/**************************************************************************/ /* particle_process_material.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "particle_process_material.h" #include "core/version.h" Mutex ParticleProcessMaterial::material_mutex; SelfList::List ParticleProcessMaterial::dirty_materials; HashMap ParticleProcessMaterial::shader_map; RBSet ParticleProcessMaterial::min_max_properties; ParticleProcessMaterial::ShaderNames *ParticleProcessMaterial::shader_names = nullptr; void ParticleProcessMaterial::init_shaders() { shader_names = memnew(ShaderNames); shader_names->direction = "direction"; shader_names->spread = "spread"; shader_names->flatness = "flatness"; shader_names->initial_linear_velocity_min = "initial_linear_velocity_min"; shader_names->initial_angle_min = "initial_angle_min"; shader_names->angular_velocity_min = "angular_velocity_min"; shader_names->orbit_velocity_min = "orbit_velocity_min"; shader_names->radial_velocity_min = "radial_velocity_min"; shader_names->linear_accel_min = "linear_accel_min"; shader_names->radial_accel_min = "radial_accel_min"; shader_names->tangent_accel_min = "tangent_accel_min"; shader_names->damping_min = "damping_min"; shader_names->scale_min = "scale_min"; shader_names->hue_variation_min = "hue_variation_min"; shader_names->anim_speed_min = "anim_speed_min"; shader_names->anim_offset_min = "anim_offset_min"; shader_names->directional_velocity_min = "directional_velocity_min"; shader_names->scale_over_velocity_min = "scale_over_velocity_min"; shader_names->initial_linear_velocity_max = "initial_linear_velocity_max"; shader_names->initial_angle_max = "initial_angle_max"; shader_names->angular_velocity_max = "angular_velocity_max"; shader_names->orbit_velocity_max = "orbit_velocity_max"; shader_names->radial_velocity_max = "radial_velocity_max"; shader_names->linear_accel_max = "linear_accel_max"; shader_names->radial_accel_max = "radial_accel_max"; shader_names->tangent_accel_max = "tangent_accel_max"; shader_names->damping_max = "damping_max"; shader_names->scale_max = "scale_max"; shader_names->hue_variation_max = "hue_variation_max"; shader_names->anim_speed_max = "anim_speed_max"; shader_names->anim_offset_max = "anim_offset_max"; shader_names->directional_velocity_max = "directional_velocity_max"; shader_names->scale_over_velocity_max = "scale_over_velocity_max"; shader_names->angle_texture = "angle_texture"; shader_names->angular_velocity_texture = "angular_velocity_texture"; shader_names->orbit_velocity_texture = "orbit_velocity_curve"; shader_names->radial_velocity_texture = "radial_velocity_curve"; shader_names->linear_accel_texture = "linear_accel_texture"; shader_names->radial_accel_texture = "radial_accel_texture"; shader_names->tangent_accel_texture = "tangent_accel_texture"; shader_names->damping_texture = "damping_texture"; shader_names->scale_texture = "scale_curve"; shader_names->hue_variation_texture = "hue_rot_curve"; shader_names->anim_speed_texture = "animation_speed_curve"; shader_names->anim_offset_texture = "animation_offset_curve"; shader_names->directional_velocity_texture = "directional_velocity_curve"; shader_names->scale_over_velocity_texture = "scale_over_velocity_curve"; shader_names->color = "color_value"; shader_names->color_ramp = "color_ramp"; shader_names->alpha_ramp = "alpha_curve"; shader_names->emission_ramp = "emission_curve"; shader_names->color_initial_ramp = "color_initial_ramp"; shader_names->velocity_limit_curve = "velocity_limit_curve"; shader_names->inherit_emitter_velocity_ratio = "inherit_emitter_velocity_ratio"; shader_names->velocity_pivot = "velocity_pivot"; shader_names->emission_sphere_radius = "emission_sphere_radius"; shader_names->emission_box_extents = "emission_box_extents"; shader_names->emission_texture_point_count = "emission_texture_point_count"; shader_names->emission_texture_points = "emission_texture_points"; shader_names->emission_texture_normal = "emission_texture_normal"; shader_names->emission_texture_color = "emission_texture_color"; shader_names->emission_ring_axis = "emission_ring_axis"; shader_names->emission_ring_height = "emission_ring_height"; shader_names->emission_ring_radius = "emission_ring_radius"; shader_names->emission_ring_inner_radius = "emission_ring_inner_radius"; shader_names->emission_ring_cone_angle = "emission_ring_cone_angle"; shader_names->emission_shape_offset = "emission_shape_offset"; shader_names->emission_shape_scale = "emission_shape_scale"; shader_names->turbulence_enabled = "turbulence_enabled"; shader_names->turbulence_noise_strength = "turbulence_noise_strength"; shader_names->turbulence_noise_scale = "turbulence_noise_scale"; shader_names->turbulence_noise_speed = "turbulence_noise_speed"; shader_names->turbulence_noise_speed_random = "turbulence_noise_speed_random"; shader_names->turbulence_influence_over_life = "turbulence_influence_over_life"; shader_names->turbulence_influence_min = "turbulence_influence_min"; shader_names->turbulence_influence_max = "turbulence_influence_max"; shader_names->turbulence_initial_displacement_min = "turbulence_initial_displacement_min"; shader_names->turbulence_initial_displacement_max = "turbulence_initial_displacement_max"; shader_names->gravity = "gravity"; shader_names->lifetime_randomness = "lifetime_randomness"; shader_names->sub_emitter_frequency = "sub_emitter_frequency"; shader_names->sub_emitter_amount_at_end = "sub_emitter_amount_at_end"; shader_names->sub_emitter_amount_at_collision = "sub_emitter_amount_at_collision"; shader_names->sub_emitter_keep_velocity = "sub_emitter_keep_velocity"; shader_names->collision_friction = "collision_friction"; shader_names->collision_bounce = "collision_bounce"; } void ParticleProcessMaterial::finish_shaders() { dirty_materials.clear(); memdelete(shader_names); shader_names = nullptr; } void ParticleProcessMaterial::_update_shader() { MaterialKey mk = _compute_key(); if (mk == current_key) { return; // No update required in the end. } if (shader_map.has(current_key)) { shader_map[current_key].users--; if (shader_map[current_key].users == 0) { // Deallocate shader, as it's no longer in use. RS::get_singleton()->free(shader_map[current_key].shader); shader_map.erase(current_key); } } current_key = mk; if (shader_map.has(mk)) { RS::get_singleton()->material_set_shader(_get_material(), shader_map[mk].shader); shader_map[mk].users++; return; } // No pre-existing shader, create one. // Add a comment to describe the shader origin (useful when converting to ShaderMaterial). String code = "// NOTE: Shader automatically converted from " VERSION_NAME " " VERSION_FULL_CONFIG "'s ParticleProcessMaterial.\n\n"; code += "shader_type particles;\n"; code += "render_mode disable_velocity;\n"; if (collision_scale) { code += "render_mode collision_use_scale;\n"; } code += "\n"; // Define uniforms. code += "uniform vec3 direction;\n"; code += "uniform float spread;\n"; code += "uniform float flatness;\n"; code += "uniform float inherit_emitter_velocity_ratio = 0.0;\n"; code += "uniform float initial_linear_velocity_min;\n"; code += "uniform float initial_linear_velocity_max;\n"; code += "uniform float directional_velocity_min;\n"; code += "uniform float directional_velocity_max;\n"; code += "uniform float angular_velocity_min;\n"; code += "uniform float angular_velocity_max;\n"; code += "uniform float orbit_velocity_min;\n"; code += "uniform float orbit_velocity_max;\n"; code += "uniform float radial_velocity_min;\n"; code += "uniform float radial_velocity_max;\n"; code += "uniform float linear_accel_min;\n"; code += "uniform float linear_accel_max;\n"; code += "uniform float radial_accel_min;\n"; code += "uniform float radial_accel_max;\n"; code += "uniform float tangent_accel_min;\n"; code += "uniform float tangent_accel_max;\n"; code += "uniform float damping_min;\n"; code += "uniform float damping_max;\n"; code += "uniform float initial_angle_min;\n"; code += "uniform float initial_angle_max;\n"; code += "uniform float scale_min;\n"; code += "uniform float scale_max;\n"; code += "uniform float hue_variation_min;\n"; code += "uniform float hue_variation_max;\n"; code += "uniform float anim_speed_min;\n"; code += "uniform float anim_speed_max;\n"; code += "uniform float anim_offset_min;\n"; code += "uniform float anim_offset_max;\n"; code += "uniform float lifetime_randomness;\n"; code += "uniform vec3 emission_shape_offset = vec3(0.0);\n"; code += "uniform vec3 emission_shape_scale = vec3(1.0);\n"; code += "uniform vec3 velocity_pivot = vec3(0.0);\n"; if (tex_parameters[PARAM_SCALE_OVER_VELOCITY].is_valid()) { code += "uniform float scale_over_velocity_min = 0.0;\n"; code += "uniform float scale_over_velocity_max = 5.0;\n"; } switch (emission_shape) { case EMISSION_SHAPE_POINT: { //do none } break; case EMISSION_SHAPE_SPHERE: { code += "uniform float emission_sphere_radius;\n"; } break; case EMISSION_SHAPE_SPHERE_SURFACE: { code += "uniform float emission_sphere_radius;\n"; } break; case EMISSION_SHAPE_BOX: { code += "uniform vec3 emission_box_extents;\n"; } break; case EMISSION_SHAPE_DIRECTED_POINTS: { code += "uniform sampler2D emission_texture_normal : hint_default_black;\n"; [[fallthrough]]; } case EMISSION_SHAPE_POINTS: { code += "uniform sampler2D emission_texture_points : hint_default_black;\n"; code += "uniform int emission_texture_point_count;\n"; if (emission_color_texture.is_valid()) { code += "uniform sampler2D emission_texture_color : hint_default_white;\n"; } } break; case EMISSION_SHAPE_RING: { code += "uniform vec3 " + shader_names->emission_ring_axis + ";\n"; code += "uniform float " + shader_names->emission_ring_height + ";\n"; code += "uniform float " + shader_names->emission_ring_radius + ";\n"; code += "uniform float " + shader_names->emission_ring_inner_radius + ";\n"; code += "uniform float " + shader_names->emission_ring_cone_angle + ";\n"; } break; case EMISSION_SHAPE_MAX: { // Max value for validity check. break; } } if (sub_emitter_mode != SUB_EMITTER_DISABLED && !RenderingServer::get_singleton()->is_low_end()) { if (sub_emitter_mode == SUB_EMITTER_CONSTANT) { code += "uniform float sub_emitter_frequency;\n"; } if (sub_emitter_mode == SUB_EMITTER_AT_END) { code += "uniform int sub_emitter_amount_at_end;\n"; } if (sub_emitter_mode == SUB_EMITTER_AT_COLLISION) { code += "uniform int sub_emitter_amount_at_collision;\n"; } code += "uniform bool sub_emitter_keep_velocity;\n"; } code += "uniform vec4 color_value : source_color;\n"; code += "uniform vec3 gravity;\n"; if (color_ramp.is_valid()) { code += "uniform sampler2D color_ramp : repeat_disable;\n"; } if (color_initial_ramp.is_valid()) { code += "uniform sampler2D color_initial_ramp : repeat_disable;\n"; } if (alpha_curve.is_valid()) { code += "uniform sampler2D alpha_curve : repeat_disable;\n"; } if (emission_curve.is_valid()) { code += "uniform sampler2D emission_curve : repeat_disable;\n"; } if (tex_parameters[PARAM_INITIAL_LINEAR_VELOCITY].is_valid()) { code += "uniform sampler2D linear_velocity_texture : repeat_disable;\n"; } if (tex_parameters[PARAM_ORBIT_VELOCITY].is_valid()) { code += "uniform sampler2D orbit_velocity_curve : repeat_disable;\n"; } if (tex_parameters[PARAM_ANGULAR_VELOCITY].is_valid()) { code += "uniform sampler2D angular_velocity_texture : repeat_disable;\n"; } if (tex_parameters[PARAM_LINEAR_ACCEL].is_valid()) { code += "uniform sampler2D linear_accel_texture : repeat_disable;\n"; } if (tex_parameters[PARAM_RADIAL_ACCEL].is_valid()) { code += "uniform sampler2D radial_accel_texture : repeat_disable;\n"; } if (tex_parameters[PARAM_TANGENTIAL_ACCEL].is_valid()) { code += "uniform sampler2D tangent_accel_texture : repeat_disable;\n"; } if (tex_parameters[PARAM_DAMPING].is_valid()) { code += "uniform sampler2D damping_texture : repeat_disable;\n"; } if (tex_parameters[PARAM_ANGLE].is_valid()) { code += "uniform sampler2D angle_texture : repeat_disable;\n"; } if (tex_parameters[PARAM_SCALE].is_valid()) { code += "uniform sampler2D scale_curve : repeat_disable;\n"; } if (tex_parameters[PARAM_HUE_VARIATION].is_valid()) { code += "uniform sampler2D hue_rot_curve : repeat_disable;\n"; } if (tex_parameters[PARAM_ANIM_SPEED].is_valid()) { code += "uniform sampler2D animation_speed_curve : repeat_disable;\n"; } if (tex_parameters[PARAM_ANIM_OFFSET].is_valid()) { code += "uniform sampler2D animation_offset_curve : repeat_disable;\n"; } if (tex_parameters[PARAM_RADIAL_VELOCITY].is_valid()) { code += "uniform sampler2D radial_velocity_curve : repeat_disable;\n"; } if (tex_parameters[PARAM_SCALE_OVER_VELOCITY].is_valid()) { code += "uniform sampler2D scale_over_velocity_curve : repeat_disable;\n"; } if (tex_parameters[PARAM_DIRECTIONAL_VELOCITY].is_valid()) { code += "uniform sampler2D directional_velocity_curve : repeat_disable;\n"; } if (velocity_limit_curve.is_valid()) { code += "uniform sampler2D velocity_limit_curve : repeat_disable;\n"; } if (collision_mode == COLLISION_RIGID) { code += "uniform float collision_friction;\n"; code += "uniform float collision_bounce;\n"; } if (turbulence_enabled) { code += "uniform float turbulence_noise_strength;\n"; code += "uniform float turbulence_noise_scale;\n"; code += "uniform float turbulence_influence_min;\n"; code += "uniform float turbulence_influence_max;\n"; code += "uniform float turbulence_initial_displacement_min;\n"; code += "uniform float turbulence_initial_displacement_max;\n"; code += "uniform float turbulence_noise_speed_random;\n"; code += "uniform vec3 turbulence_noise_speed = vec3(1.0, 1.0, 1.0);\n"; if (tex_parameters[PARAM_TURB_INFLUENCE_OVER_LIFE].is_valid()) { code += "uniform sampler2D turbulence_influence_over_life;\n"; } if (turbulence_color_ramp.is_valid()) { code += "uniform sampler2D turbulence_color_ramp;\n"; } } code += "\n"; // Define helper functions. if (turbulence_enabled) { // Functions for 3D noise / turbulence. code += "// Functions for 3D noise / turbulence.