEXTURE_EXTERNAL_OES 0x8D65 #ifndef GLES_OVER_GL #define glClearDepth glClearDepthf #endif void glTexStorage2DCustom(GLenum target, GLsizei levels, GLenum internalformat, GLsizei width, GLsizei height, GLenum format, GLenum type) { #ifdef GLES_OVER_GL for (int i = 0; i < levels; i++) { glTexImage2D(target, i, internalformat, width, height, 0, format, type, nullptr); width = MAX(1, (width / 2)); height = MAX(1, (height / 2)); } #else glTexStorage2D(target, levels, internalformat, width, height); #endif } GLuint RasterizerStorageGLES3::system_fbo = 0; void RasterizerStorageGLES3::GLWrapper::initialize(int p_max_texture_image_units) { texture_unit_table.create(p_max_texture_image_units); } void RasterizerStorageGLES3::GLWrapper::reset() { for (uint32_t i = 0; i < texture_units_bound.size(); i++) { ::glActiveTexture(GL_TEXTURE0 + texture_units_bound[i]); glBindTexture(GL_TEXTURE_2D, 0); } texture_units_bound.clear(); texture_unit_table.blank(); } Ref RasterizerStorageGLES3::_get_gl_image_and_format(const Ref &p_image, Image::Format p_format, uint32_t p_flags, Image::Format &r_real_format, GLenum &r_gl_format, GLenum &r_gl_internal_format, GLenum &r_gl_type, bool &r_compressed, bool &r_srgb, bool p_force_decompress) const { r_compressed = false; r_gl_format = 0; r_real_format = p_format; Ref image = p_image; r_srgb = false; bool need_decompress = false; switch (p_format) { case Image::FORMAT_L8: { #ifdef GLES_OVER_GL r_gl_internal_format = GL_R8; r_gl_format = GL_RED; r_gl_type = GL_UNSIGNED_BYTE; #else r_gl_internal_format = GL_LUMINANCE; r_gl_format = GL_LUMINANCE; r_gl_type = GL_UNSIGNED_BYTE; #endif } break; case Image::FORMAT_LA8: { #ifdef GLES_OVER_GL r_gl_internal_format = GL_RG8; r_gl_format = GL_RG; r_gl_type = GL_UNSIGNED_BYTE; #else r_gl_internal_format = GL_LUMINANCE_ALPHA; r_gl_format = GL_LUMINANCE_ALPHA; r_gl_type = GL_UNSIGNED_BYTE; #endif } break; case Image::FORMAT_R8: { r_gl_internal_format = GL_R8; r_gl_format = GL_RED; r_gl_type = GL_UNSIGNED_BYTE; } break; case Image::FORMAT_RG8: { r_gl_internal_format = GL_RG8; r_gl_format = GL_RG; r_gl_type = GL_UNSIGNED_BYTE; } break; case Image::FORMAT_RGB8: { r_gl_internal_format = (config.srgb_decode_supported || (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) ? GL_SRGB8 : GL_RGB8; r_gl_format = GL_RGB; r_gl_type = GL_UNSIGNED_BYTE; r_srgb = true; } break; case Image::FORMAT_RGBA8: { r_gl_format = GL_RGBA; r_gl_internal_format = (config.srgb_decode_supported || (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) ? GL_SRGB8_ALPHA8 : GL_RGBA8; r_gl_type = GL_UNSIGNED_BYTE; r_srgb = true; } break; case Image::FORMAT_RGBA4444: { r_gl_internal_format = GL_RGBA4; r_gl_format = GL_RGBA; r_gl_type = GL_UNSIGNED_SHORT_4_4_4_4; } break; case Image::FORMAT_RGBA5551: { r_gl_internal_format = GL_RGB5_A1; r_gl_format = GL_RGBA; r_gl_type = GL_UNSIGNED_SHORT_5_5_5_1; } break; case Image::FORMAT_RF: { r_gl_internal_format = GL_R32F; r_gl_format = GL_RED; r_gl_type = GL_FLOAT; } break; case Image::FORMAT_RGF: { r_gl_internal_format = GL_RG32F; r_gl_format = GL_RG; r_gl_type = GL_FLOAT; } break; case Image::FORMAT_RGBF: { r_gl_internal_format = GL_RGB32F; r_gl_format = GL_RGB; r_gl_type = GL_FLOAT; } break; case Image::FORMAT_RGBAF: { r_gl_internal_format = GL_RGBA32F; r_gl_format = GL_RGBA; r_gl_type = GL_FLOAT; } break; case Image::FORMAT_RH: { r_gl_internal_format = GL_R16F; r_gl_format = GL_RED; r_gl_type = GL_HALF_FLOAT; } break; case Image::FORMAT_RGH: { r_gl_internal_format = GL_RG16F; r_gl_format = GL_RG; r_gl_type = GL_HALF_FLOAT; } break; case Image::FORMAT_RGBH: { r_gl_internal_format = GL_RGB16F; r_gl_format = GL_RGB; r_gl_type = GL_HALF_FLOAT; } break; case Image::FORMAT_RGBAH: { r_gl_internal_format = GL_RGBA16F; r_gl_format = GL_RGBA; r_gl_type = GL_HALF_FLOAT; } break; case Image::FORMAT_RGBE9995: { r_gl_internal_format = GL_RGB9_E5; r_gl_format = GL_RGB; r_gl_type = GL_UNSIGNED_INT_5_9_9_9_REV; } break; case Image::FORMAT_DXT1: { if (config.s3tc_supported) { r_gl_internal_format = (config.srgb_decode_supported || (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) ? _EXT_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_NV : _EXT_COMPRESSED_RGBA_S3TC_DXT1_EXT; r_gl_format = GL_RGBA; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; r_srgb = true; } else { need_decompress = true; } } break; case Image::FORMAT_DXT3: { if (config.s3tc_supported) { r_gl_internal_format = (config.srgb_decode_supported || (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) ? _EXT_COMPRESSED_SRGB_ALPHA_S3TC_DXT3_NV : _EXT_COMPRESSED_RGBA_S3TC_DXT3_EXT; r_gl_format = GL_RGBA; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; r_srgb = true; } else { need_decompress = true; } } break; case Image::FORMAT_DXT5: { if (config.s3tc_supported) { r_gl_internal_format = (config.srgb_decode_supported || (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) ? _EXT_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_NV : _EXT_COMPRESSED_RGBA_S3TC_DXT5_EXT; r_gl_format = GL_RGBA; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; r_srgb = true; } else { need_decompress = true; } } break; case Image::FORMAT_RGTC_R: { if (config.rgtc_supported) { r_gl_internal_format = _EXT_COMPRESSED_RED_RGTC1_EXT; r_gl_format = GL_RGBA; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; } else { need_decompress = true; } } break; case Image::FORMAT_RGTC_RG: { if (config.rgtc_supported) { r_gl_internal_format = _EXT_COMPRESSED_RED_GREEN_RGTC2_EXT; r_gl_format = GL_RGBA; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; } else { need_decompress = true; } } break; case Image::FORMAT_BPTC_RGBA: { if (config.bptc_supported) { r_gl_internal_format = (config.srgb_decode_supported || (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) ? _EXT_COMPRESSED_SRGB_ALPHA_BPTC_UNORM : _EXT_COMPRESSED_RGBA_BPTC_UNORM; r_gl_format = GL_RGBA; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; r_srgb = true; } else { need_decompress = true; } } break; case Image::FORMAT_BPTC_RGBF: { if (config.bptc_supported) { r_gl_internal_format = _EXT_COMPRESSED_RGB_BPTC_SIGNED_FLOAT; r_gl_format = GL_RGB; r_gl_type = GL_FLOAT; r_compressed = true; } else { need_decompress = true; } } break; case Image::FORMAT_BPTC_RGBFU: { if (config.bptc_supported) { r_gl_internal_format = _EXT_COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT; r_gl_format = GL_RGB; r_gl_type = GL_FLOAT; r_compressed = true; } else { need_decompress = true; } } break; case Image::FORMAT_PVRTC2: { if (config.pvrtc_supported) { r_gl_internal_format = (config.srgb_decode_supported || (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) ? _EXT_COMPRESSED_SRGB_PVRTC_2BPPV1_EXT : _EXT_COMPRESSED_RGB_PVRTC_2BPPV1_IMG; r_gl_format = GL_RGBA; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; r_srgb = true; } else { need_decompress = true; } } break; case Image::FORMAT_PVRTC2A: { if (config.pvrtc_supported) { r_gl_internal_format = (config.srgb_decode_supported || (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) ? _EXT_COMPRESSED_SRGB_ALPHA_PVRTC_2BPPV1_EXT : _EXT_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG; r_gl_format = GL_RGBA; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; r_srgb = true; } else { need_decompress = true; } } break; case Image::FORMAT_PVRTC4: { if (config.pvrtc_supported) { r_gl_internal_format = (config.srgb_decode_supported || (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) ? _EXT_COMPRESSED_SRGB_PVRTC_4BPPV1_EXT : _EXT_COMPRESSED_RGB_PVRTC_4BPPV1_IMG; r_gl_format = GL_RGBA; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; r_srgb = true; } else { need_decompress = true; } } break; case Image::FORMAT_PVRTC4A: { if (config.pvrtc_supported) { r_gl_internal_format = (config.srgb_decode_supported || (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) ? _EXT_COMPRESSED_SRGB_ALPHA_PVRTC_4BPPV1_EXT : _EXT_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG; r_gl_format = GL_RGBA; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; r_srgb = true; } else { need_decompress = true; } } break; case Image::FORMAT_ETC: { if (config.etc_supported) { r_gl_internal_format = _EXT_ETC1_RGB8_OES; r_gl_format = GL_RGBA; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; } else { need_decompress = true; } } break; case Image::FORMAT_ETC2_R11: { if (config.etc2_supported) { r_gl_internal_format = _EXT_COMPRESSED_R11_EAC; r_gl_format = GL_RED; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; } else { need_decompress = true; } } break; case Image::FORMAT_ETC2_R11S: { if (config.etc2_supported) { r_gl_internal_format = _EXT_COMPRESSED_SIGNED_R11_EAC; r_gl_format = GL_RED; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; } else { need_decompress = true; } } break; case Image::FORMAT_ETC2_RG11: { if (config.etc2_supported) { r_gl_internal_format = _EXT_COMPRESSED_RG11_EAC; r_gl_format = GL_RG; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; } else { need_decompress = true; } } break; case Image::FORMAT_ETC2_RG11S: { if (config.etc2_supported) { r_gl_internal_format = _EXT_COMPRESSED_SIGNED_RG11_EAC; r_gl_format = GL_RG; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; } else { need_decompress = true; } } break; case Image::FORMAT_ETC2_RGB8: { if (config.etc2_supported) { r_gl_internal_format = (config.srgb_decode_supported || (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) ? _EXT_COMPRESSED_SRGB8_ETC2 : _EXT_COMPRESSED_RGB8_ETC2; r_gl_format = GL_RGB; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; r_srgb = true; } else { need_decompress = true; } } break; case Image::FORMAT_ETC2_RGBA8: { if (config.etc2_supported) { r_gl_internal_format = (config.srgb_decode_supported || (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) ? _EXT_COMPRESSED_SRGB8_ALPHA8_ETC2_EAC : _EXT_COMPRESSED_RGBA8_ETC2_EAC; r_gl_format = GL_RGBA; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; r_srgb = true; } else { need_decompress = true; } } break; case Image::FORMAT_ETC2_RGB8A1: { if (config.etc2_supported) { r_gl_internal_format = (config.srgb_decode_supported || (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) ? _EXT_COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2 : _EXT_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2; r_gl_format = GL_RGBA; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; r_srgb = true; } else { need_decompress = true; } } break; default: { ERR_FAIL_V(Ref()); } } if (need_decompress || p_force_decompress) { if (!image.is_null()) { image = image->duplicate(); image->decompress(); ERR_FAIL_COND_V(image->is_compressed(), image); image->convert(Image::FORMAT_RGBA8); } r_gl_format = GL_RGBA; r_gl_internal_format = (config.srgb_decode_supported || (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) ? GL_SRGB8_ALPHA8 : GL_RGBA8; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = false; r_real_format = Image::FORMAT_RGBA8; r_srgb = true; return image; } return image; } static const GLenum _cube_side_enum[6] = { GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, GL_TEXTURE_CUBE_MAP_POSITIVE_Z, }; RID RasterizerStorageGLES3::texture_create() { Texture *texture = memnew(Texture); ERR_FAIL_COND_V(!texture, RID()); glGenTextures(1, &texture->tex_id); texture->active = false; texture->total_data_size = 0; return texture_owner.make_rid(texture); } void RasterizerStorageGLES3::texture_allocate(RID p_texture, int p_width, int p_height, int p_depth_3d, Image::Format p_format, VisualServer::TextureType p_type, uint32_t p_flags) { GLenum format; GLenum internal_format; GLenum type; bool compressed; bool srgb; if (p_flags & VS::TEXTURE_FLAG_USED_FOR_STREAMING) { p_flags &= ~VS::TEXTURE_FLAG_MIPMAPS; // no mipies for video } #ifndef GLES_OVER_GL switch (p_format) { case Image::FORMAT_RF: case Image::FORMAT_RGF: case Image::FORMAT_RGBF: case Image::FORMAT_RGBAF: case Image::FORMAT_RH: case Image::FORMAT_RGH: case Image::FORMAT_RGBH: case Image::FORMAT_RGBAH: { if (!config.texture_float_linear_supported) { // disable linear texture filtering when not supported for float format on some devices (issue #24295) p_flags &= ~VS::TEXTURE_FLAG_FILTER; } } break; default: { } } #endif Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND(!texture); texture->width = p_width; texture->height = p_height; texture->depth = p_depth_3d; texture->format = p_format; texture->flags = p_flags; texture->stored_cube_sides = 0; texture->type = p_type; switch (p_type) { case VS::TEXTURE_TYPE_2D: { texture->target = GL_TEXTURE_2D; texture->images.resize(1); } break; case VS::TEXTURE_TYPE_EXTERNAL: { #ifdef ANDROID_ENABLED texture->target = _GL_TEXTURE_EXTERNAL_OES; #else texture->target = GL_TEXTURE_2D; #endif texture->images.resize(0); } break; case VS::TEXTURE_TYPE_CUBEMAP: { texture->target = GL_TEXTURE_CUBE_MAP; texture->images.resize(6); } break; case VS::TEXTURE_TYPE_2D_ARRAY: { texture->target = GL_TEXTURE_2D_ARRAY; texture->images.resize(p_depth_3d); } break; case VS::TEXTURE_TYPE_3D: { texture->target = GL_TEXTURE_3D; texture->images.resize(p_depth_3d); } break; } if (p_type != VS::TEXTURE_TYPE_EXTERNAL) { texture->is_npot_repeat_mipmap = false; #ifdef JAVASCRIPT_ENABLED // WebGL 2.0 on browsers does not seem to properly support compressed non power-of-two (NPOT) // textures with repeat/mipmaps, even though NPOT textures should be supported as per the spec. // Force decompressing them to work it around on WebGL 2.0 at a performance cost (GH-33058). int po2_width = next_power_of_2(p_width); int po2_height = next_power_of_2(p_height); bool is_po2 = p_width == po2_width && p_height == po2_height; if (!is_po2 && (p_flags & VS::TEXTURE_FLAG_REPEAT || p_flags & VS::TEXTURE_FLAG_MIPMAPS)) { texture->is_npot_repeat_mipmap = true; } #endif // JAVASCRIPT_ENABLED Image::Format real_format; _get_gl_image_and_format(Ref(), texture->format, texture->flags, real_format, format, internal_format, type, compressed, srgb, texture->is_npot_repeat_mipmap); texture->alloc_width = texture->width; texture->alloc_height = texture->height; texture->alloc_depth = texture->depth; texture->gl_format_cache = format; texture->gl_type_cache = type; texture->gl_internal_format_cache = internal_format; texture->compressed = compressed; texture->srgb = srgb; texture->data_size = 0; texture->mipmaps = 1; } gl_wrapper.gl_active_texture(GL_TEXTURE0); glBindTexture(texture->target, texture->tex_id); if (p_type == VS::TEXTURE_TYPE_EXTERNAL) { glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(texture->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(texture->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); } else if (p_type == VS::TEXTURE_TYPE_3D || p_type == VS::TEXTURE_TYPE_2D_ARRAY) { int width = p_width; int height = p_height; int depth = p_depth_3d; int mipmaps = 0; while (width > 0 || height > 0 || (p_type == VS::TEXTURE_TYPE_3D && depth > 0)) { width = MAX(1, width); height = MAX(1, height); depth = MAX(1, depth); glTexImage3D(texture->target, mipmaps, internal_format, width, height, depth, 0, format, type, nullptr); width /= 2; height /= 2; if (p_type == VS::TEXTURE_TYPE_3D) { depth /= 2; } mipmaps++; if (!(p_flags & VS::TEXTURE_FLAG_MIPMAPS)) { break; } } glTexParameteri(texture->target, GL_TEXTURE_BASE_LEVEL, 0); glTexParameteri(texture->target, GL_TEXTURE_MAX_LEVEL, mipmaps - 1); } else if (p_flags & VS::TEXTURE_FLAG_USED_FOR_STREAMING) { //prealloc if video glTexImage2D(texture->target, 0, internal_format, p_width, p_height, 0, format, type, nullptr); } texture->active = true; } void RasterizerStorageGLES3::texture_set_data(RID p_texture, const Ref &p_image, int p_layer) { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND(!texture); ERR_FAIL_COND(!texture->active); ERR_FAIL_COND(texture->render_target); ERR_FAIL_COND(texture->format != p_image->get_format()); ERR_FAIL_COND(p_image.is_null()); ERR_FAIL_COND(texture->type == VS::TEXTURE_TYPE_EXTERNAL); GLenum type; GLenum format; GLenum internal_format; bool compressed; bool srgb; if (config.keep_original_textures && !(texture->flags & VS::TEXTURE_FLAG_USED_FOR_STREAMING)) { texture->images.write[p_layer] = p_image; } Image::Format real_format; Ref img = _get_gl_image_and_format(p_image, p_image->get_format(), texture->flags, real_format, format, internal_format, type, compressed, srgb, texture->is_npot_repeat_mipmap); if (config.shrink_textures_x2 && (p_image->has_mipmaps() || !p_image->is_compressed()) && !(texture->flags & VS::TEXTURE_FLAG_USED_FOR_STREAMING)) { texture->alloc_height = MAX(1, texture->alloc_height / 2); texture->alloc_width = MAX(1, texture->alloc_width / 2); if (texture->alloc_width == img->get_width() / 2 && texture->alloc_height == img->get_height() / 2) { img->shrink_x2(); } else if (img->get_format() <= Image::FORMAT_RGBA8) { img->resize(texture->alloc_width, texture->alloc_height, Image::INTERPOLATE_BILINEAR); } }; GLenum blit_target = GL_TEXTURE_2D; switch (texture->type) { case VS::TEXTURE_TYPE_2D: case VS::TEXTURE_TYPE_EXTERNAL: { blit_target = GL_TEXTURE_2D; } break; case VS::TEXTURE_TYPE_CUBEMAP: { ERR_FAIL_INDEX(p_layer, 6); blit_target = _cube_side_enum[p_layer]; } break; case VS::TEXTURE_TYPE_2D_ARRAY: { blit_target = GL_TEXTURE_2D_ARRAY; } break; case VS::TEXTURE_TYPE_3D: { blit_target = GL_TEXTURE_3D; } break; } texture->data_size = img->get_data().size(); PoolVector::Read read = img->get_data().read(); ERR_FAIL_COND(!read.ptr()); gl_wrapper.gl_active_texture(GL_TEXTURE0); glBindTexture(texture->target, texture->tex_id); texture->ignore_mipmaps = compressed && !img->has_mipmaps(); if ((texture->flags & VS::TEXTURE_FLAG_MIPMAPS) && !texture->ignore_mipmaps) { if (texture->flags & VS::TEXTURE_FLAG_FILTER) { glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, config.use_fast_texture_filter ? GL_LINEAR_MIPMAP_NEAREST : GL_LINEAR_MIPMAP_LINEAR); } else { glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, config.use_fast_texture_filter ? GL_NEAREST_MIPMAP_NEAREST : GL_NEAREST_MIPMAP_LINEAR); } } else { if (texture->flags & VS::TEXTURE_FLAG_FILTER) { glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, GL_LINEAR); } else { glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, GL_NEAREST); } } if (config.srgb_decode_supported && srgb) { if (texture->flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) { glTexParameteri(texture->target, _TEXTURE_SRGB_DECODE_EXT, _DECODE_EXT); texture->using_srgb = true; } else { glTexParameteri(texture->target, _TEXTURE_SRGB_DECODE_EXT, _SKIP_DECODE_EXT); texture->using_srgb = false; } } if (texture->flags & VS::TEXTURE_FLAG_FILTER) { glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // Linear Filtering } else { glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_NEAREST); // raw Filtering } if (((texture->flags & VS::TEXTURE_FLAG_REPEAT) || (texture->flags & VS::TEXTURE_FLAG_MIRRORED_REPEAT)) && texture->target != GL_TEXTURE_CUBE_MAP) { if (texture->flags & VS::TEXTURE_FLAG_MIRRORED_REPEAT) { glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_MIRRORED_REPEAT); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_MIRRORED_REPEAT); } else { glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); } } else { //glTexParameterf( texture->target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE ); glTexParameterf(texture->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(texture->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); } //set swizle for older format compatibility #ifdef GLES_OVER_GL switch (texture->format) { case Image::FORMAT_L8: { glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_R, GL_RED); glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_G, GL_RED); glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_B, GL_RED); glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_A, GL_ONE); } break; case Image::FORMAT_LA8: { glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_R, GL_RED); glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_G, GL_RED); glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_B, GL_RED); glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_A, GL_GREEN); } break; default: { glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_R, GL_RED); glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_G, GL_GREEN); glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_B, GL_BLUE); glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_A, GL_ALPHA); } break; } #endif if (config.use_anisotropic_filter) { if (texture->flags & VS::TEXTURE_FLAG_ANISOTROPIC_FILTER) { glTexParameterf(texture->target, _GL_TEXTURE_MAX_ANISOTROPY_EXT, config.anisotropic_level); } else { glTexParameterf(texture->target, _GL_TEXTURE_MAX_ANISOTROPY_EXT, 1); } } int mipmaps = ((texture->flags & VS::TEXTURE_FLAG_MIPMAPS) && img->has_mipmaps()) ? img->get_mipmap_count() + 1 : 1; int w = img->get_width(); int h = img->get_height(); int tsize = 0; for (int i = 0; i < mipmaps; i++) { int size, ofs; img->get_mipmap_offset_and_size(i, ofs, size); if (texture->type == VS::TEXTURE_TYPE_2D || texture->type == VS::TEXTURE_TYPE_CUBEMAP) { if (texture->compressed) { glPixelStorei(GL_UNPACK_ALIGNMENT, 4); int bw = w; int bh = h; glCompressedTexImage2D(blit_target, i, internal_format, bw, bh, 0, size, &read[ofs]); } else { glPixelStorei(GL_UNPACK_ALIGNMENT, 1); if (texture->flags & VS::TEXTURE_FLAG_USED_FOR_STREAMING) { glTexSubImage2D(blit_target, i, 0, 0, w, h, format, type, &read[ofs]); } else { glTexImage2D(blit_target, i, internal_format, w, h, 0, format, type, &read[ofs]); } } } else { if (texture->compressed) { glPixelStorei(GL_UNPACK_ALIGNMENT, 4); int bw = w; int bh = h; glCompressedTexSubImage3D(blit_target, i, 0, 0, p_layer, bw, bh, 1, internal_format, size, &read[ofs]); } else { glPixelStorei(GL_UNPACK_ALIGNMENT, 1); glTexSubImage3D(blit_target, i, 0, 0, p_layer, w, h, 1, format, type, &read[ofs]); } } tsize += size; w = MAX(1, w >> 1); h = MAX(1, h >> 1); } // Handle array and 3D textures, as those set their data per layer. tsize *= MAX(texture->alloc_depth, 1); info.texture_mem -= texture->total_data_size; texture->total_data_size = tsize; info.texture_mem += texture->total_data_size; //printf("texture: %i x %i - size: %i - total: %i\n",texture->width,texture->height,tsize,_rinfo.texture_mem); texture->stored_cube_sides |= (1 << p_layer); if ((texture->type == VS::TEXTURE_TYPE_2D || texture->type == VS::TEXTURE_TYPE_CUBEMAP) && (texture->flags & VS::TEXTURE_FLAG_MIPMAPS) && mipmaps == 1 && !texture->ignore_mipmaps && (texture->type != VS::TEXTURE_TYPE_CUBEMAP || texture->stored_cube_sides == (1 << 6) - 1)) { //generate mipmaps if they were requested and the image does not contain them glGenerateMipmap(texture->target); } else if (mipmaps > 1) { glTexParameteri(texture->target, GL_TEXTURE_BASE_LEVEL, 0); glTexParameteri(texture->target, GL_TEXTURE_MAX_LEVEL, mipmaps - 1); } else { glTexParameteri(texture->target, GL_TEXTURE_BASE_LEVEL, 0); glTexParameteri(texture->target, GL_TEXTURE_MAX_LEVEL, 0); } texture->mipmaps = mipmaps; //texture_set_flags(p_texture,texture->flags); } // Uploads pixel data to a sub-region of a texture, for the specified mipmap. // The texture pixels must have been allocated before, because most features seen in texture_set_data() make no sense in a partial update. // TODO If we want this to be usable without pre-filling pixels with a full image, we have to call glTexImage2D() with null data. void RasterizerStorageGLES3::texture_set_data_partial(RID p_texture, const Ref &p_image, int src_x, int src_y, int src_w, int src_h, int dst_x, int dst_y, int p_dst_mip, int p_layer) { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND(!texture); ERR_FAIL_COND(!texture->active); ERR_FAIL_COND(texture->render_target); ERR_FAIL_COND(texture->format != p_image->get_format()); ERR_FAIL_COND(p_image.is_null()); ERR_FAIL_COND(src_w <= 0 || src_h <= 0); ERR_FAIL_COND(src_x < 0 || src_y < 0 || src_x + src_w > p_image->get_width() || src_y + src_h > p_image->get_height()); ERR_FAIL_COND(dst_x < 0 || dst_y < 0 || dst_x + src_w > texture->alloc_width || dst_y + src_h > texture->alloc_height); ERR_FAIL_COND(p_dst_mip < 0 || p_dst_mip >= texture->mipmaps); ERR_FAIL_COND(texture->type == VS::TEXTURE_TYPE_EXTERNAL); GLenum type; GLenum format; GLenum internal_format; bool compressed; bool srgb; // Because OpenGL wants data as a dense array, we have to extract the sub-image if the source rect isn't the full image Ref p_sub_img = p_image; if (src_x > 0 || src_y > 0 || src_w != p_image->get_width() || src_h != p_image->get_height()) { p_sub_img = p_image->get_rect(Rect2(src_x, src_y, src_w, src_h)); } Image::Format real_format; Ref img = _get_gl_image_and_format(p_sub_img, p_sub_img->get_format(), texture->flags, real_format, format, internal_format, type, compressed, srgb, texture->is_npot_repeat_mipmap); GLenum blit_target = GL_TEXTURE_2D; switch (texture->type) { case VS::TEXTURE_TYPE_2D: case VS::TEXTURE_TYPE_EXTERNAL: { blit_target = GL_TEXTURE_2D; } break; case VS::TEXTURE_TYPE_CUBEMAP: { ERR_FAIL_INDEX(p_layer, 6); blit_target = _cube_side_enum[p_layer]; } break; case VS::TEXTURE_TYPE_2D_ARRAY: { blit_target = GL_TEXTURE_2D_ARRAY; } break; case VS::TEXTURE_TYPE_3D: { blit_target = GL_TEXTURE_3D; } break; } PoolVector::Read read = img->get_data().read(); gl_wrapper.gl_active_texture(GL_TEXTURE0); glBindTexture(texture->target, texture->tex_id); int src_data_size = img->get_data().size(); int src_ofs = 0; if (texture->type == VS::TEXTURE_TYPE_2D || texture->type == VS::TEXTURE_TYPE_CUBEMAP) { if (texture->compressed) { glPixelStorei(GL_UNPACK_ALIGNMENT, 4); glCompressedTexSubImage2D(blit_target, p_dst_mip, dst_x, dst_y, src_w, src_h, internal_format, src_data_size, &read[src_ofs]); } else { glPixelStorei(GL_UNPACK_ALIGNMENT, 1); // `format` has to match the internal_format used when the texture was created glTexSubImage2D(blit_target, p_dst_mip, dst_x, dst_y, src_w, src_h, format, type, &read[src_ofs]); } } else { if (texture->compressed) { glPixelStorei(GL_UNPACK_ALIGNMENT, 4); glCompressedTexSubImage3D(blit_target, p_dst_mip, dst_x, dst_y, p_layer, src_w, src_h, 1, format, src_data_size, &read[src_ofs]); } else { glPixelStorei(GL_UNPACK_ALIGNMENT, 1); // `format` has to match the internal_format used when the texture was created glTexSubImage3D(blit_target, p_dst_mip, dst_x, dst_y, p_layer, src_w, src_h, 1, format, type, &read[src_ofs]); } } if (texture->flags & VS::TEXTURE_FLAG_FILTER) { glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // Linear Filtering } else { glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_NEAREST); // raw Filtering } } Ref RasterizerStorageGLES3::texture_get_data(RID p_texture, int p_layer) const { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture, Ref()); ERR_FAIL_COND_V(!texture->active, Ref()); ERR_FAIL_COND_V(texture->data_size == 0 && !texture->render_target, Ref()); if (texture->type == VS::TEXTURE_TYPE_CUBEMAP && p_layer < 6 && !texture->images[p_layer].is_null()) { return texture->images[p_layer]; } // 3D textures and 2D texture arrays need special treatment, as the glGetTexImage reads **the whole** // texture to host-memory. 