\n"; code += "vec4 grad(vec4 p) {\n"; code += " p = fract(vec4(\n"; code += " dot(p, vec4(0.143081, 0.001724, 0.280166, 0.262771)),\n"; code += " dot(p, vec4(0.645401, -0.047791, -0.146698, 0.595016)),\n"; code += " dot(p, vec4(-0.499665, -0.095734, 0.425674, -0.207367)),\n"; code += " dot(p, vec4(-0.013596, -0.848588, 0.423736, 0.17044))));\n"; code += " return fract((p.xyzw * p.yzwx) * 2365.952041) * 2.0 - 1.0;\n"; code += "}\n\n"; code += "float noise(vec4 coord) {\n"; code += " // Domain rotation to improve the look of XYZ slices + animation patterns.\n"; code += " coord = vec4(\n"; code += " coord.xyz + dot(coord, vec4(vec3(-0.1666667), -0.5)),\n"; code += " dot(coord, vec4(0.5)));\n\n"; code += " vec4 base = floor(coord), delta = coord - base;\n\n"; code += " vec4 grad_0000 = grad(base + vec4(0.0, 0.0, 0.0, 0.0)), grad_1000 = grad(base + vec4(1.0, 0.0, 0.0, 0.0));\n"; code += " vec4 grad_0100 = grad(base + vec4(0.0, 1.0, 0.0, 0.0)), grad_1100 = grad(base + vec4(1.0, 1.0, 0.0, 0.0));\n"; code += " vec4 grad_0010 = grad(base + vec4(0.0, 0.0, 1.0, 0.0)), grad_1010 = grad(base + vec4(1.0, 0.0, 1.0, 0.0));\n"; code += " vec4 grad_0110 = grad(base + vec4(0.0, 1.0, 1.0, 0.0)), grad_1110 = grad(base + vec4(1.0, 1.0, 1.0, 0.0));\n"; code += " vec4 grad_0001 = grad(base + vec4(0.0, 0.0, 0.0, 1.0)), grad_1001 = grad(base + vec4(1.0, 0.0, 0.0, 1.0));\n"; code += " vec4 grad_0101 = grad(base + vec4(0.0, 1.0, 0.0, 1.0)), grad_1101 = grad(base + vec4(1.0, 1.0, 0.0, 1.0));\n"; code += " vec4 grad_0011 = grad(base + vec4(0.0, 0.0, 1.0, 1.0)), grad_1011 = grad(base + vec4(1.0, 0.0, 1.0, 1.0));\n"; code += " vec4 grad_0111 = grad(base + vec4(0.0, 1.0, 1.0, 1.0)), grad_1111 = grad(base + vec4(1.0, 1.0, 1.0, 1.0));\n\n"; code += " vec4 result_0123 = vec4(\n"; code += " dot(delta - vec4(0.0, 0.0, 0.0, 0.0), grad_0000), dot(delta - vec4(1.0, 0.0, 0.0, 0.0), grad_1000),\n"; code += " dot(delta - vec4(0.0, 1.0, 0.0, 0.0), grad_0100), dot(delta - vec4(1.0, 1.0, 0.0, 0.0), grad_1100));\n"; code += " vec4 result_4567 = vec4(\n"; code += " dot(delta - vec4(0.0, 0.0, 1.0, 0.0), grad_0010), dot(delta - vec4(1.0, 0.0, 1.0, 0.0), grad_1010),\n"; code += " dot(delta - vec4(0.0, 1.0, 1.0, 0.0), grad_0110), dot(delta - vec4(1.0, 1.0, 1.0, 0.0), grad_1110));\n"; code += " vec4 result_89AB = vec4(\n"; code += " dot(delta - vec4(0.0, 0.0, 0.0, 1.0), grad_0001), dot(delta - vec4(1.0, 0.0, 0.0, 1.0), grad_1001),\n"; code += " dot(delta - vec4(0.0, 1.0, 0.0, 1.0), grad_0101), dot(delta - vec4(1.0, 1.0, 0.0, 1.0), grad_1101));\n"; code += " vec4 result_CDEF = vec4(\n"; code += " dot(delta - vec4(0.0, 0.0, 1.0, 1.0), grad_0011), dot(delta - vec4(1.0, 0.0, 1.0, 1.0), grad_1011),\n"; code += " dot(delta - vec4(0.0, 1.0, 1.0, 1.0), grad_0111), dot(delta - vec4(1.0, 1.0, 1.0, 1.0), grad_1111));\n\n"; code += " vec4 fade = delta * delta * delta * (10.0 + delta * (-15.0 + delta * 6.0));\n"; code += " vec4 result_W0 = mix(result_0123, result_89AB, fade.w), result_W1 = mix(result_4567, result_CDEF, fade.w);\n"; code += " vec4 result_WZ = mix(result_W0, result_W1, fade.z);\n"; code += " vec2 result_WZY = mix(result_WZ.xy, result_WZ.zw, fade.y);\n"; code += " return mix(result_WZY.x, result_WZY.y, fade.x);\n"; code += "}\n\n"; code += "// Curl 3D and three-noise function with friendly permission by Isaac Cohen.\n"; code += "// Modified to accept 4D noise.\n"; code += "vec3 noise_3x(vec4 p) {\n"; code += " float s = noise(p);\n"; code += " float s1 = noise(p + vec4(vec3(0.0), 1.7320508 * 2048.333333));\n"; code += " float s2 = noise(p - vec4(vec3(0.0), 1.7320508 * 2048.333333));\n"; code += " vec3 c = vec3(s, s1, s2);\n"; code += " return c;\n"; code += "}\n\n"; code += "vec3 curl_3d(vec4 p, float c) {\n"; code += " float epsilon = 0.001 + c;\n"; code += " vec4 dx = vec4(epsilon, 0.0, 0.0, 0.0);\n"; code += " vec4 dy = vec4(0.0, epsilon, 0.0, 0.0);\n"; code += " vec4 dz = vec4(0.0, 0.0, epsilon, 0.0);\n"; code += " vec3 x0 = noise_3x(p - dx).xyz;\n"; code += " vec3 x1 = noise_3x(p + dx).xyz;\n"; code += " vec3 y0 = noise_3x(p - dy).xyz;\n"; code += " vec3 y1 = noise_3x(p + dy).xyz;\n"; code += " vec3 z0 = noise_3x(p - dz).xyz;\n"; code += " vec3 z1 = noise_3x(p + dz).xyz;\n"; code += " float x = (y1.z - y0.z) - (z1.y - z0.y);\n"; code += " float y = (z1.x - z0.x) - (x1.z - x0.z);\n"; code += " float z = (x1.y - x0.y) - (y1.x - y0.x);\n"; code += " return normalize(vec3(x, y, z));\n"; code += "}\n\n"; code += "vec3 get_noise_direction(vec3 pos) {\n"; code += " float adj_contrast = max((turbulence_noise_strength - 1.0), 0.0) * 70.0;\n"; code += " vec4 noise_time = TIME * vec4(turbulence_noise_speed, turbulence_noise_speed_random);\n"; code += " vec4 noise_pos = vec4(pos * turbulence_noise_scale, 0.0);\n"; code += " vec3 noise_direction = curl_3d(noise_pos + noise_time, adj_contrast);\n"; code += " noise_direction = mix(0.9 * noise_direction, noise_direction, turbulence_noise_strength - 9.0);\n"; code += " return noise_direction;\n"; code += "}\n\n"; } code += "vec4 rotate_hue(vec4 current_color, float hue_rot_angle) {\n"; code += " float hue_rot_c = cos(hue_rot_angle);\n"; code += " float hue_rot_s = sin(hue_rot_angle);\n"; code += " mat4 hue_rot_mat =\n"; code += " mat4(vec4(0.299, 0.587, 0.114, 0.0),\n"; code += " vec4(0.299, 0.587, 0.114, 0.0),\n"; code += " vec4(0.299, 0.587, 0.114, 0.0),\n"; code += " vec4(0.000, 0.000, 0.000, 1.0)) +\n"; code += " mat4(vec4(0.701, -0.587, -0.114, 0.0),\n"; code += " vec4(-0.299, 0.413, -0.114, 0.0),\n"; code += " vec4(-0.300, -0.588, 0.886, 0.0),\n"; code += " vec4(0.000, 0.000, 0.000, 0.0)) *\n"; code += " hue_rot_c +\n"; code += " mat4(vec4(0.168, 0.330, -0.497, 0.0),\n"; code += " vec4(-0.328, 0.035, 0.292, 0.0),\n"; code += " vec4(1.250, -1.050, -0.203, 0.0),\n"; code += " vec4(0.000, 0.000, 0.000, 0.0)) *\n"; code += " hue_rot_s;\n"; code += " return hue_rot_mat * current_color;\n"; code += "}\n\n"; // Random functions. code += "float rand_from_seed(inout uint seed) {\n"; code += " int k;\n"; code += " int s = int(seed);\n"; code += " if (s == 0) {\n"; code += " s = 305420679;\n"; code += " }\n"; code += " k = s / 127773;\n"; code += " s = 16807 * (s - k * 127773) - 2836 * k;\n"; code += " if (s < 0) {\n"; code += " s += 2147483647;\n"; code += " }\n"; code += " seed = uint(s);\n"; code += " return float(seed % uint(65536)) / 65535.0;\n"; code += "}\n\n"; code += "float rand_from_seed_m1_p1(inout uint seed) {\n"; code += " return rand_from_seed(seed) * 2.0 - 1.0;\n"; code += "}\n\n"; // Improve seed quality. code += "uint hash(uint x) {\n"; code += " x = ((x >> uint(16)) ^ x) * uint(73244475);\n"; code += " x = ((x >> uint(16)) ^ x) * uint(73244475);\n"; code += " x = (x >> uint(16)) ^ x;\n"; code += " return x;\n"; code += "}\n\n"; // Define structs. code += "struct DisplayParameters {\n"; code += " vec3 scale;\n"; code += " float hue_rotation;\n"; code += " float animation_speed;\n"; code += " float animation_offset;\n"; code += " float lifetime;\n"; code += " vec4 color;\n"; code += "};\n\n"; code += "struct DynamicsParameters {\n"; code += " float angle;\n"; code += " float angular_velocity;\n"; code += " float initial_velocity_multiplier;\n"; code += " float directional_velocity;\n"; code += " float radial_velocity;\n"; code += " float orbit_velocity;\n"; if (turbulence_enabled) { code += " float turb_influence;\n"; } code += "};\n\n"; code += "struct PhysicalParameters {\n"; code += " float linear_accel;\n"; code += " float radial_accel;\n"; code += " float tangent_accel;\n"; code += " float damping;\n"; code += "};\n\n"; code += "void calculate_initial_physical_params(inout PhysicalParameters params, inout uint alt_seed) {\n"; code += " params.linear_accel = mix(linear_accel_min, linear_accel_max, rand_from_seed(alt_seed));\n"; code += " params.radial_accel = mix(radial_accel_min, radial_accel_max, rand_from_seed(alt_seed));\n"; code += " params.tangent_accel = mix(tangent_accel_min, tangent_accel_max, rand_from_seed(alt_seed));\n"; code += " params.damping = mix(damping_min, damping_max, rand_from_seed(alt_seed));\n"; code += "}\n\n"; code += "void calculate_initial_dynamics_params(inout DynamicsParameters params, inout uint alt_seed) {\n"; code += " // -------------------- DO NOT REORDER OPERATIONS, IT BREAKS VISUAL COMPATIBILITY\n"; code += " // -------------------- ADD NEW OPERATIONS AT THE BOTTOM\n"; code += " params.angle = mix(initial_angle_min, initial_angle_max, rand_from_seed(alt_seed));\n"; code += " params.angular_velocity = mix(angular_velocity_min, angular_velocity_max, rand_from_seed(alt_seed));\n"; code += " params.initial_velocity_multiplier = mix(initial_linear_velocity_min, initial_linear_velocity_max, rand_from_seed(alt_seed));\n"; code += " params.directional_velocity = mix(directional_velocity_min, directional_velocity_max, rand_from_seed(alt_seed));\n"; code += " params.radial_velocity = mix(radial_velocity_min, radial_velocity_max, rand_from_seed(alt_seed));\n"; code += " params.orbit_velocity = mix(orbit_velocity_min, orbit_velocity_max, rand_from_seed(alt_seed));\n"; if (turbulence_enabled) { code += " params.turb_influence = mix(turbulence_influence_min, turbulence_influence_max, rand_from_seed(alt_seed));\n"; } code += "}\n\n"; code += "void calculate_initial_display_params(inout DisplayParameters params, inout uint alt_seed) {\n"; code += " // -------------------- DO NOT REORDER OPERATIONS, IT BREAKS VISUAL COMPATIBILITY\n"; code += " // -------------------- ADD NEW OPERATIONS AT THE BOTTOM\n"; code += " float pi = 3.14159;\n"; code += " params.scale = vec3(mix(scale_min, scale_max, rand_from_seed(alt_seed)));\n"; code += " params.scale = sign(params.scale) * max(abs(params.scale), 0.001);\n"; code += " params.hue_rotation = pi * 2.0 * mix(hue_variation_min, hue_variation_max, rand_from_seed(alt_seed));\n"; code += " params.animation_speed = mix(anim_speed_min, anim_speed_max, rand_from_seed(alt_seed));\n"; code += " params.animation_offset = mix(anim_offset_min, anim_offset_max, rand_from_seed(alt_seed));\n"; code += " params.lifetime = (1.0 - lifetime_randomness * rand_from_seed(alt_seed));\n"; code += " params.color = color_value;\n"; if (color_initial_ramp.is_valid()) { code += " params.color *= texture(color_initial_ramp, vec2(rand_from_seed(alt_seed)));\n"; } if (emission_color_texture.is_valid() && (emission_shape == EMISSION_SHAPE_POINTS || emission_shape == EMISSION_SHAPE_DIRECTED_POINTS)) { code += " int point = min(emission_texture_point_count - 1, int(rand_from_seed(alt_seed) * float(emission_texture_point_count)));\n"; code += " ivec2 emission_tex_size = textureSize(emission_texture_points, 0);\n"; code += " ivec2 emission_tex_ofs = ivec2(point % emission_tex_size.x, point / emission_tex_size.x);\n"; code += " params.color *= texelFetch(emission_texture_color, emission_tex_ofs, 0);\n"; } code += "}\n\n"; // Process display parameters that are bound solely by lifetime. code += "void process_display_param(inout DisplayParameters parameters, float lifetime) {\n"; code += " // Compile-time add textures.\n"; if (tex_parameters[PARAM_SCALE].is_valid()) { code += " parameters.scale *= texture(scale_curve, vec2(lifetime)).rgb;\n"; } if (tex_parameters[PARAM_HUE_VARIATION].is_valid()) { code += " parameters.hue_rotation *= texture(hue_rot_curve, vec2(lifetime)).r;\n"; } if (tex_parameters[PARAM_ANIM_OFFSET].is_valid()) { code += " parameters.animation_offset += texture(animation_offset_curve, vec2(lifetime)).r;\n"; } if (tex_parameters[PARAM_ANIM_SPEED].is_valid()) { code += " parameters.animation_speed *= texture(animation_speed_curve, vec2(lifetime)).r;\n"; } if (color_ramp.is_valid()) { code += " parameters.color *= texture(color_ramp, vec2(lifetime));\n"; } if (alpha_curve.is_valid()) { code += " parameters.color.a *= texture(alpha_curve, vec2(lifetime)).r;\n"; } code += " parameters.color = rotate_hue(parameters.color, parameters.hue_rotation);\n"; if (emission_curve.is_valid()) { code += " parameters.color.rgb *= 1.0 + texture(emission_curve, vec2(lifetime)).r;\n"; } code += "}\n\n"; code += "vec3 calculate_initial_position(inout uint alt_seed) {\n"; code += " float pi = 3.14159;\n"; code += " vec3 pos = vec3(0.0);\n"; code += " { // Emission shape.\n"; if (emission_shape == EMISSION_SHAPE_POINT) { code += " pos = vec3(0.0);\n"; } if (emission_shape == EMISSION_SHAPE_SPHERE) { code += " float s = rand_from_seed(alt_seed) * 2.0 - 1.0;\n"; code += " float t = rand_from_seed(alt_seed) * 2.0 * pi;\n"; code += " float p = rand_from_seed(alt_seed);\n"; code += " float radius = emission_sphere_radius * sqrt(1.0 - s * s);\n"; code += " pos = mix(vec3(0.0, 0.0, 0.0), vec3(radius * cos(t), radius * sin(t), emission_sphere_radius * s), p);\n"; } if (emission_shape == EMISSION_SHAPE_SPHERE_SURFACE) { code += " float s = rand_from_seed(alt_seed) * 2.0 - 1.0;\n"; code += " float t = rand_from_seed(alt_seed) * 2.0 * pi;\n"; code += " float radius = emission_sphere_radius * sqrt(1.0 - s * s);\n"; code += " pos = vec3(radius * cos(t), radius * sin(t), emission_sphere_radius * s);\n"; } if (emission_shape == EMISSION_SHAPE_BOX) { code += " pos = vec3(rand_from_seed(alt_seed) * 2.0 - 1.0, rand_from_seed(alt_seed) * 2.0 - 1.0, rand_from_seed(alt_seed) * 2.0 - 1.0) * emission_box_extents;\n"; } if (emission_shape == EMISSION_SHAPE_POINTS || emission_shape == EMISSION_SHAPE_DIRECTED_POINTS) { code += " int point = min(emission_texture_point_count - 1, int(rand_from_seed(alt_seed) * float(emission_texture_point_count)));\n"; code += " ivec2 emission_tex_size = textureSize(emission_texture_points, 0);\n"; code += " ivec2 emission_tex_ofs = ivec2(point % emission_tex_size.x, point / emission_tex_size.x);\n"; code += " pos = texelFetch(emission_texture_points, emission_tex_ofs, 0).xyz;\n"; } if (emission_shape == EMISSION_SHAPE_RING) { code += " float radius_clamped = max(0.001, emission_ring_radius);\n"; code += " float top_radius = max(radius_clamped - tan(radians(90.0 - emission_ring_cone_angle)) * emission_ring_height, 0.0);\n"; code += " float y_pos = rand_from_seed(alt_seed);\n"; code += " float skew = max(min(radius_clamped, top_radius) / max(radius_clamped, top_radius), 0.5);\n"; code += " y_pos = radius_clamped < top_radius ? pow(y_pos, skew) : 1.0 - pow(y_pos, skew);\n"; code += " float ring_spawn_angle = rand_from_seed(alt_seed) * 2.0 * pi;\n"; code += " float ring_random_radius = sqrt(rand_from_seed(alt_seed) * (radius_clamped * radius_clamped - emission_ring_inner_radius * emission_ring_inner_radius) + emission_ring_inner_radius * emission_ring_inner_radius);\n"; code += " ring_random_radius = mix(ring_random_radius, ring_random_radius * (top_radius / radius_clamped), y_pos);\n"; code += " vec3 axis = emission_ring_axis == vec3(0.0) ? vec3(0.0, 0.0, 1.0) : normalize(emission_ring_axis);\n"; code += " vec3 ortho_axis = vec3(0.0);\n"; code += " if (abs(axis) == vec3(1.0, 0.0, 0.0)) {\n"; code += " ortho_axis = cross(axis, vec3(0.0, 1.0, 0.0));\n"; code += " } else {\n"; code += " ortho_axis = cross(axis, vec3(1.0, 0.0, 0.0));\n"; code += " }\n"; code += " ortho_axis = normalize(ortho_axis);\n"; code += " float s = sin(ring_spawn_angle);\n"; code += " float c = cos(ring_spawn_angle);\n"; code += " float oc = 1.0 - c;\n"; code += " ortho_axis = mat3(\n"; code += " vec3(c + axis.x * axis.x * oc, axis.x * axis.y * oc - axis.z * s, axis.x * axis.z *oc + axis.y * s),\n"; code += " vec3(axis.x * axis.y * oc + s * axis.z, c + axis.y * axis.y * oc, axis.y * axis.z * oc - axis.x * s),\n"; code += " vec3(axis.z * axis.x * oc - axis.y * s, axis.z * axis.y * oc + axis.x * s, c + axis.z * axis.z * oc)\n"; code += " ) * ortho_axis;\n"; code += " ortho_axis = normalize(ortho_axis);\n"; code += " pos = ortho_axis * ring_random_radius + (y_pos * emission_ring_height - emission_ring_height / 2.0) * axis;\n"; } code += " }\n"; code += " return pos * emission_shape_scale + emission_shape_offset;\n"; code += "}\n\n"; if (tex_parameters[PARAM_ORBIT_VELOCITY].is_valid() || particle_flags[PARTICLE_FLAG_DISABLE_Z]) { code += "vec3 process_orbit_displacement(DynamicsParameters param, float lifetime, inout uint alt_seed, mat4 transform, mat4 emission_transform, float delta, float total_lifetime) {\n"; // No reason to run all these expensive calculation below if we have no orbit velocity // HOWEVER // May be a bad idea for fps consistency? code += " if (abs(param.orbit_velocity) < 0.01 || delta < 0.001) {\n"; code += " return vec3(0.0);\n"; code += " }\n"; code += " vec3 displacement = vec3(0.0);\n"; code += " float pi = 3.14159;\n"; if (particle_flags[PARTICLE_FLAG_DISABLE_Z]) { code += " float orbit_amount = param.orbit_velocity;\n"; if (tex_parameters[PARAM_ORBIT_VELOCITY].is_valid()) { CurveTexture *texture = Object::cast_to(tex_parameters[PARAM_ORBIT_VELOCITY].ptr()); if (texture) { code += " orbit_amount *= texture(orbit_velocity_curve, vec2(lifetime)).r;\n"; } else { code += " orbit_amount *= texture(orbit_velocity_curve, vec2(lifetime)).b;\n"; } } code += " if (orbit_amount != 0.0) {\n"; code += " vec3 pos = transform[3].xyz;\n"; code += " vec3 org = emission_transform[3].xyz;\n"; code += " vec3 diff = pos - org;\n"; code += " float ang = orbit_amount * pi * 2.0 * delta;\n"; code += " mat2 rot = mat2(vec2(cos(ang), -sin(ang)), vec2(sin(ang), cos(ang)));\n"; code += " displacement.xy -= diff.xy;\n"; code += " displacement.xy += rot * diff.xy;\n"; code += " }\n"; } else { code += " vec3 orbit_velocities = vec3(param.orbit_velocity);\n"; code += " orbit_velocities *= texture(orbit_velocity_curve, vec2(lifetime)).rgb;\n"; code += " orbit_velocities *= pi * 2.0;\n"; code += " orbit_velocities *= delta; // We wanna process those by the delta angle.\n\n"; code += " // X axis.\n"; code += " vec3 local_pos = (inverse(emission_transform) * transform[3]).xyz;\n"; code += " local_pos -= velocity_pivot;\n"; code += " local_pos.x = 0.0;\n"; code += " mat3 x_rotation_mat = mat3(\n"; code += " vec3(1.0, 0.0, 0.0),\n"; code += " vec3(0.0, cos(orbit_velocities.x), sin(orbit_velocities.x)),\n"; code += " vec3(0.0, -sin(orbit_velocities.x), cos(orbit_velocities.x))\n"; code += " );\n"; code += " vec3 new_pos = x_rotation_mat * local_pos;\n"; code += " displacement = new_pos - local_pos;\n\n"; code += " // Y axis.\n"; code += " local_pos = (inverse(emission_transform) * transform[3]).xyz;\n"; code += " local_pos -= velocity_pivot;\n"; code += " local_pos.y = 0.0;\n"; code += " mat3 y_rotation_mat = mat3(\n"; code += " vec3(cos(orbit_velocities.y), 0.0, -sin(orbit_velocities.y)),\n"; code += " vec3(0.0, 1.0, 0.0),\n"; code += " vec3(sin(orbit_velocities.y), 0.0, cos(orbit_velocities.y))\n"; code += " );\n"; code += " new_pos = y_rotation_mat * local_pos;\n"; code += " displacement += new_pos - local_pos;\n\n"; code += " // Z axis.\n"; code += " local_pos = (inverse(emission_transform) * transform[3]).xyz;\n"; code += " local_pos -= velocity_pivot;\n"; code += " local_pos.z = 0.0;\n"; code += " mat3 z_rotation_mat = mat3(\n"; code += " vec3(cos(orbit_velocities.z), sin(orbit_velocities.z), 0.0),\n"; code += " vec3(-sin(orbit_velocities.z), cos(orbit_velocities.z), 0.0),\n"; code += " vec3(0.0, 0.0, 1.0)\n"; code += " );\n"; code += " new_pos = z_rotation_mat * local_pos;\n"; code += " displacement += new_pos - local_pos;\n\n"; } code += " return (emission_transform * vec4(displacement / delta, 0.0)).xyz;\n"; code += "}\n\n"; } code += "vec3 get_random_direction_from_spread(inout uint alt_seed, float spread_angle) {\n"; code += " float pi = 3.14159;\n"; code += " float degree_to_rad = pi / 180.0;\n"; code += " float spread_rad = spread_angle * degree_to_rad;\n"; if (particle_flags[PARTICLE_FLAG_DISABLE_Z]) { // Spread calculation for 2D. code += " float angle1_rad = rand_from_seed_m1_p1(alt_seed) * spread_rad;\n"; code += " angle1_rad += direction.x != 0.0 ? atan(direction.y, direction.x) : sign(direction.y) * (pi / 2.0);\n"; code += " vec3 spread_direction = vec3(cos(angle1_rad), sin(angle1_rad), 0.0);\n"; code += " return spread_direction;\n"; } else { // Spread calculation for 3D. code += " float angle1_rad = rand_from_seed_m1_p1(alt_seed) * spread_rad;\n"; code += " float angle2_rad = rand_from_seed_m1_p1(alt_seed) * spread_rad * (1.0 - flatness);\n"; code += " vec3 direction_xz = vec3(sin(angle1_rad), 0.0, cos(angle1_rad));\n"; code += " vec3 direction_yz = vec3(0.0, sin(angle2_rad), cos(angle2_rad));\n"; code += " direction_yz.z = direction_yz.z / max(0.0001, sqrt(abs(direction_yz.z))); // Better uniform distribution.\n"; code += " vec3 spread_direction = vec3(direction_xz.x * direction_yz.z, direction_yz.y, direction_xz.z * direction_yz.z);\n"; code += " vec3 direction_nrm = length(direction) > 0.0 ? normalize(direction) : vec3(0.0, 0.0, 1.0);\n"; code += " // Rotate spread to direction.\n"; code += " vec3 binormal = cross(vec3(0.0, 1.0, 0.0), direction_nrm);\n"; code += " if (length(binormal) < 0.0001) {\n"; code += " // Direction is parallel to Y. Choose Z as the binormal.\n"; code += " binormal = vec3(0.0, 0.0, 1.0);\n"; code += " }\n"; code += " binormal = normalize(binormal);\n"; code += " vec3 normal = cross(binormal, direction_nrm);\n"; code += " spread_direction = binormal * spread_direction.x + normal * spread_direction.y + direction_nrm * spread_direction.z;\n"; code += " return normalize(spread_direction);\n"; } code += "}\n\n"; code += "vec3 process_radial_displacement(DynamicsParameters param, float lifetime, inout uint alt_seed, mat4 transform, mat4 emission_transform, float delta) {\n"; code += " vec3 radial_displacement = vec3(0.0);\n"; code += " if (delta < 0.001) {\n"; code += " return radial_displacement;\n"; code += " }\n"; code += " float radial_displacement_multiplier = 1.0;\n"; if (tex_parameters[PARAM_RADIAL_VELOCITY].is_valid()) { code += " radial_displacement_multiplier = texture(radial_velocity_curve, vec2(lifetime)).r;\n"; } code += " vec3 global_pivot = (emission_transform * vec4(velocity_pivot, 1.0)).xyz;\n"; code += " if (length(transform[3].xyz - global_pivot) > 0.01) {\n"; code += " radial_displacement = normalize(transform[3].xyz - global_pivot) * radial_displacement_multiplier * param.radial_velocity;\n"; code += " } else {\n"; code += " radial_displacement = get_random_direction_from_spread(alt_seed, 360.0) * param.radial_velocity;\n"; code += " }\n"; code += " if (radial_displacement_multiplier * param.radial_velocity < 0.0) {\n"; code += " // Prevent inwards velocity to flicker once the point is reached.