3D textures and 2D texture arrays are potentially very big, so reading // everything just to throw everything but one layer away is A Bad Idea. // // Unfortunately, to solve this, the copy shader has to read the data out via a shader and store it // in a temporary framebuffer. The data from the framebuffer can then be read using glReadPixels. if (texture->type == VS::TEXTURE_TYPE_2D_ARRAY || texture->type == VS::TEXTURE_TYPE_3D) { // can't read a layer that doesn't exist ERR_FAIL_INDEX_V(p_layer, texture->alloc_depth, Ref()); // get some information about the texture Image::Format real_format; GLenum gl_format; GLenum gl_internal_format; GLenum gl_type; bool compressed; bool srgb; _get_gl_image_and_format( Ref(), texture->format, texture->flags, real_format, gl_format, gl_internal_format, gl_type, compressed, srgb, texture->is_npot_repeat_mipmap); PoolVector data; // TODO need to decide between RgbaUnorm and RgbaFloat32 for output int data_size = Image::get_image_data_size(texture->alloc_width, texture->alloc_height, Image::FORMAT_RGBA8, false); data.resize(data_size * 2); // add some more memory at the end, just in case for buggy drivers PoolVector::Write wb = data.write(); // generate temporary resources GLuint tmp_fbo; glGenFramebuffers(1, &tmp_fbo); GLuint tmp_color_attachment; glGenTextures(1, &tmp_color_attachment); // now bring the OpenGL context into the correct state { glBindFramebuffer(GL_FRAMEBUFFER, tmp_fbo); // back color attachment with memory, then set properties gl_wrapper.gl_active_texture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, tmp_color_attachment); // TODO support HDR properly glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, texture->alloc_width, texture->alloc_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // use the color texture as color attachment for this render pass glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, tmp_color_attachment, 0); // more GL state, wheeeey glDepthMask(GL_FALSE); glDisable(GL_DEPTH_TEST); glDisable(GL_CULL_FACE); glDisable(GL_BLEND); glDepthFunc(GL_LEQUAL); glColorMask(1, 1, 1, 1); // use volume tex for reading gl_wrapper.gl_active_texture(GL_TEXTURE0); glBindTexture(texture->target, texture->tex_id); glViewport(0, 0, texture->alloc_width, texture->alloc_height); // set up copy shader for proper use shaders.copy.set_conditional(CopyShaderGLES3::LINEAR_TO_SRGB, !srgb); shaders.copy.set_conditional(CopyShaderGLES3::USE_TEXTURE3D, texture->type == VS::TEXTURE_TYPE_3D); shaders.copy.set_conditional(CopyShaderGLES3::USE_TEXTURE2DARRAY, texture->type == VS::TEXTURE_TYPE_2D_ARRAY); shaders.copy.bind(); float layer; if (texture->type == VS::TEXTURE_TYPE_2D_ARRAY) { layer = (float)p_layer; } else { // calculate the normalized z coordinate for the layer layer = (float)p_layer / (float)texture->alloc_depth; } shaders.copy.set_uniform(CopyShaderGLES3::LAYER, layer); glBindVertexArray(resources.quadie_array); } // clear color attachment, then perform copy glClearColor(0.0, 0.0, 0.0, 0.0); glClear(GL_COLOR_BUFFER_BIT); glDrawArrays(GL_TRIANGLE_FAN, 0, 4); // read the image into the host buffer glReadPixels(0, 0, texture->alloc_width, texture->alloc_height, GL_RGBA, GL_UNSIGNED_BYTE, &wb[0]); // remove temp resources and unset some GL state { shaders.copy.set_conditional(CopyShaderGLES3::USE_TEXTURE3D, false); shaders.copy.set_conditional(CopyShaderGLES3::USE_TEXTURE2DARRAY, false); shaders.copy.set_conditional(CopyShaderGLES3::LINEAR_TO_SRGB, false); glBindFramebuffer(GL_FRAMEBUFFER, 0); glDeleteTextures(1, &tmp_color_attachment); glDeleteFramebuffers(1, &tmp_fbo); } wb.release(); data.resize(data_size); Image *img = memnew(Image(texture->alloc_width, texture->alloc_height, false, Image::FORMAT_RGBA8, data)); if (!texture->compressed) { img->convert(real_format); } return Ref(img); } #ifdef GLES_OVER_GL Image::Format real_format; GLenum gl_format; GLenum gl_internal_format; GLenum gl_type; bool compressed; bool srgb; _get_gl_image_and_format(Ref(), texture->format, texture->flags, real_format, gl_format, gl_internal_format, gl_type, compressed, srgb, false); PoolVector data; int data_size = Image::get_image_data_size(texture->alloc_width, texture->alloc_height, real_format, texture->mipmaps > 1); data.resize(data_size * 2); //add some memory at the end, just in case for buggy drivers PoolVector::Write wb = data.write(); gl_wrapper.gl_active_texture(GL_TEXTURE0); glBindTexture(texture->target, texture->tex_id); glBindBuffer(GL_PIXEL_PACK_BUFFER, 0); for (int i = 0; i < texture->mipmaps; i++) { int ofs = Image::get_image_mipmap_offset(texture->alloc_width, texture->alloc_height, real_format, i); if (texture->compressed) { glPixelStorei(GL_PACK_ALIGNMENT, 4); glGetCompressedTexImage(texture->target, i, &wb[ofs]); } else { glPixelStorei(GL_PACK_ALIGNMENT, 1); glGetTexImage(texture->target, i, texture->gl_format_cache, texture->gl_type_cache, &wb[ofs]); } } Image::Format img_format; //convert special case RGB10_A2 to RGBA8 because it's not a supported image format if (texture->gl_internal_format_cache == GL_RGB10_A2) { img_format = Image::FORMAT_RGBA8; uint32_t *ptr = (uint32_t *)wb.ptr(); uint32_t num_pixels = data_size / 4; for (uint32_t ofs = 0; ofs < num_pixels; ofs++) { uint32_t px = ptr[ofs]; uint32_t a = px >> 30 & 0xFF; ptr[ofs] = (px >> 2 & 0xFF) | (px >> 12 & 0xFF) << 8 | (px >> 22 & 0xFF) << 16 | (a | a << 2 | a << 4 | a << 6) << 24; } } else { img_format = real_format; } wb.release(); data.resize(data_size); Image *img = memnew(Image(texture->alloc_width, texture->alloc_height, texture->mipmaps > 1, img_format, data)); return Ref(img); #else Image::Format real_format; GLenum gl_format; GLenum gl_internal_format; GLenum gl_type; bool compressed; bool srgb; _get_gl_image_and_format(Ref(), texture->format, texture->flags, real_format, gl_format, gl_internal_format, gl_type, compressed, srgb, texture->is_npot_repeat_mipmap); PoolVector data; int data_size = Image::get_image_data_size(texture->alloc_width, texture->alloc_height, Image::FORMAT_RGBA8, false); data.resize(data_size * 2); //add some memory at the end, just in case for buggy drivers PoolVector::Write wb = data.write(); GLuint temp_framebuffer; glGenFramebuffers(1, &temp_framebuffer); GLuint temp_color_texture; glGenTextures(1, &temp_color_texture); glBindFramebuffer(GL_FRAMEBUFFER, temp_framebuffer); glBindTexture(GL_TEXTURE_2D, temp_color_texture); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, texture->alloc_width, texture->alloc_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, temp_color_texture, 0); glDepthMask(GL_FALSE); glDisable(GL_DEPTH_TEST); glDisable(GL_CULL_FACE); glDisable(GL_BLEND); glDepthFunc(GL_LEQUAL); glColorMask(1, 1, 1, 1); gl_wrapper.gl_active_texture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, texture->tex_id); glViewport(0, 0, texture->alloc_width, texture->alloc_height); shaders.copy.set_conditional(CopyShaderGLES3::LINEAR_TO_SRGB, !srgb); shaders.copy.bind(); glClearColor(0.0, 0.0, 0.0, 0.0); glClear(GL_COLOR_BUFFER_BIT); glBindVertexArray(resources.quadie_array); glDrawArrays(GL_TRIANGLE_FAN, 0, 4); glBindVertexArray(0); glReadPixels(0, 0, texture->alloc_width, texture->alloc_height, GL_RGBA, GL_UNSIGNED_BYTE, &wb[0]); shaders.copy.set_conditional(CopyShaderGLES3::LINEAR_TO_SRGB, false); glDeleteTextures(1, &temp_color_texture); glBindFramebuffer(GL_FRAMEBUFFER, 0); glDeleteFramebuffers(1, &temp_framebuffer); wb.release(); data.resize(data_size); Image *img = memnew(Image(texture->alloc_width, texture->alloc_height, false, Image::FORMAT_RGBA8, data)); if (!texture->compressed) { img->convert(real_format); } return Ref(img); #endif } void RasterizerStorageGLES3::texture_set_flags(RID p_texture, uint32_t p_flags) { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND(!texture); if (texture->render_target) { // only allow filter and repeat flags for render target (ie. viewport) textures p_flags &= (VS::TEXTURE_FLAG_FILTER | VS::TEXTURE_FLAG_REPEAT); } bool had_mipmaps = texture->flags & VS::TEXTURE_FLAG_MIPMAPS; texture->flags = p_flags; gl_wrapper.gl_active_texture(GL_TEXTURE0); glBindTexture(texture->target, texture->tex_id); if (((texture->flags & VS::TEXTURE_FLAG_REPEAT) || (texture->flags & VS::TEXTURE_FLAG_MIRRORED_REPEAT)) && texture->target != GL_TEXTURE_CUBE_MAP) { if (texture->flags & VS::TEXTURE_FLAG_MIRRORED_REPEAT) { glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_MIRRORED_REPEAT); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_MIRRORED_REPEAT); } else { glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); } } else { //glTexParameterf( texture->target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE ); glTexParameterf(texture->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(texture->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); } if (config.use_anisotropic_filter) { if (texture->flags & VS::TEXTURE_FLAG_ANISOTROPIC_FILTER) { glTexParameterf(texture->target, _GL_TEXTURE_MAX_ANISOTROPY_EXT, config.anisotropic_level); } else { glTexParameterf(texture->target, _GL_TEXTURE_MAX_ANISOTROPY_EXT, 1); } } if ((texture->flags & VS::TEXTURE_FLAG_MIPMAPS) && !texture->ignore_mipmaps) { if (!had_mipmaps && texture->mipmaps == 1) { glGenerateMipmap(texture->target); } if (texture->flags & VS::TEXTURE_FLAG_FILTER) { glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, config.use_fast_texture_filter ? GL_LINEAR_MIPMAP_NEAREST : GL_LINEAR_MIPMAP_LINEAR); } else { glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, config.use_fast_texture_filter ? GL_NEAREST_MIPMAP_NEAREST : GL_NEAREST_MIPMAP_LINEAR); } } else { if (texture->flags & VS::TEXTURE_FLAG_FILTER) { glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, GL_LINEAR); } else { glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, GL_NEAREST); } } if (config.srgb_decode_supported && texture->srgb) { if (texture->flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) { glTexParameteri(texture->target, _TEXTURE_SRGB_DECODE_EXT, _DECODE_EXT); texture->using_srgb = true; } else { glTexParameteri(texture->target, _TEXTURE_SRGB_DECODE_EXT, _SKIP_DECODE_EXT); texture->using_srgb = false; } } if (texture->flags & VS::TEXTURE_FLAG_FILTER) { glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // Linear Filtering } else { glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_NEAREST); // raw Filtering } } uint32_t RasterizerStorageGLES3::texture_get_flags(RID p_texture) const { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture, 0); return texture->flags; } Image::Format RasterizerStorageGLES3::texture_get_format(RID p_texture) const { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture, Image::FORMAT_L8); return texture->format; } VisualServer::TextureType RasterizerStorageGLES3::texture_get_type(RID p_texture) const { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture, VS::TEXTURE_TYPE_2D); return texture->type; } uint32_t RasterizerStorageGLES3::texture_get_texid(RID p_texture) const { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture, 0); return texture->tex_id; } void RasterizerStorageGLES3::texture_bind(RID p_texture, uint32_t p_texture_no) { Texture *texture = texture_owner.getornull(p_texture); ERR_FAIL_COND(!texture); gl_wrapper.gl_active_texture(GL_TEXTURE0 + p_texture_no); glBindTexture(texture->target, texture->tex_id); } uint32_t RasterizerStorageGLES3::texture_get_width(RID p_texture) const { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture, 0); return texture->width; } uint32_t RasterizerStorageGLES3::texture_get_height(RID p_texture) const { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture, 0); return texture->height; } uint32_t RasterizerStorageGLES3::texture_get_depth(RID p_texture) const { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture, 0); return texture->depth; } void RasterizerStorageGLES3::texture_set_size_override(RID p_texture, int p_width, int p_height, int p_depth) { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND(!texture); ERR_FAIL_COND(texture->render_target); ERR_FAIL_COND(p_width <= 0 || p_width > 16384); ERR_FAIL_COND(p_height <= 0 || p_height > 16384); //real texture size is in alloc width and height texture->width = p_width; texture->height = p_height; } void RasterizerStorageGLES3::texture_set_path(RID p_texture, const String &p_path) { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND(!texture); texture->path = p_path; } String RasterizerStorageGLES3::texture_get_path(RID p_texture) const { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture, String()); return texture->path; } void RasterizerStorageGLES3::texture_debug_usage(List *r_info) { List textures; texture_owner.get_owned_list(&textures); for (List::Element *E = textures.front(); E; E = E->next()) { Texture *t = texture_owner.get(E->get()); if (!t) { continue; } VS::TextureInfo tinfo; tinfo.texture = E->get(); tinfo.path = t->path; tinfo.format = t->format; tinfo.width = t->alloc_width; tinfo.height = t->alloc_height; tinfo.depth = t->alloc_depth; tinfo.bytes = t->total_data_size; r_info->push_back(tinfo); } } void RasterizerStorageGLES3::texture_set_shrink_all_x2_on_set_data(bool p_enable) { config.shrink_textures_x2 = p_enable; } void RasterizerStorageGLES3::textures_keep_original(bool p_enable) { config.keep_original_textures = p_enable; } void RasterizerStorageGLES3::texture_set_detect_3d_callback(RID p_texture, VisualServer::TextureDetectCallback p_callback, void *p_userdata) { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND(!texture); texture->detect_3d = p_callback; texture->detect_3d_ud = p_userdata; } void RasterizerStorageGLES3::texture_set_detect_srgb_callback(RID p_texture, VisualServer::TextureDetectCallback p_callback, void *p_userdata) { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND(!texture); texture->detect_srgb = p_callback; texture->detect_srgb_ud = p_userdata; } void RasterizerStorageGLES3::texture_set_detect_normal_callback(RID p_texture, VisualServer::TextureDetectCallback p_callback, void *p_userdata) { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND(!texture); texture->detect_normal = p_callback; texture->detect_normal_ud = p_userdata; } RID RasterizerStorageGLES3::texture_create_radiance_cubemap(RID p_source, int p_resolution) const { Texture *texture = texture_owner.get(p_source); ERR_FAIL_COND_V(!texture, RID()); ERR_FAIL_COND_V(texture->type != VS::TEXTURE_TYPE_CUBEMAP, RID()); bool use_float = config.framebuffer_half_float_supported; if (p_resolution < 0) { p_resolution = texture->width; } glBindVertexArray(0); glDisable(GL_CULL_FACE); glDisable(GL_DEPTH_TEST); glDisable(GL_SCISSOR_TEST); glDisable(GL_BLEND); gl_wrapper.gl_active_texture(GL_TEXTURE0); glBindTexture(texture->target, texture->tex_id); if (config.srgb_decode_supported && texture->srgb && !texture->using_srgb) { glTexParameteri(texture->target, _TEXTURE_SRGB_DECODE_EXT, _DECODE_EXT); texture->using_srgb = true; #ifdef TOOLS_ENABLED if (!(texture->flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) { texture->flags |= VS::TEXTURE_FLAG_CONVERT_TO_LINEAR; //notify that texture must be set to linear beforehand, so it works in other platforms when exported } #endif } gl_wrapper.gl_active_texture(GL_TEXTURE1); GLuint new_cubemap; glGenTextures(1, &new_cubemap); glBindTexture(GL_TEXTURE_CUBE_MAP, new_cubemap); GLuint tmp_fb; glGenFramebuffers(1, &tmp_fb); glBindFramebuffer(GL_FRAMEBUFFER, tmp_fb); int size = p_resolution; int lod = 0; shaders.cubemap_filter.bind(); int mipmaps = 6; int mm_level = mipmaps; GLenum internal_format = use_float ? GL_RGBA16F : GL_RGB10_A2; GLenum format = GL_RGBA; GLenum type = use_float ? GL_HALF_FLOAT : GL_UNSIGNED_INT_2_10_10_10_REV; while (mm_level) { for (int i = 0; i < 6; i++) { glTexImage2D(_cube_side_enum[i], lod, internal_format, size, size, 0, format, type, nullptr); } lod++; mm_level--; if (size > 1) { size >>= 1; } } glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_BASE_LEVEL, 0); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAX_LEVEL, lod - 1); lod = 0; mm_level = mipmaps; size = p_resolution; shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DUAL_PARABOLOID, false); while (mm_level) { for (int i = 0; i < 6; i++) { glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _cube_side_enum[i], new_cubemap, lod); glViewport(0, 0, size, size); glBindVertexArray(resources.quadie_array); shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::FACE_ID, i); shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::ROUGHNESS, lod / float(mipmaps - 1)); glDrawArrays(GL_TRIANGLE_FAN, 0, 4); glBindVertexArray(0); #ifdef DEBUG_ENABLED GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); ERR_CONTINUE(status != GL_FRAMEBUFFER_COMPLETE); #endif } if (size > 1) { size >>= 1; } lod++; mm_level--; } //restore ranges glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_BASE_LEVEL, 0); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAX_LEVEL, lod - 1); glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES3::system_fbo); glDeleteFramebuffers(1, &tmp_fb); Texture *ctex = memnew(Texture); ctex->type = VS::TEXTURE_TYPE_CUBEMAP; ctex->flags = VS::TEXTURE_FLAG_MIPMAPS | VS::TEXTURE_FLAG_FILTER; ctex->width = p_resolution; ctex->height = p_resolution; ctex->alloc_width = p_resolution; ctex->alloc_height = p_resolution; ctex->format = use_float ? Image::FORMAT_RGBAH : Image::FORMAT_RGBA8; ctex->target = GL_TEXTURE_CUBE_MAP; ctex->gl_format_cache = format; ctex->gl_internal_format_cache = internal_format; ctex->gl_type_cache = type; ctex->data_size = 0; ctex->compressed = false; ctex->srgb = false; ctex->total_data_size = 0; ctex->ignore_mipmaps = false; ctex->mipmaps = mipmaps; ctex->active = true; ctex->tex_id = new_cubemap; ctex->stored_cube_sides = (1 << 6) - 1; ctex->render_target = nullptr; return texture_owner.make_rid(ctex); } Size2 RasterizerStorageGLES3::texture_size_with_proxy(RID p_texture) const { const Texture *texture = texture_owner.getornull(p_texture); ERR_FAIL_COND_V(!texture, Size2()); if (texture->proxy) { return Size2(texture->proxy->width, texture->proxy->height); } else { return Size2(texture->width, texture->height); } } void RasterizerStorageGLES3::texture_set_proxy(RID p_texture, RID p_proxy) { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND(!texture); if (texture->proxy) { texture->proxy->proxy_owners.erase(texture); texture->proxy = nullptr; } if (p_proxy.is_valid()) { Texture *proxy = texture_owner.get(p_proxy); ERR_FAIL_COND(!proxy); ERR_FAIL_COND(proxy == texture); proxy->proxy_owners.insert(texture); texture->proxy = proxy; } } void RasterizerStorageGLES3::texture_set_force_redraw_if_visible(RID p_texture, bool p_enable) { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND(!texture); texture->redraw_if_visible = p_enable; } RID RasterizerStorageGLES3::sky_create() { Sky *sky = memnew(Sky); sky->radiance = 0; sky->irradiance = 0; return sky_owner.make_rid(sky); } void RasterizerStorageGLES3::sky_set_texture(RID p_sky, RID p_panorama, int p_radiance_size) { Sky *sky = sky_owner.getornull(p_sky); ERR_FAIL_COND(!sky); if (sky->panorama.is_valid()) { sky->panorama = RID(); glDeleteTextures(1, &sky->radiance); glDeleteTextures(1, &sky->irradiance); sky->radiance = 0; sky->irradiance = 0; } sky->panorama = p_panorama; if (!sky->panorama.is_valid()) { return; //cleared } Texture *texture = texture_owner.getornull(sky->panorama); if (!texture) { sky->panorama = RID(); ERR_FAIL_COND(!texture); } texture = texture->get_ptr(); //resolve for proxies glBindVertexArray(0); glDisable(GL_CULL_FACE); glDisable(GL_DEPTH_TEST); glDisable(GL_SCISSOR_TEST); glDisable(GL_BLEND); gl_wrapper.gl_active_texture(GL_TEXTURE0); glBindTexture(texture->target, texture->tex_id); glTexParameteri(texture->target, GL_TEXTURE_BASE_LEVEL, 0); #ifdef GLES_OVER_GL glTexParameteri(texture->target, GL_TEXTURE_MAX_LEVEL, int(Math::floor(Math::log(float(texture->width)) / Math::log(2.0f)))); glGenerateMipmap(texture->target); #else glTexParameteri(texture->target, GL_TEXTURE_MAX_LEVEL, 0); #endif // Need Mipmaps regardless of whether they are set in import by user glTexParameterf(texture->target, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameterf(texture->target, GL_TEXTURE_WRAP_T, GL_REPEAT); #ifdef GLES_OVER_GL glTexParameterf(texture->target, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); #else glTexParameterf(texture->target, GL_TEXTURE_MIN_FILTER, GL_LINEAR); #endif glTexParameterf(texture->target, GL_TEXTURE_MAG_FILTER, GL_LINEAR); if (config.srgb_decode_supported && texture->srgb && !texture->using_srgb) { glTexParameteri(texture->target, _TEXTURE_SRGB_DECODE_EXT, _DECODE_EXT); texture->using_srgb = true; #ifdef TOOLS_ENABLED if (!(texture->flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) { texture->flags |= VS::TEXTURE_FLAG_CONVERT_TO_LINEAR; //notify that texture must be set to linear beforehand, so it works in other platforms when exported } #endif } { //Irradiance map gl_wrapper.gl_active_texture(GL_TEXTURE1); glGenTextures(1, &sky->irradiance); glBindTexture(GL_TEXTURE_2D, sky->irradiance); GLuint tmp_fb; glGenFramebuffers(1, &tmp_fb); glBindFramebuffer(GL_FRAMEBUFFER, tmp_fb); int size = 32; bool use_float = config.framebuffer_half_float_supported; GLenum internal_format = use_float ? GL_RGBA16F : GL_RGB10_A2; GLenum format = GL_RGBA; GLenum type = use_float ? GL_HALF_FLOAT : GL_UNSIGNED_INT_2_10_10_10_REV; glTexImage2D(GL_TEXTURE_2D, 0, internal_format, size, size * 2, 0, format, type, nullptr); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0); glTexParameterf(texture->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(texture->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, sky->irradiance, 0); int irradiance_size = GLOBAL_GET("rendering/quality/reflections/irradiance_max_size"); int upscale_size = MIN(int(previous_power_of_2(irradiance_size)), p_radiance_size); GLuint tmp_fb2; GLuint tmp_tex; { //generate another one for rendering, as can't read and write from a single texarray it seems glGenFramebuffers(1, &tmp_fb2); glBindFramebuffer(GL_FRAMEBUFFER, tmp_fb2); glGenTextures(1, &tmp_tex); glBindTexture(GL_TEXTURE_2D, tmp_tex); glTexImage2D(GL_TEXTURE_2D, 0, internal_format, upscale_size, 2.0 * upscale_size, 0, format, type, nullptr); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, tmp_tex, 0); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); #ifdef DEBUG_ENABLED GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); ERR_FAIL_COND(status != GL_FRAMEBUFFER_COMPLETE); #endif } shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DUAL_PARABOLOID, true); shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_SOURCE_PANORAMA, true); shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::COMPUTE_IRRADIANCE, true); shaders.cubemap_filter.bind(); // Very large Panoramas require way too much effort to compute irradiance so use a mipmap // level that corresponds to a panorama of 1024x512 shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::SOURCE_MIP_LEVEL, MAX(Math::floor(Math::log(float(texture->width)) / Math::log(2.0f)) - 10.0f, 0.0f)); // Compute Irradiance for a large texture, specified by radiance size and then pull out a low mipmap corresponding to 32x32 for (int i = 0; i < 2; i++) { glViewport(0, i * upscale_size, upscale_size, upscale_size); glBindVertexArray(resources.quadie_array); shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::Z_FLIP, i > 0); glDrawArrays(GL_TRIANGLE_FAN, 0, 4); glBindVertexArray(0); } glGenerateMipmap(GL_TEXTURE_2D); gl_wrapper.gl_active_texture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, tmp_tex); glBindFramebuffer(GL_FRAMEBUFFER, tmp_fb); shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DUAL_PARABOLOID, false); shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_SOURCE_PANORAMA, false); shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::COMPUTE_IRRADIANCE, false); shaders.copy.set_conditional(CopyShaderGLES3::USE_LOD, true); shaders.copy.bind(); shaders.copy.set_uniform(CopyShaderGLES3::MIP_LEVEL, MAX(Math::floor(Math::log(float(upscale_size)) / Math::log(2.0f)) - 5.0f, 0.0f)); // Mip level that corresponds to a 32x32 texture glViewport(0, 0, size, size * 2.0); glBindVertexArray(resources.quadie_array); glDrawArrays(GL_TRIANGLE_FAN, 0, 4); glBindVertexArray(0); shaders.copy.set_conditional(CopyShaderGLES3::USE_LOD, false); glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES3::system_fbo); gl_wrapper.gl_active_texture(GL_TEXTURE0); glBindTexture(texture->target, texture->tex_id); glDeleteFramebuffers(1, &tmp_fb); glDeleteFramebuffers(1, &tmp_fb2); glDeleteTextures(1, &tmp_tex); } // Now compute radiance gl_wrapper.gl_active_texture(GL_TEXTURE1); glGenTextures(1, &sky->radiance); if (config.use_texture_array_environment) { //texture3D glBindTexture(GL_TEXTURE_2D_ARRAY, sky->radiance); GLuint tmp_fb; glGenFramebuffers(1, &tmp_fb); glBindFramebuffer(GL_FRAMEBUFFER, tmp_fb); int size = p_radiance_size; int array_level = 6; bool use_float = config.framebuffer_half_float_supported; GLenum internal_format = use_float ? GL_RGBA16F : GL_RGB10_A2; GLenum format = GL_RGBA; GLenum type = use_float ? GL_HALF_FLOAT : GL_UNSIGNED_INT_2_10_10_10_REV; glTexImage3D(GL_TEXTURE_2D_ARRAY, 0, internal_format, size, size * 2, array_level, 0, format, type, nullptr); glTexParameterf(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAG_FILTER, GL_LINEAR); GLuint tmp_fb2; GLuint tmp_tex; { //generate another one for rendering, as can't read and write from a single texarray it seems glGenFramebuffers(1, &tmp_fb2); glBindFramebuffer(GL_FRAMEBUFFER, tmp_fb2); glGenTextures(1, &tmp_tex); glBindTexture(GL_TEXTURE_2D, tmp_tex); glTexImage2D(GL_TEXTURE_2D, 0, internal_format, size, size * 2, 0, format, type, nullptr); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, tmp_tex, 0); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); #ifdef DEBUG_ENABLED GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); ERR_FAIL_COND(status != GL_FRAMEBUFFER_COMPLETE); #endif } for (int j = 0; j < array_level; j++) { glBindFramebuffer(GL_FRAMEBUFFER, tmp_fb2); #ifdef GLES_OVER_GL if (j < 3) { #else if (j == 0) { #endif shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DUAL_PARABOLOID, true); shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_SOURCE_PANORAMA, true); shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_SOURCE_DUAL_PARABOLOID_ARRAY, false); shaders.cubemap_filter.bind(); gl_wrapper.gl_active_texture(GL_TEXTURE0); glBindTexture(texture->target, texture->tex_id); shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::SOURCE_RESOLUTION, float(texture->width / 4)); } else { shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DUAL_PARABOLOID, true); shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_SOURCE_PANORAMA, false); shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_SOURCE_DUAL_PARABOLOID_ARRAY, true); shaders.cubemap_filter.bind(); gl_wrapper.gl_active_texture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D_ARRAY, sky->radiance); shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::SOURCE_ARRAY_INDEX, j - 1); //read from previous to ensure better blur } for (int i = 0; i < 2; i++) { glViewport(0, i * size, size, size); glBindVertexArray(resources.quadie_array); shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::Z_FLIP, i > 0); shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::ROUGHNESS, j / float(array_level - 1)); glDrawArrays(GL_TRIANGLE_FAN, 0, 4); glBindVertexArray(0); } glBindFramebuffer(GL_DRAW_FRAMEBUFFER, tmp_fb); glFramebufferTextureLayer(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, sky->radiance, 0, j); glBindFramebuffer(GL_READ_FRAMEBUFFER, tmp_fb2); glReadBuffer(GL_COLOR_ATTACHMENT0); glBlitFramebuffer(0, 0, size, size * 2, 0, 0, size, size * 2, GL_COLOR_BUFFER_BIT, GL_NEAREST); glBindFramebuffer(GL_READ_FRAMEBUFFER, 0); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); } shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_SOURCE_PANORAMA, false); shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DUAL_PARABOLOID, false); shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_SOURCE_DUAL_PARABOLOID_ARRAY, false); //restore ranges gl_wrapper.gl_active_texture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D_ARRAY, sky->radiance); glGenerateMipmap(GL_TEXTURE_2D_ARRAY); glTexParameterf(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameterf(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); //reset flags on Sky Texture that may have changed texture_set_flags(sky->panorama, texture->flags); glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES3::system_fbo); glDeleteFramebuffers(1, &tmp_fb); glDeleteFramebuffers(1, &tmp_fb2); glDeleteTextures(1, &tmp_tex); } else { //regular single texture with mipmaps glBindTexture(GL_TEXTURE_2D, sky->radiance); GLuint tmp_fb; glGenFramebuffers(1, &tmp_fb); glBindFramebuffer(GL_FRAMEBUFFER, tmp_fb); int size = p_radiance_size; int lod = 0; int mipmaps = 6; int mm_level = mipmaps; bool use_float = config.framebuffer_half_float_supported; GLenum internal_format = use_float ? GL_RGBA16F : GL_RGB10_A2; GLenum format = GL_RGBA; GLenum type = use_float ? GL_HALF_FLOAT : GL_UNSIGNED_INT_2_10_10_10_REV; glTexStorage2DCustom(GL_TEXTURE_2D, mipmaps, internal_format, size, size * 2.0, format, type); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, mipmaps - 1); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); GLuint tmp_fb2; GLuint tmp_tex; { // Need a temporary framebuffer for rendering so we can read from previous iterations glGenFramebuffers(1, &tmp_fb2); glBindFramebuffer(GL_FRAMEBUFFER, tmp_fb2); glGenTextures(1, &tmp_tex); glBindTexture(GL_TEXTURE_2D, tmp_tex); glTexImage2D(GL_TEXTURE_2D, 0, internal_format, size, size * 2, 0, format, type, nullptr); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, tmp_tex, 0); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); #ifdef DEBUG_ENABLED GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); ERR_FAIL_COND(status != GL_FRAMEBUFFER_COMPLETE); #endif } lod = 0; mm_level = mipmaps; size = p_radiance_size; while (mm_level) { glBindFramebuffer(GL_FRAMEBUFFER, tmp_fb); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, sky->radiance, lod); #ifdef DEBUG_ENABLED GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); ERR_CONTINUE(status != GL_FRAMEBUFFER_COMPLETE); #endif glBindTexture(GL_TEXTURE_2D, tmp_tex); glTexImage2D(GL_TEXTURE_2D, 0, internal_format, size, size * 2, 0, format, type, nullptr); glBindFramebuffer(GL_FRAMEBUFFER, tmp_fb2); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, tmp_tex, 0); #ifdef GLES_OVER_GL if (lod < 3) { #else if (lod == 0) { #endif shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DUAL_PARABOLOID, true); shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_SOURCE_PANORAMA, true); shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_SOURCE_DUAL_PARABOLOID, false); shaders.cubemap_filter.bind(); gl_wrapper.gl_active_texture(GL_TEXTURE0); glBindTexture(texture->target, texture->tex_id); shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::SOURCE_RESOLUTION, float(texture->width / 4)); } else { shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DUAL_PARABOLOID, true); shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_SOURCE_PANORAMA, false); shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_SOURCE_DUAL_PARABOLOID, true); shaders.cubemap_filter.bind(); gl_wrapper.gl_active_texture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, sky->radiance); shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::SOURCE_MIP_LEVEL, float(lod - 1)); //read from previous to ensure better blur } for (int i = 0; i < 2; i++) { glViewport(0, i * size, size, size); glBindVertexArray(resources.quadie_array); shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::Z_FLIP, i > 0); shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::ROUGHNESS, lod / float(mipmaps - 1)); glDrawArrays(GL_TRIANGLE_FAN, 0, 4); glBindVertexArray(0); } glBindFramebuffer(GL_DRAW_FRAMEBUFFER, tmp_fb); glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, sky->radiance, lod); glBindFramebuffer(GL_READ_FRAMEBUFFER, tmp_fb2); glReadBuffer(GL_COLOR_ATTACHMENT0); glBlitFramebuffer(0, 0, size, size * 2, 0, 0, size, size * 2, GL_COLOR_BUFFER_BIT, GL_NEAREST); glBindFramebuffer(GL_READ_FRAMEBUFFER, 0); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); if (size > 1) { size >>= 1; } lod++; mm_level--; } shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DUAL_PARABOLOID, false); shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_SOURCE_PANORAMA, false); shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_SOURCE_DUAL_PARABOLOID, false); //restore ranges glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, lod - 1); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); //reset flags on Sky Texture that may have changed texture_set_flags(sky->panorama, texture->flags); glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES3::system_fbo); glDeleteFramebuffers(1, &tmp_fb); glDeleteFramebuffers(1, &tmp_fb2); glDeleteTextures(1, &tmp_tex); } } /* SHADER API */ RID RasterizerStorageGLES3::shader_create() { Shader *shader = memnew(Shader); shader->mode = VS::SHADER_SPATIAL; shader->shader = &scene->state.scene_shader; RID rid = shader_owner.make_rid(shader); _shader_make_dirty(shader); shader->self = rid; return rid; } void RasterizerStorageGLES3::_shader_make_dirty(Shader *p_shader) { if (p_shader->dirty_list.in_list()) { return; } _shader_dirty_list.add(&p_shader->dirty_list); } void RasterizerStorageGLES3::shader_set_code(RID p_shader, const String &p_code) { Shader *shader = shader_owner.get(p_shader); ERR_FAIL_COND(!shader); shader->code = p_code; String mode_string = ShaderLanguage::get_shader_type(p_code); VS::ShaderMode mode; if (mode_string == "canvas_item") { mode = VS::SHADER_CANVAS_ITEM; } else if (mode_string == "particles") { mode = VS::SHADER_PARTICLES; } else { mode = VS::SHADER_SPATIAL; } if (shader->custom_code_id && mode != shader->mode) { shader->shader->free_custom_shader(shader->custom_code_id); shader->custom_code_id = 0; } shader->mode = mode; ShaderGLES3 *shaders[VS::SHADER_MAX] = { &scene->state.scene_shader, &canvas->state.canvas_shader, &this->shaders.particles, }; shader->shader = shaders[mode]; if (shader->custom_code_id == 0) { shader->custom_code_id = shader->shader->create_custom_shader(); } _shader_make_dirty(shader); } String RasterizerStorageGLES3::shader_get_code(RID p_shader) const { const Shader *shader = shader_owner.get(p_shader); ERR_FAIL_COND_V(!shader, String()); return shader->code; } void RasterizerStorageGLES3::_update_shader(Shader *p_shader) const { _shader_dirty_list.remove(&p_shader->dirty_list); p_shader->valid = false; p_shader->ubo_size = 0; p_shader->uniforms.clear(); if (p_shader->code == String()) { return; //just invalid, but no error } ShaderCompilerGLES3::GeneratedCode gen_code; ShaderCompilerGLES3::IdentifierActions *actions = nullptr; int async_mode = (int)ShaderGLES3::ASYNC_MODE_VISIBLE; switch (p_shader->mode) { case VS::SHADER_CANVAS_ITEM: { p_shader->canvas_item.light_mode = Shader::CanvasItem::LIGHT_MODE_NORMAL; p_shader->canvas_item.blend_mode = Shader::CanvasItem::BLEND_MODE_MIX; p_shader->canvas_item.uses_screen_texture = false; p_shader->canvas_item.uses_screen_uv = false; p_shader->canvas_item.uses_time = false; p_shader->canvas_item.uses_modulate = false; p_shader->canvas_item.uses_color = false; p_shader->canvas_item.uses_vertex = false; p_shader->canvas_item.batch_flags = 0; p_shader->canvas_item.uses_world_matrix = false; p_shader->canvas_item.uses_extra_matrix = false; p_shader->canvas_item.uses_projection_matrix = false; p_shader->canvas_item.uses_instance_custom = false; shaders.actions_canvas.render_mode_values["blend_add"] = Pair(&p_shader->canvas_item.blend_mode, Shader::CanvasItem::BLEND_MODE_ADD); shaders.actions_canvas.render_mode_values["blend_mix"] = Pair(&p_shader->canvas_item.blend_mode, Shader::CanvasItem::BLEND_MODE_MIX); shaders.actions_canvas.render_mode_values["blend_sub"] = Pair(&p_shader->canvas_item.blend_mode, Shader::CanvasItem::BLEND_MODE_SUB); shaders.actions_canvas.render_mode_values["blend_mul"] = Pair(&p_shader->canvas_item.blend_mode, Shader::CanvasItem::BLEND_MODE_MUL); shaders.actions_canvas.render_mode_values["blend_premul_alpha"] = Pair(&p_shader->canvas_item.blend_mode, Shader::CanvasItem::BLEND_MODE_PMALPHA); shaders.actions_canvas.render_mode_values["blend_disabled"] = Pair(&p_shader->canvas_item.blend_mode, Shader::CanvasItem::BLEND_MODE_DISABLED); shaders.actions_canvas.render_mode_values["unshaded"] = Pair(&p_shader->canvas_item.light_mode, Shader::CanvasItem::LIGHT_MODE_UNSHADED); shaders.actions_canvas.render_mode_values["light_only"] = Pair(&p_shader->canvas_item.light_mode, Shader::CanvasItem::LIGHT_MODE_LIGHT_ONLY); shaders.actions_canvas.usage_flag_pointers["SCREEN_UV"] = &p_shader->canvas_item.uses_screen_uv; shaders.actions_canvas.usage_flag_pointers["SCREEN_PIXEL_SIZE"] = &p_shader->canvas_item.uses_screen_uv; shaders.actions_canvas.usage_flag_pointers["SCREEN_TEXTURE"] = &p_shader->canvas_item.uses_screen_texture; shaders.actions_canvas.usage_flag_pointers["TIME"] = &p_shader->canvas_item.uses_time; shaders.actions_canvas.usage_flag_pointers["MODULATE"] = &p_shader->canvas_item.uses_modulate; shaders.actions_canvas.usage_flag_pointers["COLOR"] = &p_shader->canvas_item.uses_color; shaders.actions_canvas.usage_flag_pointers["VERTEX"] = &p_shader->canvas_item.uses_vertex; shaders.actions_canvas.usage_flag_pointers["WORLD_MATRIX"] = &p_shader->canvas_item.uses_world_matrix; shaders.actions_canvas.usage_flag_pointers["EXTRA_MATRIX"] = &p_shader->canvas_item.uses_extra_matrix; shaders.actions_canvas.usage_flag_pointers["PROJECTION_MATRIX"] = &p_shader->canvas_item.uses_projection_matrix; shaders.actions_canvas.usage_flag_pointers["INSTANCE_CUSTOM"] = &p_shader->canvas_item.uses_instance_custom; actions = &shaders.actions_canvas; actions->uniforms = &p_shader->uniforms; } break; case VS::SHADER_SPATIAL: { p_shader->spatial.blend_mode = Shader::Spatial::BLEND_MODE_MIX; p_shader->spatial.depth_draw_mode = Shader::Spatial::DEPTH_DRAW_OPAQUE; p_shader->spatial.cull_mode = Shader::Spatial::CULL_MODE_BACK; p_shader->spatial.uses_alpha = false; p_shader->spatial.uses_alpha_scissor = false; p_shader->spatial.uses_discard = false; p_shader->spatial.unshaded = false; p_shader->spatial.no_depth_test = false; p_shader->spatial.uses_sss = false; p_shader->spatial.uses_time = false; p_shader->spatial.uses_vertex_lighting = false; p_shader->spatial.uses_screen_texture = false; p_shader->spatial.uses_depth_texture = false; p_shader->spatial.uses_vertex = false; p_shader->spatial.uses_tangent = false; p_shader->spatial.uses_ensure_correct_normals = false; p_shader->spatial.writes_modelview_or_projection = false; p_shader->spatial.uses_world_coordinates = false; shaders.actions_scene.render_mode_values["blend_add"] = Pair(&p_shader->spatial.blend_mode, Shader::Spatial::BLEND_MODE_ADD); shaders.actions_scene.render_mode_values["blend_mix"] = Pair(&p_shader->spatial.blend_mode, Shader::Spatial::BLEND_MODE_MIX); shaders.actions_scene.render_mode_values["blend_sub"] = Pair(&p_shader->spatial.blend_mode, Shader::Spatial::BLEND_MODE_SUB); shaders.actions_scene.render_mode_values["blend_mul"] = Pair(&p_shader->spatial.blend_mode, Shader::Spatial::BLEND_MODE_MUL); shaders.actions_scene.render_mode_values["depth_draw_opaque"] = Pair(&p_shader->spatial.depth_draw_mode, Shader::Spatial::DEPTH_DRAW_OPAQUE); shaders.actions_scene.render_mode_values["depth_draw_always"] = Pair(&p_shader->spatial.depth_draw_mode, Shader::Spatial::DEPTH_DRAW_ALWAYS); shaders.actions_scene.render_mode_values["depth_draw_never"] = Pair(&p_shader->spatial.depth_draw_mode, Shader::Spatial::DEPTH_DRAW_NEVER); shaders.actions_scene.render_mode_values["depth_draw_alpha_prepass"] = Pair(&p_shader->spatial.depth_draw_mode, Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS); shaders.actions_scene.render_mode_values["cull_front"] = Pair(&p_shader->spatial.cull_mode, Shader::Spatial::CULL_MODE_FRONT); shaders.actions_scene.render_mode_values["cull_back"] = Pair(&p_shader->spatial.cull_mode, Shader::Spatial::CULL_MODE_BACK); shaders.actions_scene.render_mode_values["cull_disabled"] = Pair(&p_shader->spatial.cull_mode, Shader::Spatial::CULL_MODE_DISABLED); shaders.actions_scene.render_mode_values["async_visible"] = Pair(&async_mode, (int)ShaderGLES3::ASYNC_MODE_VISIBLE); shaders.actions_scene.render_mode_values["async_hidden"] = Pair(&async_mode, (int)ShaderGLES3::ASYNC_MODE_HIDDEN); shaders.actions_scene.render_mode_flags["unshaded"] = &p_shader->spatial.unshaded; shaders.actions_scene.render_mode_flags["depth_test_disable"] = &p_shader->spatial.no_depth_test; shaders.actions_scene.render_mode_flags["vertex_lighting"] = &p_shader->spatial.uses_vertex_lighting; shaders.actions_scene.render_mode_flags["world_vertex_coords"] = &p_shader->spatial.uses_world_coordinates; shaders.actions_scene.render_mode_flags["ensure_correct_normals"] = &p_shader->spatial.uses_ensure_correct_normals; shaders.actions_scene.usage_flag_pointers["ALPHA"] = &p_shader->spatial.uses_alpha; shaders.actions_scene.usage_flag_pointers["ALPHA_SCISSOR"] = &p_shader->spatial.uses_alpha_scissor; shaders.actions_scene.usage_flag_pointers["SSS_STRENGTH"] = &p_shader->spatial.uses_sss; shaders.actions_scene.usage_flag_pointers["DISCARD"] = &p_shader->spatial.uses_discard; shaders.actions_scene.usage_flag_pointers["SCREEN_TEXTURE"] = &p_shader->spatial.uses_screen_texture; shaders.actions_scene.usage_flag_pointers["DEPTH_TEXTURE"] = &p_shader->spatial.uses_depth_texture; shaders.actions_scene.usage_flag_pointers["TIME"] = &p_shader->spatial.uses_time; // Use of any of these BUILTINS indicate the need for transformed tangents. // This is needed to know when to transform tangents in software skinning. shaders.actions_scene.usage_flag_pointers["TANGENT"] = &p_shader->spatial.uses_tangent; shaders.actions_scene.usage_flag_pointers["NORMALMAP"] = &p_shader->spatial.uses_tangent; shaders.actions_scene.write_flag_pointers["MODELVIEW_MATRIX"] = &p_shader->spatial.writes_modelview_or_projection; shaders.actions_scene.write_flag_pointers["PROJECTION_MATRIX"] = &p_shader->spatial.writes_modelview_or_projection; shaders.actions_scene.write_flag_pointers["VERTEX"] = &p_shader->spatial.uses_vertex; actions = &shaders.actions_scene; actions->uniforms = &p_shader->uniforms; } break; case VS::SHADER_PARTICLES: { actions = &shaders.actions_particles; actions->uniforms = &p_shader->uniforms; } break; case VS::SHADER_MAX: break; // Can't happen, but silences warning } Error err = shaders.compiler.compile(p_shader->mode, p_shader->code, actions, p_shader->path, gen_code); if (err != OK) { return; } p_shader->ubo_size = gen_code.uniform_total_size; p_shader->ubo_offsets = gen_code.uniform_offsets; p_shader->texture_count = gen_code.texture_uniforms.size(); p_shader->texture_hints = gen_code.texture_hints; p_shader->texture_types = gen_code.texture_types; p_shader->uses_vertex_time = gen_code.uses_vertex_time; p_shader->uses_fragment_time = gen_code.uses_fragment_time; // some logic for batching if (p_shader->mode == VS::SHADER_CANVAS_ITEM) { if (p_shader->canvas_item.uses_modulate | p_shader->canvas_item.uses_color) { p_shader->canvas_item.batch_flags |= RasterizerStorageCommon::PREVENT_COLOR_BAKING; } if (p_shader->canvas_item.uses_vertex) { p_shader->canvas_item.batch_flags |= RasterizerStorageCommon::PREVENT_VERTEX_BAKING; } if (p_shader->canvas_item.uses_world_matrix | p_shader->canvas_item.uses_extra_matrix | p_shader->canvas_item.uses_projection_matrix | p_shader->canvas_item.uses_instance_custom) { p_shader->canvas_item.batch_flags |= RasterizerStorageCommon::PREVENT_ITEM_JOINING; } } p_shader->shader->set_custom_shader_code(p_shader->custom_code_id, gen_code.vertex, gen_code.vertex_global, gen_code.fragment, gen_code.light, gen_code.fragment_global, gen_code.uniforms, gen_code.texture_uniforms, gen_code.defines, (ShaderGLES3::AsyncMode)async_mode); //all materials using this shader will have to be invalidated, unfortunately for (SelfList *E = p_shader->materials.first(); E; E = E->next()) { _material_make_dirty(E->self()); } p_shader->valid = true; p_shader->version++; } void RasterizerStorageGLES3::update_dirty_shaders() { while (_shader_dirty_list.first()) { _update_shader(_shader_dirty_list.first()->self()); } } void RasterizerStorageGLES3::shader_get_param_list(RID p_shader, List *p_param_list) const { Shader *shader = shader_owner.get(p_shader); ERR_FAIL_COND(!shader); if (shader->dirty_list.in_list()) { _update_shader(shader); // ok should be not anymore dirty } Map order; for (Map::Element *E = shader->uniforms.front(); E; E = E->next()) { if (E->get().texture_order >= 0) { order[E->get().texture_order + 100000] = E->key(); } else { order[E->get().order] = E->key(); } } for (Map::Element *E = order.front(); E; E = E->next()) { PropertyInfo pi; ShaderLanguage::ShaderNode::Uniform &u = shader->uniforms[E->get()]; pi.name = E->get(); switch (u.type) { case ShaderLanguage::TYPE_STRUCT: pi.type = Variant::ARRAY; break; case ShaderLanguage::TYPE_VOID: pi.type = Variant::NIL; break; case ShaderLanguage::TYPE_BOOL: pi.type = Variant::BOOL; break; case ShaderLanguage::TYPE_BVEC2: pi.type = Variant::INT; pi.hint = PROPERTY_HINT_FLAGS; pi.hint_string = "x,y"; break; case ShaderLanguage::TYPE_BVEC3: pi.type = Variant::INT; pi.hint = PROPERTY_HINT_FLAGS; pi.hint_string = "x,y,z"; break; case ShaderLanguage::TYPE_BVEC4: pi.type = Variant::INT; pi.hint = PROPERTY_HINT_FLAGS; pi.hint_string = "x,y,z,w"; break; case ShaderLanguage::TYPE_UINT: case ShaderLanguage::TYPE_INT: { pi.type = Variant::INT; if (u.hint == ShaderLanguage::ShaderNode::Uniform::HINT_RANGE) { pi.hint = PROPERTY_HINT_RANGE; pi.hint_string = rtos(u.hint_range[0]) + "," + rtos(u.hint_range[1]) + "," + rtos(u.hint_range[2]); } } break; case ShaderLanguage::TYPE_IVEC2: case ShaderLanguage::TYPE_IVEC3: case ShaderLanguage::TYPE_IVEC4: case ShaderLanguage::TYPE_UVEC2: case ShaderLanguage::TYPE_UVEC3: case ShaderLanguage::TYPE_UVEC4: { pi.type = Variant::POOL_INT_ARRAY; } break; case ShaderLanguage::TYPE_FLOAT: { pi.type = Variant::REAL; if (u.hint == ShaderLanguage::ShaderNode::Uniform::HINT_RANGE) { pi.hint = PROPERTY_HINT_RANGE; pi.hint_string = rtos(u.hint_range[0]) + "," + rtos(u.hint_range[1]) + "," + rtos(u.hint_range[2]); } } break; case ShaderLanguage::TYPE_VEC2: pi.type = Variant::VECTOR2; break; case ShaderLanguage::TYPE_VEC3: pi.type = Variant::VECTOR3; break; case ShaderLanguage::TYPE_VEC4: { if (u.hint == ShaderLanguage::ShaderNode::Uniform::HINT_COLOR) { pi.type = Variant::COLOR; } else { pi.type = Variant::PLANE; } } break; case ShaderLanguage::TYPE_MAT2: pi.type = Variant::TRANSFORM2D; break; case ShaderLanguage::TYPE_MAT3: pi.type = Variant::BASIS; break; case ShaderLanguage::TYPE_MAT4: pi.type = Variant::TRANSFORM; break; case ShaderLanguage::TYPE_SAMPLER2D: case ShaderLanguage::TYPE_SAMPLEREXT: case ShaderLanguage::TYPE_ISAMPLER2D: case ShaderLanguage::TYPE_USAMPLER2D: { pi.type = Variant::OBJECT; pi.hint = PROPERTY_HINT_RESOURCE_TYPE; pi.hint_string = "Texture"; } break; case ShaderLanguage::TYPE_SAMPLER2DARRAY: case ShaderLanguage::TYPE_ISAMPLER2DARRAY: case ShaderLanguage::TYPE_USAMPLER2DARRAY: { pi.type = Variant::OBJECT; pi.hint = PROPERTY_HINT_RESOURCE_TYPE; pi.hint_string = "TextureArray"; } break; case ShaderLanguage::TYPE_SAMPLER3D: case ShaderLanguage::TYPE_ISAMPLER3D: case ShaderLanguage::TYPE_USAMPLER3D: { pi.type = Variant::OBJECT; pi.hint = PROPERTY_HINT_RESOURCE_TYPE; pi.hint_string = "Texture3D"; } break; case ShaderLanguage::TYPE_SAMPLERCUBE: { pi.type = Variant::OBJECT; pi.hint = PROPERTY_HINT_RESOURCE_TYPE; pi.hint_string = "CubeMap"; } break; default: { } }; p_param_list->push_back(pi); } } void RasterizerStorageGLES3::shader_set_default_texture_param(RID p_shader, const StringName &p_name, RID p_texture) { Shader *shader = shader_owner.get(p_shader); ERR_FAIL_COND(!shader); ERR_FAIL_COND(p_texture.is_valid() && !texture_owner.owns(p_texture)); if (p_texture.is_valid()) { shader->default_textures[p_name] = p_texture; } else { shader->default_textures.erase(p_name); } _shader_make_dirty(shader); } RID RasterizerStorageGLES3::shader_get_default_texture_param(RID p_shader, const StringName &p_name) const { const Shader *shader = shader_owner.get(p_shader); ERR_FAIL_COND_V(!shader, RID()); const Map::Element *E = shader->default_textures.find(p_name); if (!E) { return RID(); } return E->get(); } void RasterizerStorageGLES3::shader_add_custom_define(RID p_shader, const String &p_define) { Shader *shader = shader_owner.get(p_shader); ERR_FAIL_COND(!shader); shader->shader->add_custom_define(p_define); _shader_make_dirty(shader); } void RasterizerStorageGLES3::shader_get_custom_defines(RID p_shader, Vector *p_defines) const { Shader *shader = shader_owner.get(p_shader); ERR_FAIL_COND(!shader); shader->shader->get_custom_defines(p_defines); } void RasterizerStorageGLES3::shader_remove_custom_define(RID p_shader, const String &p_define) { Shader *shader = shader_owner.get(p_shader); ERR_FAIL_COND(!shader); shader->shader->remove_custom_define(p_define); _shader_make_dirty(shader); } void RasterizerStorageGLES3::set_shader_async_hidden_forbidden(bool p_forbidden) { ShaderGLES3::async_hidden_forbidden = p_forbidden; } bool RasterizerStorageGLES3::is_shader_async_hidden_forbidden() { return ShaderGLES3::async_hidden_forbidden; } /* COMMON MATERIAL API */ void RasterizerStorageGLES3::_material_make_dirty(Material *p_material) const { if (p_material->dirty_list.in_list()) { return; } _material_dirty_list.add(&p_material->dirty_list); } RID RasterizerStorageGLES3::material_create() { Material *material = memnew(Material); return material_owner.make_rid(material); } void RasterizerStorageGLES3::material_set_shader(RID p_material, RID p_shader) { Material *material = material_owner.get(p_material); ERR_FAIL_COND(!material); Shader *shader = shader_owner.getornull(p_shader); if (material->shader) { //if shader, remove from previous shader material list material->shader->materials.remove(&material->list); } material->shader = shader; if (shader) { shader->materials.add(&material->list); } _material_make_dirty(material); } RID RasterizerStorageGLES3::material_get_shader(RID p_material) const { const Material *material = material_owner.get(p_material); ERR_FAIL_COND_V(!material, RID()); if (material->shader) { return material->shader->self; } return RID(); } void RasterizerStorageGLES3::material_set_param(RID p_material, const StringName &p_param, const Variant &p_value) { Material *material = material_owner.get(p_material); ERR_FAIL_COND(!material); if (p_value.get_type() == Variant::NIL) { material->params.erase(p_param); } else { material->params[p_param] = p_value; } _material_make_dirty(material); } Variant RasterizerStorageGLES3::material_get_param(RID p_material, const StringName &p_param) const { const Material *material = material_owner.get(p_material); ERR_FAIL_COND_V(!material, Variant()); if (material->params.has(p_param)) { return material->params[p_param]; } return material_get_param_default(p_material, p_param); } Variant RasterizerStorageGLES3::material_get_param_default(RID p_material, const StringName &p_param) const { const Material *material = material_owner.get(p_material); ERR_FAIL_COND_V(!material, Variant()); if (material->shader) { if (material->shader->uniforms.has(p_param)) { ShaderLanguage::ShaderNode::Uniform uniform = material->shader->uniforms[p_param]; Vector default_value = uniform.default_value; return ShaderLanguage::constant_value_to_variant(default_value, uniform.type, uniform.hint); } } return Variant(); } void RasterizerStorageGLES3::material_set_line_width(RID p_material, float p_width) { Material *material = material_owner.get(p_material); ERR_FAIL_COND(!material); material->line_width = p_width; } void RasterizerStorageGLES3::material_set_next_pass(RID p_material, RID p_next_material) { Material *material = material_owner.get(p_material); ERR_FAIL_COND(!material); material->next_pass = p_next_material; } bool RasterizerStorageGLES3::material_is_animated(RID p_material) { Material *material = material_owner.get(p_material); ERR_FAIL_COND_V(!material, false); if (material->dirty_list.in_list()) { _update_material(material); } bool animated = material->is_animated_cache; if (!animated && material->next_pass.is_valid()) { animated = material_is_animated(material->next_pass); } return animated; } bool RasterizerStorageGLES3::material_casts_shadows(RID p_material) { Material *material = material_owner.get(p_material); ERR_FAIL_COND_V(!material, false); if (material->dirty_list.in_list()) { _update_material(material); } bool casts_shadows = material->can_cast_shadow_cache; if (!casts_shadows && material->next_pass.is_valid()) { casts_shadows = material_casts_shadows(material->next_pass); } return casts_shadows; } bool RasterizerStorageGLES3::material_uses_tangents(RID p_material) { Material *material = material_owner.get(p_material); ERR_FAIL_COND_V(!material, false); if (!material->shader) { return false; } if (material->shader->dirty_list.in_list()) { _update_shader(material->shader); } return material->shader->spatial.uses_tangent; } bool RasterizerStorageGLES3::material_uses_ensure_correct_normals(RID p_material) { Material *material = material_owner.get(p_material); ERR_FAIL_COND_V(!material, false); if (!material->shader) { return false; } if (material->shader->dirty_list.in_list()) { _update_shader(material->shader); } return material->shader->spatial.uses_ensure_correct_normals; } void RasterizerStorageGLES3::material_add_instance_owner(RID p_material, RasterizerScene::InstanceBase *p_instance) { Material *material = material_owner.get(p_material); ERR_FAIL_COND(!material); Map::Element *E = material->instance_owners.find(p_instance); if (E) { E->get()++; } else { material->instance_owners[p_instance] = 1; } } void RasterizerStorageGLES3::material_remove_instance_owner(RID p_material, RasterizerScene::InstanceBase *p_instance) { Material *material = material_owner.get(p_material); ERR_FAIL_COND(!material); Map::Element *E = material->instance_owners.find(p_instance); ERR_FAIL_COND(!E); E->get()--; if (E->get() == 0) { material->instance_owners.erase(E); } } void RasterizerStorageGLES3::material_set_render_priority(RID p_material, int priority) { ERR_FAIL_COND(priority < VS::MATERIAL_RENDER_PRIORITY_MIN); ERR_FAIL_COND(priority > VS::MATERIAL_RENDER_PRIORITY_MAX); Material *material = material_owner.get(p_material); ERR_FAIL_COND(!material); material->render_priority = priority; } _FORCE_INLINE_ static void _fill_std140_variant_ubo_value(ShaderLanguage::DataType type, const Variant &value, uint8_t *data, bool p_linear_color) { switch (type) { case ShaderLanguage::TYPE_BOOL: { bool v = value; GLuint *gui = (GLuint *)data; *gui = v ? GL_TRUE : GL_FALSE; } break; case ShaderLanguage::TYPE_BVEC2: { int v = value; GLuint *gui = (GLuint *)data; gui[0] = (v & 1) ? GL_TRUE : GL_FALSE; gui[1] = (v & 2) ? GL_TRUE : GL_FALSE; } break; case ShaderLanguage::TYPE_BVEC3: { int v = value; GLuint *gui = (GLuint *)data; gui[0] = (v & 1) ? GL_TRUE : GL_FALSE; gui[1] = (v & 2) ? GL_TRUE : GL_FALSE; gui[2] = (v & 4) ? GL_TRUE : GL_FALSE; } break; case ShaderLanguage::TYPE_BVEC4: { int v = value; GLuint *gui = (GLuint *)data; gui[0] = (v & 1) ? GL_TRUE : GL_FALSE; gui[1] = (v & 2) ? GL_TRUE : GL_FALSE; gui[2] = (v & 4) ? GL_TRUE : GL_FALSE; gui[3] = (v & 8) ? GL_TRUE : GL_FALSE; } break; case ShaderLanguage::TYPE_INT: { int v = value; GLint *gui = (GLint *)data; gui[0] = v; } break; case ShaderLanguage::TYPE_IVEC2: { PoolVector iv = value; int s = iv.size(); GLint *gui = (GLint *)data; PoolVector::Read r = iv.read(); for (int i = 0; i < 2; i++) { if (i < s) { gui[i] = r[i]; } else { gui[i] = 0; } } } break; case ShaderLanguage::TYPE_IVEC3: { PoolVector iv = value; int s = iv.size(); GLint *gui = (GLint *)data; PoolVector::Read r = iv.read(); for (int i = 0; i < 3; i++) { if (i < s) { gui[i] = r[i]; } else { gui[i] = 0; } } } break; case ShaderLanguage::TYPE_IVEC4: { PoolVector iv = value; int s = iv.size(); GLint *gui = (GLint *)data; PoolVector::Read r = iv.read(); for (int i = 0; i < 4; i++) { if (i < s) { gui[i] = r[i]; } else { gui[i] = 0; } } } break; case ShaderLanguage::TYPE_UINT: { int v = value; GLuint *gui = (GLuint *)data; gui[0] = v; } break; case ShaderLanguage::TYPE_UVEC2: { PoolVector iv = value; int s = iv.size(); GLuint *gui = (GLuint *)data; PoolVector::Read r = iv.read(); for (int i = 0; i < 2; i++) { if (i < s) { gui[i] = r[i]; } else { gui[i] = 0; } } } break; case ShaderLanguage::TYPE_UVEC3: { PoolVector iv = value; int s = iv.size(); GLuint *gui = (GLuint *)data; PoolVector::Read r = iv.read(); for (int i = 0; i < 3; i++) { if (i < s) { gui[i] = r[i]; } else { gui[i] = 0; } } } break; case ShaderLanguage::TYPE_UVEC4: { PoolVector iv = value; int s = iv.size(); GLuint *gui = (GLuint *)data; PoolVector::Read r = iv.read(); for (int i = 0; i < 4; i++) { if (i < s) { gui[i] = r[i]; } else { gui[i] = 0; } } } break; case ShaderLanguage::TYPE_FLOAT: { float v = value; GLfloat *gui = (GLfloat *)data; gui[0] = v; } break; case ShaderLanguage::TYPE_VEC2: { Vector2 v = value; GLfloat *gui = (GLfloat *)data; gui[0] = v.x; gui[1] = v.y; } break; case ShaderLanguage::TYPE_VEC3: { Vector3 v = value; GLfloat *gui = (GLfloat *)data; gui[0] = v.x; gui[1] = v.y; gui[2] = v.z; } break; case ShaderLanguage::TYPE_VEC4: { GLfloat *gui = (GLfloat *)data; if (value.get_type() == Variant::COLOR) { Color v = value; if (p_linear_color) { v = v.to_linear(); } gui[0] = v.r; gui[1] = v.g; gui[2] = v.b; gui[3] = v.a; } else if (value.get_type() == Variant::RECT2) { Rect2 v = value; gui[0] = v.position.x; gui[1] = v.position.y; gui[2] = v.size.x; gui[3] = v.size.y; } else if (value.get_type() == Variant::QUAT) { Quat v = value; gui[0] = v.x; gui[1] = v.y; gui[2] = v.z; gui[3] = v.w; } else { Plane v = value; gui[0] = v.normal.x; gui[1] = v.normal.y; gui[2] = v.normal.z; gui[3] = v.d; } } break; case ShaderLanguage::TYPE_MAT2: { Transform2D v = value; GLfloat *gui = (GLfloat *)data; //in std140 members of mat2 are treated as vec4s gui[0] = v.elements[0][0]; gui[1] = v.elements[0][1]; gui[2] = 0; gui[3] = 0; gui[4] = v.elements[1][0]; gui[5] = v.elements[1][1]; gui[6] = 0; gui[7] = 0; } break; case ShaderLanguage::TYPE_MAT3: { Basis v = value; GLfloat *gui = (GLfloat *)data; gui[0] = v.elements[0][0]; gui[1] = v.elements[1][0]; gui[2] = v.elements[2][0]; gui[3] = 0; gui[4] = v.elements[0][1]; gui[5] = v.elements[1][1]; gui[6] = v.elements[2][1]; gui[7] = 0; gui[8] = v.elements[0][2]; gui[9] = v.elements[1][2]; gui[10] = v.elements[2][2]; gui[11] = 0; } break; case ShaderLanguage::TYPE_MAT4: { Transform v = value; GLfloat *gui = (GLfloat *)data; gui[0] = v.basis.elements[0][0]; gui[1] = v.basis.elements[1][0]; gui[2] = v.basis.elements[2][0]; gui[3] = 0; gui[4] = v.basis.elements[0][1]; gui[5] = v.basis.elements[1][1]; gui[6] = v.basis.elements[2][1]; gui[7] = 0; gui[8] = v.basis.elements[0][2]; gui[9] = v.basis.elements[1][2]; gui[10] = v.basis.elements[2][2]; gui[11] = 0; gui[12] = v.origin.x; gui[13] = v.origin.y; gui[14] = v.origin.z; gui[15] = 1; } break; default: { } } } _FORCE_INLINE_ static void _fill_std140_ubo_value(ShaderLanguage::DataType type, const Vector &value, uint8_t *data) { switch (type) { case ShaderLanguage::TYPE_BOOL: { GLuint *gui = (GLuint *)data; *gui = value[0].boolean ? GL_TRUE : GL_FALSE; } break; case ShaderLanguage::TYPE_BVEC2: { GLuint *gui = (GLuint *)data; gui[0] = value[0].boolean ? GL_TRUE : GL_FALSE; gui[1] = value[1].boolean ? GL_TRUE : GL_FALSE; } break; case ShaderLanguage::TYPE_BVEC3: { GLuint *gui = (GLuint *)data; gui[0] = value[0].boolean ? GL_TRUE : GL_FALSE; gui[1] = value[1].boolean ? GL_TRUE : GL_FALSE; gui[2] = value[2].boolean ? GL_TRUE : GL_FALSE; } break; case ShaderLanguage::TYPE_BVEC4: { GLuint *gui = (GLuint *)data; gui[0] = value[0].boolean ? GL_TRUE : GL_FALSE; gui[1] = value[1].boolean ? GL_TRUE : GL_FALSE; gui[2] = value[2].boolean ? GL_TRUE : GL_FALSE; gui[3] = value[3].boolean ? GL_TRUE : GL_FALSE; } break; case ShaderLanguage::TYPE_INT: { GLint *gui = (GLint *)data; gui[0] = value[0].sint; } break; case ShaderLanguage::TYPE_IVEC2: { GLint *gui = (GLint *)data; for (int i = 0; i < 2; i++) { gui[i] = value[i].sint; } } break; case ShaderLanguage::TYPE_IVEC3: { GLint *gui = (GLint *)data; for (int i = 0; i < 3; i++) { gui[i] = value[i].sint; } } break; case ShaderLanguage::TYPE_IVEC4: { GLint *gui = (GLint *)data; for (int i = 0; i < 4; i++) { gui[i] = value[i].sint; } } break; case ShaderLanguage::TYPE_UINT: { GLuint *gui = (GLuint *)data; gui[0] = value[0].uint; } break; case ShaderLanguage::TYPE_UVEC2: { GLint *gui = (GLint *)data; for (int i = 0; i < 2; i++) { gui[i] = value[i].uint; } } break; case ShaderLanguage::TYPE_UVEC3: { GLint *gui = (GLint *)data; for (int i = 0; i < 3; i++) { gui[i] = value[i].uint; } } break; case ShaderLanguage::TYPE_UVEC4: { GLint *gui = (GLint *)data; for (int i = 0; i < 4; i++) { gui[i] = value[i].uint; } } break; case ShaderLanguage::TYPE_FLOAT: { GLfloat *gui = (GLfloat *)data; gui[0] = value[0].real; } break; case ShaderLanguage::TYPE_VEC2: { GLfloat *gui = (GLfloat *)data; for (int i = 0; i < 2; i++) { gui[i] = value[i].real; } } break; case ShaderLanguage::TYPE_VEC3: { GLfloat *gui = (GLfloat *)data; for (int i = 0; i < 3; i++) { gui[i] = value[i].real; } } break; case ShaderLanguage::TYPE_VEC4: { GLfloat *gui = (GLfloat *)data; for (int i = 0; i < 4; i++) { gui[i] = value[i].real; } } break; case ShaderLanguage::TYPE_MAT2: { GLfloat *gui = (GLfloat *)data; //in std140 members of mat2 are treated as vec4s gui[0] = value[0].real; gui[1] = value[1].real; gui[2] = 0; gui[3] = 0; gui[4] = value[2].real; gui[5] = value[3].real; gui[6] = 0; gui[7] = 0; } break; case ShaderLanguage::TYPE_MAT3: { GLfloat *gui = (GLfloat *)data; gui[0] = value[0].real; gui[1] = value[1].real; gui[2] = value[2].real; gui[3] = 0; gui[4] = value[3].real; gui[5] = value[4].real; gui[6] = value[5].real; gui[7] = 0; gui[8] = value[6].real; gui[9] = value[7].real; gui[10] = value[8].real; gui[11] = 0; } break; case ShaderLanguage::TYPE_MAT4: { GLfloat *gui = (GLfloat *)data; for (int i = 0; i < 16; i++) { gui[i] = value[i].real; } } break; default: { } } } _FORCE_INLINE_ static void _fill_std140_ubo_empty(ShaderLanguage::DataType type, uint8_t *data) { switch (type) { case ShaderLanguage::TYPE_BOOL: case ShaderLanguage::TYPE_INT: case ShaderLanguage::TYPE_UINT: case ShaderLanguage::TYPE_FLOAT: { memset(data, 0, 4); } break; case ShaderLanguage::TYPE_BVEC2: case ShaderLanguage::TYPE_IVEC2: case ShaderLanguage::TYPE_UVEC2: case ShaderLanguage::TYPE_VEC2: { memset(data, 0, 8); } break; case ShaderLanguage::TYPE_BVEC3: case ShaderLanguage::TYPE_IVEC3: case ShaderLanguage::TYPE_UVEC3: case ShaderLanguage::TYPE_VEC3: { memset(data, 0, 12); } break; case ShaderLanguage::TYPE_BVEC4: case ShaderLanguage::TYPE_IVEC4: case ShaderLanguage::TYPE_UVEC4: case ShaderLanguage::TYPE_VEC4: { memset(data, 0, 16); } break; case ShaderLanguage::TYPE_MAT2: { memset(data, 0, 32); } break; case ShaderLanguage::TYPE_MAT3: { memset(data, 0, 48); } break; case ShaderLanguage::TYPE_MAT4: { memset(data, 0, 64); } break; default: { } } } void RasterizerStorageGLES3::_update_material(Material *material) { if (material->dirty_list.in_list()) { _material_dirty_list.remove(&material->dirty_list); } if (material->shader && material->shader->dirty_list.in_list()) { _update_shader(material->shader); } if (material->shader && !material->shader->valid) { return; } //update caches { bool can_cast_shadow = false; bool is_animated = false; if (material->shader && material->shader->mode == VS::SHADER_SPATIAL) { if (material->shader->spatial.blend_mode == Shader::Spatial::BLEND_MODE_MIX && (!