\n"; code += " radial_displacement = normalize(radial_displacement) * min(abs(radial_displacement_multiplier * param.radial_velocity), length(transform[3].xyz - global_pivot) / delta);\n"; code += " }\n"; code += " return radial_displacement;\n"; code += "}\n\n"; if (tex_parameters[PARAM_DIRECTIONAL_VELOCITY].is_valid()) { code += "vec3 process_directional_displacement(DynamicsParameters param, float lifetime_percent, mat4 transform, mat4 emission_transform) {\n"; code += " vec3 displacement = texture(directional_velocity_curve, vec2(lifetime_percent)).xyz * param.directional_velocity;\n"; if (directional_velocity_global) { code += " displacement = (emission_transform * vec4(displacement, 0.0)).xyz;\n"; } code += " return displacement;\n"; code += "}\n\n"; } code += "void process_physical_parameters(inout PhysicalParameters params, float lifetime_percent) {\n"; if (tex_parameters[PARAM_LINEAR_ACCEL].is_valid()) { code += " params.linear_accel *= texture(linear_accel_texture, vec2(lifetime_percent)).r;\n"; } if (tex_parameters[PARAM_RADIAL_ACCEL].is_valid()) { code += " params.radial_accel *= texture(radial_accel_texture, vec2(lifetime_percent)).r;\n"; } if (tex_parameters[PARAM_TANGENTIAL_ACCEL].is_valid()) { code += " params.tangent_accel *= texture(tangent_accel_texture, vec2(lifetime_percent)).r;\n"; } if (tex_parameters[PARAM_DAMPING].is_valid()) { code += " params.damping *= texture(damping_texture, vec2(lifetime_percent)).r;\n"; } code += "}\n\n"; code += "void start() {\n"; code += " uint base_number = NUMBER;\n"; code += " uint alt_seed = hash(base_number + uint(1) + RANDOM_SEED);\n"; code += " DisplayParameters params;\n"; code += " calculate_initial_display_params(params, alt_seed);\n"; code += " // Reset alt seed?\n"; code += " //alt_seed = hash(base_number + uint(1) + RANDOM_SEED);\n"; code += " DynamicsParameters dynamic_params;\n"; code += " calculate_initial_dynamics_params(dynamic_params, alt_seed);\n"; code += " PhysicalParameters physics_params;\n"; code += " calculate_initial_physical_params(physics_params, alt_seed);\n"; code += " process_display_param(params, 0.0);\n"; code += " if (rand_from_seed(alt_seed) > AMOUNT_RATIO) {\n"; code += " ACTIVE = false;\n"; code += " }\n\n"; code += " if (RESTART_CUSTOM) {\n"; code += " CUSTOM = vec4(0.0);\n"; code += " CUSTOM.w = params.lifetime;\n"; code += " CUSTOM.x = dynamic_params.angle;\n"; code += " }\n"; code += " if (RESTART_COLOR) {\n"; code += " COLOR = params.color;\n"; code += " }\n"; code += " if (RESTART_ROT_SCALE) {\n"; code += " TRANSFORM[0].xyz = vec3(1.0, 0.0, 0.0);\n"; code += " TRANSFORM[1].xyz = vec3(0.0, 1.0, 0.0);\n"; code += " TRANSFORM[2].xyz = vec3(0.0, 0.0, 1.0);\n"; code += " }\n"; code += " if (RESTART_POSITION) {\n"; code += " TRANSFORM[3].xyz = calculate_initial_position(alt_seed);\n"; if (turbulence_enabled) { code += " float initial_turbulence_displacement = mix(turbulence_initial_displacement_min, turbulence_initial_displacement_max, rand_from_seed(alt_seed));\n"; code += " vec3 noise_direction = get_noise_direction(TRANSFORM[3].xyz);\n"; code += " TRANSFORM[3].xyz += noise_direction * initial_turbulence_displacement;\n"; } code += " TRANSFORM = EMISSION_TRANSFORM * TRANSFORM;\n"; code += " }\n"; code += " if (RESTART_VELOCITY) {\n"; code += " VELOCITY = get_random_direction_from_spread(alt_seed, spread) * dynamic_params.initial_velocity_multiplier;\n"; if (emission_shape == EMISSION_SHAPE_DIRECTED_POINTS) { code += " int point = min(emission_texture_point_count - 1, int(rand_from_seed(alt_seed) * float(emission_texture_point_count)));\n"; code += " ivec2 emission_tex_size = textureSize(emission_texture_points, 0);\n"; code += " ivec2 emission_tex_ofs = ivec2(point % emission_tex_size.x, point / emission_tex_size.x);\n"; if (particle_flags[PARTICLE_FLAG_DISABLE_Z]) { code += " {\n"; code += " mat2 rotm;\n"; code += " rotm[0] = texelFetch(emission_texture_normal, emission_tex_ofs, 0).xy;\n"; code += " rotm[1] = rotm[0].yx * vec2(1.0, -1.0);\n"; code += " VELOCITY.xy = rotm * VELOCITY.xy;\n"; code += " }\n"; } else { code += " {\n"; code += " vec3 normal = texelFetch(emission_texture_normal, emission_tex_ofs, 0).xyz;\n"; code += " vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);\n"; code += " vec3 tangent = normalize(cross(v0, normal));\n"; code += " vec3 bitangent = normalize(cross(tangent, normal));\n"; code += " VELOCITY = mat3(tangent, bitangent, normal) * VELOCITY;\n"; code += " }\n"; } } code += " }\n\n"; code += " process_display_param(params, 0.0);\n\n"; code += " VELOCITY = (EMISSION_TRANSFORM * vec4(VELOCITY, 0.0)).xyz;\n"; code += " VELOCITY += EMITTER_VELOCITY * inherit_emitter_velocity_ratio;\n"; if (particle_flags[PARTICLE_FLAG_DISABLE_Z]) { code += " VELOCITY.z = 0.0;\n"; code += " TRANSFORM[3].z = 0.0;\n"; } code += "}\n\n"; code += "void process() {\n"; code += " uint base_number = NUMBER;\n"; // TODO: Add optional determinism here. code += " //if (repeatable) {\n"; code += " // base_number = INDEX;\n"; code += " //}\n"; code += " uint alt_seed = hash(base_number + uint(1) + RANDOM_SEED);\n"; code += " DisplayParameters params;\n"; code += " calculate_initial_display_params(params, alt_seed);\n"; code += " DynamicsParameters dynamic_params;\n"; code += " calculate_initial_dynamics_params(dynamic_params, alt_seed);\n"; code += " PhysicalParameters physics_params;\n"; code += " calculate_initial_physical_params(physics_params, alt_seed);\n\n"; code += " float pi = 3.14159;\n"; code += " float degree_to_rad = pi / 180.0;\n\n"; code += " CUSTOM.y += DELTA / LIFETIME;\n"; code += " CUSTOM.y = mix(CUSTOM.y, 1.0, INTERPOLATE_TO_END);\n"; code += " float lifetime_percent = CUSTOM.y / params.lifetime;\n"; code += " if (CUSTOM.y > CUSTOM.w) {\n"; code += " ACTIVE = false;\n"; code += " }\n\n"; code += " // Calculate all velocity.\n"; code += " vec3 controlled_displacement = vec3(0.0);\n"; if (tex_parameters[PARAM_ORBIT_VELOCITY].is_valid() || particle_flags[PARTICLE_FLAG_DISABLE_Z]) { code += " controlled_displacement += process_orbit_displacement(dynamic_params, lifetime_percent, alt_seed, TRANSFORM, EMISSION_TRANSFORM, DELTA, params.lifetime * LIFETIME);\n"; } code += " controlled_displacement += process_radial_displacement(dynamic_params, lifetime_percent, alt_seed, TRANSFORM, EMISSION_TRANSFORM, DELTA);\n"; if (tex_parameters[PARAM_DIRECTIONAL_VELOCITY].is_valid()) { code += " controlled_displacement += process_directional_displacement(dynamic_params, lifetime_percent, TRANSFORM, EMISSION_TRANSFORM);\n"; } code += "\n"; code += " process_physical_parameters(physics_params, lifetime_percent);\n"; code += " vec3 force;\n"; code += " {\n"; code += " // Copied from previous version.\n"; code += " vec3 pos = TRANSFORM[3].xyz;\n"; code += " force = gravity;\n"; code += " // Apply linear acceleration.\n"; code += " force += length(VELOCITY) > 0.0 ? normalize(VELOCITY) * physics_params.linear_accel : vec3(0.0);\n"; code += " // Apply radial acceleration.\n"; code += " vec3 org = EMISSION_TRANSFORM[3].xyz;\n"; code += " vec3 diff = pos - org;\n"; code += " force += length(diff) > 0.0 ? normalize(diff) * physics_params.radial_accel : vec3(0.0);\n"; code += " // Apply tangential acceleration.\n"; code += " float tangent_accel_val = physics_params.tangent_accel;\n"; if (particle_flags[PARTICLE_FLAG_DISABLE_Z]) { code += " force += length(diff.yx) > 0.0 ? vec3(normalize(diff.yx * vec2(-1.0, 1.0)), 0.0) * tangent_accel_val : vec3(0.0);\n"; } else { code += " vec3 crossDiff = cross(normalize(diff), normalize(gravity));\n"; code += " force += length(crossDiff) > 0.0 ? normalize(crossDiff) * tangent_accel_val : vec3(0.0);\n"; } if (attractor_interaction_enabled) { code += " force += ATTRACTOR_FORCE;\n"; } if (particle_flags[PARTICLE_FLAG_DISABLE_Z]) { code += " force.z = 0.0;\n"; } code += " // Apply attractor forces.\n"; code += " VELOCITY += force * DELTA;\n"; code += " }\n"; code += " {\n"; code += " // Copied from previous version.\n"; code += " if (physics_params.damping > 0.0) {\n"; code += " float v = length(VELOCITY);\n"; if (!particle_flags[PARTICLE_FLAG_DAMPING_AS_FRICTION]) { code += " v -= physics_params.damping * DELTA;\n"; } else { code += " if (v > 0.001) {\n"; code += " // Realistic friction formula. We assume the mass of a particle to be 0.05 kg.\n"; code += " float damp = v * v * physics_params.damping * 0.05 * DELTA;\n"; code += " v -= damp;\n"; code += " }\n"; } code += " if (v < 0.0) {\n"; code += " VELOCITY = vec3(0.0);\n"; code += " } else {\n"; code += " VELOCITY = normalize(VELOCITY) * v;\n"; code += " }\n"; code += " }\n"; code += " }\n\n"; if (collision_mode == COLLISION_RIGID) { code += " if (COLLIDED) {\n"; code += " float collision_response = dot(COLLISION_NORMAL, VELOCITY);\n"; code += " float slide_to_bounce_trigger = step(2.0 / clamp(collision_bounce + 1.0, 1.0, 2.0), abs(collision_response));\n"; code += " TRANSFORM[3].xyz += COLLISION_NORMAL * COLLISION_DEPTH;\n"; code += " // Remove all components of VELOCITY that are not tangential to COLLISION_NORMAL.\n"; code += " VELOCITY -= COLLISION_NORMAL * collision_response;\n"; code += " // Apply friction only to VELOCITY across the surface (effectively decouples friction and bounce behavior).\n"; code += " VELOCITY = mix(VELOCITY, vec3(0.0), clamp(collision_friction, 0.0, 1.0));\n"; code += " // Add bounce velocity to VELOCITY.\n"; code += " VELOCITY -= COLLISION_NORMAL * collision_response * (collision_bounce * slide_to_bounce_trigger);\n"; code += " }\n\n"; } else if (collision_mode == COLLISION_HIDE_ON_CONTACT) { code += " if (COLLIDED) {\n"; code += " ACTIVE = false;\n"; code += " }\n\n"; } code += " // Turbulence before limiting.\n"; if (turbulence_enabled) { if (tex_parameters[PARAM_TURB_INFLUENCE_OVER_LIFE].is_valid()) { code += " float turbulence_influence = textureLod(turbulence_influence_over_life, vec2(lifetime_percent, 0.0), 0.0).r;\n"; } else { code += " float turbulence_influence = 1.0;\n"; } code += "\n"; code += " vec3 noise_direction = get_noise_direction(TRANSFORM[3].xyz);\n"; // Godot detects when the COLLIDED keyword is used. If it's used anywhere in the shader then Godot will generate the screen space SDF for collisions. // We don't need it as long as collision is disabled. Refer to GH-83744 for more info. if (collision_mode == COLLISION_RIGID) { code += " if (!COLLIDED) {\n"; } else { code += " {\n"; } code += " float vel_mag = length(VELOCITY);\n"; code += " float vel_infl = clamp(dynamic_params.turb_influence * turbulence_influence, 0.0, 1.0);\n"; code += " VELOCITY = mix(VELOCITY, normalize(noise_direction) * vel_mag * (1.0 + (1.0 - vel_infl) * 0.2), vel_infl);\n"; code += " vel_mag = length(controlled_displacement);\n"; code += " controlled_displacement = mix(controlled_displacement, normalize(noise_direction) * vel_mag * (1.0 + (1.0 - vel_infl) * 0.2), vel_infl);\n"; code += " }\n"; } code += " vec3 final_velocity = controlled_displacement + VELOCITY;\n\n"; if (velocity_limit_curve.is_valid()) { code += " // Limit velocity.\n"; code += " if (length(final_velocity) > 0.001) {\n"; code += " final_velocity = normalize(final_velocity) * min(abs(length(final_velocity)), abs(texture(velocity_limit_curve, vec2(lifetime_percent)).r));\n"; code += " }\n\n"; } if (particle_flags[PARTICLE_FLAG_DISABLE_Z]) { code += " final_velocity.z = 0.0;\n\n"; } code += " TRANSFORM[3].xyz += final_velocity * DELTA;\n\n"; code += " process_display_param(params, lifetime_percent);\n\n"; code += " float base_angle = dynamic_params.angle;\n"; if (tex_parameters[PARAM_ANGLE].is_valid()) { code += " base_angle *= texture(angle_texture, vec2(lifetime_percent)).r;\n"; } if (tex_parameters[PARAM_ANGULAR_VELOCITY].is_valid()) { code += " base_angle += CUSTOM.y * LIFETIME * dynamic_params.angular_velocity * texture(angular_velocity_texture, vec2(lifetime_percent)).r;\n"; } else { code += " base_angle += CUSTOM.y * LIFETIME * dynamic_params.angular_velocity;\n"; } code += " CUSTOM.x = base_angle * degree_to_rad;\n"; code += " COLOR = params.color;\n\n"; if (particle_flags[PARTICLE_FLAG_DISABLE_Z]) { if (particle_flags[PARTICLE_FLAG_ALIGN_Y_TO_VELOCITY]) { code += " if (length(final_velocity) > 0.0) {\n"; code += " TRANSFORM[1].xyz = normalize(final_velocity);\n"; code += " } else {\n"; code += " TRANSFORM[1].xyz = normalize(TRANSFORM[1].xyz);\n"; code += " }\n"; code += " TRANSFORM[0].xyz = normalize(cross(TRANSFORM[1].xyz, TRANSFORM[2].xyz));\n"; code += " TRANSFORM[2] = vec4(0.0, 0.0, 1.0, 0.0);\n"; } else { code += " TRANSFORM[0] = vec4(cos(CUSTOM.x), -sin(CUSTOM.x), 0.0, 0.0);\n"; code += " TRANSFORM[1] = vec4(sin(CUSTOM.x), cos(CUSTOM.x), 0.0, 0.0);\n"; code += " TRANSFORM[2] = vec4(0.0, 0.0, 1.0, 0.0);\n"; } } else { // Orient particle Y towards velocity. if (particle_flags[PARTICLE_FLAG_ALIGN_Y_TO_VELOCITY]) { code += " if (length(final_velocity) > 0.0) {\n"; code += " TRANSFORM[1].xyz = normalize(final_velocity);\n"; code += " } else {\n"; code += " TRANSFORM[1].xyz = normalize(TRANSFORM[1].xyz);\n"; code += " }\n"; code += " if (TRANSFORM[1].xyz == normalize(TRANSFORM[0].xyz)) {\n"; code += " TRANSFORM[0].xyz = normalize(cross(normalize(TRANSFORM[1].xyz), normalize(TRANSFORM[2].xyz)));\n"; code += " TRANSFORM[2].xyz = normalize(cross(normalize(TRANSFORM[0].xyz), normalize(TRANSFORM[1].xyz)));\n"; code += " } else {\n"; code += " TRANSFORM[2].xyz = normalize(cross(normalize(TRANSFORM[0].xyz), normalize(TRANSFORM[1].xyz)));\n"; code += " TRANSFORM[0].xyz = normalize(cross(normalize(TRANSFORM[1].xyz), normalize(TRANSFORM[2].xyz)));\n"; code += " }\n"; } else { code += " TRANSFORM[0].xyz = normalize(TRANSFORM[0].xyz);\n"; code += " TRANSFORM[1].xyz = normalize(TRANSFORM[1].xyz);\n"; code += " TRANSFORM[2].xyz = normalize(TRANSFORM[2].xyz);\n"; } // Turn particle by rotation in Y. if (particle_flags[PARTICLE_FLAG_ROTATE_Y]) { code += " vec4 origin = TRANSFORM[3];\n"; code += " TRANSFORM = mat4(vec4(cos(CUSTOM.x), 0.0, -sin(CUSTOM.x), 0.0), vec4(0.0, 1.0, 0.0, 0.0), vec4(sin(CUSTOM.x), 0.0, cos(CUSTOM.x), 0.0), vec4(0.0, 0.0, 0.0, 1.0));\n"; code += " TRANSFORM[3] = origin;\n"; } } if (particle_flags[PARTICLE_FLAG_DISABLE_Z]) { code += " TRANSFORM[3].z = 0.0;\n\n"; } if (tex_parameters[PARAM_SCALE_OVER_VELOCITY].is_valid()) { code += " if (length(final_velocity) > 0.001) {\n"; code += " params.scale *= texture(scale_over_velocity_curve, vec2(clamp(length(final_velocity) / (scale_over_velocity_max - scale_over_velocity_min), 0.0, 1.0), 0.0)).rgb;\n"; code += " } else {\n"; code += " params.scale *= texture(scale_over_velocity_curve, vec2(0.0)).rgb;\n"; code += " }\n"; } code += " TRANSFORM[0].xyz *= sign(params.scale.x) * max(abs(params.scale.x), 0.001);\n"; code += " TRANSFORM[1].xyz *= sign(params.scale.y) * max(abs(params.scale.y), 0.001);\n"; code += " TRANSFORM[2].xyz *= sign(params.scale.z) * max(abs(params.scale.z), 0.001);\n"; code += "\n"; code += " CUSTOM.z = params.animation_offset + lifetime_percent * params.animation_speed;\n\n"; if (sub_emitter_mode != SUB_EMITTER_DISABLED && !RenderingServer::get_singleton()->is_low_end()) { code += " int emit_count = 0;\n"; switch (sub_emitter_mode) { case SUB_EMITTER_CONSTANT: { code += " float interval_from = CUSTOM.y * LIFETIME - DELTA;\n"; code += " float interval_rem = sub_emitter_frequency - mod(interval_from, sub_emitter_frequency);\n"; code += " if (DELTA >= interval_rem) {\n"; code += " emit_count = 1;\n"; code += " }\n"; } break; case SUB_EMITTER_AT_COLLISION: { code += " if (COLLIDED) {\n"; code += " emit_count = sub_emitter_amount_at_collision;\n"; code += " }\n"; } break; case SUB_EMITTER_AT_END: { code += " if ((CUSTOM.y / CUSTOM.w * LIFETIME) > (LIFETIME - DELTA)) {\n"; code += " emit_count = sub_emitter_amount_at_end;\n"; code += " }\n"; } break; default: { } } code += " for (int i = 0; i < emit_count; i++) {\n"; code += " uint flags = FLAG_EMIT_POSITION | FLAG_EMIT_ROT_SCALE;\n"; code += " if (sub_emitter_keep_velocity) {\n"; code += " flags |= FLAG_EMIT_VELOCITY;\n"; code += " }\n"; code += " emit_subparticle(TRANSFORM, VELOCITY, vec4(0.0), vec4(0.0), flags);\n"; code += " }\n\n"; } code += " if (CUSTOM.y > CUSTOM.w) {\n"; code += " ACTIVE = false;\n"; code += " }\n"; code += "}\n"; ShaderData shader_data; shader_data.shader = RS::get_singleton()->shader_create(); shader_data.users = 1; RS::get_singleton()->shader_set_code(shader_data.shader, code); shader_map[mk] = shader_data; RS::get_singleton()->material_set_shader(_get_material(), shader_data.shader); } void ParticleProcessMaterial::flush_changes() { MutexLock lock(material_mutex); while (dirty_materials.first()) { dirty_materials.first()->self()->_update_shader(); dirty_materials.first()->remove_from_list(); } } void ParticleProcessMaterial::_queue_shader_change() { MutexLock lock(material_mutex); if (_is_initialized() && !element.in_list()) { dirty_materials.add(&element); } } bool ParticleProcessMaterial::has_min_max_property(const String &p_name) { return min_max_properties.has(p_name); } void ParticleProcessMaterial::set_direction(Vector3 p_direction) { direction = p_direction; RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->direction, direction); } Vector3 ParticleProcessMaterial::get_direction() const { return direction; } void ParticleProcessMaterial::set_spread(float p_spread) { spread = p_spread; RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->spread, p_spread); } float ParticleProcessMaterial::get_spread() const { return spread; } void ParticleProcessMaterial::set_flatness(float p_flatness) { flatness = p_flatness; RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->flatness, p_flatness); } float ParticleProcessMaterial::get_flatness() const { return flatness; } void ParticleProcessMaterial::set_velocity_pivot(const Vector3 &p_pivot) { velocity_pivot = p_pivot; RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->velocity_pivot, p_pivot); } Vector3 ParticleProcessMaterial::get_velocity_pivot() { return velocity_pivot; } void ParticleProcessMaterial::set_param(Parameter p_param, const Vector2 &p_value) { set_param_min(p_param, p_value.x); set_param_max(p_param, p_value.y); } Vector2 ParticleProcessMaterial::get_param(Parameter p_param) const { return Vector2(get_param_min(p_param), get_param_max(p_param)); } void ParticleProcessMaterial::set_param_min(Parameter p_param, float p_value) { ERR_FAIL_INDEX(p_param, PARAM_MAX); params_min[p_param] = p_value; if (params_min[p_param] > params_max[p_param]) { set_param_max(p_param, p_value); } switch (p_param) { case PARAM_INITIAL_LINEAR_VELOCITY: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->initial_linear_velocity_min, p_value); } break; case PARAM_ANGULAR_VELOCITY: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->angular_velocity_min, p_value); } break; case PARAM_ORBIT_VELOCITY: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->orbit_velocity_min, p_value); } break; case PARAM_LINEAR_ACCEL: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->linear_accel_min, p_value); } break; case PARAM_RADIAL_ACCEL: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->radial_accel_min, p_value); } break; case PARAM_TANGENTIAL_ACCEL: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->tangent_accel_min, p_value); } break; case PARAM_DAMPING: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->damping_min, p_value); } break; case PARAM_ANGLE: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->initial_angle_min, p_value); } break; case PARAM_SCALE: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->scale_min, p_value); } break; case PARAM_HUE_VARIATION: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->hue_variation_min, p_value); } break; case PARAM_ANIM_SPEED: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->anim_speed_min, p_value); } break; case PARAM_ANIM_OFFSET: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->anim_offset_min, p_value); } break; case PARAM_TURB_VEL_INFLUENCE: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->turbulence_influence_min, p_value); } break; case PARAM_TURB_INIT_DISPLACEMENT: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->turbulence_initial_displacement_min, p_value); } break; case PARAM_TURB_INFLUENCE_OVER_LIFE: { // Can't happen, but silences warning } break; case PARAM_RADIAL_VELOCITY: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->radial_velocity_min, p_value); } break; case PARAM_SCALE_OVER_VELOCITY: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->scale_over_velocity_min, p_value); } break; case PARAM_DIRECTIONAL_VELOCITY: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->directional_velocity_min, p_value); } break; case PARAM_MAX: break; // Can't happen, but silences warning } } float ParticleProcessMaterial::get_param_min(Parameter p_param) const { ERR_FAIL_INDEX_V(p_param, PARAM_MAX, 0); return params_min[p_param]; } void ParticleProcessMaterial::set_param_max(Parameter p_param, float p_value) { ERR_FAIL_INDEX(p_param, PARAM_MAX); params_max[p_param] = p_value; if (params_min[p_param] > params_max[p_param]) { set_param_min(p_param, p_value); } switch (p_param) { case PARAM_INITIAL_LINEAR_VELOCITY: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->initial_linear_velocity_max, p_value); } break; case PARAM_ANGULAR_VELOCITY: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->angular_velocity_max, p_value); } break; case PARAM_ORBIT_VELOCITY: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->orbit_velocity_max, p_value); } break; case PARAM_LINEAR_ACCEL: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->linear_accel_max, p_value); } break; case PARAM_RADIAL_ACCEL: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->radial_accel_max, p_value); } break; case PARAM_TANGENTIAL_ACCEL: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->tangent_accel_max, p_value); } break; case PARAM_DAMPING: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->damping_max, p_value); } break; case PARAM_ANGLE: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->initial_angle_max, p_value); } break; case PARAM_SCALE: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->scale_max, p_value); } break; case PARAM_HUE_VARIATION: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->hue_variation_max, p_value); } break; case PARAM_ANIM_SPEED: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->anim_speed_max, p_value); } break; case PARAM_ANIM_OFFSET: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->anim_offset_max, p_value); } break; case PARAM_TURB_VEL_INFLUENCE: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->turbulence_influence_max, p_value); } break; case PARAM_TURB_INIT_DISPLACEMENT: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->turbulence_initial_displacement_max, p_value); } break; case PARAM_TURB_INFLUENCE_OVER_LIFE: { // Can't happen, but silences warning } break; case PARAM_RADIAL_VELOCITY: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->radial_velocity_max, p_value); } break; case PARAM_SCALE_OVER_VELOCITY: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->scale_over_velocity_max, p_value); } break; case PARAM_DIRECTIONAL_VELOCITY: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->directional_velocity_max, p_value); } break; case PARAM_MAX: break; // Can't happen, but silences warning } } float ParticleProcessMaterial::get_param_max(Parameter p_param) const { ERR_FAIL_INDEX_V(p_param, PARAM_MAX, 0); return params_max[p_param]; } static void _adjust_curve_range(const Ref &p_texture, float p_min, float p_max) { Ref curve_tex = p_texture; if (curve_tex.is_valid()) { curve_tex->ensure_default_setup(p_min, p_max); return; } Ref curve_xyz_tex = p_texture; if (curve_xyz_tex.is_valid()) { curve_xyz_tex->ensure_default_setup(p_min, p_max); return; } } void ParticleProcessMaterial::set_param_texture(Parameter p_param, const Ref &p_texture) { ERR_FAIL_INDEX(p_param, PARAM_MAX); tex_parameters[p_param] = p_texture; Variant tex_rid = p_texture.is_valid() ? Variant(p_texture->get_rid()) : Variant(); switch (p_param) { case PARAM_INITIAL_LINEAR_VELOCITY: { //do none for this one } break; case PARAM_ANGULAR_VELOCITY: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->angular_velocity_texture, tex_rid); _adjust_curve_range(p_texture, -360, 360); } break; case PARAM_ORBIT_VELOCITY: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->orbit_velocity_texture, tex_rid); _adjust_curve_range(p_texture, -2, 2); notify_property_list_changed(); } break; case PARAM_LINEAR_ACCEL: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->linear_accel_texture, tex_rid); _adjust_curve_range(p_texture, -200, 200); } break; case PARAM_RADIAL_ACCEL: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->radial_accel_texture, tex_rid); _adjust_curve_range(p_texture, -200, 200); } break; case PARAM_TANGENTIAL_ACCEL: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->tangent_accel_texture, tex_rid); _adjust_curve_range(p_texture, -200, 200); } break; case PARAM_DAMPING: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->damping_texture, tex_rid); _adjust_curve_range(p_texture, 0, 100); } break; case PARAM_ANGLE: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->angle_texture, tex_rid); _adjust_curve_range(p_texture, -360, 360); } break; case