(material->shader->spatial.uses_alpha && !material->shader->spatial.uses_alpha_scissor) || material->shader->spatial.depth_draw_mode == Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS)) { can_cast_shadow = true; } if (material->shader->spatial.uses_discard && material->shader->uses_fragment_time) { is_animated = true; } if (material->shader->spatial.uses_vertex && material->shader->uses_vertex_time) { is_animated = true; } if (can_cast_shadow != material->can_cast_shadow_cache || is_animated != material->is_animated_cache) { material->can_cast_shadow_cache = can_cast_shadow; material->is_animated_cache = is_animated; for (Map::Element *E = material->geometry_owners.front(); E; E = E->next()) { E->key()->material_changed_notify(); } for (Map::Element *E = material->instance_owners.front(); E; E = E->next()) { E->key()->base_changed(false, true); } } } } //clear ubo if it needs to be cleared if (material->ubo_size) { if (!material->shader || material->shader->ubo_size != material->ubo_size) { //by by ubo glDeleteBuffers(1, &material->ubo_id); material->ubo_id = 0; material->ubo_size = 0; } } //create ubo if it needs to be created if (material->ubo_size == 0 && material->shader && material->shader->ubo_size) { glGenBuffers(1, &material->ubo_id); glBindBuffer(GL_UNIFORM_BUFFER, material->ubo_id); glBufferData(GL_UNIFORM_BUFFER, material->shader->ubo_size, nullptr, GL_STATIC_DRAW); glBindBuffer(GL_UNIFORM_BUFFER, 0); material->ubo_size = material->shader->ubo_size; } //fill up the UBO if it needs to be filled if (material->shader && material->ubo_size) { uint8_t *local_ubo = (uint8_t *)alloca(material->ubo_size); for (Map::Element *E = material->shader->uniforms.front(); E; E = E->next()) { if (E->get().order < 0) { continue; // texture, does not go here } //regular uniform uint8_t *data = &local_ubo[material->shader->ubo_offsets[E->get().order]]; Map::Element *V = material->params.find(E->key()); if (V) { //user provided _fill_std140_variant_ubo_value(E->get().type, V->get(), data, material->shader->mode == VS::SHADER_SPATIAL); } else if (E->get().default_value.size()) { //default value _fill_std140_ubo_value(E->get().type, E->get().default_value, data); //value=E->get().default_value; } else { //zero because it was not provided if (E->get().type == ShaderLanguage::TYPE_VEC4 && E->get().hint == ShaderLanguage::ShaderNode::Uniform::HINT_COLOR) { //colors must be set as black, with alpha as 1.0 _fill_std140_variant_ubo_value(E->get().type, Color(0, 0, 0, 1), data, material->shader->mode == VS::SHADER_SPATIAL); } else { //else just zero it out _fill_std140_ubo_empty(E->get().type, data); } } } glBindBuffer(GL_UNIFORM_BUFFER, material->ubo_id); glBufferData(GL_UNIFORM_BUFFER, material->ubo_size, local_ubo, GL_STATIC_DRAW); glBindBuffer(GL_UNIFORM_BUFFER, 0); } //set up the texture array, for easy access when it needs to be drawn if (material->shader && material->shader->texture_count) { material->texture_is_3d.resize(material->shader->texture_count); material->textures.resize(material->shader->texture_count); for (Map::Element *E = material->shader->uniforms.front(); E; E = E->next()) { if (E->get().texture_order < 0) { continue; // not a texture, does not go here } RID texture; switch (E->get().type) { case ShaderLanguage::TYPE_SAMPLER3D: case ShaderLanguage::TYPE_SAMPLER2DARRAY: { material->texture_is_3d.write[E->get().texture_order] = true; } break; default: { material->texture_is_3d.write[E->get().texture_order] = false; } break; } Map::Element *V = material->params.find(E->key()); if (V) { texture = V->get(); } if (!texture.is_valid()) { Map::Element *W = material->shader->default_textures.find(E->key()); if (W) { texture = W->get(); } } material->textures.write[E->get().texture_order] = texture; } } else { material->textures.clear(); material->texture_is_3d.clear(); } } void RasterizerStorageGLES3::_material_add_geometry(RID p_material, Geometry *p_geometry) { Material *material = material_owner.getornull(p_material); ERR_FAIL_COND(!material); Map::Element *I = material->geometry_owners.find(p_geometry); if (I) { I->get()++; } else { material->geometry_owners[p_geometry] = 1; } } void RasterizerStorageGLES3::_material_remove_geometry(RID p_material, Geometry *p_geometry) { Material *material = material_owner.getornull(p_material); ERR_FAIL_COND(!material); Map::Element *I = material->geometry_owners.find(p_geometry); ERR_FAIL_COND(!I); I->get()--; if (I->get() == 0) { material->geometry_owners.erase(I); } } void RasterizerStorageGLES3::update_dirty_materials() { while (_material_dirty_list.first()) { Material *material = _material_dirty_list.first()->self(); _update_material(material); } } /* MESH API */ RID RasterizerStorageGLES3::mesh_create() { Mesh *mesh = memnew(Mesh); return mesh_owner.make_rid(mesh); } void RasterizerStorageGLES3::mesh_add_surface(RID p_mesh, uint32_t p_format, VS::PrimitiveType p_primitive, const PoolVector &p_array, int p_vertex_count, const PoolVector &p_index_array, int p_index_count, const AABB &p_aabb, const Vector> &p_blend_shapes, const Vector &p_bone_aabbs) { PoolVector array = p_array; Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND(!mesh); ERR_FAIL_COND(!(p_format & VS::ARRAY_FORMAT_VERTEX)); //must have index and bones, both. { uint32_t bones_weight = VS::ARRAY_FORMAT_BONES | VS::ARRAY_FORMAT_WEIGHTS; ERR_FAIL_COND_MSG((p_format & bones_weight) && (p_format & bones_weight) != bones_weight, "Array must have both bones and weights in format or none."); } //bool has_morph = p_blend_shapes.size(); bool use_split_stream = GLOBAL_GET("rendering/misc/mesh_storage/split_stream") && !(p_format & VS::ARRAY_FLAG_USE_DYNAMIC_UPDATE); Surface::Attrib attribs[VS::ARRAY_MAX]; int attributes_base_offset = 0; int attributes_stride = 0; int positions_stride = 0; for (int i = 0; i < VS::ARRAY_MAX; i++) { attribs[i].index = i; if (!(p_format & (1 << i))) { attribs[i].enabled = false; attribs[i].integer = false; continue; } attribs[i].enabled = true; attribs[i].offset = attributes_base_offset + attributes_stride; attribs[i].integer = false; switch (i) { case VS::ARRAY_VERTEX: { if (p_format & VS::ARRAY_FLAG_USE_2D_VERTICES) { attribs[i].size = 2; } else { attribs[i].size = (p_format & VS::ARRAY_COMPRESS_VERTEX) ? 4 : 3; } if (p_format & VS::ARRAY_COMPRESS_VERTEX) { attribs[i].type = GL_HALF_FLOAT; positions_stride += attribs[i].size * 2; } else { attribs[i].type = GL_FLOAT; positions_stride += attribs[i].size * 4; } attribs[i].normalized = GL_FALSE; if (use_split_stream) { attributes_base_offset = positions_stride * p_vertex_count; } else { attributes_base_offset = positions_stride; } } break; case VS::ARRAY_NORMAL: { if (p_format & VS::ARRAY_FLAG_USE_OCTAHEDRAL_COMPRESSION) { // Always pack normal and tangent into vec4 // normal will be xy tangent will be zw // normal will always be oct32 (4 byte) encoded // UNLESS tangent exists and is also compressed // then it will be oct16 encoded along with tangent attribs[i].normalized = GL_TRUE; attribs[i].size = 2; attribs[i].type = GL_SHORT; attributes_stride += 4; // Storing normal/tangent in the tangent attrib makes it easier to ubershaderify the scene shader attribs[i].index = VS::ARRAY_TANGENT; } else { attribs[i].size = 3; if (p_format & VS::ARRAY_COMPRESS_NORMAL) { attribs[i].type = GL_BYTE; attributes_stride += 4; //pad extra byte attribs[i].normalized = GL_TRUE; } else { attribs[i].type = GL_FLOAT; attributes_stride += 12; attribs[i].normalized = GL_FALSE; } } } break; case VS::ARRAY_TANGENT: { if (p_format & VS::ARRAY_FLAG_USE_OCTAHEDRAL_COMPRESSION) { attribs[i].enabled = false; attribs[VS::ARRAY_NORMAL].size = 4; if (p_format & VS::ARRAY_COMPRESS_TANGENT && p_format & VS::ARRAY_COMPRESS_NORMAL) { // normal and tangent will each be oct16 (2 bytes each) // pack into single vec4 for memory bandwidth // savings while keeping 4 byte alignment attribs[VS::ARRAY_NORMAL].type = GL_BYTE; } else { // normal and tangent will each be oct32 (4 bytes each) attributes_stride += 4; } } else { attribs[i].size = 4; if (p_format & VS::ARRAY_COMPRESS_TANGENT) { attribs[i].type = GL_BYTE; attributes_stride += 4; attribs[i].normalized = GL_TRUE; } else { attribs[i].type = GL_FLOAT; attributes_stride += 16; attribs[i].normalized = GL_FALSE; } } } break; case VS::ARRAY_COLOR: { attribs[i].size = 4; if (p_format & VS::ARRAY_COMPRESS_COLOR) { attribs[i].type = GL_UNSIGNED_BYTE; attributes_stride += 4; attribs[i].normalized = GL_TRUE; } else { attribs[i].type = GL_FLOAT; attributes_stride += 16; attribs[i].normalized = GL_FALSE; } } break; case VS::ARRAY_TEX_UV: { attribs[i].size = 2; if (p_format & VS::ARRAY_COMPRESS_TEX_UV) { attribs[i].type = GL_HALF_FLOAT; attributes_stride += 4; } else { attribs[i].type = GL_FLOAT; attributes_stride += 8; } attribs[i].normalized = GL_FALSE; } break; case VS::ARRAY_TEX_UV2: { attribs[i].size = 2; if (p_format & VS::ARRAY_COMPRESS_TEX_UV2) { attribs[i].type = GL_HALF_FLOAT; attributes_stride += 4; } else { attribs[i].type = GL_FLOAT; attributes_stride += 8; } attribs[i].normalized = GL_FALSE; } break; case VS::ARRAY_BONES: { attribs[i].size = 4; if (p_format & VS::ARRAY_FLAG_USE_16_BIT_BONES) { attribs[i].type = GL_UNSIGNED_SHORT; attributes_stride += 8; } else { attribs[i].type = GL_UNSIGNED_BYTE; attributes_stride += 4; } attribs[i].normalized = GL_FALSE; attribs[i].integer = true; } break; case VS::ARRAY_WEIGHTS: { attribs[i].size = 4; if (p_format & VS::ARRAY_COMPRESS_WEIGHTS) { attribs[i].type = GL_UNSIGNED_SHORT; attributes_stride += 8; attribs[i].normalized = GL_TRUE; } else { attribs[i].type = GL_FLOAT; attributes_stride += 16; attribs[i].normalized = GL_FALSE; } } break; case VS::ARRAY_INDEX: { attribs[i].size = 1; if (p_vertex_count >= (1 << 16)) { attribs[i].type = GL_UNSIGNED_INT; attribs[i].stride = 4; } else { attribs[i].type = GL_UNSIGNED_SHORT; attribs[i].stride = 2; } attribs[i].normalized = GL_FALSE; } break; } } if (use_split_stream) { attribs[VS::ARRAY_VERTEX].stride = positions_stride; for (int i = 1; i < VS::ARRAY_MAX - 1; i++) { attribs[i].stride = attributes_stride; } } else { for (int i = 0; i < VS::ARRAY_MAX - 1; i++) { attribs[i].stride = positions_stride + attributes_stride; } } //validate sizes int stride = positions_stride + attributes_stride; int array_size = stride * p_vertex_count; int index_array_size = 0; if (array.size() != array_size && array.size() + p_vertex_count * 2 == array_size) { //old format, convert array = PoolVector(); array.resize(p_array.size() + p_vertex_count * 2); PoolVector::Write w = array.write(); PoolVector::Read r = p_array.read(); uint16_t *w16 = (uint16_t *)w.ptr(); const uint16_t *r16 = (uint16_t *)r.ptr(); uint16_t one = Math::make_half_float(1); for (int i = 0; i < p_vertex_count; i++) { *w16++ = *r16++; *w16++ = *r16++; *w16++ = *r16++; *w16++ = one; for (int j = 0; j < (stride / 2) - 4; j++) { *w16++ = *r16++; } } } ERR_FAIL_COND(array.size() != array_size); if (p_format & VS::ARRAY_FORMAT_INDEX) { index_array_size = attribs[VS::ARRAY_INDEX].stride * p_index_count; } ERR_FAIL_COND(p_index_array.size() != index_array_size); ERR_FAIL_COND(p_blend_shapes.size() != mesh->blend_shape_count); for (int i = 0; i < p_blend_shapes.size(); i++) { ERR_FAIL_COND(p_blend_shapes[i].size() != array_size); } //ok all valid, create stuff Surface *surface = memnew(Surface); surface->active = true; surface->array_len = p_vertex_count; surface->index_array_len = p_index_count; surface->array_byte_size = array.size(); surface->index_array_byte_size = p_index_array.size(); surface->primitive = p_primitive; surface->mesh = mesh; surface->format = p_format; surface->skeleton_bone_aabb = p_bone_aabbs; surface->skeleton_bone_used.resize(surface->skeleton_bone_aabb.size()); surface->aabb = p_aabb; surface->max_bone = p_bone_aabbs.size(); surface->total_data_size += surface->array_byte_size + surface->index_array_byte_size; for (int i = 0; i < surface->skeleton_bone_used.size(); i++) { if (surface->skeleton_bone_aabb[i].size.x < 0 || surface->skeleton_bone_aabb[i].size.y < 0 || surface->skeleton_bone_aabb[i].size.z < 0) { surface->skeleton_bone_used.write[i] = false; } else { surface->skeleton_bone_used.write[i] = true; } } for (int i = 0; i < VS::ARRAY_MAX; i++) { surface->attribs[i] = attribs[i]; } { PoolVector::Read vr = array.read(); glGenBuffers(1, &surface->vertex_id); glBindBuffer(GL_ARRAY_BUFFER, surface->vertex_id); glBufferData(GL_ARRAY_BUFFER, array_size, vr.ptr(), (p_format & VS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind if (p_format & VS::ARRAY_FORMAT_INDEX) { PoolVector::Read ir = p_index_array.read(); glGenBuffers(1, &surface->index_id); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, surface->index_id); glBufferData(GL_ELEMENT_ARRAY_BUFFER, index_array_size, ir.ptr(), GL_STATIC_DRAW); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind } //generate arrays for faster state switching for (int ai = 0; ai < 2; ai++) { if (ai == 0) { //for normal draw glGenVertexArrays(1, &surface->array_id); glBindVertexArray(surface->array_id); glBindBuffer(GL_ARRAY_BUFFER, surface->vertex_id); } else if (ai == 1) { //for instancing draw (can be changed and no one cares) glGenVertexArrays(1, &surface->instancing_array_id); glBindVertexArray(surface->instancing_array_id); glBindBuffer(GL_ARRAY_BUFFER, surface->vertex_id); } for (int i = 0; i < VS::ARRAY_MAX - 1; i++) { if (!attribs[i].enabled) { continue; } if (attribs[i].integer) { glVertexAttribIPointer(attribs[i].index, attribs[i].size, attribs[i].type, attribs[i].stride, CAST_INT_TO_UCHAR_PTR(attribs[i].offset)); } else { glVertexAttribPointer(attribs[i].index, attribs[i].size, attribs[i].type, attribs[i].normalized, attribs[i].stride, CAST_INT_TO_UCHAR_PTR(attribs[i].offset)); } glEnableVertexAttribArray(attribs[i].index); } if (surface->index_id) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, surface->index_id); } glBindVertexArray(0); glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } #ifdef DEBUG_ENABLED if (config.generate_wireframes && p_primitive == VS::PRIMITIVE_TRIANGLES) { //generate wireframes, this is used mostly by editor PoolVector wf_indices; int index_count; if (p_format & VS::ARRAY_FORMAT_INDEX) { index_count = p_index_count * 2; wf_indices.resize(index_count); PoolVector::Read ir = p_index_array.read(); PoolVector::Write wr = wf_indices.write(); if (p_vertex_count < (1 << 16)) { //read 16 bit indices const uint16_t *src_idx = (const uint16_t *)ir.ptr(); for (int i = 0; i + 5 < index_count; i += 6) { wr[i + 0] = src_idx[i / 2]; wr[i + 1] = src_idx[i / 2 + 1]; wr[i + 2] = src_idx[i / 2 + 1]; wr[i + 3] = src_idx[i / 2 + 2]; wr[i + 4] = src_idx[i / 2 + 2]; wr[i + 5] = src_idx[i / 2]; } } else { //read 16 bit indices const uint32_t *src_idx = (const uint32_t *)ir.ptr(); for (int i = 0; i + 5 < index_count; i += 6) { wr[i + 0] = src_idx[i / 2]; wr[i + 1] = src_idx[i / 2 + 1]; wr[i + 2] = src_idx[i / 2 + 1]; wr[i + 3] = src_idx[i / 2 + 2]; wr[i + 4] = src_idx[i / 2 + 2]; wr[i + 5] = src_idx[i / 2]; } } } else { index_count = p_vertex_count * 2; wf_indices.resize(index_count); PoolVector::Write wr = wf_indices.write(); for (int i = 0; i + 5 < index_count; i += 6) { wr[i + 0] = i / 2; wr[i + 1] = i / 2 + 1; wr[i + 2] = i / 2 + 1; wr[i + 3] = i / 2 + 2; wr[i + 4] = i / 2 + 2; wr[i + 5] = i / 2; } } { PoolVector::Read ir = wf_indices.read(); glGenBuffers(1, &surface->index_wireframe_id); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, surface->index_wireframe_id); glBufferData(GL_ELEMENT_ARRAY_BUFFER, index_count * sizeof(uint32_t), ir.ptr(), GL_STATIC_DRAW); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind surface->index_wireframe_len = index_count; } for (int ai = 0; ai < 2; ai++) { if (ai == 0) { //for normal draw glGenVertexArrays(1, &surface->array_wireframe_id); glBindVertexArray(surface->array_wireframe_id); glBindBuffer(GL_ARRAY_BUFFER, surface->vertex_id); } else if (ai == 1) { //for instancing draw (can be changed and no one cares) glGenVertexArrays(1, &surface->instancing_array_wireframe_id); glBindVertexArray(surface->instancing_array_wireframe_id); glBindBuffer(GL_ARRAY_BUFFER, surface->vertex_id); } for (int i = 0; i < VS::ARRAY_MAX - 1; i++) { if (!attribs[i].enabled) { continue; } if (attribs[i].integer) { glVertexAttribIPointer(attribs[i].index, attribs[i].size, attribs[i].type, attribs[i].stride, CAST_INT_TO_UCHAR_PTR(attribs[i].offset)); } else { glVertexAttribPointer(attribs[i].index, attribs[i].size, attribs[i].type, attribs[i].normalized, attribs[i].stride, CAST_INT_TO_UCHAR_PTR(attribs[i].offset)); } glEnableVertexAttribArray(attribs[i].index); } glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, surface->index_wireframe_id); glBindVertexArray(0); glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } } #endif } { //blend shapes for (int i = 0; i < p_blend_shapes.size(); i++) { Surface::BlendShape mt; PoolVector::Read vr = p_blend_shapes[i].read(); surface->total_data_size += array_size; glGenBuffers(1, &mt.vertex_id); glBindBuffer(GL_ARRAY_BUFFER, mt.vertex_id); glBufferData(GL_ARRAY_BUFFER, array_size, vr.ptr(), GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind glGenVertexArrays(1, &mt.array_id); glBindVertexArray(mt.array_id); glBindBuffer(GL_ARRAY_BUFFER, mt.vertex_id); for (int j = 0; j < VS::ARRAY_MAX - 1; j++) { if (!attribs[j].enabled) { continue; } if (attribs[j].integer) { glVertexAttribIPointer(attribs[j].index, attribs[j].size, attribs[j].type, attribs[j].stride, CAST_INT_TO_UCHAR_PTR(attribs[j].offset)); } else { glVertexAttribPointer(attribs[j].index, attribs[j].size, attribs[j].type, attribs[j].normalized, attribs[j].stride, CAST_INT_TO_UCHAR_PTR(attribs[j].offset)); } glEnableVertexAttribArray(attribs[j].index); } glBindVertexArray(0); glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind surface->blend_shapes.push_back(mt); } } mesh->surfaces.push_back(surface); mesh->instance_change_notify(true, true); info.vertex_mem += surface->total_data_size; } void RasterizerStorageGLES3::mesh_set_blend_shape_count(RID p_mesh, int p_amount) { Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND(!mesh); ERR_FAIL_COND(mesh->surfaces.size() != 0); ERR_FAIL_COND(p_amount < 0); mesh->blend_shape_count = p_amount; mesh->instance_change_notify(true, false); } int RasterizerStorageGLES3::mesh_get_blend_shape_count(RID p_mesh) const { const Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND_V(!mesh, 0); return mesh->blend_shape_count; } void RasterizerStorageGLES3::mesh_set_blend_shape_mode(RID p_mesh, VS::BlendShapeMode p_mode) { Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND(!mesh); mesh->blend_shape_mode = p_mode; } VS::BlendShapeMode RasterizerStorageGLES3::mesh_get_blend_shape_mode(RID p_mesh) const { const Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND_V(!mesh, VS::BLEND_SHAPE_MODE_NORMALIZED); return mesh->blend_shape_mode; } void RasterizerStorageGLES3::mesh_set_blend_shape_values(RID p_mesh, PoolVector p_values) { Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND(!mesh); mesh->blend_shape_values = p_values; } PoolVector RasterizerStorageGLES3::mesh_get_blend_shape_values(RID p_mesh) const { const Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND_V(!mesh, PoolVector()); return mesh->blend_shape_values; } void RasterizerStorageGLES3::mesh_surface_update_region(RID p_mesh, int p_surface, int p_offset, const PoolVector &p_data) { Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND(!mesh); ERR_FAIL_INDEX(p_surface, mesh->surfaces.size()); int total_size = p_data.size(); ERR_FAIL_COND(p_offset + total_size > mesh->surfaces[p_surface]->array_byte_size); PoolVector::Read r = p_data.read(); glBindBuffer(GL_ARRAY_BUFFER, mesh->surfaces[p_surface]->vertex_id); glBufferSubData(GL_ARRAY_BUFFER, p_offset, total_size, r.ptr()); glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind } void RasterizerStorageGLES3::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material) { Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND(!mesh); ERR_FAIL_INDEX(p_surface, mesh->surfaces.size()); if (mesh->surfaces[p_surface]->material == p_material) { return; } if (mesh->surfaces[p_surface]->material.is_valid()) { _material_remove_geometry(mesh->surfaces[p_surface]->material, mesh->surfaces[p_surface]); } mesh->surfaces[p_surface]->material = p_material; if (mesh->surfaces[p_surface]->material.is_valid()) { _material_add_geometry(mesh->surfaces[p_surface]->material, mesh->surfaces[p_surface]); } mesh->instance_change_notify(false, true); } RID RasterizerStorageGLES3::mesh_surface_get_material(RID p_mesh, int p_surface) const { const Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND_V(!mesh, RID()); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), RID()); return mesh->surfaces[p_surface]->material; } int RasterizerStorageGLES3::mesh_surface_get_array_len(RID p_mesh, int p_surface) const { const Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND_V(!mesh, 0); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), 0); return mesh->surfaces[p_surface]->array_len; } int RasterizerStorageGLES3::mesh_surface_get_array_index_len(RID p_mesh, int p_surface) const { const Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND_V(!mesh, 0); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), 0); return mesh->surfaces[p_surface]->index_array_len; } PoolVector RasterizerStorageGLES3::mesh_surface_get_array(RID p_mesh, int p_surface) const { const Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND_V(!mesh, PoolVector()); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), PoolVector()); Surface *surface = mesh->surfaces[p_surface]; PoolVector ret; ret.resize(surface->array_byte_size); glBindBuffer(GL_ARRAY_BUFFER, surface->vertex_id); #if defined(GLES_OVER_GL) || defined(__EMSCRIPTEN__) { PoolVector::Write w = ret.write(); glGetBufferSubData(GL_ARRAY_BUFFER, 0, surface->array_byte_size, w.ptr()); } #else void *data = glMapBufferRange(GL_ARRAY_BUFFER, 0, surface->array_byte_size, GL_MAP_READ_BIT); ERR_FAIL_NULL_V(data, PoolVector()); { PoolVector::Write w = ret.write(); memcpy(w.ptr(), data, surface->array_byte_size); } glUnmapBuffer(GL_ARRAY_BUFFER); #endif glBindBuffer(GL_ARRAY_BUFFER, 0); return ret; } PoolVector RasterizerStorageGLES3::mesh_surface_get_index_array(RID p_mesh, int p_surface) const { const Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND_V(!mesh, PoolVector()); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), PoolVector()); Surface *surface = mesh->surfaces[p_surface]; PoolVector ret; ret.resize(surface->index_array_byte_size); if (surface->index_array_byte_size > 0) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, surface->index_id); #if defined(GLES_OVER_GL) || defined(__EMSCRIPTEN__) { PoolVector::Write w = ret.write(); glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, surface->index_array_byte_size, w.ptr()); } #else void *data = glMapBufferRange(GL_ELEMENT_ARRAY_BUFFER, 0, surface->index_array_byte_size, GL_MAP_READ_BIT); ERR_FAIL_NULL_V(data, PoolVector()); { PoolVector::Write w = ret.write(); memcpy(w.ptr(), data, surface->index_array_byte_size); } glUnmapBuffer(GL_ELEMENT_ARRAY_BUFFER); #endif glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } return ret; } uint32_t RasterizerStorageGLES3::mesh_surface_get_format(RID p_mesh, int p_surface) const { const Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND_V(!mesh, 0); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), 0); return mesh->surfaces[p_surface]->format; } VS::PrimitiveType RasterizerStorageGLES3::mesh_surface_get_primitive_type(RID p_mesh, int p_surface) const { const Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND_V(!mesh, VS::PRIMITIVE_MAX); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), VS::PRIMITIVE_MAX); return mesh->surfaces[p_surface]->primitive; } AABB RasterizerStorageGLES3::mesh_surface_get_aabb(RID p_mesh, int p_surface) const { const Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND_V(!mesh, AABB()); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), AABB()); return mesh->surfaces[p_surface]->aabb; } Vector> RasterizerStorageGLES3::mesh_surface_get_blend_shapes(RID p_mesh, int p_surface) const { const Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND_V(!mesh, Vector>()); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), Vector>()); Vector> bsarr; for (int i = 0; i < mesh->surfaces[p_surface]->blend_shapes.size(); i++) { PoolVector ret; ret.resize(mesh->surfaces[p_surface]->array_byte_size); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mesh->surfaces[p_surface]->blend_shapes[i].vertex_id); #if defined(GLES_OVER_GL) || defined(__EMSCRIPTEN__) { PoolVector::Write w = ret.write(); glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, mesh->surfaces[p_surface]->array_byte_size, w.ptr()); } #else void *data = glMapBufferRange(GL_ELEMENT_ARRAY_BUFFER, 0, mesh->surfaces[p_surface]->array_byte_size, GL_MAP_READ_BIT); ERR_FAIL_COND_V(!data, Vector>()); { PoolVector::Write w = ret.write(); memcpy(w.ptr(), data, mesh->surfaces[p_surface]->array_byte_size); } glUnmapBuffer(GL_ELEMENT_ARRAY_BUFFER); #endif bsarr.push_back(ret); } return bsarr; } Vector RasterizerStorageGLES3::mesh_surface_get_skeleton_aabb(RID p_mesh, int p_surface) const { const Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND_V(!mesh, Vector()); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), Vector()); return mesh->surfaces[p_surface]->skeleton_bone_aabb; } void RasterizerStorageGLES3::mesh_remove_surface(RID p_mesh, int p_surface) { Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND(!mesh); ERR_FAIL_INDEX(p_surface, mesh->surfaces.size()); Surface *surface = mesh->surfaces[p_surface]; if (surface->material.is_valid()) { _material_remove_geometry(surface->material, mesh->surfaces[p_surface]); } glDeleteBuffers(1, &surface->vertex_id); if (surface->index_id) { glDeleteBuffers(1, &surface->index_id); } glDeleteVertexArrays(1, &surface->array_id); glDeleteVertexArrays(1, &surface->instancing_array_id); for (int i = 0; i < surface->blend_shapes.size(); i++) { glDeleteBuffers(1, &surface->blend_shapes[i].vertex_id); glDeleteVertexArrays(1, &surface->blend_shapes[i].array_id); } if (surface->index_wireframe_id) { glDeleteBuffers(1, &surface->index_wireframe_id); glDeleteVertexArrays(1, &surface->array_wireframe_id); glDeleteVertexArrays(1, &surface->instancing_array_wireframe_id); } info.vertex_mem -= surface->total_data_size; memdelete(surface); mesh->surfaces.remove(p_surface); mesh->instance_change_notify(true, true); } int RasterizerStorageGLES3::mesh_get_surface_count(RID p_mesh) const { const Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND_V(!mesh, 0); return mesh->surfaces.size(); } void RasterizerStorageGLES3::mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) { Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND(!mesh); mesh->custom_aabb = p_aabb; mesh->instance_change_notify(true, false); } AABB RasterizerStorageGLES3::mesh_get_custom_aabb(RID p_mesh) const { const Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND_V(!mesh, AABB()); return mesh->custom_aabb; } AABB RasterizerStorageGLES3::mesh_get_aabb(RID p_mesh, RID p_skeleton) const { Mesh *mesh = mesh_owner.get(p_mesh); ERR_FAIL_COND_V(!mesh, AABB()); if (mesh->custom_aabb != AABB()) { return mesh->custom_aabb; } Skeleton *sk = nullptr; if (p_skeleton.is_valid()) { sk = skeleton_owner.get(p_skeleton); } AABB aabb; if (sk && sk->size != 0) { for (int i = 0; i < mesh->surfaces.size(); i++) { AABB laabb; if ((mesh->surfaces[i]->format & VS::ARRAY_FORMAT_BONES) && mesh->surfaces[i]->skeleton_bone_aabb.size()) { int bs = mesh->surfaces[i]->skeleton_bone_aabb.size(); const AABB *skbones = mesh->surfaces[i]->skeleton_bone_aabb.ptr(); const bool *skused = mesh->surfaces[i]->skeleton_bone_used.ptr(); int sbs = sk->size; ERR_CONTINUE(bs > sbs); const float *texture = sk->skel_texture.ptr(); bool first = true; if (sk->use_2d) { for (int j = 0; j < bs; j++) { if (!skused[j]) { continue; } int base_ofs = ((j / 256) * 256) * 2 * 4 + (j % 256) * 4; Transform mtx; mtx.basis[0].x = texture[base_ofs + 0]; mtx.basis[0].y = texture[base_ofs + 1]; mtx.origin.x = texture[base_ofs + 3]; base_ofs += 256 * 4; mtx.basis[1].x = texture[base_ofs + 0]; mtx.basis[1].y = texture[base_ofs + 1]; mtx.origin.y = texture[base_ofs + 3]; AABB baabb = mtx.xform(skbones[j]); if (first) { laabb = baabb; first = false; } else { laabb.merge_with(baabb); } } } else { for (int j = 0; j < bs; j++) { if (!skused[j]) { continue; } int base_ofs = ((j / 256) * 256) * 3 * 4 + (j % 256) * 4; Transform mtx; mtx.basis[0].x = texture[base_ofs + 0]; mtx.basis[0].y = texture[base_ofs + 1]; mtx.basis[0].z = texture[base_ofs + 2]; mtx.origin.x = texture[base_ofs + 3]; base_ofs += 256 * 4; mtx.basis[1].x = texture[base_ofs + 0]; mtx.basis[1].y = texture[base_ofs + 1]; mtx.basis[1].z = texture[base_ofs + 2]; mtx.origin.y = texture[base_ofs + 3]; base_ofs += 256 * 4; mtx.basis[2].x = texture[base_ofs + 0]; mtx.basis[2].y = texture[base_ofs + 1]; mtx.basis[2].z = texture[base_ofs + 2]; mtx.origin.z = texture[base_ofs + 3]; AABB baabb = mtx.xform(skbones[j]); if (first) { laabb = baabb; first = false; } else { laabb.merge_with(baabb); } } } } else { laabb = mesh->surfaces[i]->aabb; } if (i == 0) { aabb = laabb; } else { aabb.merge_with(laabb); } } } else { for (int i = 0; i < mesh->surfaces.size(); i++) { if (i == 0) { aabb = mesh->surfaces[i]->aabb; } else { aabb.merge_with(mesh->surfaces[i]->aabb); } } } return aabb; } void RasterizerStorageGLES3::mesh_clear(RID p_mesh) { Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND(!mesh); while (mesh->surfaces.size()) { mesh_remove_surface(p_mesh, 0); } } void RasterizerStorageGLES3::mesh_render_blend_shapes(Surface *s, const float *p_weights) { glBindVertexArray(s->array_id); BlendShapeShaderGLES3::Conditionals cond[VS::ARRAY_MAX - 1] = { BlendShapeShaderGLES3::ENABLE_NORMAL, //will be ignored BlendShapeShaderGLES3::ENABLE_NORMAL, BlendShapeShaderGLES3::ENABLE_TANGENT, BlendShapeShaderGLES3::ENABLE_COLOR, BlendShapeShaderGLES3::ENABLE_UV, BlendShapeShaderGLES3::ENABLE_UV2, BlendShapeShaderGLES3::ENABLE_SKELETON, BlendShapeShaderGLES3::ENABLE_SKELETON, }; int stride = 0; if (s->format & VS::ARRAY_FLAG_USE_2D_VERTICES) { stride = 2 * 4; } else { stride = 3 * 4; } static const int sizes[VS::ARRAY_MAX - 1] = { 3 * 4, 3 * 4, 4 * 4, 4 * 4, 2 * 4, 2 * 4, 4 * 4, 4 * 4 }; for (int i = 1; i < VS::ARRAY_MAX - 1; i++) { shaders.blend_shapes.set_conditional(cond[i], s->format & (1 << i)); //enable conditional for format if (s->format & (1 << i)) { stride += sizes[i]; } } //copy all first float base_weight = 1.0; int mtc = s->blend_shapes.size(); if (s->mesh->blend_shape_mode == VS::BLEND_SHAPE_MODE_NORMALIZED) { for (int i = 0; i < mtc; i++) { base_weight -= p_weights[i]; } } shaders.blend_shapes.set_conditional(BlendShapeShaderGLES3::ENABLE_BLEND, false); //first pass does not blend shaders.blend_shapes.set_conditional(BlendShapeShaderGLES3::USE_2D_VERTEX, s->format & VS::ARRAY_FLAG_USE_2D_VERTICES); //use 2D vertices if needed shaders.blend_shapes.set_conditional(BlendShapeShaderGLES3::ENABLE_OCTAHEDRAL_COMPRESSION, s->format & VS::ARRAY_FLAG_USE_OCTAHEDRAL_COMPRESSION); //use octahedral normal compression shaders.blend_shapes.bind(); shaders.blend_shapes.set_uniform(BlendShapeShaderGLES3::BLEND_AMOUNT, base_weight); glEnable(GL_RASTERIZER_DISCARD); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, resources.transform_feedback_buffers[0]); glBeginTransformFeedback(GL_POINTS); glDrawArrays(GL_POINTS, 0, s->array_len); glEndTransformFeedback(); shaders.blend_shapes.set_conditional(BlendShapeShaderGLES3::ENABLE_BLEND, true); //first pass does not blend shaders.blend_shapes.bind(); for (int ti = 0; ti < mtc; ti++) { float weight = p_weights[ti]; if (Math::is_zero_approx(weight)) { //not bother with this one continue; } glBindVertexArray(s->blend_shapes[ti].array_id); glBindBuffer(GL_ARRAY_BUFFER, resources.transform_feedback_buffers[0]); glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, resources.transform_feedback_buffers[1]); shaders.blend_shapes.set_uniform(BlendShapeShaderGLES3::BLEND_AMOUNT, weight); int ofs = 0; for (int i = 0; i < VS::ARRAY_MAX - 1; i++) { if (s->format & (1 << i)) { glEnableVertexAttribArray(i + 8); switch (i) { case VS::ARRAY_VERTEX: { if (s->format & VS::ARRAY_FLAG_USE_2D_VERTICES) { glVertexAttribPointer(i + 8, 2, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(ofs)); ofs += 2 * 4; } else { glVertexAttribPointer(i + 8, 3, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(ofs)); ofs += 3 * 4; } } break; case VS::ARRAY_NORMAL: { glVertexAttribPointer(i + 8, 3, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(ofs)); ofs += 3 * 4; } break; case VS::ARRAY_TANGENT: { glVertexAttribPointer(i + 8, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(ofs)); ofs += 4 * 4; } break; case VS::ARRAY_COLOR: { glVertexAttribPointer(i + 8, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(ofs)); ofs += 4 * 4; } break; case VS::ARRAY_TEX_UV: { glVertexAttribPointer(i + 8, 2, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(ofs)); ofs += 2 * 4; } break; case VS::ARRAY_TEX_UV2: { glVertexAttribPointer(i + 8, 2, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(ofs)); ofs += 2 * 4; } break; case VS::ARRAY_BONES: { glVertexAttribIPointer(i + 8, 4, GL_UNSIGNED_INT, stride, CAST_INT_TO_UCHAR_PTR(ofs)); ofs += 4 * 4; } break; case VS::ARRAY_WEIGHTS: { glVertexAttribPointer(i + 8, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(ofs)); ofs += 4 * 4; } break; } } else { glDisableVertexAttribArray(i + 8); } } glBeginTransformFeedback(GL_POINTS); glDrawArrays(GL_POINTS, 0, s->array_len); glEndTransformFeedback(); SWAP(resources.transform_feedback_buffers[0], resources.transform_feedback_buffers[1]); } glDisable(GL_RASTERIZER_DISCARD); glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, 0); glBindVertexArray(resources.transform_feedback_array); glBindBuffer(GL_ARRAY_BUFFER, resources.transform_feedback_buffers[0]); int ofs = 0; for (int i = 0; i < VS::ARRAY_MAX - 1; i++) { if (s->format & (1 << i)) { glEnableVertexAttribArray(i); switch (i) { case VS::ARRAY_VERTEX: { if (s->format & VS::ARRAY_FLAG_USE_2D_VERTICES) { glVertexAttribPointer(i, 2, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(ofs)); ofs += 2 * 4; } else { glVertexAttribPointer(i, 3, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(ofs)); ofs += 3 * 4; } } break; case VS::ARRAY_NORMAL: { glVertexAttribPointer(i, 3, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(ofs)); ofs += 3 * 4; } break; case VS::ARRAY_TANGENT: { glVertexAttribPointer(i, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(ofs)); ofs += 4 * 4; } break; case VS::ARRAY_COLOR: { glVertexAttribPointer(i, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(ofs)); ofs += 4 * 4; } break; case VS::ARRAY_TEX_UV: { glVertexAttribPointer(i, 2, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(ofs)); ofs += 2 * 4; } break; case VS::ARRAY_TEX_UV2: { glVertexAttribPointer(i, 2, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(ofs)); ofs += 2 * 4; } break; case VS::ARRAY_BONES: { glVertexAttribIPointer(i, 4, GL_UNSIGNED_INT, stride, CAST_INT_TO_UCHAR_PTR(ofs)); ofs += 4 * 4; } break; case VS::ARRAY_WEIGHTS: { glVertexAttribPointer(i, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(ofs)); ofs += 4 * 4; } break; } } else { glDisableVertexAttribArray(i); } } if (s->index_array_len) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_id); } } /* MULTIMESH API */ RID RasterizerStorageGLES3::_multimesh_create() { MultiMesh *multimesh = memnew(MultiMesh); return multimesh_owner.make_rid(multimesh); } void RasterizerStorageGLES3::_multimesh_allocate(RID p_multimesh, int p_instances, VS::MultimeshTransformFormat p_transform_format, VS::MultimeshColorFormat p_color_format, VS::MultimeshCustomDataFormat p_data_format) { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_COND(!multimesh); if (multimesh->size == p_instances && multimesh->transform_format == p_transform_format && multimesh->color_format == p_color_format && multimesh->custom_data_format == p_data_format) { return; } if (multimesh->buffer) { glDeleteBuffers(1, &multimesh->buffer); multimesh->data.resize(0); multimesh->buffer = 0; } multimesh->size = p_instances; multimesh->transform_format = p_transform_format; multimesh->color_format = p_color_format; multimesh->custom_data_format = p_data_format; if (multimesh->size) { if (multimesh->transform_format == VS::MULTIMESH_TRANSFORM_2D) { multimesh->xform_floats = 8; } else { multimesh->xform_floats = 12; } if (multimesh->color_format == VS::MULTIMESH_COLOR_8BIT) { multimesh->color_floats = 1; } else if (multimesh->color_format == VS::MULTIMESH_COLOR_FLOAT) { multimesh->color_floats = 4; } else { multimesh->color_floats = 0; } if (multimesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_8BIT) { multimesh->custom_data_floats = 1; } else if (multimesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_FLOAT) { multimesh->custom_data_floats = 4; } else { multimesh->custom_data_floats = 0; } int format_floats = multimesh->color_floats + multimesh->xform_floats + multimesh->custom_data_floats; multimesh->data.resize(format_floats * p_instances); float *dataptr = multimesh->data.ptrw(); for (int i = 0; i < p_instances * format_floats; i += format_floats) { int color_from = 0; int custom_data_from = 0; if (multimesh->transform_format == VS::MULTIMESH_TRANSFORM_2D) { dataptr[i + 0] = 1.0; dataptr[i + 1] = 0.0; dataptr[i + 2] = 0.0; dataptr[i + 3] = 0.0; dataptr[i + 4] = 0.0; dataptr[i + 5] = 1.0; dataptr[i + 6] = 0.0; dataptr[i + 7] = 0.0; color_from = 8; custom_data_from = 8; } else { dataptr[i + 0] = 1.0; dataptr[i + 1] = 0.0; dataptr[i + 2] = 0.0; dataptr[i + 3] = 0.0; dataptr[i + 4] = 0.0; dataptr[i + 5] = 1.0; dataptr[i + 6] = 0.0; dataptr[i + 7] = 0.0; dataptr[i + 8] = 0.0; dataptr[i + 9] = 0.0; dataptr[i + 10] = 1.0; dataptr[i + 11] = 0.0; color_from = 12; custom_data_from = 12; } if (multimesh->color_format == VS::MULTIMESH_COLOR_NONE) { //none } else if (multimesh->color_format == VS::MULTIMESH_COLOR_8BIT) { union { uint32_t colu; float colf; } cu; cu.colu = 0xFFFFFFFF; dataptr[i + color_from + 0] = cu.colf; custom_data_from = color_from + 1; } else if (multimesh->color_format == VS::MULTIMESH_COLOR_FLOAT) { dataptr[i + color_from + 0] = 1.0; dataptr[i + color_from + 1] = 1.0; dataptr[i + color_from + 2] = 1.0; dataptr[i + color_from + 3] = 1.0; custom_data_from = color_from + 4; } if (multimesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_NONE) { //none } else if (multimesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_8BIT) { union { uint32_t colu; float colf; } cu; cu.colu = 0; dataptr[i + custom_data_from + 0] = cu.colf; } else if (multimesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_FLOAT) { dataptr[i + custom_data_from + 0] = 0.0; dataptr[i + custom_data_from + 1] = 0.0; dataptr[i + custom_data_from + 2] = 0.0; dataptr[i + custom_data_from + 3] = 0.0; } } glGenBuffers(1, &multimesh->buffer); glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer); glBufferData(GL_ARRAY_BUFFER, multimesh->data.size() * sizeof(float), nullptr, GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); } multimesh->dirty_data = true; multimesh->dirty_aabb = true; if (!multimesh->update_list.in_list()) { multimesh_update_list.add(&multimesh->update_list); } } int RasterizerStorageGLES3::_multimesh_get_instance_count(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_COND_V(!multimesh, 0); return multimesh->size; } void RasterizerStorageGLES3::_multimesh_set_mesh(RID p_multimesh, RID p_mesh) { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_COND(!multimesh); if (multimesh->mesh.is_valid()) { Mesh *mesh = mesh_owner.getornull(multimesh->mesh); if (mesh) { mesh->multimeshes.remove(&multimesh->mesh_list); } } multimesh->mesh = p_mesh; if (multimesh->mesh.is_valid()) { Mesh *mesh = mesh_owner.getornull(multimesh->mesh); if (mesh) { mesh->multimeshes.add(&multimesh->mesh_list); } } multimesh->dirty_aabb = true; if (!multimesh->update_list.in_list()) { multimesh_update_list.add(&multimesh->update_list); } } void RasterizerStorageGLES3::_multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform &p_transform) { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_COND(!multimesh); ERR_FAIL_INDEX(p_index, multimesh->size); ERR_FAIL_COND(multimesh->transform_format == VS::MULTIMESH_TRANSFORM_2D); int stride = multimesh->color_floats + multimesh->xform_floats + multimesh->custom_data_floats; float *dataptr = &multimesh->data.write[stride * p_index]; dataptr[0] = p_transform.basis.elements[0][0]; dataptr[1] = p_transform.basis.elements[0][1]; dataptr[2] = p_transform.basis.elements[0][2]; dataptr[3] = p_transform.origin.x; dataptr[4] = p_transform.basis.elements[1][0]; dataptr[5] = p_transform.basis.elements[1][1]; dataptr[6] = p_transform.basis.elements[1][2]; dataptr[7] = p_transform.origin.y; dataptr[8] = p_transform.basis.elements[2][0]; dataptr[9] = p_transform.basis.elements[2][1]; dataptr[10] = p_transform.basis.elements[2][2]; dataptr[11] = p_transform.origin.z; multimesh->dirty_data = true; multimesh->dirty_aabb = true; if (!multimesh->update_list.in_list()) { multimesh_update_list.add(&multimesh->update_list); } } void RasterizerStorageGLES3::_multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_COND(!multimesh); ERR_FAIL_INDEX(p_index, multimesh->size); ERR_FAIL_COND(multimesh->transform_format == VS::MULTIMESH_TRANSFORM_3D); int stride = multimesh->color_floats + multimesh->xform_floats + multimesh->custom_data_floats; float *dataptr = &multimesh->data.write[stride * p_index]; dataptr[0] = p_transform.elements[0][0]; dataptr[1] = p_transform.elements[1][0]; dataptr[2] = 0; dataptr[3] = p_transform.elements[2][0]; dataptr[4] = p_transform.elements[0][1]; dataptr[5] = p_transform.elements[1][1]; dataptr[6] = 0; dataptr[7] = p_transform.elements[2][1]; multimesh->dirty_data = true; multimesh->dirty_aabb = true; if (!multimesh->update_list.in_list()) { multimesh_update_list.add(&multimesh->update_list); } } void RasterizerStorageGLES3::_multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_COND(!multimesh); ERR_FAIL_INDEX(p_index, multimesh->size); ERR_FAIL_COND(multimesh->color_format == VS::MULTIMESH_COLOR_NONE); ERR_FAIL_INDEX(multimesh->color_format, VS::MULTIMESH_COLOR_MAX); int stride = multimesh->color_floats + multimesh->xform_floats + multimesh->custom_data_floats; float *dataptr = &multimesh->data.write[stride * p_index + multimesh->xform_floats]; if (multimesh->color_format == VS::MULTIMESH_COLOR_8BIT) { uint8_t *data8 = (uint8_t *)dataptr; data8[0] = CLAMP(p_color.r * 255.0, 0, 255); data8[1] = CLAMP(p_color.g * 255.0, 0, 255); data8[2] = CLAMP(p_color.b * 255.0, 0, 255); data8[3] = CLAMP(p_color.a * 255.0, 0, 255); } else if (multimesh->color_format == VS::MULTIMESH_COLOR_FLOAT) { dataptr[0] = p_color.r; dataptr[1] = p_color.g; dataptr[2] = p_color.b; dataptr[3] = p_color.a; } multimesh->dirty_data = true; multimesh->dirty_aabb = true; if (!multimesh->update_list.in_list()) { multimesh_update_list.add(&multimesh->update_list); } } void RasterizerStorageGLES3::_multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_custom_data) { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_COND(!multimesh); ERR_FAIL_INDEX(p_index, multimesh->size); ERR_FAIL_COND(multimesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_NONE); ERR_FAIL_INDEX(multimesh->custom_data_format, VS::MULTIMESH_CUSTOM_DATA_MAX); int stride = multimesh->color_floats + multimesh->xform_floats + multimesh->custom_data_floats; float *dataptr = &multimesh->data.write[stride * p_index + multimesh->xform_floats + multimesh->color_floats]; if (multimesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_8BIT) { uint8_t *data8 = (uint8_t *)dataptr; data8[0] = CLAMP(p_custom_data.r * 255.0, 0, 255); data8[1] = CLAMP(p_custom_data.g * 255.0, 0, 255); data8[2] = CLAMP(p_custom_data.b * 255.0, 0, 255); data8[3] = CLAMP(p_custom_data.a * 255.0, 0, 255); } else if (multimesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_FLOAT) { dataptr[0] = p_custom_data.r; dataptr[1] = p_custom_data.g; dataptr[2] = p_custom_data.b; dataptr[3] = p_custom_data.a; } multimesh->dirty_data = true; multimesh->dirty_aabb = true; if (!multimesh->update_list.in_list()) { multimesh_update_list.add(&multimesh->update_list); } } RID RasterizerStorageGLES3::_multimesh_get_mesh(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_COND_V(!multimesh, RID()); return multimesh->mesh; } Transform RasterizerStorageGLES3::_multimesh_instance_get_transform(RID p_multimesh, int p_index) const { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_COND_V(!multimesh, Transform()); ERR_FAIL_INDEX_V(p_index, multimesh->size, Transform()); ERR_FAIL_COND_V(multimesh->transform_format == VS::MULTIMESH_TRANSFORM_2D, Transform()); int stride = multimesh->color_floats + multimesh->xform_floats + multimesh->custom_data_floats; float *dataptr = &multimesh->data.write[stride * p_index]; Transform xform; xform.basis.elements[0][0] = dataptr[0]; xform.basis.elements[0][1] = dataptr[1]; xform.basis.elements[0][2] = dataptr[2]; xform.origin.x = dataptr[3]; xform.basis.elements[1][0] = dataptr[4]; xform.basis.elements[1][1] = dataptr[5]; xform.basis.elements[1][2] = dataptr[6]; xform.origin.y = dataptr[7]; xform.basis.elements[2][0] = dataptr[8]; xform.basis.elements[2][1] = dataptr[9]; xform.basis.elements[2][2] = dataptr[10]; xform.origin.z = dataptr[11]; return xform; } Transform2D RasterizerStorageGLES3::_multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_COND_V(!multimesh, Transform2D()); ERR_FAIL_INDEX_V(p_index, multimesh->size, Transform2D()); ERR_FAIL_COND_V(multimesh->transform_format == VS::MULTIMESH_TRANSFORM_3D, Transform2D()); int stride = multimesh->color_floats + multimesh->xform_floats + multimesh->custom_data_floats; float *dataptr = &multimesh->data.write[stride * p_index]; Transform2D xform; xform.elements[0][0] = dataptr[0]; xform.elements[1][0] = dataptr[1]; xform.elements[2][0] = dataptr[3]; xform.elements[0][1] = dataptr[4]; xform.elements[1][1] = dataptr[5]; xform.elements[2][1] = dataptr[7]; return xform; } Color RasterizerStorageGLES3::_multimesh_instance_get_color(RID p_multimesh, int p_index) const { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_COND_V(!multimesh, Color()); ERR_FAIL_INDEX_V(p_index, multimesh->size, Color()); ERR_FAIL_COND_V(multimesh->color_format == VS::MULTIMESH_COLOR_NONE, Color()); ERR_FAIL_INDEX_V(multimesh->color_format, VS::MULTIMESH_COLOR_MAX, Color()); int stride = multimesh->color_floats + multimesh->xform_floats + multimesh->custom_data_floats; float *dataptr = &multimesh->data.write[stride * p_index + multimesh->xform_floats]; if (multimesh->color_format == VS::MULTIMESH_COLOR_8BIT) { union { uint32_t colu; float colf; } cu; cu.colf = dataptr[0]; return Color::hex(BSWAP32(cu.colu)); } else if (multimesh->color_format == VS::MULTIMESH_COLOR_FLOAT) { Color c; c.r = dataptr[0]; c.g = dataptr[1]; c.b = dataptr[2]; c.a = dataptr[3]; return c; } return Color(); } Color RasterizerStorageGLES3::_multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_COND_V(!multimesh, Color()); ERR_FAIL_INDEX_V(p_index, multimesh->size, Color()); ERR_FAIL_COND_V(multimesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_NONE, Color()); ERR_FAIL_INDEX_V(multimesh->custom_data_format, VS::MULTIMESH_CUSTOM_DATA_MAX, Color()); int stride = multimesh->color_floats + multimesh->xform_floats + multimesh->custom_data_floats; float *dataptr = &multimesh->data.write[stride * p_index + multimesh->xform_floats + multimesh->color_floats]; if (multimesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_8BIT) { union { uint32_t colu; float colf; } cu; cu.colf = dataptr[0]; return Color::hex(BSWAP32(cu.colu)); } else if (multimesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_FLOAT) { Color c; c.r = dataptr[0]; c.g = dataptr[1]; c.b = dataptr[2]; c.a = dataptr[3]; return c; } return Color(); } void RasterizerStorageGLES3::_multimesh_set_as_bulk_array(RID p_multimesh, const PoolVector &p_array) { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_COND(!multimesh); ERR_FAIL_COND(!multimesh->data.ptr()); int dsize = multimesh->data.size(); ERR_FAIL_COND(dsize != p_array.size()); PoolVector::Read r = p_array.read(); memcpy(multimesh->data.ptrw(), r.ptr(), dsize * sizeof(float)); multimesh->dirty_data = true; multimesh->dirty_aabb = true; if (!multimesh->update_list.in_list()) { multimesh_update_list.add(&multimesh->update_list); } } void RasterizerStorageGLES3::_multimesh_set_visible_instances(RID p_multimesh, int p_visible) { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_COND(!multimesh); multimesh->visible_instances = p_visible; } int RasterizerStorageGLES3::_multimesh_get_visible_instances(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_COND_V(!multimesh, -1); return multimesh->visible_instances; } AABB RasterizerStorageGLES3::_multimesh_get_aabb(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_COND_V(!multimesh, AABB()); const_cast(this)->update_dirty_multimeshes(); //update pending AABBs return multimesh->aabb; } RasterizerStorage::MMInterpolator *RasterizerStorageGLES3::_multimesh_get_interpolator(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_COND_V_MSG(!multimesh, nullptr, "Multimesh not found: " + itos(p_multimesh.get_id())); return &multimesh->interpolator; } void RasterizerStorageGLES3::multimesh_attach_canvas_item(RID p_multimesh, RID p_canvas_item, bool p_attach) { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_NULL(multimesh); ERR_FAIL_COND(!p_canvas_item.is_valid()); if (p_attach) { int64_t found = multimesh->linked_canvas_items.find(p_canvas_item); if (found == -1) { multimesh->linked_canvas_items.push_back(p_canvas_item); } } else { int64_t found = multimesh->linked_canvas_items.find(p_canvas_item); if (found != -1) { multimesh->linked_canvas_items.remove_unordered(found); } } } void RasterizerStorageGLES3::update_dirty_multimeshes() { while (multimesh_update_list.first()) { MultiMesh *multimesh = multimesh_update_list.first()->self(); if (multimesh->size && multimesh->dirty_data) { glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer); uint32_t buffer_size = multimesh->data.size() * sizeof(float); // this could potentially have a project setting for API options as with 2d // if (config.should_orphan) { glBufferData(GL_ARRAY_BUFFER, buffer_size, multimesh->data.ptr(), GL_DYNAMIC_DRAW); // } else { // glBufferSubData(GL_ARRAY_BUFFER, 0, buffer_size, multimesh->data.ptr()); // } glBindBuffer(GL_ARRAY_BUFFER, 0); } if (multimesh->size && multimesh->dirty_aabb) { AABB mesh_aabb; if (multimesh->mesh.is_valid()) { mesh_aabb = mesh_get_aabb(multimesh->mesh, RID()); } else { mesh_aabb.size += Vector3(0.001, 0.001, 0.001); } int stride = multimesh->color_floats + multimesh->xform_floats + multimesh->custom_data_floats; int count = multimesh->data.size(); float *data = multimesh->data.ptrw(); AABB aabb; if (multimesh->transform_format == VS::MULTIMESH_TRANSFORM_2D) { for (int i = 0; i < count; i += stride) { float *dataptr = &data[i]; Transform xform; xform.basis[0][0] = dataptr[0]; xform.basis[0][1] = dataptr[1]; xform.origin[0] = dataptr[3]; xform.basis[1][0] = dataptr[4]; xform.basis[1][1] = dataptr[5]; xform.origin[1] = dataptr[7]; AABB laabb = xform.xform(mesh_aabb); if (i == 0) { aabb = laabb; } else { aabb.merge_with(laabb); } } } else { for (int i = 0; i < count; i += stride) { float *dataptr = &data[i]; Transform xform; xform.basis.elements[0][0] = dataptr[0]; xform.basis.elements[0][1] = dataptr[1]; xform.basis.elements[0][2] = dataptr[2]; xform.origin.x = dataptr[3]; xform.basis.elements[1][0] = dataptr[4]; xform.basis.elements[1][1] = dataptr[5]; xform.basis.elements[1][2] = dataptr[6]; xform.origin.y = dataptr[7]; xform.basis.elements[2][0] = dataptr[8]; xform.basis.elements[2][1] = dataptr[9]; xform.basis.elements[2][2] = dataptr[10]; xform.origin.z = dataptr[11]; AABB laabb = xform.xform(mesh_aabb); if (i == 0) { aabb = laabb; } else { aabb.merge_with(laabb); } } } multimesh->aabb = aabb; // Inform any linked canvas items that bounds have changed // (for hierarchical culling). int num_linked = multimesh->linked_canvas_items.size(); for (int n = 0; n < num_linked; n++) { const RID &rid = multimesh->linked_canvas_items[n]; VSG::canvas->_canvas_item_invalidate_local_bound(rid); } } multimesh->dirty_aabb = false; multimesh->dirty_data = false; multimesh->instance_change_notify(true, false); multimesh_update_list.remove(multimesh_update_list.first()); } } /* IMMEDIATE API */ RID RasterizerStorageGLES3::immediate_create() { Immediate *im = memnew(Immediate); return immediate_owner.make_rid(im); } void RasterizerStorageGLES3::immediate_begin(RID p_immediate, VS::PrimitiveType p_primitive, RID p_texture) { ERR_FAIL_INDEX(p_primitive, (int)VS::PRIMITIVE_MAX); Immediate *im = immediate_owner.get(p_immediate); ERR_FAIL_COND(!im); ERR_FAIL_COND(im->building); Immediate::Chunk ic; ic.texture = p_texture; ic.primitive = p_primitive; im->chunks.push_back(ic); im->mask = 0; im->building = true; } void RasterizerStorageGLES3::immediate_vertex(RID p_immediate, const Vector3 &p_vertex) { Immediate *im = immediate_owner.get(p_immediate); ERR_FAIL_COND(!im); ERR_FAIL_COND(!im->building); Immediate::Chunk *c = &im->chunks.back()->get(); if (c->vertices.empty() && im->chunks.size() == 1) { im->aabb.position = p_vertex; im->aabb.size = Vector3(); } else { im->aabb.expand_to(p_vertex); } if (im->mask & VS::ARRAY_FORMAT_NORMAL) { c->normals.push_back(chunk_normal); } if (im->mask & VS::ARRAY_FORMAT_TANGENT) { c->tangents.push_back(chunk_tangent); } if (im->mask & VS::ARRAY_FORMAT_COLOR) { c->colors.push_back(chunk_color); } if (im->mask & VS::ARRAY_FORMAT_TEX_UV) { c->uvs.push_back(chunk_uv); } if (im->mask & VS::ARRAY_FORMAT_TEX_UV2) { c->uvs2.push_back(chunk_uv2); } im->mask |= VS::ARRAY_FORMAT_VERTEX; c->vertices.push_back(p_vertex); } void RasterizerStorageGLES3::immediate_normal(RID p_immediate, const Vector3 &p_normal) { Immediate *im = immediate_owner.get(p_immediate); ERR_FAIL_COND(!im); ERR_FAIL_COND(!im->building); im->mask |= VS::ARRAY_FORMAT_NORMAL; chunk_normal = p_normal; } void RasterizerStorageGLES3::immediate_tangent(RID p_immediate, const Plane &p_tangent) { Immediate *im = immediate_owner.get(p_immediate); ERR_FAIL_COND(!im); ERR_FAIL_COND(!im->building); im->mask |= VS::ARRAY_FORMAT_TANGENT; chunk_tangent = p_tangent; } void RasterizerStorageGLES3::immediate_color(RID p_immediate, const Color &p_color) { Immediate *im = immediate_owner.get(p_immediate); ERR_FAIL_COND(!im); ERR_FAIL_COND(!im->building); im->mask |= VS::ARRAY_FORMAT_COLOR; chunk_color = p_color; } void RasterizerStorageGLES3::immediate_uv(RID p_immediate, const Vector2 &tex_uv) { Immediate *im = immediate_owner.get(p_immediate); ERR_FAIL_COND(!im); ERR_FAIL_COND(!im->building); im->mask |= VS::ARRAY_FORMAT_TEX_UV; chunk_uv = tex_uv; } void RasterizerStorageGLES3::immediate_uv2(RID p_immediate, const Vector2 &tex_uv) { Immediate *im = immediate_owner.get(p_immediate); ERR_FAIL_COND(!im); ERR_FAIL_COND(!im->building); im->mask |= VS::ARRAY_FORMAT_TEX_UV2; chunk_uv2 = tex_uv; } void RasterizerStorageGLES3::immediate_end(RID p_immediate) { Immediate *im = immediate_owner.get(p_immediate); ERR_FAIL_COND(!im); ERR_FAIL_COND(!im->building); im->building = false; im->instance_change_notify(true, false); } void RasterizerStorageGLES3::immediate_clear(RID p_immediate) { Immediate *im = immediate_owner.get(p_immediate); ERR_FAIL_COND(!im); ERR_FAIL_COND(im->building); im->chunks.clear(); im->instance_change_notify(true, false); } AABB RasterizerStorageGLES3::immediate_get_aabb(RID p_immediate) const { Immediate *im = immediate_owner.get(p_immediate); ERR_FAIL_COND_V(!im, AABB()); return im->aabb; } void RasterizerStorageGLES3::immediate_set_material(RID p_immediate, RID p_material) { Immediate *im = immediate_owner.get(p_immediate); ERR_FAIL_COND(!im); im->material = p_material; im->instance_change_notify(false, true); } RID RasterizerStorageGLES3::immediate_get_material(RID p_immediate) const { const Immediate *im = immediate_owner.get(p_immediate); ERR_FAIL_COND_V(!im, RID()); return im->material; } /* SKELETON API */ RID RasterizerStorageGLES3::skeleton_create() { Skeleton *skeleton = memnew(Skeleton); glGenTextures(1, &skeleton->texture); return skeleton_owner.make_rid(skeleton); } void RasterizerStorageGLES3::skeleton_allocate(RID p_skeleton, int p_bones, bool p_2d_skeleton) { Skeleton *skeleton = skeleton_owner.getornull(p_skeleton); ERR_FAIL_COND(!skeleton); ERR_FAIL_COND(p_bones < 0); if (skeleton->size == p_bones && skeleton->use_2d == p_2d_skeleton) { return; } skeleton->size = p_bones; skeleton->use_2d = p_2d_skeleton; int height = p_bones / 256; if (p_bones % 256) { height++; } gl_wrapper.gl_active_texture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, skeleton->texture); if (skeleton->use_2d) { skeleton->skel_texture.resize(256 * height * 2 * 4); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, 256, height * 2, 0, GL_RGBA, GL_FLOAT, nullptr); } else { skeleton->skel_texture.resize(256 * height * 3 * 4); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, 256, height * 3, 0, GL_RGBA, GL_FLOAT, nullptr); } glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); if (!skeleton->update_list.in_list()) { skeleton_update_list.add(&skeleton->update_list); } } int RasterizerStorageGLES3::skeleton_get_bone_count(RID p_skeleton) const { Skeleton *skeleton = skeleton_owner.getornull(p_skeleton); ERR_FAIL_COND_V(!skeleton, 0); return skeleton->size; } void RasterizerStorageGLES3::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform &p_transform) { Skeleton *skeleton = skeleton_owner.getornull(p_skeleton); ERR_FAIL_COND(!skeleton); ERR_FAIL_INDEX(p_bone, skeleton->size); ERR_FAIL_COND(skeleton->use_2d); float *texture = skeleton->skel_texture.ptrw(); int base_ofs = ((p_bone / 256) * 256) * 3 * 4 + (p_bone % 256) * 4; texture[base_ofs + 0] = p_transform.basis[0].x; texture[base_ofs + 1] = p_transform.basis[0].y; texture[base_ofs + 2] = p_transform.basis[0].z; texture[base_ofs + 3] = p_transform.origin.x; base_ofs += 256 * 4; texture[base_ofs + 0] = p_transform.basis[1].x; texture[base_ofs + 1] = p_transform.basis[1].y; texture[base_ofs + 2] = p_transform.basis[1].z; texture[base_ofs + 3] = p_transform.origin.y; base_ofs += 256 * 4; texture[base_ofs + 0] = p_transform.basis[2].x; texture[base_ofs + 1] = p_transform.basis[2].y; texture[base_ofs + 2] = p_transform.basis[2].z; texture[base_ofs + 3] = p_transform.origin.z; if (!skeleton->update_list.in_list()) { skeleton_update_list.add(&skeleton->update_list); } } Transform RasterizerStorageGLES3::skeleton_bone_get_transform(RID p_skeleton, int p_bone) const { Skeleton *skeleton = skeleton_owner.getornull(p_skeleton); ERR_FAIL_COND_V(!skeleton, Transform()); ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform()); ERR_FAIL_COND_V(skeleton->use_2d, Transform()); const float *texture = skeleton->skel_texture.ptr(); Transform ret; int base_ofs = ((p_bone / 256) * 256) * 3 * 4 + (p_bone % 256) * 4; ret.basis[0].x = texture[base_ofs + 0]; ret.basis[0].y = texture[base_ofs + 1]; ret.basis[0].z = texture[base_ofs + 2]; ret.origin.x = texture[base_ofs + 3]; base_ofs += 256 * 4; ret.basis[1].x = texture[base_ofs + 0]; ret.basis[1].y = texture[base_ofs + 1]; ret.basis[1].z = texture[base_ofs + 2]; ret.origin.y = texture[base_ofs + 3]; base_ofs += 256 * 4; ret.basis[2].x = texture[base_ofs + 0]; ret.basis[2].y = texture[base_ofs + 1]; ret.basis[2].z = texture[base_ofs + 2]; ret.origin.z = texture[base_ofs + 3]; return ret; } void RasterizerStorageGLES3::skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform) { Skeleton *skeleton = skeleton_owner.getornull(p_skeleton); ERR_FAIL_COND(!skeleton); ERR_FAIL_INDEX(p_bone, skeleton->size); ERR_FAIL_COND(!skeleton->use_2d); float *texture = skeleton->skel_texture.ptrw(); int base_ofs = ((p_bone / 256) * 256) * 2 * 4 + (p_bone % 256) * 4; texture[base_ofs + 0] = p_transform[0][0]; texture[base_ofs + 1] = p_transform[1][0]; texture[base_ofs + 2] = 0; texture[base_ofs + 3] = p_transform[2][0]; base_ofs += 256 * 4; texture[base_ofs + 0] = p_transform[0][1]; texture[base_ofs + 1] = p_transform[1][1]; texture[base_ofs + 2] = 0; texture[base_ofs + 3] = p_transform[2][1]; if (!skeleton->update_list.in_list()) { skeleton_update_list.add(&skeleton->update_list); } skeleton->revision++; } Transform2D RasterizerStorageGLES3::skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const { Skeleton *skeleton = skeleton_owner.getornull(p_skeleton); ERR_FAIL_COND_V(!skeleton, Transform2D()); ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform2D()); ERR_FAIL_COND_V(!skeleton->use_2d, Transform2D()); const float *texture = skeleton->skel_texture.ptr(); Transform2D ret; int base_ofs = ((p_bone / 256) * 256) * 2 * 4 + (p_bone % 256) * 4; ret[0][0] = texture[base_ofs + 0]; ret[1][0] = texture[base_ofs + 1]; ret[2][0] = texture[base_ofs + 3]; base_ofs += 256 * 4; ret[0][1] = texture[base_ofs + 0]; ret[1][1] = texture[base_ofs + 1]; ret[2][1] = texture[base_ofs + 3]; return ret; } void RasterizerStorageGLES3::skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform) { Skeleton *skeleton = skeleton_owner.getornull(p_skeleton); ERR_FAIL_COND(!skeleton->use_2d); skeleton->base_transform_2d = p_base_transform; } void RasterizerStorageGLES3::skeleton_attach_canvas_item(RID p_skeleton, RID p_canvas_item, bool p_attach) { Skeleton *skeleton = skeleton_owner.getornull(p_skeleton); ERR_FAIL_NULL(skeleton); ERR_FAIL_COND(!p_canvas_item.is_valid()); if (p_attach) { #ifdef DEV_ENABLED // skeleton_attach_canvas_item() is not bound, // and checks in canvas_item_attach_skeleton() should prevent this, // but there isn't much harm in a DEV_ENABLED check here. int64_t found = skeleton->linked_canvas_items.find(p_canvas_item); ERR_FAIL_COND(found != -1); #endif skeleton->linked_canvas_items.push_back(p_canvas_item); } else { int64_t found = skeleton->linked_canvas_items.find(p_canvas_item); ERR_FAIL_COND(found == -1); skeleton->linked_canvas_items.remove_unordered(found); } } uint32_t RasterizerStorageGLES3::skeleton_get_revision(RID p_skeleton) const { const Skeleton *skeleton = skeleton_owner.getornull(p_skeleton); ERR_FAIL_COND_V(!skeleton, 0); return skeleton->revision; } void RasterizerStorageGLES3::update_dirty_skeletons() { // 2D Skeletons always need to update the polygons so they // know the bounds have changed. // TODO : Could we have a separate list for 2D only? SelfList *ele = skeleton_update_list.first(); while (ele) { Skeleton *skeleton = ele->self(); int num_linked = skeleton->linked_canvas_items.size(); for (int n = 0; n < num_linked; n++) { const RID &rid = skeleton->linked_canvas_items[n]; VSG::canvas->_canvas_item_invalidate_local_bound(rid); } ele = ele->next(); } // TODO : Is this update necessary for 2D software skinning? gl_wrapper.gl_active_texture(GL_TEXTURE0); while (skeleton_update_list.first()) { Skeleton *skeleton = skeleton_update_list.first()->self(); if (skeleton->size) { int height = skeleton->size / 256; if (skeleton->size % 256) { height++; } glBindTexture(GL_TEXTURE_2D, skeleton->texture); glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 256, height * (skeleton->use_2d ? 2 : 3), GL_RGBA, GL_FLOAT, skeleton->skel_texture.ptr()); } for (Set::Element *E = skeleton->instances.front(); E; E = E->next()) { E->get()->base_changed(true, false); } skeleton_update_list.remove(skeleton_update_list.first()); } } /* Light API */ RID RasterizerStorageGLES3::light_create(VS::LightType p_type) { Light *light = memnew(Light); light->type = p_type; light->param[VS::LIGHT_PARAM_ENERGY] = 1.0; light->param[VS::LIGHT_PARAM_INDIRECT_ENERGY] = 1.0; light->param[VS::LIGHT_PARAM_SIZE] = 0.0; light->param[VS::LIGHT_PARAM_SPECULAR] = 0.5; light->param[VS::LIGHT_PARAM_RANGE] = 1.0; light->param[VS::LIGHT_PARAM_SPOT_ANGLE] = 45; light->param[VS::LIGHT_PARAM_CONTACT_SHADOW_SIZE] = 45; light->param[VS::LIGHT_PARAM_SHADOW_MAX_DISTANCE] = 0; light->param[VS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET] = 0.1; light->param[VS::LIGHT_PARAM_SHADOW_SPLIT_2_OFFSET] = 0.3; light->param[VS::LIGHT_PARAM_SHADOW_SPLIT_3_OFFSET] = 0.6; light->param[VS::LIGHT_PARAM_SHADOW_NORMAL_BIAS] = 0.1; light->param[VS::LIGHT_PARAM_SHADOW_BIAS_SPLIT_SCALE] = 0.1; light->color = Color(1, 1, 1, 1); light->shadow = false; light->negative = false; light->cull_mask = 0xFFFFFFFF; light->directional_shadow_mode = VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL; light->omni_shadow_mode = VS::LIGHT_OMNI_SHADOW_DUAL_PARABOLOID; light->omni_shadow_detail = VS::LIGHT_OMNI_SHADOW_DETAIL_VERTICAL; light->directional_blend_splits = false; light->directional_range_mode = VS::LIGHT_DIRECTIONAL_SHADOW_DEPTH_RANGE_STABLE; light->reverse_cull = false; light->bake_mode = VS::LIGHT_BAKE_INDIRECT; light->version = 0; return light_owner.make_rid(light); } void RasterizerStorageGLES3::light_set_color(RID p_light, const Color &p_color) { Light *light = light_owner.getornull(p_light); ERR_FAIL_COND(!light); light->color = p_color; } void RasterizerStorageGLES3::light_set_param(RID p_light, VS::LightParam p_param, float p_value) { Light *light = light_owner.getornull(p_light); ERR_FAIL_COND(!light); ERR_FAIL_INDEX(p_param, VS::LIGHT_PARAM_MAX); switch (p_param) { case VS::LIGHT_PARAM_RANGE: case VS::LIGHT_PARAM_SPOT_ANGLE: case VS::LIGHT_PARAM_SHADOW_MAX_DISTANCE: case VS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET: case VS::LIGHT_PARAM_SHADOW_SPLIT_2_OFFSET: case VS::LIGHT_PARAM_SHADOW_SPLIT_3_OFFSET: case VS::LIGHT_PARAM_SHADOW_NORMAL_BIAS: case VS::LIGHT_PARAM_SHADOW_BIAS: { light->version++; light->instance_change_notify(true, false); } break; default: { } } light->param[p_param] = p_value; } void RasterizerStorageGLES3::light_set_shadow(RID p_light, bool p_enabled) { Light *light = light_owner.getornull(p_light); ERR_FAIL_COND(!light); light->shadow = p_enabled; light->version++; light->instance_change_notify(true, false); } void RasterizerStorageGLES3::light_set_shadow_color(RID p_light, const Color &p_color) { Light *light = light_owner.getornull(p_light); ERR_FAIL_COND(!light); light->shadow_color = p_color; } void RasterizerStorageGLES3::light_set_projector(RID p_light, RID p_texture) { Light *light = light_owner.getornull(p_light); ERR_FAIL_COND(!light); light->projector = p_texture; } void RasterizerStorageGLES3::light_set_negative(RID p_light, bool p_enable) { Light *light = light_owner.getornull(p_light); ERR_FAIL_COND(!light); light->negative = p_enable; } void RasterizerStorageGLES3::light_set_cull_mask(RID p_light, uint32_t p_mask) { Light *light = light_owner.getornull(p_light); ERR_FAIL_COND(!light); light->cull_mask = p_mask; light->version++; light->instance_change_notify(true, false); } void RasterizerStorageGLES3::light_set_reverse_cull_face_mode(RID p_light, bool p_enabled) { Light *light = light_owner.getornull(p_light); ERR_FAIL_COND(!light); light->reverse_cull = p_enabled; light->version++; light->instance_change_notify(true, false); } void RasterizerStorageGLES3::light_set_use_gi(RID p_light, bool p_enabled) { WARN_DEPRECATED_MSG("'VisualServer.light_set_use_gi' is deprecated and will be removed in a future version. Use 'VisualServer.light_set_bake_mode' instead."); light_set_bake_mode(p_light, p_enabled ? VS::LightBakeMode::LIGHT_BAKE_INDIRECT : VS::LightBakeMode::LIGHT_BAKE_DISABLED); } void RasterizerStorageGLES3::light_set_bake_mode(RID p_light, VS::LightBakeMode p_bake_mode) { Light *light = light_owner.getornull(p_light); ERR_FAIL_COND(!light); light->bake_mode = p_bake_mode; light->version++; light->instance_change_notify(true, false); } void RasterizerStorageGLES3::light_omni_set_shadow_mode(RID p_light, VS::LightOmniShadowMode p_mode) { Light *light = light_owner.getornull(p_light); ERR_FAIL_COND(!light); light->omni_shadow_mode = p_mode; light->version++; light->instance_change_notify(true, false); } VS::LightOmniShadowMode RasterizerStorageGLES3::light_omni_get_shadow_mode(RID p_light) { const Light *light = light_owner.getornull(p_light); ERR_FAIL_COND_V(!light, VS::LIGHT_OMNI_SHADOW_CUBE); return light->omni_shadow_mode; } void RasterizerStorageGLES3::light_omni_set_shadow_detail(RID p_light, VS::LightOmniShadowDetail p_detail) { Light *light = light_owner.getornull(p_light); ERR_FAIL_COND(!light); light->omni_shadow_detail = p_detail; light->version++; light->instance_change_notify(true, false); } void RasterizerStorageGLES3::light_directional_set_shadow_mode(RID p_light, VS::LightDirectionalShadowMode p_mode) { Light *light = light_owner.getornull(p_light); ERR_FAIL_COND(!light); light->directional_shadow_mode = p_mode; light->version++; light->instance_change_notify(true, false); } void RasterizerStorageGLES3::light_directional_set_blend_splits(RID p_light, bool p_enable) { Light *light = light_owner.getornull(p_light); ERR_FAIL_COND(!light); light->directional_blend_splits = p_enable; light->version++; light->instance_change_notify(true, false); } bool RasterizerStorageGLES3::light_directional_get_blend_splits(RID p_light) const { const Light *light = light_owner.getornull(p_light); ERR_FAIL_COND_V(!light, false); return light->directional_blend_splits; } VS::LightDirectionalShadowMode RasterizerStorageGLES3::light_directional_get_shadow_mode(RID p_light) { const Light *light = light_owner.getornull(p_light); ERR_FAIL_COND_V(!light, VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL); return light->directional_shadow_mode; } void RasterizerStorageGLES3::light_directional_set_shadow_depth_range_mode(RID p_light, VS::LightDirectionalShadowDepthRangeMode p_range_mode) { Light *light = light_owner.getornull(p_light); ERR_FAIL_COND(!light); light->directional_range_mode = p_range_mode; } VS::LightDirectionalShadowDepthRangeMode RasterizerStorageGLES3::light_directional_get_shadow_depth_range_mode(RID p_light) const { const Light *light = light_owner.getornull(p_light); ERR_FAIL_COND_V(!light, VS::LIGHT_DIRECTIONAL_SHADOW_DEPTH_RANGE_STABLE); return light->directional_range_mode; } VS::LightType RasterizerStorageGLES3::light_get_type(RID p_light) const { const Light *light = light_owner.getornull(p_light); ERR_FAIL_COND_V(!light, VS::LIGHT_DIRECTIONAL); return light->type; } float RasterizerStorageGLES3::light_get_param(RID p_light, VS::LightParam p_param) { const Light *light = light_owner.getornull(p_light); ERR_FAIL_COND_V(!light, VS::LIGHT_DIRECTIONAL); return light->param[p_param]; } Color RasterizerStorageGLES3::light_get_color(RID p_light) { const Light *light = light_owner.getornull(p_light); ERR_FAIL_COND_V(!light, Color()); return light->color; } bool RasterizerStorageGLES3::light_get_use_gi(RID p_light) { return light_get_bake_mode(p_light) != VS::LightBakeMode::LIGHT_BAKE_DISABLED; } VS::LightBakeMode RasterizerStorageGLES3::light_get_bake_mode(RID p_light) { Light *light = light_owner.getornull(p_light); ERR_FAIL_COND_V(!light, VS::LightBakeMode::LIGHT_BAKE_DISABLED); return light->bake_mode; } bool RasterizerStorageGLES3::light_has_shadow(RID p_light) const { const Light *light = light_owner.getornull(p_light); ERR_FAIL_COND_V(!light, VS::LIGHT_DIRECTIONAL); return light->shadow; } uint64_t RasterizerStorageGLES3::light_get_version(RID p_light) const { const Light *light = light_owner.getornull(p_light); ERR_FAIL_COND_V(!light, 0); return light->version; } AABB RasterizerStorageGLES3::light_get_aabb(RID p_light) const { const Light *light = light_owner.getornull(p_light); ERR_FAIL_COND_V(!light, AABB()); switch (light->type) { case VS::LIGHT_SPOT: { float len = light->param[VS::LIGHT_PARAM_RANGE]; float size = Math::tan(Math::deg2rad(light->param[VS::LIGHT_PARAM_SPOT_ANGLE])) * len; return AABB(Vector3(-size, -size, -len), Vector3(size * 2, size * 2, len)); }; case VS::LIGHT_OMNI: { float r = light->param[VS::LIGHT_PARAM_RANGE]; return AABB(-Vector3(r, r, r), Vector3(r, r, r) * 2); }; case VS::LIGHT_DIRECTIONAL: { return AABB(); }; } ERR_FAIL_V(AABB()); } /* PROBE API */ RID RasterizerStorageGLES3::reflection_probe_create() { ReflectionProbe *reflection_probe = memnew(ReflectionProbe); reflection_probe->intensity = 1.0; reflection_probe->interior_ambient = Color(); reflection_probe->interior_ambient_energy = 1.0; reflection_probe->interior_ambient_probe_contrib = 0.0; reflection_probe->max_distance = 0; reflection_probe->extents = Vector3(1, 1, 1); reflection_probe->origin_offset = Vector3(0, 0, 0); reflection_probe->interior = false; reflection_probe->box_projection = false; reflection_probe->enable_shadows = false; reflection_probe->cull_mask = (1 << 20) - 1; reflection_probe->update_mode = VS::REFLECTION_PROBE_UPDATE_ONCE; return reflection_probe_owner.make_rid(reflection_probe); } void RasterizerStorageGLES3::reflection_probe_set_update_mode(RID p_probe, VS::ReflectionProbeUpdateMode p_mode) { ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND(!reflection_probe); reflection_probe->update_mode = p_mode; reflection_probe->instance_change_notify(true, false); } void RasterizerStorageGLES3::reflection_probe_set_intensity(RID p_probe, float p_intensity) { ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND(!reflection_probe); reflection_probe->intensity = p_intensity; } void RasterizerStorageGLES3::reflection_probe_set_interior_ambient(RID p_probe, const Color &p_ambient) { ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND(!reflection_probe); reflection_probe->interior_ambient = p_ambient; } void RasterizerStorageGLES3::reflection_probe_set_interior_ambient_energy(RID p_probe, float p_energy) { ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND(!reflection_probe); reflection_probe->interior_ambient_energy = p_energy; } void RasterizerStorageGLES3::reflection_probe_set_interior_ambient_probe_contribution(RID p_probe, float p_contrib) { ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND(!reflection_probe); reflection_probe->interior_ambient_probe_contrib = p_contrib; } void RasterizerStorageGLES3::reflection_probe_set_max_distance(RID p_probe, float p_distance) { ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND(!reflection_probe); reflection_probe->max_distance = p_distance; reflection_probe->instance_change_notify(true, false); } void RasterizerStorageGLES3::reflection_probe_set_extents(RID p_probe, const Vector3 &p_extents) { ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND(!reflection_probe); reflection_probe->extents = p_extents; reflection_probe->instance_change_notify(true, false); } void RasterizerStorageGLES3::reflection_probe_set_origin_offset(RID p_probe, const Vector3 &p_offset) { ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND(!reflection_probe); reflection_probe->origin_offset = p_offset; reflection_probe->instance_change_notify(true, false); } void RasterizerStorageGLES3::reflection_probe_set_as_interior(RID p_probe, bool p_enable) { ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND(!reflection_probe); reflection_probe->interior = p_enable; reflection_probe->instance_change_notify(true, false); } void RasterizerStorageGLES3::reflection_probe_set_enable_box_projection(RID p_probe, bool p_enable) { ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND(!reflection_probe); reflection_probe->box_projection = p_enable; } void RasterizerStorageGLES3::reflection_probe_set_enable_shadows(RID p_probe, bool p_enable) { ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND(!reflection_probe); reflection_probe->enable_shadows = p_enable; reflection_probe->instance_change_notify(true, false); } void RasterizerStorageGLES3::reflection_probe_set_cull_mask(RID p_probe, uint32_t p_layers) { ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND(!reflection_probe); reflection_probe->cull_mask = p_layers; reflection_probe->instance_change_notify(true, false); } void RasterizerStorageGLES3::reflection_probe_set_resolution(RID p_probe, int p_resolution) { } AABB RasterizerStorageGLES3::reflection_probe_get_aabb(RID p_probe) const { const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!reflection_probe, AABB()); AABB aabb; aabb.position = -reflection_probe->extents; aabb.size = reflection_probe->extents * 2.0; return aabb; } VS::ReflectionProbeUpdateMode RasterizerStorageGLES3::reflection_probe_get_update_mode(RID p_probe) const { const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!reflection_probe, VS::REFLECTION_PROBE_UPDATE_ALWAYS); return reflection_probe->update_mode; } uint32_t RasterizerStorageGLES3::reflection_probe_get_cull_mask(RID p_probe) const { const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!reflection_probe, 0); return reflection_probe->cull_mask; } Vector3 RasterizerStorageGLES3::reflection_probe_get_extents(RID p_probe) const { const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!reflection_probe, Vector3()); return reflection_probe->extents; } Vector3 RasterizerStorageGLES3::reflection_probe_get_origin_offset(RID p_probe) const { const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!reflection_probe, Vector3()); return reflection_probe->origin_offset; } bool RasterizerStorageGLES3::reflection_probe_renders_shadows(RID p_probe) const { const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!reflection_probe, false); return reflection_probe->enable_shadows; } float RasterizerStorageGLES3::reflection_probe_get_origin_max_distance(RID p_probe) const { const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!reflection_probe, 0); return reflection_probe->max_distance; } RID RasterizerStorageGLES3::gi_probe_create() { GIProbe *gip = memnew(GIProbe); gip->bounds = AABB(Vector3(), Vector3(1, 1, 1)); gip->dynamic_range = 1.0; gip->energy = 1.0; gip->propagation = 1.0; gip->bias = 0.4; gip->normal_bias = 0.4; gip->interior = false; gip->compress = false; gip->version = 1; gip->cell_size = 1.0; return gi_probe_owner.make_rid(gip); } void RasterizerStorageGLES3::gi_probe_set_bounds(RID p_probe, const AABB &p_bounds) { GIProbe *gip = gi_probe_owner.getornull(p_probe); ERR_FAIL_COND(!gip); gip->bounds = p_bounds; gip->version++; gip->instance_change_notify(true, false); } AABB RasterizerStorageGLES3::gi_probe_get_bounds(RID p_probe) const { const GIProbe *gip = gi_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!gip, AABB()); return gip->bounds; } void RasterizerStorageGLES3::gi_probe_set_cell_size(RID p_probe, float p_size) { GIProbe *gip = gi_probe_owner.getornull(p_probe); ERR_FAIL_COND(!gip); gip->cell_size = p_size; gip->version++; gip->instance_change_notify(true, false); } float RasterizerStorageGLES3::gi_probe_get_cell_size(RID p_probe) const { const GIProbe *gip = gi_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!gip, 0); return gip->cell_size; } void RasterizerStorageGLES3::gi_probe_set_to_cell_xform(RID p_probe, const Transform &p_xform) { GIProbe *gip = gi_probe_owner.getornull(p_probe); ERR_FAIL_COND(!gip); gip->to_cell = p_xform; } Transform RasterizerStorageGLES3::gi_probe_get_to_cell_xform(RID p_probe) const { const GIProbe *gip = gi_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!gip, Transform()); return gip->to_cell; } void RasterizerStorageGLES3::gi_probe_set_dynamic_data(RID p_probe, const PoolVector &p_data) { GIProbe *gip = gi_probe_owner.getornull(p_probe); ERR_FAIL_COND(!gip); gip->dynamic_data = p_data; gip->version++; gip->instance_change_notify(true, false); } PoolVector RasterizerStorageGLES3::gi_probe_get_dynamic_data(RID p_probe) const { const GIProbe *gip = gi_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!gip, PoolVector()); return gip->dynamic_data; } void RasterizerStorageGLES3::gi_probe_set_dynamic_range(RID p_probe, int p_range) { GIProbe *gip = gi_probe_owner.getornull(p_probe); ERR_FAIL_COND(!gip); gip->dynamic_range = p_range; } int RasterizerStorageGLES3::gi_probe_get_dynamic_range(RID p_probe) const { const GIProbe *gip = gi_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!gip, 0); return gip->dynamic_range; } void RasterizerStorageGLES3::gi_probe_set_energy(RID p_probe, float p_range) { GIProbe *gip = gi_probe_owner.getornull(p_probe); ERR_FAIL_COND(!gip); gip->energy = p_range; } void RasterizerStorageGLES3::gi_probe_set_bias(RID p_probe, float p_range) { GIProbe *gip = gi_probe_owner.getornull(p_probe); ERR_FAIL_COND(!gip); gip->bias = p_range; } void RasterizerStorageGLES3::gi_probe_set_normal_bias(RID p_probe, float p_range) { GIProbe *gip = gi_probe_owner.getornull(p_probe); ERR_FAIL_COND(!gip); gip->normal_bias = p_range; } void RasterizerStorageGLES3::gi_probe_set_propagation(RID p_probe, float p_range) { GIProbe *gip = gi_probe_owner.getornull(p_probe); ERR_FAIL_COND(!gip); gip->propagation = p_range; } void RasterizerStorageGLES3::gi_probe_set_interior(RID p_probe, bool p_enable) { GIProbe *gip = gi_probe_owner.getornull(p_probe); ERR_FAIL_COND(!gip); gip->interior = p_enable; } bool RasterizerStorageGLES3::gi_probe_is_interior(RID p_probe) const { const GIProbe *gip = gi_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!gip, false); return gip->interior; } void RasterizerStorageGLES3::gi_probe_set_compress(RID p_probe, bool p_enable) { if (p_enable) { WARN_DEPRECATED_MSG("GIProbe's Compress property has been deprecated due to known bugs and will be removed in Godot 4.0."); } GIProbe *gip = gi_probe_owner.getornull(p_probe); ERR_FAIL_COND(!gip); gip->compress = p_enable; } bool RasterizerStorageGLES3::gi_probe_is_compressed(RID p_probe) const { const GIProbe *gip = gi_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!gip, false); return gip->compress; } float RasterizerStorageGLES3::gi_probe_get_energy(RID p_probe) const { const GIProbe *gip = gi_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!gip, 0); return gip->energy; } float RasterizerStorageGLES3::gi_probe_get_bias(RID p_probe) const { const GIProbe *gip = gi_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!gip, 0); return gip->bias; } float RasterizerStorageGLES3::gi_probe_get_normal_bias(RID p_probe) const { const GIProbe *gip = gi_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!gip, 0); return gip->normal_bias; } float RasterizerStorageGLES3::gi_probe_get_propagation(RID p_probe) const { const GIProbe *gip = gi_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!gip, 0); return gip->propagation; } uint32_t RasterizerStorageGLES3::gi_probe_get_version(RID p_probe) { const GIProbe *gip = gi_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!gip, 0); return gip->version; } RID RasterizerStorageGLES3::gi_probe_dynamic_data_create(int p_width, int p_height, int p_depth, GIProbeCompression p_compression) { GIProbeData *gipd = memnew(GIProbeData); gipd->width = p_width; gipd->height = p_height; gipd->depth = p_depth; gipd->compression = GI_PROBE_UNCOMPRESSED; gl_wrapper.gl_active_texture(GL_TEXTURE0); glGenTextures(1, &gipd->tex_id); glBindTexture(GL_TEXTURE_3D, gipd->tex_id); int level = 0; int min_size = 1; if (gipd->compression == GI_PROBE_S3TC) { min_size = 4; } while (true) { glTexImage3D(GL_TEXTURE_3D, level, GL_RGBA8, p_width, p_height, p_depth, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr); if (p_width <= min_size || p_height <= min_size || p_depth <= min_size) { break; } p_width >>= 1; p_height >>= 1; p_depth >>= 1; level++; } glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_BASE_LEVEL, 0); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAX_LEVEL, level); gipd->levels = level + 1; return gi_probe_data_owner.make_rid(gipd); } void RasterizerStorageGLES3::gi_probe_dynamic_data_update(RID p_gi_probe_data, int p_depth_slice, int p_slice_count, int p_mipmap, const void *p_data) { GIProbeData *gipd = gi_probe_data_owner.getornull(p_gi_probe_data); ERR_FAIL_COND(!gipd); /* Vector data; data.resize((gipd->width>>p_mipmap)*(gipd->height>>p_mipmap)*(gipd->depth>>p_mipmap)*4); for(int i=0;i<(gipd->width>>p_mipmap);i++) { for(int j=0;j<(gipd->height>>p_mipmap);j++) { for(int k=0;k<(gipd->depth>>p_mipmap);k++) { int ofs = (k*(gipd->height>>p_mipmap)*(gipd->width>>p_mipmap)) + j *(gipd->width>>p_mipmap) + i; ofs*=4; data[ofs+0]=i*0xFF/(gipd->width>>p_mipmap); data[ofs+1]=j*0xFF/(gipd->height>>p_mipmap); data[ofs+2]=k*0xFF/(gipd->depth>>p_mipmap); data[ofs+3]=0xFF; } } } */ gl_wrapper.gl_active_texture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_3D, gipd->tex_id); glTexSubImage3D(GL_TEXTURE_3D, p_mipmap, 0, 0, p_depth_slice, gipd->width >> p_mipmap, gipd->height >> p_mipmap, p_slice_count, GL_RGBA, GL_UNSIGNED_BYTE, p_data); //glTexImage3D(GL_TEXTURE_3D,p_mipmap,GL_RGBA8,gipd->width>>p_mipmap,gipd->height>>p_mipmap,gipd->depth>>p_mipmap,0,GL_RGBA,GL_UNSIGNED_BYTE,p_data); //glTexImage3D(GL_TEXTURE_3D,p_mipmap,GL_RGBA8,gipd->width>>p_mipmap,gipd->height>>p_mipmap,gipd->depth>>p_mipmap,0,GL_RGBA,GL_UNSIGNED_BYTE,data.ptr()); } ///////////////////////////// RID RasterizerStorageGLES3::lightmap_capture_create() { LightmapCapture *capture = memnew(LightmapCapture); return lightmap_capture_data_owner.make_rid(capture); } void RasterizerStorageGLES3::lightmap_capture_set_bounds(RID p_capture, const AABB &p_bounds) { LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture); ERR_FAIL_COND(!capture); capture->bounds = p_bounds; capture->instance_change_notify(true, false); } AABB RasterizerStorageGLES3::lightmap_capture_get_bounds(RID p_capture) const { const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture); ERR_FAIL_COND_V(!capture, AABB()); return capture->bounds; } void RasterizerStorageGLES3::lightmap_capture_set_octree(RID p_capture, const PoolVector &p_octree) { LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture); ERR_FAIL_COND(!capture); ERR_FAIL_COND(p_octree.size() == 0 || (p_octree.size() % sizeof(LightmapCaptureOctree)) != 0); capture->octree.resize(p_octree.size() / sizeof(LightmapCaptureOctree)); if (p_octree.size()) { PoolVector::Write w = capture->octree.write(); PoolVector::Read r = p_octree.read(); memcpy(w.ptr(), r.ptr(), p_octree.size()); } capture->instance_change_notify(true, false); } PoolVector RasterizerStorageGLES3::lightmap_capture_get_octree(RID p_capture) const { const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture); ERR_FAIL_COND_V(!capture, PoolVector()); if (capture->octree.size() == 0) { return PoolVector(); } PoolVector ret; ret.resize(capture->octree.size() * sizeof(LightmapCaptureOctree)); { PoolVector::Read r = capture->octree.read(); PoolVector::Write w = ret.write(); memcpy(w.ptr(), r.ptr(), ret.size()); } return ret; } void RasterizerStorageGLES3::lightmap_capture_set_octree_cell_transform(RID p_capture, const Transform &p_xform) { LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture); ERR_FAIL_COND(!capture); capture->cell_xform = p_xform; } Transform RasterizerStorageGLES3::lightmap_capture_get_octree_cell_transform(RID p_capture) const { const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture); ERR_FAIL_COND_V(!capture, Transform()); return capture->cell_xform; } void RasterizerStorageGLES3::lightmap_capture_set_octree_cell_subdiv(RID p_capture, int p_subdiv) { LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture); ERR_FAIL_COND(!capture); capture->cell_subdiv = p_subdiv; } int RasterizerStorageGLES3::lightmap_capture_get_octree_cell_subdiv(RID p_capture) const { const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture); ERR_FAIL_COND_V(!capture, 0); return capture->cell_subdiv; } void RasterizerStorageGLES3::lightmap_capture_set_energy(RID p_capture, float p_energy) { LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture); ERR_FAIL_COND(!capture); capture->energy = p_energy; if (!capture->update_list.in_list()) { capture_update_list.add(&capture->update_list); } } float RasterizerStorageGLES3::lightmap_capture_get_energy(RID p_capture) const { const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture); ERR_FAIL_COND_V(!capture, 0); return capture->energy; } void RasterizerStorageGLES3::lightmap_capture_set_interior(RID p_capture, bool p_interior) { LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture); ERR_FAIL_COND(!capture); capture->interior = p_interior; if (!capture->update_list.in_list()) { capture_update_list.add(&capture->update_list); } } bool RasterizerStorageGLES3::lightmap_capture_is_interior(RID p_capture) const { const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture); ERR_FAIL_COND_V(!capture, false); return capture->interior; } const PoolVector *RasterizerStorageGLES3::lightmap_capture_get_octree_ptr(RID p_capture) const { const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture); ERR_FAIL_COND_V(!capture, nullptr); return &capture->octree; } void RasterizerStorageGLES3::update_dirty_captures() { while (capture_update_list.first()) { LightmapCapture *capture = capture_update_list.first()->self(); capture->instance_change_notify(false, true); capture_update_list.remove(capture_update_list.first()); } } /////// RID RasterizerStorageGLES3::particles_create() { Particles *particles = memnew(Particles); return particles_owner.make_rid(particles); } void RasterizerStorageGLES3::particles_set_emitting(RID p_particles, bool p_emitting) { Particles *particles = particles_owner.getornull(p_particles); ERR_FAIL_COND(!particles); particles->emitting = p_emitting; } bool RasterizerStorageGLES3::particles_get_emitting(RID p_particles) { Particles *particles = particles_owner.getornull(p_particles); ERR_FAIL_COND_V(!particles, false); return particles->emitting; } void RasterizerStorageGLES3::particles_set_amount(RID p_particles, int p_amount) { Particles *particles = particles_owner.getornull(p_particles); ERR_FAIL_COND(!particles); particles->amount = p_amount; int floats = p_amount * 24; float *data = memnew_arr(float, floats); for (int i = 0; i < floats; i++) { data[i] = 0; } for (int i = 0; i < 2; i++) { glBindVertexArray(particles->particle_vaos[i]); glBindBuffer(GL_ARRAY_BUFFER, particles->particle_buffers[i]); glBufferData(GL_ARRAY_BUFFER, floats * sizeof(float), data, GL_STATIC_DRAW); for (int j = 0; j < 6; j++) { glEnableVertexAttribArray(j); glVertexAttribPointer(j, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 4 * 6, CAST_INT_TO_UCHAR_PTR(j * 16)); } } if (particles->histories_enabled) { for (int i = 0; i < 2; i++) { glBindVertexArray(particles->particle_vao_histories[i]); glBindBuffer(GL_ARRAY_BUFFER, particles->particle_buffer_histories[i]); glBufferData(GL_ARRAY_BUFFER, floats * sizeof(float), data, GL_DYNAMIC_COPY); for (int j = 0; j < 6; j++) { glEnableVertexAttribArray(j); glVertexAttribPointer(j, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 4 * 6, CAST_INT_TO_UCHAR_PTR(j * 16)); } particles->particle_valid_histories[i] = false; } } glBindVertexArray(0); particles->prev_ticks = 0; particles->phase = 0; particles->prev_phase = 0; particles->clear = true; memdelete_arr(data); } void RasterizerStorageGLES3::particles_set_lifetime(RID p_particles, float p_lifetime) { Particles *particles = particles_owner.getornull(p_particles); ERR_FAIL_COND(!particles); particles->lifetime = p_lifetime; } void RasterizerStorageGLES3::particles_set_one_shot(RID p_particles, bool p_one_shot) { Particles *particles = particles_owner.getornull(p_particles); ERR_FAIL_COND(!particles); particles->one_shot = p_one_shot; } void RasterizerStorageGLES3::particles_set_pre_process_time(RID p_particles, float p_time) { Particles *particles = particles_owner.getornull(p_particles); ERR_FAIL_COND(!particles); particles->pre_process_time = p_time; } void RasterizerStorageGLES3::particles_set_explosiveness_ratio(RID p_particles, float p_ratio) { Particles *particles = particles_owner.getornull(p_particles); ERR_FAIL_COND(!particles); particles->explosiveness = p_ratio; } void RasterizerStorageGLES3::particles_set_randomness_ratio(RID p_particles, float p_ratio) { Particles *particles = particles_owner.getornull(p_particles); ERR_FAIL_COND(!particles); particles->randomness = p_ratio; } void RasterizerStorageGLES3::_particles_update_histories(Particles *particles) { bool needs_histories = particles->draw_order == VS::PARTICLES_DRAW_ORDER_VIEW_DEPTH; if (needs_histories == particles->histories_enabled) { return; } particles->histories_enabled = needs_histories; int floats = particles->amount * 24; if (!needs_histories) { glDeleteBuffers(2, particles->particle_buffer_histories); glDeleteVertexArrays(2, particles->particle_vao_histories); } else { glGenBuffers(2, particles->particle_buffer_histories); glGenVertexArrays(2, particles->particle_vao_histories); for (int i = 0; i < 2; i++) { glBindVertexArray(particles->particle_vao_histories[i]); glBindBuffer(GL_ARRAY_BUFFER, particles->particle_buffer_histories[i]); glBufferData(GL_ARRAY_BUFFER, floats * sizeof(float), nullptr, GL_DYNAMIC_COPY); for (int j = 0; j < 6; j++) { glEnableVertexAttribArray(j); glVertexAttribPointer(j, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 4 * 6, CAST_INT_TO_UCHAR_PTR(j * 16)); } particles->particle_valid_histories[i] = false; } } particles->clear = true; } void RasterizerStorageGLES3::particles_set_custom_aabb(RID p_particles, const AABB &p_aabb) { Particles *particles = particles_owner.getornull(p_particles); ERR_FAIL_COND(!particles); particles->custom_aabb = p_aabb; _particles_update_histories(particles); particles->instance_change_notify(true, false); } void RasterizerStorageGLES3::particles_set_speed_scale(RID p_particles, float p_scale) { Particles *particles = particles_owner.getornull(p_particles); ERR_FAIL_COND(!particles); particles->speed_scale = p_scale; } void RasterizerStorageGLES3::particles_set_use_local_coordinates(RID p_particles, bool p_enable) { Particles *particles = particles_owner.getornull(p_particles); ERR_FAIL_COND(!particles); particles->use_local_coords = p_enable; } void RasterizerStorageGLES3::particles_set_fixed_fps(RID p_particles, int p_fps) { Particles *particles = particles_owner.getornull(p_particles); ERR_FAIL_COND(!particles); particles->fixed_fps = p_fps; } void RasterizerStorageGLES3::particles_set_fractional_delta(RID p_particles, bool p_enable) { Particles *particles = particles_owner.getornull(p_particles); ERR_FAIL_COND(!particles); particles->fractional_delta = p_enable; } void RasterizerStorageGLES3::particles_set_process_material(RID p_particles, RID p_material) { Particles *particles = particles_owner.getornull(p_particles); ERR_FAIL_COND(!particles); particles->process_material = p_material; } void RasterizerStorageGLES3::particles_set_draw_order(RID p_particles, VS::ParticlesDrawOrder p_order) { Particles *particles = particles_owner.getornull(p_particles); ERR_FAIL_COND(!particles); particles->draw_order = p_order; _particles_update_histories(particles); } void RasterizerStorageGLES3::particles_set_draw_passes(RID p_particles, int p_passes) { Particles *particles = particles_owner.getornull(p_particles); ERR_FAIL_COND(!particles); particles->draw_passes.resize(p_passes); } void RasterizerStorageGLES3::particles_set_draw_pass_mesh(RID p_particles, int p_pass, RID p_mesh) { Particles *particles = particles_owner.getornull(p_particles); ERR_FAIL_COND(!particles); ERR_FAIL_INDEX(p_pass, particles->draw_passes.size()); particles->draw_passes.write[p_pass] = p_mesh; } void RasterizerStorageGLES3::particles_restart(RID p_particles) { Particles *particles = particles_owner.getornull(p_particles); ERR_FAIL_COND(!particles); particles->restart_request = true; } void RasterizerStorageGLES3::particles_request_process(RID p_particles) { Particles *particles = particles_owner.getornull(p_particles); ERR_FAIL_COND(!particles); if (!particles->particle_element.in_list()) { particle_update_list.add(&particles->particle_element); } } AABB RasterizerStorageGLES3::particles_get_current_aabb(RID p_particles) { const Particles *particles = particles_owner.getornull(p_particles); ERR_FAIL_COND_V(!particles, AABB()); const float *data; glBindBuffer(GL_ARRAY_BUFFER, particles->particle_buffers[0]); #if defined(GLES_OVER_GL) || defined(__EMSCRIPTEN__) PoolVector vector; vector.resize(particles->amount * 16 * 6); { PoolVector::Write w = vector.write(); glGetBufferSubData(GL_ARRAY_BUFFER, 0, particles->amount * 16 * 6, w.ptr()); } PoolVector::Read r = vector.read(); data = reinterpret_cast(r.ptr()); #else data = (float *)glMapBufferRange(GL_ARRAY_BUFFER, 0, particles->amount * 16 * 6, GL_MAP_READ_BIT); #endif AABB aabb; Transform inv = particles->emission_transform.affine_inverse(); for (int i = 0; i < particles->amount; i++) { int ofs = i * 24; Vector3 pos = Vector3(data[ofs + 15], data[ofs + 19], data[ofs + 23]); if (!particles->use_local_coords) { pos = inv.xform(pos); } if (i == 0) { aabb.position = pos; } else { aabb.expand_to(pos); } } #if defined(GLES_OVER_GL) || defined(__EMSCRIPTEN__) r.release(); vector = PoolVector(); #else glUnmapBuffer(GL_ARRAY_BUFFER); #endif glBindBuffer(GL_ARRAY_BUFFER, 0); float longest_axis = 0; for (int i = 0; i < particles->draw_passes.size(); i++) { if (particles->draw_passes[i].is_valid()) { AABB maabb = mesh_get_aabb(particles->draw_passes[i], RID()); longest_axis = MAX(maabb.get_longest_axis_size(), longest_axis); } } aabb.grow_by(longest_axis); return aabb; } AABB RasterizerStorageGLES3::particles_get_aabb(RID p_particles) const { const Particles *particles = particles_owner.getornull(p_particles); ERR_FAIL_COND_V(!particles, AABB()); return particles->custom_aabb; } void RasterizerStorageGLES3::particles_set_emission_transform(RID p_particles, const Transform &p_transform) { Particles *particles = particles_owner.getornull(p_particles); ERR_FAIL_COND(!particles); particles->emission_transform = p_transform; } int RasterizerStorageGLES3::particles_get_draw_passes(RID p_particles) const { const Particles *particles = particles_owner.getornull(p_particles); ERR_FAIL_COND_V(!particles, 0); return particles->draw_passes.size(); } RID RasterizerStorageGLES3::particles_get_draw_pass_mesh(RID p_particles, int p_pass) const { const Particles *particles = particles_owner.getornull(p_particles); ERR_FAIL_COND_V(!particles, RID()); ERR_FAIL_INDEX_V(p_pass, particles->draw_passes.size(), RID()); return particles->draw_passes[p_pass]; } void RasterizerStorageGLES3::_particles_process(Particles *p_particles, float p_delta) { float new_phase = Math::fmod((float)p_particles->phase + (p_delta / p_particles->lifetime) * p_particles->speed_scale, (float)1.0); if (p_particles->clear) { p_particles->cycle_number = 0; p_particles->random_seed = Math::rand(); } else if (new_phase < p_particles->phase) { if (p_particles->one_shot) { p_particles->emitting = false; shaders.particles.set_uniform(ParticlesShaderGLES3::EMITTING, false); } p_particles->cycle_number++; } shaders.particles.set_uniform(ParticlesShaderGLES3::SYSTEM_PHASE, new_phase); shaders.particles.set_uniform(ParticlesShaderGLES3::PREV_SYSTEM_PHASE, p_particles->phase); p_particles->phase = new_phase; shaders.particles.set_uniform(ParticlesShaderGLES3::DELTA, p_delta * p_particles->speed_scale); shaders.particles.set_uniform(ParticlesShaderGLES3::CLEAR, p_particles->clear); glUniform1ui(shaders.particles.get_uniform_location(ParticlesShaderGLES3::RANDOM_SEED), p_particles->random_seed); if (p_particles->use_local_coords) { shaders.particles.set_uniform(ParticlesShaderGLES3::EMISSION_TRANSFORM, Transform()); } else { shaders.particles.set_uniform(ParticlesShaderGLES3::EMISSION_TRANSFORM, p_particles->emission_transform); } glUniform1ui(shaders.particles.get_uniform(ParticlesShaderGLES3::CYCLE), p_particles->cycle_number); p_particles->clear = false; glBindVertexArray(p_particles->particle_vaos[0]); glBindBuffer(GL_ARRAY_BUFFER, 0); // ensure this is unbound per WebGL2 spec glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, p_particles->particle_buffers[1]); // GLint size = 0; // glGetBufferParameteriv(GL_ARRAY_BUFFER, GL_BUFFER_SIZE, &size); glBeginTransformFeedback(GL_POINTS); glDrawArrays(GL_POINTS, 0, p_particles->amount); glEndTransformFeedback(); SWAP(p_particles->particle_buffers[0], p_particles->particle_buffers[1]); SWAP(p_particles->particle_vaos[0], p_particles->particle_vaos[1]); glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, 0); glBindVertexArray(0); /* //debug particles :D glBindBuffer(GL_ARRAY_BUFFER, p_particles->particle_buffers[0]); float *data = (float *)glMapBufferRange(GL_ARRAY_BUFFER, 0, p_particles->amount * 16 * 6, GL_MAP_READ_BIT); for (int i = 0; i < p_particles->amount; i++) { int ofs = i * 24; print_line(itos(i) + ":"); print_line("\tColor: " + Color(data[ofs + 0], data[ofs + 1], data[ofs + 2], data[ofs + 3])); print_line("\tVelocity: " + Vector3(data[ofs + 4], data[ofs + 5], data[ofs + 6])); print_line("\tActive: " + itos(data[ofs + 7])); print_line("\tCustom: " + Color(data[ofs + 8], data[ofs + 9], data[ofs + 10], data[ofs + 11])); print_line("\tXF X: " + Color(data[ofs + 12], data[ofs + 13], data[ofs + 14], data[ofs + 15])); print_line("\tXF Y: " + Color(data[ofs + 16], data[ofs + 17], data[ofs + 18], data[ofs + 19])); print_line("\tXF Z: " + Color(data[ofs + 20], data[ofs + 21], data[ofs + 22], data[ofs + 23])); } glUnmapBuffer(GL_ARRAY_BUFFER); glBindBuffer(GL_ARRAY_BUFFER, 0); //*/ } void RasterizerStorageGLES3::update_particles() { glEnable(GL_RASTERIZER_DISCARD); while (particle_update_list.first()) { //use transform feedback to process particles Particles *particles = particle_update_list.first()->self(); if (particles->restart_request) { particles->prev_ticks = 0; particles->phase = 0; particles->prev_phase = 0; particles->clear = true; particles->particle_valid_histories[0] = false; particles->particle_valid_histories[1] = false; particles->restart_request = false; } if (particles->inactive && !particles->emitting) { particle_update_list.remove(particle_update_list.first()); continue; } if (particles->emitting) { if (particles->inactive) { //restart system from scratch particles->prev_ticks = 0; particles->phase = 0; particles->prev_phase = 0; particles->clear = true; particles->particle_valid_histories[0] = false; particles->particle_valid_histories[1] = false; } particles->inactive = false; particles->inactive_time = 0; } else { particles->inactive_time += particles->speed_scale * frame.delta; if (particles->inactive_time > particles->lifetime * 1.2) { particles->inactive = true; particle_update_list.remove(particle_update_list.first()); continue; } } Material *material = material_owner.getornull(particles->process_material); if (!material || !material->shader || material->shader->mode != VS::SHADER_PARTICLES) { shaders.particles.set_custom_shader(0); } else { shaders.particles.set_custom_shader(material->shader->custom_code_id); if (material->ubo_id) { glBindBufferBase(GL_UNIFORM_BUFFER, 0, material->ubo_id); } int tc = material->textures.size(); RID *textures = material->textures.ptrw(); ShaderLanguage::ShaderNode::Uniform::Hint *texture_hints = material->shader->texture_hints.ptrw(); for (int i = 0; i < tc; i++) { gl_wrapper.gl_active_texture(GL_TEXTURE0 + i); GLenum target; GLuint tex; RasterizerStorageGLES3::Texture *t = texture_owner.getornull(textures[i]); if (!t) { //check hints target = GL_TEXTURE_2D; switch (texture_hints[i]) { case ShaderLanguage::ShaderNode::Uniform::HINT_BLACK_ALBEDO: case ShaderLanguage::ShaderNode::Uniform::HINT_BLACK: { tex = resources.black_tex; } break; case ShaderLanguage::ShaderNode::Uniform::HINT_TRANSPARENT: { tex = resources.transparent_tex; } break; case ShaderLanguage::ShaderNode::Uniform::HINT_ANISO: { tex = resources.aniso_tex; } break; case ShaderLanguage::ShaderNode::Uniform::HINT_NORMAL: { tex = resources.normal_tex; } break; default: { tex = resources.white_tex; } break; } } else { t = t->get_ptr(); //resolve for proxies target = t->target; tex = t->tex_id; } glBindTexture(target, tex); } } shaders.particles.set_conditional(ParticlesShaderGLES3::USE_FRACTIONAL_DELTA, particles->fractional_delta); shaders.particles.bind(); shaders.particles.set_uniform(ParticlesShaderGLES3::TOTAL_PARTICLES, particles->amount); shaders.particles.set_uniform(ParticlesShaderGLES3::TIME, frame.time[0]); shaders.particles.set_uniform(ParticlesShaderGLES3::EXPLOSIVENESS, particles->explosiveness); shaders.particles.set_uniform(ParticlesShaderGLES3::LIFETIME, particles->lifetime); shaders.particles.set_uniform(ParticlesShaderGLES3::ATTRACTOR_COUNT, 0); shaders.particles.set_uniform(ParticlesShaderGLES3::EMITTING, particles->emitting); shaders.particles.set_uniform(ParticlesShaderGLES3::RANDOMNESS, particles->randomness); bool zero_time_scale = Engine::get_singleton()->get_time_scale() <= 0.0; if (particles->clear && particles->pre_process_time > 0.0) { float frame_time; if (particles->fixed_fps > 0) { frame_time = 1.0 / particles->fixed_fps; } else { frame_time = 1.0 / 30.0; } float todo = particles->pre_process_time; while (todo >= 0) { _particles_process(particles, frame_time); todo -= frame_time; } } if (particles->fixed_fps > 0) { float frame_time; float decr; if (zero_time_scale) { frame_time = 0.0; decr = 1.0 / particles->fixed_fps; } else { frame_time = 1.0 / particles->fixed_fps; decr = frame_time; } float delta = frame.delta; if (delta > 0.1) { //avoid recursive stalls if fps goes below 10 delta = 0.1; } else if (delta <= 0.0) { //unlikely but.. delta = 0.001; } float todo = particles->frame_remainder + delta; while (todo >= frame_time) { _particles_process(particles, frame_time); todo -= decr; } particles->frame_remainder = todo; } else { if (zero_time_scale) { _particles_process(particles, 0.0); } else { _particles_process(particles, frame.delta); } } particle_update_list.remove(particle_update_list.first()); if (particles->histories_enabled) { SWAP(particles->particle_buffer_histories[0], particles->particle_buffer_histories[1]); SWAP(particles->particle_vao_histories[0], particles->particle_vao_histories[1]); SWAP(particles->particle_valid_histories[0], particles->particle_valid_histories[1]); //copy glBindBuffer(GL_COPY_READ_BUFFER, particles->particle_buffers[0]); glBindBuffer(GL_COPY_WRITE_BUFFER, particles->particle_buffer_histories[0]); glCopyBufferSubData(GL_COPY_READ_BUFFER, GL_COPY_WRITE_BUFFER, 0, 0, particles->amount * 24 * sizeof(float)); particles->particle_valid_histories[0] = true; } particles->instance_change_notify(true, false); //make sure shadows are updated } glDisable(GL_RASTERIZER_DISCARD); } bool RasterizerStorageGLES3::particles_is_inactive(RID p_particles) const { const Particles *particles = particles_owner.getornull(p_particles); ERR_FAIL_COND_V(!particles, false); return !particles->emitting && particles->inactive; } //////// void RasterizerStorageGLES3::instance_add_skeleton(RID p_skeleton, RasterizerScene::InstanceBase *p_instance) { Skeleton *skeleton = skeleton_owner.getornull(p_skeleton); ERR_FAIL_COND(!skeleton); skeleton->instances.insert(p_instance); } void RasterizerStorageGLES3::instance_remove_skeleton(RID p_skeleton, RasterizerScene::InstanceBase *p_instance) { Skeleton *skeleton = skeleton_owner.getornull(p_skeleton); ERR_FAIL_COND(!skeleton); skeleton->instances.erase(p_instance); } void RasterizerStorageGLES3::instance_add_dependency(RID p_base, RasterizerScene::InstanceBase *p_instance) { Instantiable *inst = nullptr; switch (p_instance->base_type) { case VS::INSTANCE_MESH: { inst = mesh_owner.getornull(p_base); ERR_FAIL_COND(!inst); } break; case VS::INSTANCE_MULTIMESH: { inst = multimesh_owner.getornull(p_base); ERR_FAIL_COND(!inst); } break; case VS::INSTANCE_IMMEDIATE: { inst = immediate_owner.getornull(p_base); ERR_FAIL_COND(!inst); } break; case VS::INSTANCE_PARTICLES: { inst = particles_owner.getornull(p_base); ERR_FAIL_COND(!inst); } break; case VS::INSTANCE_REFLECTION_PROBE: { inst = reflection_probe_owner.getornull(p_base); ERR_FAIL_COND(!inst); } break; case VS::INSTANCE_LIGHT: { inst = light_owner.getornull(p_base); ERR_FAIL_COND(!inst); } break; case VS::INSTANCE_GI_PROBE: { inst = gi_probe_owner.getornull(p_base); ERR_FAIL_COND(!inst); } break; case VS::INSTANCE_LIGHTMAP_CAPTURE: { inst = lightmap_capture_data_owner.getornull(p_base); ERR_FAIL_COND(!inst); } break; default: { ERR_FAIL(); } } inst->instance_list.add(&p_instance->dependency_item); } void RasterizerStorageGLES3::instance_remove_dependency(RID p_base, RasterizerScene::InstanceBase *p_instance) { Instantiable *inst = nullptr; switch (p_instance->base_type) { case VS::INSTANCE_MESH: { inst = mesh_owner.getornull(p_base); ERR_FAIL_COND(!inst); } break; case VS::INSTANCE_MULTIMESH: { inst = multimesh_owner.getornull(p_base); ERR_FAIL_COND(!inst); } break; case VS::INSTANCE_IMMEDIATE: { inst = immediate_owner.getornull(p_base); ERR_FAIL_COND(!inst); } break; case VS::INSTANCE_PARTICLES: { inst = particles_owner.getornull(p_base); ERR_FAIL_COND(!inst); } break; case VS::INSTANCE_REFLECTION_PROBE: { inst = reflection_probe_owner.getornull(p_base); ERR_FAIL_COND(!inst); } break; case VS::INSTANCE_LIGHT: { inst = light_owner.getornull(p_base); ERR_FAIL_COND(!inst); } break; case VS::INSTANCE_GI_PROBE: { inst = gi_probe_owner.getornull(p_base); ERR_FAIL_COND(!inst); } break; case VS::INSTANCE_LIGHTMAP_CAPTURE: { inst = lightmap_capture_data_owner.getornull(p_base); ERR_FAIL_COND(!inst); } break; default: { ERR_FAIL(); } } inst->instance_list.remove(&p_instance->dependency_item); } /* RENDER TARGET */ void RasterizerStorageGLES3::_render_target_clear(RenderTarget *rt) { if (rt->fbo) { glDeleteFramebuffers(1, &rt->fbo); glDeleteTextures(1, &rt->color); rt->fbo = 0; } if (rt->buffers.active) { glDeleteFramebuffers(1, &rt->buffers.fbo); glDeleteRenderbuffers(1, &rt->buffers.depth); glDeleteRenderbuffers(1, &rt->buffers.diffuse); if (rt->buffers.effects_active) { glDeleteRenderbuffers(1, &rt->buffers.specular); glDeleteRenderbuffers(1, &rt->buffers.normal_rough); glDeleteRenderbuffers(1, &rt->buffers.sss); glDeleteFramebuffers(1, &rt->buffers.effect_fbo); glDeleteTextures(1, &rt->buffers.effect); } rt->buffers.effects_active = false; rt->buffers.active = false; } if (rt->depth) { glDeleteTextures(1, &rt->depth); rt->depth = 0; } if (rt->effects.ssao.blur_fbo[0]) { glDeleteFramebuffers(1, &rt->effects.ssao.blur_fbo[0]); glDeleteTextures(1, &rt->effects.ssao.blur_red[0]); glDeleteFramebuffers(1, &rt->effects.ssao.blur_fbo[1]); glDeleteTextures(1, &rt->effects.ssao.blur_red[1]); for (int i = 0; i < rt->effects.ssao.depth_mipmap_fbos.size(); i++) { glDeleteFramebuffers(1, &rt->effects.ssao.depth_mipmap_fbos[i]); } rt->effects.ssao.depth_mipmap_fbos.clear(); glDeleteTextures(1, &rt->effects.ssao.linear_depth); rt->effects.ssao.blur_fbo[0] = 0; rt->effects.ssao.blur_fbo[1] = 0; } if (rt->exposure.fbo) { glDeleteFramebuffers(1, &rt->exposure.fbo); glDeleteTextures(1, &rt->exposure.color); rt->exposure.fbo = 0; } Texture *tex = texture_owner.get(rt->texture); tex->alloc_height = 0; tex->alloc_width = 0; tex->width = 0; tex->height = 0; tex->active = false; if (rt->external.fbo != 0) { // free this glDeleteFramebuffers(1, &rt->external.fbo); // reset our texture back to the original tex->tex_id = rt->color; rt->external.fbo = 0; rt->external.color = 0; rt->external.depth = 0; } for (int i = 0; i < 2; i++) { if (rt->effects.mip_maps[i].color) { for (int j = 0; j < rt->effects.mip_maps[i].sizes.size(); j++) { glDeleteFramebuffers(1, &rt->effects.mip_maps[i].sizes[j].fbo); } glDeleteTextures(1, &rt->effects.mip_maps[i].color); rt->effects.mip_maps[i].sizes.clear(); rt->effects.mip_maps[i].levels = 0; rt->effects.mip_maps[i].color = 0; } } /* if (rt->effects.screen_space_depth) { glDeleteTextures(1,&rt->effects.screen_space_depth); rt->effects.screen_space_depth=0; } */ } void RasterizerStorageGLES3::_render_target_allocate(RenderTarget *rt) { if (rt->width <= 0 || rt->height <= 0) { return; } GLuint color_internal_format; GLuint color_format; GLuint color_type; Image::Format image_format; const bool hdr = rt->flags[RENDER_TARGET_HDR] && config.framebuffer_half_float_supported; if (!hdr || rt->flags[RENDER_TARGET_NO_3D]) { if (rt->flags[RENDER_TARGET_NO_3D_EFFECTS] && !rt->flags[RENDER_TARGET_TRANSPARENT]) { //if this is not used, linear colorspace looks pretty bad //this is the default mode used for mobile color_internal_format = GL_RGB10_A2; color_format = GL_RGBA; color_type = GL_UNSIGNED_INT_2_10_10_10_REV; image_format = Image::FORMAT_RGBA8; } else { color_internal_format = GL_RGBA8; color_format = GL_RGBA; color_type = GL_UNSIGNED_BYTE; image_format = Image::FORMAT_RGBA8; } } else { // HDR enabled. if (rt->flags[RENDER_TARGET_USE_32_BPC_DEPTH]) { // 32 bpc. Can be useful for advanced shaders, but should not be used // for general-purpose rendering as it's slower. color_internal_format = GL_RGBA32F; color_format = GL_RGBA; color_type = GL_FLOAT; image_format = Image::FORMAT_RGBAF; } else { // 16 bpc. This is the default HDR mode. color_internal_format = GL_RGBA16F; color_format = GL_RGBA; color_type = GL_HALF_FLOAT; image_format = Image::FORMAT_RGBAH; } } { /* FRONT FBO */ gl_wrapper.gl_active_texture(GL_TEXTURE0); glGenFramebuffers(1, &rt->fbo); glBindFramebuffer(GL_FRAMEBUFFER, rt->fbo); glGenTextures(1, &rt->depth); glBindTexture(GL_TEXTURE_2D, rt->depth); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT24, rt->width, rt->height, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, nullptr); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); if (rt->external.depth == 0) { glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, rt->depth, 0); } else { // Use our external depth texture instead. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, rt->external.depth, 0); } glGenTextures(1, &rt->color); glBindTexture(GL_TEXTURE_2D, rt->color); glTexImage2D(GL_TEXTURE_2D, 0, color_internal_format, rt->width, rt->height, 0, color_format, color_type, nullptr); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rt->color, 0); GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES3::system_fbo); if (status != GL_FRAMEBUFFER_COMPLETE) { printf("framebuffer fail, status: %x\n", status); } ERR_FAIL_COND(status != GL_FRAMEBUFFER_COMPLETE); Texture *tex = texture_owner.get(rt->texture); tex->format = image_format; tex->gl_format_cache = color_format; tex->gl_type_cache = color_type; tex->gl_internal_format_cache = color_internal_format; tex->tex_id = rt->color; tex->width = rt->width; tex->alloc_width = rt->width; tex->height = rt->height; tex->alloc_height = rt->height; tex->active = true; texture_set_flags(rt->texture, tex->flags); } /* BACK FBO */ if (!rt->flags[RENDER_TARGET_NO_3D] && (!rt->flags[RENDER_TARGET_NO_3D_EFFECTS] || rt->msaa != VS::VIEWPORT_MSAA_DISABLED)) { rt->buffers.active = true; static const int msaa_value[] = { 0, 2, 4, 8, 16, 4, 16 }; // MSAA_EXT_nX is a GLES2 temporary hack ignored in GLES3 for now... int msaa = msaa_value[rt->msaa]; int max_samples = 0; glGetIntegerv(GL_MAX_SAMPLES, &max_samples); if (msaa > max_samples) { WARN_PRINT("MSAA must be <= GL_MAX_SAMPLES, falling-back to GL_MAX_SAMPLES = " + itos(max_samples)); msaa = max_samples; } //regular fbo glGenFramebuffers(1, &rt->buffers.fbo); glBindFramebuffer(GL_FRAMEBUFFER, rt->buffers.fbo); glGenRenderbuffers(1, &rt->buffers.depth); glBindRenderbuffer(GL_RENDERBUFFER, rt->buffers.depth); if (msaa == 0) { glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, rt->width, rt->height); } else { glRenderbufferStorageMultisample(GL_RENDERBUFFER, msaa, GL_DEPTH_COMPONENT24, rt->width, rt->height); } glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rt->buffers.depth); glGenRenderbuffers(1, &rt->buffers.diffuse); glBindRenderbuffer(GL_RENDERBUFFER, rt->buffers.diffuse); if (msaa == 0) { glRenderbufferStorage(GL_RENDERBUFFER, color_internal_format, rt->width, rt->height); } else { glRenderbufferStorageMultisample(GL_RENDERBUFFER, msaa, color_internal_format, rt->width, rt->height); } glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, rt->buffers.diffuse); if (!rt->flags[RENDER_TARGET_NO_3D_EFFECTS]) { rt->buffers.effects_active = true; glGenRenderbuffers(1, &rt->buffers.specular); glBindRenderbuffer(GL_RENDERBUFFER, rt->buffers.specular); if (msaa == 0) { glRenderbufferStorage(GL_RENDERBUFFER, color_internal_format, rt->width, rt->height); } else { glRenderbufferStorageMultisample(GL_RENDERBUFFER, msaa, color_internal_format, rt->width, rt->height); } glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT1, GL_RENDERBUFFER, rt->buffers.specular); glGenRenderbuffers(1, &rt->buffers.normal_rough); glBindRenderbuffer(GL_RENDERBUFFER, rt->buffers.normal_rough); if (msaa == 0) { glRenderbufferStorage(GL_RENDERBUFFER, GL_RGBA8, rt->width, rt->height); } else { glRenderbufferStorageMultisample(GL_RENDERBUFFER, msaa, GL_RGBA8, rt->width, rt->height); } glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT2, GL_RENDERBUFFER, rt->buffers.normal_rough); glGenRenderbuffers(1, &rt->buffers.sss); glBindRenderbuffer(GL_RENDERBUFFER, rt->buffers.sss); if (msaa == 0) { glRenderbufferStorage(GL_RENDERBUFFER, GL_R8, rt->width, rt->height); } else { glRenderbufferStorageMultisample(GL_RENDERBUFFER, msaa, GL_R8, rt->width, rt->height); } glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT3, GL_RENDERBUFFER, rt->buffers.sss); GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES3::system_fbo); if (status != GL_FRAMEBUFFER_COMPLETE) { printf("err status: %x\n", status); _render_target_clear(rt); ERR_FAIL_COND(status != GL_FRAMEBUFFER_COMPLETE); } glBindRenderbuffer(GL_RENDERBUFFER, 0); // effect resolver glGenFramebuffers(1, &rt->buffers.effect_fbo); glBindFramebuffer(GL_FRAMEBUFFER, rt->buffers.effect_fbo); glGenTextures(1, &rt->buffers.effect); glBindTexture(GL_TEXTURE_2D, rt->buffers.effect); glTexImage2D(GL_TEXTURE_2D, 0, color_internal_format, rt->width, rt->height, 0, color_format, color_type, nullptr); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rt->buffers.effect, 0); status = glCheckFramebufferStatus(GL_FRAMEBUFFER); glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES3::system_fbo); if (status != GL_FRAMEBUFFER_COMPLETE) { printf("err status: %x\n", status); _render_target_clear(rt); ERR_FAIL_COND(status != GL_FRAMEBUFFER_COMPLETE); } ///////////////// ssao //AO strength textures for (int i = 0; i < 2; i++) { glGenFramebuffers(1, &rt->effects.ssao.blur_fbo[i]); glBindFramebuffer(GL_FRAMEBUFFER, rt->effects.ssao.blur_fbo[i]); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, rt->depth, 0); glGenTextures(1, &rt->effects.ssao.blur_red[i]); glBindTexture(GL_TEXTURE_2D, rt->effects.ssao.blur_red[i]); glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, rt->width, rt->height, 0, GL_RED, GL_UNSIGNED_BYTE, nullptr); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rt->effects.ssao.blur_red[i], 0); status = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (status != GL_FRAMEBUFFER_COMPLETE) { _render_target_clear(rt); ERR_FAIL_COND(status != GL_FRAMEBUFFER_COMPLETE); } } //5 mip levels for depth texture, but base is read separately glGenTextures(1, &rt->effects.ssao.linear_depth); glBindTexture(GL_TEXTURE_2D, rt->effects.ssao.linear_depth); int ssao_w = rt->width / 2; int ssao_h = rt->height / 2; for (int i = 0; i < 4; i++) { //5, but 4 mips, base is read directly to save bw glTexImage2D(GL_TEXTURE_2D, i, GL_R16UI, ssao_w, ssao_h, 0, GL_RED_INTEGER, GL_UNSIGNED_SHORT, nullptr); ssao_w >>= 1; ssao_h >>= 1; } glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST_MIPMAP_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 3); for (int i = 0; i < 4; i++) { //5, but 4 mips, base is read directly to save bw GLuint fbo; glGenFramebuffers(1, &fbo); glBindFramebuffer(GL_FRAMEBUFFER, fbo); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rt->effects.ssao.linear_depth, i); rt->effects.ssao.depth_mipmap_fbos.push_back(fbo); } //////Exposure glGenFramebuffers(1, &rt->exposure.fbo); glBindFramebuffer(GL_FRAMEBUFFER, rt->exposure.fbo); glGenTextures(1, &rt->exposure.color); glBindTexture(GL_TEXTURE_2D, rt->exposure.color); if (config.framebuffer_float_supported) { glTexImage2D(GL_TEXTURE_2D, 0, GL_R32F, 1, 1, 0, GL_RED, GL_FLOAT, nullptr); } else if (config.framebuffer_half_float_supported) { glTexImage2D(GL_TEXTURE_2D, 0, GL_R16F, 1, 1, 0, GL_RED, GL_HALF_FLOAT, nullptr); } else { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB10_A2, 1, 1, 0, GL_RGBA, GL_UNSIGNED_INT_2_10_10_10_REV, nullptr); } glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rt->exposure.color, 0); status = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (status != GL_FRAMEBUFFER_COMPLETE) { _render_target_clear(rt); ERR_FAIL_COND(status != GL_FRAMEBUFFER_COMPLETE); } } else { rt->buffers.effects_active = false; } } else { rt->buffers.active = false; rt->buffers.effects_active = true; } if (!rt->flags[RENDER_TARGET_NO_SAMPLING] && rt->width >= 2 && rt->height >= 2) { for (int i = 0; i < 2; i++) { ERR_FAIL_COND(rt->effects.mip_maps[i].sizes.size()); int w = rt->width; int h = rt->height; if (i > 0) { w >>= 1; h >>= 1; } glGenTextures(1, &rt->effects.mip_maps[i].color); glBindTexture(GL_TEXTURE_2D, rt->effects.mip_maps[i].color); int level = 0; int fb_w = w; int fb_h = h; while (true) { RenderTarget::Effects::MipMaps::Size mm; mm.width = w; mm.height = h; rt->effects.mip_maps[i].sizes.push_back(mm); w >>= 1; h >>= 1; if (w < 2 || h < 2) { break; } level++; } glTexStorage2DCustom(GL_TEXTURE_2D, level + 1, color_internal_format, fb_w, fb_h, color_format, color_type); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, level); glDisable(GL_SCISSOR_TEST); glColorMask(1, 1, 1, 1); if (!rt->buffers.active) { glDepthMask(GL_TRUE); } for (int j = 0; j < rt->effects.mip_maps[i].sizes.size(); j++) { RenderTarget::Effects::MipMaps::Size &mm = rt->effects.mip_maps[i].sizes.write[j]; glGenFramebuffers(1, &mm.fbo); glBindFramebuffer(GL_FRAMEBUFFER, mm.fbo); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rt->effects.mip_maps[i].color, j); bool used_depth = false; if (j == 0 && i == 0) { //use always glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, rt->depth, 0); used_depth = true; } GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (status != GL_FRAMEBUFFER_COMPLETE) { _render_target_clear(rt); ERR_FAIL_COND(status != GL_FRAMEBUFFER_COMPLETE); } float zero[4] = { 1, 0, 1, 0 }; glViewport(0, 0, rt->effects.mip_maps[i].sizes[j].width, rt->effects.mip_maps[i].sizes[j].height); glClearBufferfv(GL_COLOR, 0, zero); if (used_depth) { glClearDepth(1.0); glClear(GL_DEPTH_BUFFER_BIT); } } glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES3::system_fbo); rt->effects.mip_maps[i].levels = level; glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); //glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); //glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); } } } RID RasterizerStorageGLES3::render_target_create() { RenderTarget *rt = memnew(RenderTarget); Texture *t = memnew(Texture); t->type = VS::TEXTURE_TYPE_2D; t->flags = 0; t->width = 0; t->height = 0; t->alloc_height = 0; t->alloc_width = 0; t->format = Image::FORMAT_R8; t->target = GL_TEXTURE_2D; t->gl_format_cache = 0; t->gl_internal_format_cache = 0; t->gl_type_cache = 0; t->data_size = 0; t->compressed = false; t->srgb = false; t->total_data_size = 0; t->ignore_mipmaps = false; t->mipmaps = 1; t->active = true; t->tex_id = 0; t->render_target = rt; rt->texture = texture_owner.make_rid(t); return render_target_owner.make_rid(rt); } void RasterizerStorageGLES3::render_target_set_position(RID p_render_target, int p_x, int p_y) { //only used in GLES2 } void RasterizerStorageGLES3::render_target_set_size(RID p_render_target, int p_width, int p_height) { RenderTarget *rt = render_target_owner.getornull(p_render_target); ERR_FAIL_COND(!rt); if (rt->width == p_width && rt->height == p_height) { return; } _render_target_clear(rt); rt->width = p_width; rt->height = p_height; _render_target_allocate(rt); } RID RasterizerStorageGLES3::render_target_get_texture(RID p_render_target) const { RenderTarget *rt = render_target_owner.getornull(p_render_target); ERR_FAIL_COND_V(!rt, RID()); return rt->texture; } uint32_t RasterizerStorageGLES3::render_target_get_depth_texture_id(RID p_render_target) const { RenderTarget *rt = render_target_owner.getornull(p_render_target); ERR_FAIL_COND_V(!rt, 0); if (rt->external.depth == 0) { return rt->depth; } else { return rt->external.depth; } } void RasterizerStorageGLES3::render_target_set_external_texture(RID p_render_target, unsigned int p_texture_id, unsigned int p_depth_id) { RenderTarget *rt = render_target_owner.getornull(p_render_target); ERR_FAIL_COND(!rt); if (p_texture_id == 0) { if (rt->external.fbo != 0) { // return to our original depth buffer if (rt->external.depth != 0 && rt->fbo != 0) { glBindFramebuffer(GL_FRAMEBUFFER, rt->fbo); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, rt->depth, 0); glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES3::system_fbo); } // free this glDeleteFramebuffers(1, &rt->external.fbo); // reset our texture back to the original Texture *t = texture_owner.get(rt->texture); t->tex_id = rt->color; t->width = rt->width; t->alloc_width = rt->width; t->height = rt->height; t->alloc_height = rt->height; rt->external.fbo = 0; rt->external.color = 0; rt->external.depth = 0; } } else { if (rt->external.fbo == 0) { // create our fbo glGenFramebuffers(1, &rt->external.fbo); } // bind our frame buffer glBindFramebuffer(GL_FRAMEBUFFER, rt->external.fbo); rt->external.color = p_texture_id; // Set our texture to the new image, note that we expect formats to be the same (or compatible) so we don't change those Texture *t = texture_owner.get(rt->texture); t->tex_id = p_texture_id; t->width = rt->width; t->height = rt->height; t->alloc_height = rt->width; t->alloc_width = rt->height; // set our texture as the destination for our framebuffer glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, p_texture_id, 0); // check status GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (status != GL_FRAMEBUFFER_COMPLETE) { printf("framebuffer fail, status: %x\n", status); } // Copy our depth texture id, // if it's 0 then we don't use it, // else we use it instead of our normal depth buffer rt->external.depth = p_depth_id; if (rt->external.depth != 0 && rt->fbo != 0) { // Use our external depth texture instead. glBindFramebuffer(GL_FRAMEBUFFER, rt->fbo); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, rt->external.depth, 0); // check status GLenum status2 = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (status2 != GL_FRAMEBUFFER_COMPLETE) { printf("framebuffer fail, status: %x\n", status2); } } // and unbind glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES3::system_fbo); ERR_FAIL_COND(status != GL_FRAMEBUFFER_COMPLETE); } } void RasterizerStorageGLES3::render_target_set_flag(RID p_render_target, RenderTargetFlags p_flag, bool p_value) { RenderTarget *rt = render_target_owner.getornull(p_render_target); ERR_FAIL_COND(!rt); rt->flags[p_flag] = p_value; switch (p_flag) { case RENDER_TARGET_HDR: case RENDER_TARGET_USE_32_BPC_DEPTH: case RENDER_TARGET_NO_3D: case RENDER_TARGET_NO_SAMPLING: case RENDER_TARGET_NO_3D_EFFECTS: { //must reset for these formats _render_target_clear(rt); _render_target_allocate(rt); } break; default: { } } } bool RasterizerStorageGLES3::render_target_was_used(RID p_render_target) { RenderTarget *rt = render_target_owner.getornull(p_render_target); ERR_FAIL_COND_V(!rt, false); return rt->used_in_frame; } void RasterizerStorageGLES3::render_target_clear_used(RID p_render_target) { RenderTarget *rt = render_target_owner.getornull(p_render_target); ERR_FAIL_COND(!rt); rt->used_in_frame = false; } void RasterizerStorageGLES3::render_target_set_msaa(RID p_render_target, VS::ViewportMSAA p_msaa) { RenderTarget *rt = render_target_owner.getornull(p_render_target); ERR_FAIL_COND(!rt); if (rt->msaa == p_msaa) { return; } _render_target_clear(rt); rt->msaa = p_msaa; _render_target_allocate(rt); } void RasterizerStorageGLES3::render_target_set_use_fxaa(RID p_render_target, bool p_fxaa) { RenderTarget *rt = render_target_owner.getornull(p_render_target); ERR_FAIL_COND(!rt); rt->use_fxaa = p_fxaa; } void RasterizerStorageGLES3::render_target_set_use_debanding(RID p_render_target, bool p_debanding) { RenderTarget *rt = render_target_owner.getornull(p_render_target); ERR_FAIL_COND(!rt); rt->use_debanding = p_debanding; } void RasterizerStorageGLES3::render_target_set_sharpen_intensity(RID p_render_target, float p_intensity) { RenderTarget *rt = render_target_owner.getornull(p_render_target); ERR_FAIL_COND(!rt); rt->sharpen_intensity = p_intensity; } /* CANVAS SHADOW */ RID RasterizerStorageGLES3::canvas_light_shadow_buffer_create(int p_width) { CanvasLightShadow *cls = memnew(CanvasLightShadow); if (p_width > config.max_texture_size) { p_width = config.max_texture_size; } cls->size = p_width; cls->height = 16; gl_wrapper.gl_active_texture(GL_TEXTURE0); glGenFramebuffers(1, &cls->fbo); glBindFramebuffer(GL_FRAMEBUFFER, cls->fbo); glGenRenderbuffers(1, &cls->depth); glBindRenderbuffer(GL_RENDERBUFFER, cls->depth); glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, cls->size, cls->height); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, cls->depth); glBindRenderbuffer(GL_RENDERBUFFER, 0); glGenTextures(1, &cls->distance); glBindTexture(GL_TEXTURE_2D, cls->distance); if (config.use_rgba_2d_shadows) { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, cls->size, cls->height, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr); } else { glTexImage2D(GL_TEXTURE_2D, 0, GL_R32F, cls->size, cls->height, 0, GL_RED, GL_FLOAT, nullptr); } glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, cls->distance, 0); GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); //printf("errnum: %x\n",status); glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES3::system_fbo); if (status != GL_FRAMEBUFFER_COMPLETE) { memdelete(cls); ERR_FAIL_COND_V(status != GL_FRAMEBUFFER_COMPLETE, RID()); } return canvas_light_shadow_owner.make_rid(cls); } /* LIGHT SHADOW MAPPING */ RID RasterizerStorageGLES3::canvas_light_occluder_create() { CanvasOccluder *co = memnew(CanvasOccluder); co->index_id = 0; co->vertex_id = 0; co->len = 0; glGenVertexArrays(1, &co->array_id); return canvas_occluder_owner.make_rid(co); } void RasterizerStorageGLES3::canvas_light_occluder_set_polylines(RID p_occluder, const PoolVector &p_lines) { CanvasOccluder *co = canvas_occluder_owner.get(p_occluder); ERR_FAIL_COND(!co); co->lines = p_lines; if (p_lines.size() != co->len) { if (co->index_id) { glDeleteBuffers(1, &co->index_id); } if (co->vertex_id) { glDeleteBuffers(1, &co->vertex_id); } co->index_id = 0; co->vertex_id = 0; co->len = 0; } if (p_lines.size()) { PoolVector geometry; PoolVector indices; int lc = p_lines.size(); geometry.resize(lc * 6); indices.resize(lc * 3); PoolVector::Write vw = geometry.write(); PoolVector::Write iw = indices.write(); PoolVector::Read lr = p_lines.read(); const int POLY_HEIGHT = 16384; for (int i = 0; i < lc / 2; i++) { vw[i * 12 + 0] = lr[i * 2 + 0].x; vw[i * 12 + 1] = lr[i * 2 + 0].y; vw[i * 12 + 2] = POLY_HEIGHT; vw[i * 12 + 3] = lr[i * 2 + 1].x; vw[i * 12 + 4] = lr[i * 2 + 1].y; vw[i * 12 + 5] = POLY_HEIGHT; vw[i * 12 + 6] = lr[i * 2 + 1].x; vw[i * 12 + 7] = lr[i * 2 + 1].y; vw[i * 12 + 8] = -POLY_HEIGHT; vw[i * 12 + 9] = lr[i * 2 + 0].x; vw[i * 12 + 10] = lr[i * 2 + 0].y; vw[i * 12 + 11] = -POLY_HEIGHT; iw[i * 6 + 0] = i * 4 + 0; iw[i * 6 + 1] = i * 4 + 1; iw[i * 6 + 2] = i * 4 + 2; iw[i * 6 + 3] = i * 4 + 2; iw[i * 6 + 4] = i * 4 + 3; iw[i * 6 + 5] = i * 4 + 0; } //if same buffer len is being set, just use BufferSubData to avoid a pipeline flush if (!co->vertex_id) { glGenBuffers(1, &co->vertex_id); glBindBuffer(GL_ARRAY_BUFFER, co->vertex_id); glBufferData(GL_ARRAY_BUFFER, lc * 6 * sizeof(real_t), vw.ptr(), GL_STATIC_DRAW); } else { glBindBuffer(GL_ARRAY_BUFFER, co->vertex_id); glBufferSubData(GL_ARRAY_BUFFER, 0, lc * 6 * sizeof(real_t), vw.ptr()); } glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind if (!co->index_id) { glGenBuffers(1, &co->index_id); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, co->index_id); glBufferData(GL_ELEMENT_ARRAY_BUFFER, lc * 3 * sizeof(uint16_t), iw.ptr(), GL_DYNAMIC_DRAW); } else { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, co->index_id); glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, lc * 3 * sizeof(uint16_t), iw.ptr()); } glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind co->len = lc; glBindVertexArray(co->array_id); glBindBuffer(GL_ARRAY_BUFFER, co->vertex_id); glEnableVertexAttribArray(VS::ARRAY_VERTEX); glVertexAttribPointer(VS::ARRAY_VERTEX, 3, GL_FLOAT, false, 0, nullptr); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, co->index_id); glBindVertexArray(0); } } VS::InstanceType RasterizerStorageGLES3::get_base_type(RID p_rid) const { if (mesh_owner.owns(p_rid)) { return VS::INSTANCE_MESH; } if (multimesh_owner.owns(p_rid)) { return VS::INSTANCE_MULTIMESH; } if (immediate_owner.owns(p_rid)) { return VS::INSTANCE_IMMEDIATE; } if (particles_owner.owns(p_rid)) { return VS::INSTANCE_PARTICLES; } if (light_owner.owns(p_rid)) { return VS::INSTANCE_LIGHT; } if (reflection_probe_owner.owns(p_rid)) { return VS::INSTANCE_REFLECTION_PROBE; } if (gi_probe_owner.owns(p_rid)) { return VS::INSTANCE_GI_PROBE; } if (lightmap_capture_data_owner.owns(p_rid)) { return VS::INSTANCE_LIGHTMAP_CAPTURE; } return VS::INSTANCE_NONE; } bool RasterizerStorageGLES3::free(RID p_rid) { if (render_target_owner.owns(p_rid)) { RenderTarget *rt = render_target_owner.getornull(p_rid); _render_target_clear(rt); Texture *t = texture_owner.get(rt->texture); texture_owner.free(rt->texture); memdelete(t); render_target_owner.free(p_rid); memdelete(rt); } else if (texture_owner.owns(p_rid)) { // delete the texture Texture *texture = texture_owner.get(p_rid); ERR_FAIL_COND_V(texture->render_target, true); //can't free the render target texture, dude info.texture_mem -= texture->total_data_size; texture_owner.free(p_rid); memdelete(texture); } else if (sky_owner.owns(p_rid)) { // delete the sky Sky *sky = sky_owner.get(p_rid); sky_set_texture(p_rid, RID(), 256); sky_owner.free(p_rid); memdelete(sky); } else if (shader_owner.owns(p_rid)) { // delete the texture Shader *shader = shader_owner.get(p_rid); if (shader->shader && shader->custom_code_id) { shader->shader->free_custom_shader(shader->custom_code_id); } if (shader->dirty_list.in_list()) { _shader_dirty_list.remove(&shader->dirty_list); } while (shader->materials.first()) { Material *mat = shader->materials.first()->self(); mat->shader = nullptr; _material_make_dirty(mat); shader->materials.remove(shader->materials.first()); } //material_shader.free_custom_shader(shader->custom_code_id); shader_owner.free(p_rid); memdelete(shader); } else if (material_owner.owns(p_rid)) { // delete the texture Material *material = material_owner.get(p_rid); if (material->shader) { material->shader->materials.remove(&material->list); } if (material->ubo_id) { glDeleteBuffers(1, &material->ubo_id); } //remove from owners for (Map::Element *E = material->geometry_owners.front(); E; E = E->next()) { Geometry *g = E->key(); g->material = RID(); } for (Map::Element *E = material->instance_owners.front(); E; E = E->next()) { RasterizerScene::InstanceBase *ins = E->key(); if (ins->material_override == p_rid) { ins->material_override = RID(); } if (ins->material_overlay == p_rid) { ins->material_overlay = RID(); } for (int i = 0; i < ins->materials.size(); i++) { if (ins->materials[i] == p_rid) { ins->materials.write[i] = RID(); } } } material_owner.free(p_rid); memdelete(material); } else if (skeleton_owner.owns(p_rid)) { // delete the texture Skeleton *skeleton = skeleton_owner.get(p_rid); if (skeleton->update_list.in_list()) { skeleton_update_list.remove(&skeleton->update_list); } for (Set::Element *E = skeleton->instances.front(); E; E = E->next()) { E->get()->skeleton = RID(); } skeleton_allocate(p_rid, 0, false); glDeleteTextures(1, &skeleton->texture); skeleton_owner.free(p_rid); memdelete(skeleton); } else if (mesh_owner.owns(p_rid)) { // delete the texture Mesh *mesh = mesh_owner.get(p_rid); mesh->instance_remove_deps(); mesh_clear(p_rid); while (mesh->multimeshes.first()) { MultiMesh *multimesh = mesh->multimeshes.first()->self(); multimesh->mesh = RID(); multimesh->dirty_aabb = true; mesh->multimeshes.remove(mesh->multimeshes.first()); if (!multimesh->update_list.in_list()) { multimesh_update_list.add(&multimesh->update_list); } } mesh_owner.free(p_rid); memdelete(mesh); } else if (multimesh_owner.owns(p_rid)) { // remove from interpolator _interpolation_data.notify_free_multimesh(p_rid); MultiMesh *multimesh = multimesh_owner.get(p_rid); // remove any references in linked canvas items int num_linked = multimesh->linked_canvas_items.size(); for (int n = 0; n < num_linked; n++) { const RID &rid = multimesh->linked_canvas_items[n]; VSG::canvas->_canvas_item_remove_references(rid, p_rid); } // delete the texture multimesh->instance_remove_deps(); if (multimesh->mesh.is_valid()) { Mesh *mesh = mesh_owner.getornull(multimesh->mesh); if (mesh) { mesh->multimeshes.remove(&multimesh->mesh_list); } } multimesh_allocate(p_rid, 0, VS::MULTIMESH_TRANSFORM_2D, VS::MULTIMESH_COLOR_NONE); //frees multimesh update_dirty_multimeshes(); multimesh_owner.free(p_rid); memdelete(multimesh); } else if (immediate_owner.owns(p_rid)) { Immediate *immediate = immediate_owner.get(p_rid); immediate->instance_remove_deps(); immediate_owner.free(p_rid); memdelete(immediate); } else if (light_owner.owns(p_rid)) { // delete the texture Light *light = light_owner.get(p_rid); light->instance_remove_deps(); light_owner.free(p_rid); memdelete(light); } else if (reflection_probe_owner.owns(p_rid)) { // delete the texture ReflectionProbe *reflection_probe = reflection_probe_owner.get(p_rid); reflection_probe->instance_remove_deps(); reflection_probe_owner.free(p_rid); memdelete(reflection_probe); } else if (gi_probe_owner.owns(p_rid)) { // delete the texture GIProbe *gi_probe = gi_probe_owner.get(p_rid); gi_probe->instance_remove_deps(); gi_probe_owner.free(p_rid); memdelete(gi_probe); } else if (gi_probe_data_owner.owns(p_rid)) { // delete the texture GIProbeData *gi_probe_data = gi_probe_data_owner.get(p_rid); glDeleteTextures(1, &gi_probe_data->tex_id); gi_probe_data_owner.free(p_rid); memdelete(gi_probe_data); } else if (lightmap_capture_data_owner.owns(p_rid)) { // delete the texture LightmapCapture *lightmap_capture = lightmap_capture_data_owner.get(p_rid); lightmap_capture->instance_remove_deps(); lightmap_capture_data_owner.free(p_rid); memdelete(lightmap_capture); } else if (canvas_occluder_owner.owns(p_rid)) { CanvasOccluder *co = canvas_occluder_owner.get(p_rid); if (co->index_id) { glDeleteBuffers(1, &co->index_id); } if (co->vertex_id) { glDeleteBuffers(1, &co->vertex_id); } glDeleteVertexArrays(1, &co->array_id); canvas_occluder_owner.free(p_rid); memdelete(co); } else if (canvas_light_shadow_owner.owns(p_rid)) { CanvasLightShadow *cls = canvas_light_shadow_owner.get(p_rid); glDeleteFramebuffers(1, &cls->fbo); glDeleteRenderbuffers(1, &cls->depth); glDeleteTextures(1, &cls->distance); canvas_light_shadow_owner.free(p_rid); memdelete(cls); } else if (particles_owner.owns(p_rid)) { Particles *particles = particles_owner.get(p_rid); particles->instance_remove_deps(); particles_owner.free(p_rid); memdelete(particles); } else { return false; } return true; } bool RasterizerStorageGLES3::has_os_feature(const String &p_feature) const { if (p_feature == "bptc") { return config.bptc_supported; } if (p_feature == "s3tc") { return config.s3tc_supported; } if (p_feature == "etc") { return config.etc_supported; } if (p_feature == "etc2") { return config.etc2_supported; } if (p_feature == "pvrtc") { return config.pvrtc_supported; } return false; } //////////////////////////////////////////// void RasterizerStorageGLES3::set_debug_generate_wireframes(bool p_generate) { config.generate_wireframes = p_generate; } void RasterizerStorageGLES3::render_info_begin_capture() { info.snap = info.render; } void RasterizerStorageGLES3::render_info_end_capture() { info.snap.object_count = info.render.object_count - info.snap.object_count; info.snap.draw_call_count = info.render.draw_call_count - info.snap.draw_call_count; info.snap.material_switch_count = info.render.material_switch_count - info.snap.material_switch_count; info.snap.surface_switch_count = info.render.surface_switch_count - info.snap.surface_switch_count; info.snap.shader_rebind_count = info.render.shader_rebind_count - info.snap.shader_rebind_count; info.snap.shader_compiles_started_count = info.render.shader_compiles_started_count - info.snap.shader_compiles_started_count; info.snap.shader_compiles_in_progress_count = info.render.shader_compiles_in_progress_count - info.snap.shader_compiles_in_progress_count; info.snap.vertices_count = info.render.vertices_count - info.snap.vertices_count; info.snap._2d_item_count = info.render._2d_item_count - info.snap._2d_item_count; info.snap._2d_draw_call_count = info.render._2d_draw_call_count - info.snap._2d_draw_call_count; } int RasterizerStorageGLES3::get_captured_render_info(VS::RenderInfo p_info) { switch (p_info) { case VS::INFO_OBJECTS_IN_FRAME: { return info.snap.object_count; } break; case VS::INFO_VERTICES_IN_FRAME: { return info.snap.vertices_count; } break; case VS::INFO_MATERIAL_CHANGES_IN_FRAME: { return info.snap.material_switch_count; } break; case VS::INFO_SHADER_CHANGES_IN_FRAME: { return info.snap.shader_rebind_count; } break; case VS::INFO_SHADER_COMPILES_IN_FRAME: { return info.snap.shader_compiles_in_progress_count; } break; case VS::INFO_SURFACE_CHANGES_IN_FRAME: { return info.snap.surface_switch_count; } break; case VS::INFO_DRAW_CALLS_IN_FRAME: { return info.snap.draw_call_count; } break; case VS::INFO_2D_ITEMS_IN_FRAME: { return info.snap._2d_item_count; } break; case VS::INFO_2D_DRAW_CALLS_IN_FRAME: { return info.snap._2d_draw_call_count; } break; default: { return get_render_info(p_info); } } } uint64_t RasterizerStorageGLES3::get_render_info(VS::RenderInfo p_info) { switch (p_info) { case VS::INFO_OBJECTS_IN_FRAME: return info.render_final.object_count; case VS::INFO_VERTICES_IN_FRAME: return info.render_final.vertices_count; case VS::INFO_MATERIAL_CHANGES_IN_FRAME: return info.render_final.material_switch_count; case VS::INFO_SHADER_CHANGES_IN_FRAME: return info.render_final.shader_rebind_count; case VS::INFO_SHADER_COMPILES_IN_FRAME: return info.render.shader_compiles_in_progress_count; case VS::INFO_SURFACE_CHANGES_IN_FRAME: return info.render_final.surface_switch_count; case VS::INFO_DRAW_CALLS_IN_FRAME: return info.render_final.draw_call_count; case VS::INFO_2D_ITEMS_IN_FRAME: return info.render_final._2d_item_count; case VS::INFO_2D_DRAW_CALLS_IN_FRAME: return info.render_final._2d_draw_call_count; case VS::INFO_USAGE_VIDEO_MEM_TOTAL: return 0; //no idea case VS::INFO_VIDEO_MEM_USED: return info.vertex_mem + info.texture_mem; case VS::INFO_TEXTURE_MEM_USED: return info.texture_mem; case VS::INFO_VERTEX_MEM_USED: return info.vertex_mem; default: return 0; //no idea either } } String RasterizerStorageGLES3::get_video_adapter_name() const { return (const char *)glGetString(GL_RENDERER); } String RasterizerStorageGLES3::get_video_adapter_vendor() const { return (const char *)glGetString(GL_VENDOR); } void RasterizerStorageGLES3::initialize() { RasterizerStorageGLES3::system_fbo = 0; //// extensions config /// { int max_extensions = 0; glGetIntegerv(GL_NUM_EXTENSIONS, &max_extensions); for (int i = 0; i < max_extensions; i++) { const GLubyte *s = glGetStringi(GL_EXTENSIONS, i); if (!s) { break; } config.extensions.insert((const char *)s); } } config.shrink_textures_x2 = false; config.use_fast_texture_filter = int(ProjectSettings::get_singleton()->get("rendering/quality/filters/use_nearest_mipmap_filter")); config.etc_supported = config.extensions.has("GL_OES_compressed_ETC1_RGB8_texture"); config.latc_supported = config.extensions.has("GL_EXT_texture_compression_latc"); config.bptc_supported = config.extensions.has("GL_ARB_texture_compression_bptc"); #ifdef GLES_OVER_GL config.etc2_supported = false; config.s3tc_supported = true; config.rgtc_supported = true; //RGTC - core since OpenGL version 3.0 config.texture_float_linear_supported = true; config.framebuffer_float_supported = true; config.framebuffer_half_float_supported = true; #else config.etc2_supported = true; config.s3tc_supported = config.extensions.has("GL_EXT_texture_compression_dxt1") || config.extensions.has("GL_EXT_texture_compression_s3tc") || config.extensions.has("WEBGL_compressed_texture_s3tc"); config.rgtc_supported = config.extensions.has("GL_EXT_texture_compression_rgtc") || config.extensions.has("GL_ARB_texture_compression_rgtc") || config.extensions.has("EXT_texture_compression_rgtc"); config.texture_float_linear_supported = config.extensions.has("GL_OES_texture_float_linear"); config.framebuffer_float_supported = config.extensions.has("GL_EXT_color_buffer_float"); config.framebuffer_half_float_supported = config.extensions.has("GL_EXT_color_buffer_half_float") || config.framebuffer_float_supported; // If the desktop build is using S3TC, and you export / run from the IDE for android, if the device supports // S3TC it will crash trying to load these textures, as they are not exported in the APK. This is a simple way // to prevent Android devices trying to load S3TC, by faking lack of hardware support. #if defined(ANDROID_ENABLED) || defined(IPHONE_ENABLED) config.s3tc_supported = false; #endif #endif // not yet detected on GLES3 (is this mandated?) config.support_npot_repeat_mipmap = true; config.pvrtc_supported = config.extensions.has("GL_IMG_texture_compression_pvrtc"); config.srgb_decode_supported = config.extensions.has("GL_EXT_texture_sRGB_decode"); config.anisotropic_level = 1.0; config.use_anisotropic_filter = config.extensions.has("GL_EXT_texture_filter_anisotropic"); if (config.use_anisotropic_filter) { glGetFloatv(_GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &config.anisotropic_level); config.anisotropic_level = MIN(int(ProjectSettings::get_singleton()->get("rendering/quality/filters/anisotropic_filter_level")), config.anisotropic_level); } #ifdef GLES_OVER_GL config.program_binary_supported = GLAD_GL_ARB_get_program_binary; config.parallel_shader_compile_supported = GLAD_GL_ARB_parallel_shader_compile || GLAD_GL_KHR_parallel_shader_compile; #else #ifdef JAVASCRIPT_ENABLED config.program_binary_supported = false; #else config.program_binary_supported = true; #endif config.parallel_shader_compile_supported = config.extensions.has("GL_KHR_parallel_shader_compile") || config.extensions.has("GL_ARB_parallel_shader_compile"); #endif int compilation_mode = 0; if (!(Engine::get_singleton()->is_editor_hint() || Main::is_project_manager())) { compilation_mode = ProjectSettings::get_singleton()->get("rendering/gles3/shaders/shader_compilation_mode"); } config.async_compilation_enabled = compilation_mode >= 1; config.shader_cache_enabled = compilation_mode == 2; if (config.async_compilation_enabled) { ShaderGLES3::max_simultaneous_compiles = MAX(1, (int)ProjectSettings::get_singleton()->get("rendering/gles3/shaders/max_simultaneous_compiles")); #ifdef GLES_OVER_GL if (GLAD_GL_ARB_parallel_shader_compile) { glMaxShaderCompilerThreadsARB(ShaderGLES3::max_simultaneous_compiles); } else if (GLAD_GL_KHR_parallel_shader_compile) { glMaxShaderCompilerThreadsKHR(ShaderGLES3::max_simultaneous_compiles); } #else #if defined(IPHONE_ENABLED) || defined(ANDROID_ENABLED) // TODO: Consider more platforms? void *gles3_lib = nullptr; void (*MaxShaderCompilerThreads)(GLuint) = nullptr; #if defined(IPHONE_ENABLED) gles3_lib = dlopen(nullptr, RTLD_LAZY); #elif defined(ANDROID_ENABLED) gles3_lib = dlopen("libGLESv3.so", RTLD_LAZY); #endif if (gles3_lib) { MaxShaderCompilerThreads = (void (*)(GLuint))dlsym(gles3_lib, "glMaxShaderCompilerThreadsARB"); if (!MaxShaderCompilerThreads) { MaxShaderCompilerThreads = (void (*)(GLuint))dlsym(gles3_lib, "glMaxShaderCompilerThreadsKHR"); } } if (MaxShaderCompilerThreads) { MaxShaderCompilerThreads(ShaderGLES3::max_simultaneous_compiles); } else { #ifdef DEBUG_ENABLED print_line("Async. shader compilation: No MaxShaderCompilerThreads function found."); #endif } #endif #endif } else { ShaderGLES3::max_simultaneous_compiles = 0; } #ifdef DEBUG_ENABLED ShaderGLES3::log_active_async_compiles_count = (bool)ProjectSettings::get_singleton()->get("rendering/gles3/shaders/log_active_async_compiles_count"); #endif frame.clear_request = false; shaders.compile_queue = nullptr; shaders.cache = nullptr; shaders.cache_write_queue = nullptr; bool effectively_on = false; if (config.async_compilation_enabled) { if (config.parallel_shader_compile_supported) { print_line("Async. shader compilation: ON (full native support)"); effectively_on = true; } else if (config.program_binary_supported && OS::get_singleton()->is_offscreen_gl_available()) { shaders.compile_queue = memnew(ThreadedCallableQueue()); shaders.compile_queue->enqueue(0, []() { OS::get_singleton()->set_offscreen_gl_current(true); }); print_line("Async. shader compilation: ON (via secondary context)"); effectively_on = true; } else { print_line("Async. shader compilation: OFF (enabled for " + String(Engine::get_singleton()->is_editor_hint() ? "editor" : "project") + ", but not supported)"); } if (effectively_on) { if (config.shader_cache_enabled) { if (config.program_binary_supported) { print_line("Shader cache: ON"); shaders.cache = memnew(ShaderCacheGLES3); shaders.cache_write_queue = memnew(ThreadedCallableQueue()); } else { print_line("Shader cache: OFF (enabled, but not supported)"); } } else { print_line("Shader cache: OFF"); } } } else { print_line("Async. shader compilation: OFF"); } ShaderGLES3::compile_queue = shaders.compile_queue; ShaderGLES3::parallel_compile_supported = config.parallel_shader_compile_supported; ShaderGLES3::shader_cache = shaders.cache; ShaderGLES3::cache_write_queue = shaders.cache_write_queue; shaders.copy.init(); { // Generate default textures. // Opaque white color. glGenTextures(1, &resources.white_tex); unsigned char whitetexdata[8 * 8 * 3]; for (int i = 0; i < 8 * 8 * 3; i++) { whitetexdata[i] = 255; } gl_wrapper.gl_active_texture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, resources.white_tex); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 8, 8, 0, GL_RGB, GL_UNSIGNED_BYTE, whitetexdata); glGenerateMipmap(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, 0); // Opaque black color. glGenTextures(1, &resources.black_tex); unsigned char blacktexdata[8 * 8 * 3]; for (int i = 0; i < 8 * 8 * 3; i++) { blacktexdata[i] = 0; } gl_wrapper.gl_active_texture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, resources.black_tex); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 8, 8, 0, GL_RGB, GL_UNSIGNED_BYTE, blacktexdata); glGenerateMipmap(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, 0); // Transparent black color. glGenTextures(1, &resources.transparent_tex); unsigned char transparenttexdata[8 * 8 * 4]; for (int i = 0; i < 8 * 8 * 4; i++) { transparenttexdata[i] = 0; } gl_wrapper.gl_active_texture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, resources.transparent_tex); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 8, 8, 0, GL_RGBA, GL_UNSIGNED_BYTE, transparenttexdata); glGenerateMipmap(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, 0); // Opaque "flat" normal map color. glGenTextures(1, &resources.normal_tex); unsigned char normaltexdata[8 * 8 * 3]; for (int i = 0; i < 8 * 8 * 3; i += 3) { normaltexdata[i + 0] = 128; normaltexdata[i + 1] = 128; normaltexdata[i + 2] = 255; } gl_wrapper.gl_active_texture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, resources.normal_tex); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 8, 8, 0, GL_RGB, GL_UNSIGNED_BYTE, normaltexdata); glGenerateMipmap(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, 0); // Opaque "flat" flowmap color. glGenTextures(1, &resources.aniso_tex); unsigned char anisotexdata[8 * 8 * 3]; for (int i = 0; i < 8 * 8 * 3; i += 3) { anisotexdata[i + 0] = 255; anisotexdata[i + 1] = 128; anisotexdata[i + 2] = 0; } gl_wrapper.gl_active_texture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, resources.aniso_tex); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 8, 8, 0, GL_RGB, GL_UNSIGNED_BYTE, anisotexdata); glGenerateMipmap(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, 0); glGenTextures(1, &resources.depth_tex); unsigned char depthtexdata[8 * 8 * 2] = {}; gl_wrapper.gl_active_texture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, resources.depth_tex); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT16, 8, 8, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_SHORT, depthtexdata); glBindTexture(GL_TEXTURE_2D, 0); // Opaque white color for 3D texture. glGenTextures(1, &resources.white_tex_3d); gl_wrapper.gl_active_texture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_3D, resources.white_tex_3d); glTexImage3D(GL_TEXTURE_3D, 0, GL_RGB, 2, 2, 2, 0, GL_RGB, GL_UNSIGNED_BYTE, whitetexdata); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_BASE_LEVEL, 0); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAX_LEVEL, 0); // Opaque white color for texture array. glGenTextures(1, &resources.white_tex_array); gl_wrapper.gl_active_texture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D_ARRAY, resources.white_tex_array); glTexImage3D(GL_TEXTURE_2D_ARRAY, 0, GL_RGB, 8, 8, 1, 0, GL_RGB, GL_UNSIGNED_BYTE, nullptr); glTexSubImage3D(GL_TEXTURE_2D_ARRAY, 0, 0, 0, 0, 8, 8, 1, GL_RGB, GL_UNSIGNED_BYTE, whitetexdata); glGenerateMipmap(GL_TEXTURE_2D_ARRAY); glBindTexture(GL_TEXTURE_2D, 0); } glGetIntegerv(GL_MAX_TEXTURE_IMAGE_UNITS, &config.max_texture_image_units); gl_wrapper.initialize(config.max_texture_image_units); glGetIntegerv(GL_MAX_TEXTURE_SIZE, &config.max_texture_size); glGetIntegerv(GL_MAX_CUBE_MAP_TEXTURE_SIZE, &config.max_cubemap_texture_size); config.use_rgba_2d_shadows = !config.framebuffer_float_supported; //generic quadie for copying { //quad buffers glGenBuffers(1, &resources.quadie); glBindBuffer(GL_ARRAY_BUFFER, resources.quadie); { const float qv[16] = { -1, -1, 0, 0, -1, 1, 0, 1, 1, 1, 1, 1, 1, -1, 1, 0, }; glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 16, qv, GL_STATIC_DRAW); } glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind glGenVertexArrays(1, &resources.quadie_array); glBindVertexArray(resources.quadie_array); glBindBuffer(GL_ARRAY_BUFFER, resources.quadie); glVertexAttribPointer(VS::ARRAY_VERTEX, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 4, nullptr); glEnableVertexAttribArray(0); glVertexAttribPointer(VS::ARRAY_TEX_UV, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 4, CAST_INT_TO_UCHAR_PTR(8)); glEnableVertexAttribArray(4); glBindVertexArray(0); glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind } //generic quadie for copying without touching sky { //transform feedback buffers uint32_t xf_feedback_size = GLOBAL_DEF_RST("rendering/limits/buffers/blend_shape_max_buffer_size_kb", 4096); ProjectSettings::get_singleton()->set_custom_property_info("rendering/limits/buffers/blend_shape_max_buffer_size_kb", PropertyInfo(Variant::INT, "rendering/limits/buffers/blend_shape_max_buffer_size_kb", PROPERTY_HINT_RANGE, "0,8192,1,or_greater")); for (int i = 0; i < 2; i++) { glGenBuffers(1, &resources.transform_feedback_buffers[i]); glBindBuffer(GL_ARRAY_BUFFER, resources.transform_feedback_buffers[i]); glBufferData(GL_ARRAY_BUFFER, xf_feedback_size * 1024, nullptr, GL_STREAM_DRAW); } shaders.blend_shapes.init(); glGenVertexArrays(1, &resources.transform_feedback_array); } shaders.cubemap_filter.init(); bool ggx_hq = GLOBAL_GET("rendering/quality/reflections/high_quality_ggx"); shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::LOW_QUALITY, !ggx_hq); shaders.particles.init(); if (config.async_compilation_enabled) { shaders.particles.init_async_compilation(); } #ifdef GLES_OVER_GL glEnable(_EXT_TEXTURE_CUBE_MAP_SEAMLESS); #endif frame.count = 0; frame.delta = 0; frame.current_rt = nullptr; config.keep_original_textures = false; config.generate_wireframes = false; config.use_texture_array_environment = GLOBAL_GET("rendering/quality/reflections/texture_array_reflections"); config.force_vertex_shading = GLOBAL_GET("rendering/quality/shading/force_vertex_shading"); String renderer = (const char *)glGetString(GL_RENDERER); GLOBAL_DEF("rendering/quality/lightmapping/use_bicubic_sampling", true); GLOBAL_DEF("rendering/quality/lightmapping/use_bicubic_sampling.mobile", false); config.use_lightmap_filter_bicubic = GLOBAL_GET("rendering/quality/lightmapping/use_bicubic_sampling"); config.use_physical_light_attenuation = GLOBAL_GET("rendering/quality/shading/use_physical_light_attenuation"); config.use_depth_prepass = bool(GLOBAL_GET("rendering/quality/depth_prepass/enable")); if (config.use_depth_prepass) { String vendors = GLOBAL_GET("rendering/quality/depth_prepass/disable_for_vendors"); Vector vendor_match = vendors.split(","); for (int i = 0; i < vendor_match.size(); i++) { String v = vendor_match[i].strip_edges(); if (v == String()) { continue; } if (renderer.findn(v) != -1) { config.use_depth_prepass = false; } } } int orphan_mode = GLOBAL_GET("rendering/2d/opengl/legacy_orphan_buffers"); switch (orphan_mode) { default: { config.should_orphan = true; } break; case 1: { config.should_orphan = false; } break; case 2: { config.should_orphan = true; } break; } } void RasterizerStorageGLES3::finalize() { glDeleteTextures(1, &resources.white_tex); glDeleteTextures(1, &resources.black_tex); glDeleteTextures(1, &resources.transparent_tex); glDeleteTextures(1, &resources.normal_tex); glDeleteTextures(1, &resources.depth_tex); } void RasterizerStorageGLES3::update_dirty_resources() { update_dirty_multimeshes(); update_dirty_skeletons(); update_dirty_shaders(); update_dirty_materials(); update_particles(); update_dirty_captures(); } RasterizerStorageGLES3::RasterizerStorageGLES3() { config.should_orphan = true; } RasterizerStorageGLES3::~RasterizerStorageGLES3() { if (shaders.cache) { memdelete(shaders.cache); } if (shaders.cache_write_queue) { memdelete(shaders.cache_write_queue); } if (shaders.compile_queue) { shaders.compile_queue->enqueue(0, []() { OS::get_singleton()->set_offscreen_gl_current(false); }); memdelete(shaders.compile_queue); } }