PARAM_SCALE: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->scale_texture, tex_rid); _adjust_curve_range(p_texture, 0, 1); } break; case PARAM_HUE_VARIATION: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->hue_variation_texture, tex_rid); _adjust_curve_range(p_texture, -1, 1); } break; case PARAM_ANIM_SPEED: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->anim_speed_texture, tex_rid); _adjust_curve_range(p_texture, 0, 200); } break; case PARAM_ANIM_OFFSET: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->anim_offset_texture, tex_rid); } break; case PARAM_TURB_INFLUENCE_OVER_LIFE: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->turbulence_influence_over_life, tex_rid); _adjust_curve_range(p_texture, 0, 1); } break; case PARAM_TURB_VEL_INFLUENCE: { // Can't happen, but silences warning } break; case PARAM_TURB_INIT_DISPLACEMENT: { // Can't happen, but silences warning } break; case PARAM_RADIAL_VELOCITY: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->radial_velocity_texture, tex_rid); } break; case PARAM_SCALE_OVER_VELOCITY: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->scale_over_velocity_texture, tex_rid); _adjust_curve_range(p_texture, 0, 3); notify_property_list_changed(); } break; case PARAM_DIRECTIONAL_VELOCITY: { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->directional_velocity_texture, tex_rid); notify_property_list_changed(); } break; case PARAM_MAX: break; // Can't happen, but silences warning } _queue_shader_change(); } Ref ParticleProcessMaterial::get_param_texture(Parameter p_param) const { ERR_FAIL_INDEX_V(p_param, PARAM_MAX, Ref()); return tex_parameters[p_param]; } void ParticleProcessMaterial::set_color(const Color &p_color) { RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->color, p_color); color = p_color; } Color ParticleProcessMaterial::get_color() const { return color; } void ParticleProcessMaterial::set_color_ramp(const Ref &p_texture) { color_ramp = p_texture; Variant tex_rid = p_texture.is_valid() ? Variant(p_texture->get_rid()) : Variant(); RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->color_ramp, tex_rid); _queue_shader_change(); notify_property_list_changed(); } Ref ParticleProcessMaterial::get_color_ramp() const { return color_ramp; } void ParticleProcessMaterial::set_color_initial_ramp(const Ref &p_texture) { color_initial_ramp = p_texture; Variant tex_rid = p_texture.is_valid() ? Variant(p_texture->get_rid()) : Variant(); RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->color_initial_ramp, tex_rid); _queue_shader_change(); notify_property_list_changed(); } Ref ParticleProcessMaterial::get_color_initial_ramp() const { return color_initial_ramp; } void ParticleProcessMaterial::set_particle_flag(ParticleFlags p_particle_flag, bool p_enable) { ERR_FAIL_INDEX(p_particle_flag, PARTICLE_FLAG_MAX); particle_flags[p_particle_flag] = p_enable; _queue_shader_change(); if (p_particle_flag == PARTICLE_FLAG_DISABLE_Z) { notify_property_list_changed(); } } void ParticleProcessMaterial::set_alpha_curve(const Ref &p_texture) { alpha_curve = p_texture; Variant tex_rid = p_texture.is_valid() ? Variant(p_texture->get_rid()) : Variant(); RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->alpha_ramp, tex_rid); _queue_shader_change(); notify_property_list_changed(); } Ref ParticleProcessMaterial::get_alpha_curve() const { return alpha_curve; } void ParticleProcessMaterial::set_emission_curve(const Ref &p_texture) { emission_curve = p_texture; Variant tex_rid = p_texture.is_valid() ? Variant(p_texture->get_rid()) : Variant(); RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->emission_ramp, tex_rid); _queue_shader_change(); notify_property_list_changed(); } Ref ParticleProcessMaterial::get_emission_curve() const { return emission_curve; } void ParticleProcessMaterial::set_velocity_limit_curve(const Ref &p_texture) { velocity_limit_curve = p_texture; Variant tex_rid = p_texture.is_valid() ? Variant(p_texture->get_rid()) : Variant(); RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->velocity_limit_curve, tex_rid); _queue_shader_change(); notify_property_list_changed(); } Ref ParticleProcessMaterial::get_velocity_limit_curve() const { return velocity_limit_curve; } bool ParticleProcessMaterial::get_particle_flag(ParticleFlags p_particle_flag) const { ERR_FAIL_INDEX_V(p_particle_flag, PARTICLE_FLAG_MAX, false); return particle_flags[p_particle_flag]; } void ParticleProcessMaterial::set_emission_shape(EmissionShape p_shape) { ERR_FAIL_INDEX(p_shape, EMISSION_SHAPE_MAX); emission_shape = p_shape; notify_property_list_changed(); _queue_shader_change(); } void ParticleProcessMaterial::set_emission_sphere_radius(real_t p_radius) { emission_sphere_radius = p_radius; RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->emission_sphere_radius, p_radius); } void ParticleProcessMaterial::set_emission_box_extents(Vector3 p_extents) { emission_box_extents = p_extents; RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->emission_box_extents, p_extents); } void ParticleProcessMaterial::set_emission_point_texture(const Ref &p_points) { emission_point_texture = p_points; Variant tex_rid = p_points.is_valid() ? Variant(p_points->get_rid()) : Variant(); RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->emission_texture_points, tex_rid); } void ParticleProcessMaterial::set_emission_normal_texture(const Ref &p_normals) { emission_normal_texture = p_normals; Variant tex_rid = p_normals.is_valid() ? Variant(p_normals->get_rid()) : Variant(); RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->emission_texture_normal, tex_rid); } void ParticleProcessMaterial::set_emission_color_texture(const Ref &p_colors) { emission_color_texture = p_colors; Variant tex_rid = p_colors.is_valid() ? Variant(p_colors->get_rid()) : Variant(); RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->emission_texture_color, tex_rid); _queue_shader_change(); } void ParticleProcessMaterial::set_emission_point_count(int p_count) { emission_point_count = p_count; RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->emission_texture_point_count, p_count); } void ParticleProcessMaterial::set_emission_ring_axis(Vector3 p_axis) { emission_ring_axis = p_axis; RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->emission_ring_axis, p_axis); } void ParticleProcessMaterial::set_emission_ring_height(real_t p_height) { emission_ring_height = p_height; RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->emission_ring_height, p_height); } void ParticleProcessMaterial::set_emission_ring_radius(real_t p_radius) { emission_ring_radius = p_radius; RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->emission_ring_radius, p_radius); } void ParticleProcessMaterial::set_emission_ring_inner_radius(real_t p_radius) { emission_ring_inner_radius = p_radius; RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->emission_ring_inner_radius, p_radius); } void ParticleProcessMaterial::set_emission_ring_cone_angle(real_t p_angle) { emission_ring_cone_angle = p_angle; RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->emission_ring_cone_angle, p_angle); } void ParticleProcessMaterial::set_inherit_velocity_ratio(double p_ratio) { inherit_emitter_velocity_ratio = p_ratio; RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->inherit_emitter_velocity_ratio, p_ratio); } ParticleProcessMaterial::EmissionShape ParticleProcessMaterial::get_emission_shape() const { return emission_shape; } real_t ParticleProcessMaterial::get_emission_sphere_radius() const { return emission_sphere_radius; } Vector3 ParticleProcessMaterial::get_emission_box_extents() const { return emission_box_extents; } Ref ParticleProcessMaterial::get_emission_point_texture() const { return emission_point_texture; } Ref ParticleProcessMaterial::get_emission_normal_texture() const { return emission_normal_texture; } Ref ParticleProcessMaterial::get_emission_color_texture() const { return emission_color_texture; } int ParticleProcessMaterial::get_emission_point_count() const { return emission_point_count; } Vector3 ParticleProcessMaterial::get_emission_ring_axis() const { return emission_ring_axis; } real_t ParticleProcessMaterial::get_emission_ring_height() const { return emission_ring_height; } real_t ParticleProcessMaterial::get_emission_ring_radius() const { return emission_ring_radius; } real_t ParticleProcessMaterial::get_emission_ring_inner_radius() const { return emission_ring_inner_radius; } real_t ParticleProcessMaterial::get_emission_ring_cone_angle() const { return emission_ring_cone_angle; } void ParticleProcessMaterial::set_emission_shape_offset(const Vector3 &p_emission_shape_offset) { emission_shape_offset = p_emission_shape_offset; RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->emission_shape_offset, p_emission_shape_offset); } Vector3 ParticleProcessMaterial::get_emission_shape_offset() const { return emission_shape_offset; } void ParticleProcessMaterial::set_emission_shape_scale(const Vector3 &p_emission_shape_scale) { emission_shape_scale = p_emission_shape_scale; RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->emission_shape_scale, p_emission_shape_scale); } Vector3 ParticleProcessMaterial::get_emission_shape_scale() const { return emission_shape_scale; } double ParticleProcessMaterial::get_inherit_velocity_ratio() { return inherit_emitter_velocity_ratio; } void ParticleProcessMaterial::set_turbulence_enabled(const bool p_turbulence_enabled) { turbulence_enabled = p_turbulence_enabled; RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->turbulence_enabled, turbulence_enabled); _queue_shader_change(); notify_property_list_changed(); } bool ParticleProcessMaterial::get_turbulence_enabled() const { return turbulence_enabled; } void ParticleProcessMaterial::set_turbulence_noise_strength(float p_turbulence_noise_strength) { turbulence_noise_strength = p_turbulence_noise_strength; RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->turbulence_noise_strength, p_turbulence_noise_strength); } float ParticleProcessMaterial::get_turbulence_noise_strength() const { return turbulence_noise_strength; } void ParticleProcessMaterial::set_turbulence_noise_scale(float p_turbulence_noise_scale) { turbulence_noise_scale = p_turbulence_noise_scale; const float noise_frequency_when_slider_is_zero = 4.0; const float max_slider_value = 10.0; const float curve_exponent = 0.25; const float curve_rescale = noise_frequency_when_slider_is_zero / pow(max_slider_value, curve_exponent); float shader_turbulence_noise_scale = pow(p_turbulence_noise_scale, curve_exponent) * curve_rescale - noise_frequency_when_slider_is_zero; RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->turbulence_noise_scale, shader_turbulence_noise_scale); } float ParticleProcessMaterial::get_turbulence_noise_scale() const { return turbulence_noise_scale; } void ParticleProcessMaterial::set_turbulence_noise_speed_random(float p_turbulence_noise_speed_random) { turbulence_noise_speed_random = p_turbulence_noise_speed_random; RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->turbulence_noise_speed_random, p_turbulence_noise_speed_random); } float ParticleProcessMaterial::get_turbulence_noise_speed_random() const { return turbulence_noise_speed_random; } void ParticleProcessMaterial::set_turbulence_noise_speed(const Vector3 &p_turbulence_noise_speed) { turbulence_noise_speed = p_turbulence_noise_speed; RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->turbulence_noise_speed, turbulence_noise_speed); } Vector3 ParticleProcessMaterial::get_turbulence_noise_speed() const { return turbulence_noise_speed; } void ParticleProcessMaterial::set_gravity(const Vector3 &p_gravity) { gravity = p_gravity; Vector3 gset = gravity; if (gset == Vector3()) { gset = Vector3(0, -0.000001, 0); //as gravity is used as upvector in some calculations } RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->gravity, gset); } Vector3 ParticleProcessMaterial::get_gravity() const { return gravity; } void ParticleProcessMaterial::set_lifetime_randomness(double p_lifetime) { lifetime_randomness = p_lifetime; RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->lifetime_randomness, lifetime_randomness); } double ParticleProcessMaterial::get_lifetime_randomness() const { return lifetime_randomness; } RID ParticleProcessMaterial::get_shader_rid() const { ERR_FAIL_COND_V(!shader_map.has(current_key), RID()); return shader_map[current_key].shader; } void ParticleProcessMaterial::_validate_property(PropertyInfo &p_property) const { if (p_property.name == "emission_sphere_radius" && (emission_shape != EMISSION_SHAPE_SPHERE && emission_shape != EMISSION_SHAPE_SPHERE_SURFACE)) { p_property.usage = PROPERTY_USAGE_NONE; } if (p_property.name == "emission_box_extents" && emission_shape != EMISSION_SHAPE_BOX) { p_property.usage = PROPERTY_USAGE_NONE; } if ((p_property.name == "emission_point_texture" || p_property.name == "emission_color_texture") && (emission_shape != EMISSION_SHAPE_POINTS && emission_shape != EMISSION_SHAPE_DIRECTED_POINTS)) { p_property.usage = PROPERTY_USAGE_NONE; } if (p_property.name == "emission_normal_texture" && emission_shape != EMISSION_SHAPE_DIRECTED_POINTS) { p_property.usage = PROPERTY_USAGE_NONE; } if (p_property.name == "emission_point_count" && (emission_shape != EMISSION_SHAPE_POINTS && emission_shape != EMISSION_SHAPE_DIRECTED_POINTS)) { p_property.usage = PROPERTY_USAGE_NONE; } if (p_property.name.begins_with("emission_ring_") && emission_shape != EMISSION_SHAPE_RING) { p_property.usage = PROPERTY_USAGE_NONE; } if (p_property.name == "sub_emitter_frequency" && sub_emitter_mode != SUB_EMITTER_CONSTANT) { p_property.usage = PROPERTY_USAGE_NONE; } if (p_property.name == "sub_emitter_amount_at_end" && sub_emitter_mode != SUB_EMITTER_AT_END) { p_property.usage = PROPERTY_USAGE_NONE; } if (p_property.name == "sub_emitter_amount_at_collision" && sub_emitter_mode != SUB_EMITTER_AT_COLLISION) { p_property.usage = PROPERTY_USAGE_NONE; } if (!turbulence_enabled) { if (p_property.name == "turbulence_noise_strength" || p_property.name == "turbulence_noise_scale" || p_property.name == "turbulence_noise_speed" || p_property.name == "turbulence_noise_speed_random" || p_property.name == "turbulence_influence_over_life" || p_property.name == "turbulence_influence" || p_property.name == "turbulence_initial_displacement") { p_property.usage &= ~PROPERTY_USAGE_EDITOR; } } if (p_property.name == "collision_friction" && collision_mode != COLLISION_RIGID) { p_property.usage = PROPERTY_USAGE_NONE; } if (p_property.name == "collision_bounce" && collision_mode != COLLISION_RIGID) { p_property.usage = PROPERTY_USAGE_NONE; } if ((p_property.name == "directional_velocity_min" || p_property.name == "directional_velocity_max") && !tex_parameters[PARAM_DIRECTIONAL_VELOCITY].is_valid()) { p_property.usage = PROPERTY_USAGE_NONE; } if ((p_property.name == "scale_over_velocity_min" || p_property.name == "scale_over_velocity_max") && !tex_parameters[PARAM_SCALE_OVER_VELOCITY].is_valid()) { p_property.usage = PROPERTY_USAGE_NO_EDITOR; } if ((p_property.name == "orbit_velocity_min" || p_property.name == "orbit_velocity_max") && (!tex_parameters[PARAM_ORBIT_VELOCITY].is_valid() && !particle_flags[PARTICLE_FLAG_DISABLE_Z])) { p_property.usage = PROPERTY_USAGE_NO_EDITOR; } if (p_property.usage & PROPERTY_USAGE_EDITOR && (p_property.name.ends_with("_min") || p_property.name.ends_with("_max"))) { p_property.usage &= ~PROPERTY_USAGE_EDITOR; } } void ParticleProcessMaterial::set_sub_emitter_mode(SubEmitterMode p_sub_emitter_mode) { sub_emitter_mode = p_sub_emitter_mode; _queue_shader_change(); notify_property_list_changed(); if (sub_emitter_mode != SUB_EMITTER_DISABLED && RenderingServer::get_singleton()->is_low_end()) { WARN_PRINT_ONCE_ED("Sub-emitter modes other than SUB_EMITTER_DISABLED are not supported in the GL Compatibility rendering backend."); } } ParticleProcessMaterial::SubEmitterMode ParticleProcessMaterial::get_sub_emitter_mode() const { return sub_emitter_mode; } void ParticleProcessMaterial::set_sub_emitter_frequency(double p_frequency) { sub_emitter_frequency = p_frequency; RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->sub_emitter_frequency, 1.0 / p_frequency); //pass delta instead of frequency, since its easier to compute } double ParticleProcessMaterial::get_sub_emitter_frequency() const { return sub_emitter_frequency; } void ParticleProcessMaterial::set_sub_emitter_amount_at_end(int p_amount) { sub_emitter_amount_at_end = p_amount; RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->sub_emitter_amount_at_end, p_amount); } int ParticleProcessMaterial::get_sub_emitter_amount_at_end() const { return sub_emitter_amount_at_end; } void ParticleProcessMaterial::set_sub_emitter_amount_at_collision(int p_amount) { sub_emitter_amount_at_collision = p_amount; RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->sub_emitter_amount_at_collision, p_amount); } int ParticleProcessMaterial::get_sub_emitter_amount_at_collision() const { return sub_emitter_amount_at_collision; } void ParticleProcessMaterial::set_sub_emitter_keep_velocity(bool p_enable) { sub_emitter_keep_velocity = p_enable; RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->sub_emitter_keep_velocity, p_enable); } bool ParticleProcessMaterial::get_sub_emitter_keep_velocity() const { return sub_emitter_keep_velocity; } void ParticleProcessMaterial::set_attractor_interaction_enabled(bool p_enable) { attractor_interaction_enabled = p_enable; _queue_shader_change(); } bool ParticleProcessMaterial::is_attractor_interaction_enabled() const { return attractor_interaction_enabled; } void ParticleProcessMaterial::set_collision_mode(CollisionMode p_collision_mode) { collision_mode = p_collision_mode; _queue_shader_change(); notify_property_list_changed(); } ParticleProcessMaterial::CollisionMode ParticleProcessMaterial::get_collision_mode() const { return collision_mode; } void ParticleProcessMaterial::set_collision_use_scale(bool p_scale) { collision_scale = p_scale; _queue_shader_change(); } bool ParticleProcessMaterial::is_collision_using_scale() const { return collision_scale; } void ParticleProcessMaterial::set_collision_friction(float p_friction) { collision_friction = p_friction; RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->collision_friction, p_friction); } float ParticleProcessMaterial::get_collision_friction() const { return collision_friction; } void ParticleProcessMaterial::set_collision_bounce(float p_bounce) { collision_bounce = p_bounce; RenderingServer::get_singleton()->material_set_param(_get_material(), shader_names->collision_bounce, p_bounce); } float ParticleProcessMaterial::get_collision_bounce() const { return collision_bounce; } Shader::Mode ParticleProcessMaterial::get_shader_mode() const { return Shader::MODE_PARTICLES; } void ParticleProcessMaterial::_bind_methods() { ClassDB::bind_method(D_METHOD("set_direction", "degrees"), &ParticleProcessMaterial::set_direction); ClassDB::bind_method(D_METHOD("get_direction"), &ParticleProcessMaterial::get_direction); ClassDB::bind_method(D_METHOD("set_inherit_velocity_ratio", "ratio"), &ParticleProcessMaterial::set_inherit_velocity_ratio); ClassDB::bind_method(D_METHOD("get_inherit_velocity_ratio"), &ParticleProcessMaterial::get_inherit_velocity_ratio); ClassDB::bind_method(D_METHOD("set_spread", "degrees"), &ParticleProcessMaterial::set_spread); ClassDB::bind_method(D_METHOD("get_spread"), &ParticleProcessMaterial::get_spread); ClassDB::bind_method(D_METHOD("set_flatness", "amount"), &ParticleProcessMaterial::set_flatness); ClassDB::bind_method(D_METHOD("get_flatness"), &ParticleProcessMaterial::get_flatness); ClassDB::bind_method(D_METHOD("set_param", "param", "value"), &ParticleProcessMaterial::set_param); ClassDB::bind_method(D_METHOD("get_param", "param"), &ParticleProcessMaterial::get_param); ClassDB::bind_method(D_METHOD("set_param_min", "param", "value"), &ParticleProcessMaterial::set_param_min); ClassDB::bind_method(D_METHOD("get_param_min", "param"), &ParticleProcessMaterial::get_param_min); ClassDB::bind_method(D_METHOD("set_param_max", "param", "value"), &ParticleProcessMaterial::set_param_max); ClassDB::bind_method(D_METHOD("get_param_max", "param"), &ParticleProcessMaterial::get_param_max); ClassDB::bind_method(D_METHOD("set_param_texture", "param", "texture"), &ParticleProcessMaterial::set_param_texture); ClassDB::bind_method(D_METHOD("get_param_texture", "param"), &ParticleProcessMaterial::get_param_texture); ClassDB::bind_method(D_METHOD("set_color", "color"), &ParticleProcessMaterial::set_color); ClassDB::bind_method(D_METHOD("get_color"), &ParticleProcessMaterial::get_color); ClassDB::bind_method(D_METHOD("set_color_ramp", "ramp"), &ParticleProcessMaterial::set_color_ramp); ClassDB::bind_method(D_METHOD("get_color_ramp"), &ParticleProcessMaterial::get_color_ramp); ClassDB::bind_method(D_METHOD("set_alpha_curve", "curve"), &ParticleProcessMaterial::set_alpha_curve); ClassDB::bind_method(D_METHOD("get_alpha_curve"), &ParticleProcessMaterial::get_alpha_curve); ClassDB::bind_method(D_METHOD("set_emission_curve", "curve"), &ParticleProcessMaterial::set_emission_curve); ClassDB::bind_method(D_METHOD("get_emission_curve"), &ParticleProcessMaterial::get_emission_curve); ClassDB::bind_method(D_METHOD("set_color_initial_ramp", "ramp"), &ParticleProcessMaterial::set_color_initial_ramp); ClassDB::bind_method(D_METHOD("get_color_initial_ramp"), &ParticleProcessMaterial::get_color_initial_ramp); ClassDB::bind_method(D_METHOD("set_velocity_limit_curve", "curve"), &ParticleProcessMaterial::set_velocity_limit_curve); ClassDB::bind_method(D_METHOD("get_velocity_limit_curve"), &ParticleProcessMaterial::get_velocity_limit_curve); ClassDB::bind_method(D_METHOD("set_particle_flag", "particle_flag", "enable"), &ParticleProcessMaterial::set_particle_flag); ClassDB::bind_method(D_METHOD("get_particle_flag", "particle_flag"), &ParticleProcessMaterial::get_particle_flag); ClassDB::bind_method(D_METHOD("set_velocity_pivot", "pivot"), &ParticleProcessMaterial::set_velocity_pivot); ClassDB::bind_method(D_METHOD("get_velocity_pivot"), &ParticleProcessMaterial::get_velocity_pivot); ClassDB::bind_method(D_METHOD("set_emission_shape", "shape"), &ParticleProcessMaterial::set_emission_shape); ClassDB::bind_method(D_METHOD("get_emission_shape"), &ParticleProcessMaterial::get_emission_shape); ClassDB::bind_method(D_METHOD("set_emission_sphere_radius", "radius"), &ParticleProcessMaterial::set_emission_sphere_radius); ClassDB::bind_method(D_METHOD("get_emission_sphere_radius"), &ParticleProcessMaterial::get_emission_sphere_radius); ClassDB::bind_method(D_METHOD("set_emission_box_extents", "extents"), &ParticleProcessMaterial::set_emission_box_extents); ClassDB::bind_method(D_METHOD("get_emission_box_extents"), &ParticleProcessMaterial::get_emission_box_extents); ClassDB::bind_method(D_METHOD("set_emission_point_texture", "texture"), &ParticleProcessMaterial::set_emission_point_texture); ClassDB::bind_method(D_METHOD("get_emission_point_texture"), &ParticleProcessMaterial::get_emission_point_texture); ClassDB::bind_method(D_METHOD("set_emission_normal_texture", "texture"), &ParticleProcessMaterial::set_emission_normal_texture); ClassDB::bind_method(D_METHOD("get_emission_normal_texture"), &ParticleProcessMaterial::get_emission_normal_texture); ClassDB::bind_method(D_METHOD("set_emission_color_texture", "texture"), &ParticleProcessMaterial::set_emission_color_texture); ClassDB::bind_method(D_METHOD("get_emission_color_texture"), &ParticleProcessMaterial::get_emission_color_texture); ClassDB::bind_method(D_METHOD("set_emission_point_count", "point_count"), &ParticleProcessMaterial::set_emission_point_count); ClassDB::bind_method(D_METHOD("get_emission_point_count"), &ParticleProcessMaterial::get_emission_point_count); ClassDB::bind_method(D_METHOD("set_emission_ring_axis", "axis"), &ParticleProcessMaterial::set_emission_ring_axis); ClassDB::bind_method(D_METHOD("get_emission_ring_axis"), &ParticleProcessMaterial::get_emission_ring_axis); ClassDB::bind_method(D_METHOD("set_emission_ring_height", "height"), &ParticleProcessMaterial::set_emission_ring_height); ClassDB::bind_method(D_METHOD("get_emission_ring_height"), &ParticleProcessMaterial::get_emission_ring_height); ClassDB::bind_method(D_METHOD("set_emission_ring_radius", "radius"), &ParticleProcessMaterial::set_emission_ring_radius); ClassDB::bind_method(D_METHOD("get_emission_ring_radius"), &ParticleProcessMaterial::get_emission_ring_radius); ClassDB::bind_method(D_METHOD("set_emission_ring_inner_radius", "inner_radius"), &ParticleProcessMaterial::set_emission_ring_inner_radius); ClassDB::bind_method(D_METHOD("get_emission_ring_inner_radius"), &ParticleProcessMaterial::get_emission_ring_inner_radius); ClassDB::bind_method(D_METHOD("set_emission_ring_cone_angle", "cone_angle"), &ParticleProcessMaterial::set_emission_ring_cone_angle); ClassDB::bind_method(D_METHOD("get_emission_ring_cone_angle"), &ParticleProcessMaterial::get_emission_ring_cone_angle); ClassDB::bind_method(D_METHOD("set_emission_shape_offset", "emission_shape_offset"), &ParticleProcessMaterial::set_emission_shape_offset); ClassDB::bind_method(D_METHOD("get_emission_shape_offset"), &ParticleProcessMaterial::get_emission_shape_offset); ClassDB::bind_method(D_METHOD("set_emission_shape_scale", "emission_shape_scale"), &ParticleProcessMaterial::set_emission_shape_scale); ClassDB::bind_method(D_METHOD("get_emission_shape_scale"), &ParticleProcessMaterial::get_emission_shape_scale); ClassDB::bind_method(D_METHOD("get_turbulence_enabled"), &ParticleProcessMaterial::get_turbulence_enabled); ClassDB::bind_method(D_METHOD("set_turbulence_enabled", "turbulence_enabled"), &ParticleProcessMaterial::set_turbulence_enabled); ClassDB::bind_method(D_METHOD("get_turbulence_noise_strength"), &ParticleProcessMaterial::get_turbulence_noise_strength); ClassDB::bind_method(D_METHOD("set_turbulence_noise_strength", "turbulence_noise_strength"), &ParticleProcessMaterial::set_turbulence_noise_strength); ClassDB::bind_method(D_METHOD("get_turbulence_noise_scale"), &ParticleProcessMaterial::get_turbulence_noise_scale); ClassDB::bind_method(D_METHOD("set_turbulence_noise_scale", "turbulence_noise_scale"), &ParticleProcessMaterial::set_turbulence_noise_scale); ClassDB::bind_method(D_METHOD("get_turbulence_noise_speed_random"), &ParticleProcessMaterial::get_turbulence_noise_speed_random); ClassDB::bind_method(D_METHOD("set_turbulence_noise_speed_random", "turbulence_noise_speed_random"), &ParticleProcessMaterial::set_turbulence_noise_speed_random); ClassDB::bind_method(D_METHOD("get_turbulence_noise_speed"), &ParticleProcessMaterial::get_turbulence_noise_speed); ClassDB::bind_method(D_METHOD("set_turbulence_noise_speed", "turbulence_noise_speed"), &ParticleProcessMaterial::set_turbulence_noise_speed); ClassDB::bind_method(D_METHOD("get_gravity"), &ParticleProcessMaterial::get_gravity); ClassDB::bind_method(D_METHOD("set_gravity", "accel_vec"), &ParticleProcessMaterial::set_gravity); ClassDB::bind_method(D_METHOD("set_lifetime_randomness", "randomness"), &ParticleProcessMaterial::set_lifetime_randomness); ClassDB::bind_method(D_METHOD("get_lifetime_randomness"), &ParticleProcessMaterial::get_lifetime_randomness); ClassDB::bind_method(D_METHOD("get_sub_emitter_mode"), &ParticleProcessMaterial::get_sub_emitter_mode); ClassDB::bind_method(D_METHOD("set_sub_emitter_mode", "mode"), &ParticleProcessMaterial::set_sub_emitter_mode); ClassDB::bind_method(D_METHOD("get_sub_emitter_frequency"), &ParticleProcessMaterial::get_sub_emitter_frequency); ClassDB::bind_method(D_METHOD("set_sub_emitter_frequency", "hz"), &ParticleProcessMaterial::set_sub_emitter_frequency); ClassDB::bind_method(D_METHOD("get_sub_emitter_amount_at_end"), &ParticleProcessMaterial::get_sub_emitter_amount_at_end); ClassDB::bind_method(D_METHOD("set_sub_emitter_amount_at_end", "amount"), &ParticleProcessMaterial::set_sub_emitter_amount_at_end); ClassDB::bind_method(D_METHOD("get_sub_emitter_amount_at_collision"), &ParticleProcessMaterial::get_sub_emitter_amount_at_collision); ClassDB::bind_method(D_METHOD("set_sub_emitter_amount_at_collision", "amount"), &ParticleProcessMaterial::set_sub_emitter_amount_at_collision); ClassDB::bind_method(D_METHOD("get_sub_emitter_keep_velocity"), &ParticleProcessMaterial::get_sub_emitter_keep_velocity); ClassDB::bind_method(D_METHOD("set_sub_emitter_keep_velocity", "enable"), &ParticleProcessMaterial::set_sub_emitter_keep_velocity); ClassDB::bind_method(D_METHOD("set_attractor_interaction_enabled", "enabled"), &ParticleProcessMaterial::set_attractor_interaction_enabled); ClassDB::bind_method(D_METHOD("is_attractor_interaction_enabled"), &ParticleProcessMaterial::is_attractor_interaction_enabled); ClassDB::bind_method(D_METHOD("set_collision_mode", "mode"), &ParticleProcessMaterial::set_collision_mode); ClassDB::bind_method(D_METHOD("get_collision_mode"), &ParticleProcessMaterial::get_collision_mode); ClassDB::bind_method(D_METHOD("set_collision_use_scale", "radius"), &ParticleProcessMaterial::set_collision_use_scale); ClassDB::bind_method(D_METHOD("is_collision_using_scale"), &ParticleProcessMaterial::is_collision_using_scale); ClassDB::bind_method(D_METHOD("set_collision_friction", "friction"), &ParticleProcessMaterial::set_collision_friction); ClassDB::bind_method(D_METHOD("get_collision_friction"), &ParticleProcessMaterial::get_collision_friction); ClassDB::bind_method(D_METHOD("set_collision_bounce", "bounce"), &ParticleProcessMaterial::set_collision_bounce); ClassDB::bind_method(D_METHOD("get_collision_bounce"), &ParticleProcessMaterial::get_collision_bounce); #define ADD_MIN_MAX_PROPERTY(m_property, m_range, m_parameter_name) \ ADD_PROPERTYI(PropertyInfo(Variant::VECTOR2, m_property, PROPERTY_HINT_RANGE, m_range, PROPERTY_USAGE_EDITOR | PROPERTY_USAGE_INTERNAL), "set_param", "get_param", m_parameter_name); \ ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, m_property "_min", PROPERTY_HINT_RANGE, m_range), "set_param_min", "get_param_min", m_parameter_name); \ ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, m_property "_max", PROPERTY_HINT_RANGE, m_range), "set_param_max", "get_param_max", m_parameter_name); \ min_max_properties.insert(m_property); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "lifetime_randomness", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_lifetime_randomness", "get_lifetime_randomness"); ADD_GROUP("Particle Flags", "particle_flag_"); ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "particle_flag_align_y"), "set_particle_flag", "get_particle_flag", PARTICLE_FLAG_ALIGN_Y_TO_VELOCITY); ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "particle_flag_rotate_y"), "set_particle_flag", "get_particle_flag", PARTICLE_FLAG_ROTATE_Y); ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "particle_flag_disable_z"), "set_particle_flag", "get_particle_flag", PARTICLE_FLAG_DISABLE_Z); ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "particle_flag_damping_as_friction"), "set_particle_flag", "get_particle_flag", PARTICLE_FLAG_DAMPING_AS_FRICTION); ADD_GROUP("Spawn", ""); ADD_SUBGROUP("Position", ""); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "emission_shape_offset"), "set_emission_shape_offset", "get_emission_shape_offset"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "emission_shape_scale"), "set_emission_shape_scale", "get_emission_shape_scale"); ADD_PROPERTY(PropertyInfo(Variant::INT, "emission_shape", PROPERTY_HINT_ENUM, "Point,Sphere,Sphere Surface,Box,Points,Directed Points,Ring"), "set_emission_shape", "get_emission_shape"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "emission_sphere_radius", PROPERTY_HINT_RANGE, "0.01,128,0.01,or_greater"), "set_emission_sphere_radius", "get_emission_sphere_radius"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "emission_box_extents"), "set_emission_box_extents", "get_emission_box_extents"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "emission_point_texture", PROPERTY_HINT_RESOURCE_TYPE, "Texture2D"), "set_emission_point_texture", "get_emission_point_texture"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "emission_normal_texture", PROPERTY_HINT_RESOURCE_TYPE, "Texture2D"), "set_emission_normal_texture", "get_emission_normal_texture"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "emission_color_texture", PROPERTY_HINT_RESOURCE_TYPE, "Texture2D"), "set_emission_color_texture", "get_emission_color_texture"); ADD_PROPERTY(PropertyInfo(Variant::INT, "emission_point_count", PROPERTY_HINT_RANGE, "0,1000000,1"), "set_emission_point_count", "get_emission_point_count"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "emission_ring_axis"), "set_emission_ring_axis", "get_emission_ring_axis"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "emission_ring_height", PROPERTY_HINT_RANGE, "0,1000,0.01,or_greater"), "set_emission_ring_height", "get_emission_ring_height"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "emission_ring_radius", PROPERTY_HINT_RANGE, "0,1000,0.01,or_greater"), "set_emission_ring_radius", "get_emission_ring_radius"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "emission_ring_inner_radius", PROPERTY_HINT_RANGE, "0,1000,0.01,or_greater"), "set_emission_ring_inner_radius", "get_emission_ring_inner_radius"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "emission_ring_cone_angle", PROPERTY_HINT_RANGE, "0,90,0.01,degrees"), "set_emission_ring_cone_angle", "get_emission_ring_cone_angle"); ADD_SUBGROUP("Angle", ""); ADD_MIN_MAX_PROPERTY("angle", "-720,720,0.1,or_less,or_greater,degrees", PARAM_ANGLE); ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "angle_curve", PROPERTY_HINT_RESOURCE_TYPE, "CurveTexture"), "set_param_texture", "get_param_texture", PARAM_ANGLE); ADD_SUBGROUP("Velocity", ""); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "inherit_velocity_ratio", PROPERTY_HINT_RANGE, "0.0,1.0,0.001,or_less,or_greater"), "set_inherit_velocity_ratio", "get_inherit_velocity_ratio"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "velocity_pivot"), "set_velocity_pivot", "get_velocity_pivot"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "direction"), "set_direction", "get_direction"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "spread", PROPERTY_HINT_RANGE, "0,180,0.001"), "set_spread", "get_spread"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "flatness", PROPERTY_HINT_RANGE, "0,1,0.001"), "set_flatness", "get_flatness"); ADD_MIN_MAX_PROPERTY("initial_velocity", "0,1000,0.01,or_less,or_greater", PARAM_INITIAL_LINEAR_VELOCITY); ADD_GROUP("Animated Velocity", ""); ADD_SUBGROUP("Velocity Limit", ""); ADD_SUBGROUP("Angular Velocity", "angular_"); ADD_MIN_MAX_PROPERTY("angular_velocity", "-720,720,0.01,or_less,or_greater", PARAM_ANGULAR_VELOCITY); ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "angular_velocity_curve", PROPERTY_HINT_RESOURCE_TYPE, "CurveTexture"), "set_param_texture", "get_param_texture", PARAM_ANGULAR_VELOCITY); ADD_SUBGROUP("Directional Velocity", "directional_"); ADD_MIN_MAX_PROPERTY("directional_velocity", "-720,720,0.01,or_less,or_greater", PARAM_DIRECTIONAL_VELOCITY); ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "directional_velocity_curve", PROPERTY_HINT_RESOURCE_TYPE, "CurveXYZTexture"), "set_param_texture", "get_param_texture", PARAM_DIRECTIONAL_VELOCITY); ADD_SUBGROUP("Orbit Velocity", "orbit_"); ADD_MIN_MAX_PROPERTY("orbit_velocity", "-2,2,0.001,or_less,or_greater", PARAM_ORBIT_VELOCITY); ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "orbit_velocity_curve", PROPERTY_HINT_RESOURCE_TYPE, "CurveTexture,CurveXYZTexture"), "set_param_texture", "get_param_texture", PARAM_ORBIT_VELOCITY); ADD_SUBGROUP("Radial Velocity", "radial_"); ADD_MIN_MAX_PROPERTY("radial_velocity", "-1000,1000,0.01,or_less,or_greater", PARAM_RADIAL_VELOCITY); ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "radial_velocity_curve", PROPERTY_HINT_RESOURCE_TYPE, "CurveTexture"), "set_param_texture", "get_param_texture", PARAM_RADIAL_VELOCITY); ADD_SUBGROUP("Velocity Limit", ""); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "velocity_limit_curve", PROPERTY_HINT_RESOURCE_TYPE, "CurveTexture"), "set_velocity_limit_curve", "get_velocity_limit_curve"); ADD_GROUP("Accelerations", ""); ADD_SUBGROUP("Gravity", ""); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "gravity"), "set_gravity", "get_gravity"); ADD_SUBGROUP("Linear Accel", "linear_"); ADD_MIN_MAX_PROPERTY("linear_accel", "-100,100,0.01,or_less,or_greater", PARAM_LINEAR_ACCEL); ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "linear_accel_curve", PROPERTY_HINT_RESOURCE_TYPE, "CurveTexture"), "set_param_texture", "get_param_texture", PARAM_LINEAR_ACCEL); ADD_SUBGROUP("Radial Accel", "radial_"); ADD_MIN_MAX_PROPERTY("radial_accel", "-100,100,0.01,or_less,or_greater", PARAM_RADIAL_ACCEL); ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "radial_accel_curve", PROPERTY_HINT_RESOURCE_TYPE, "CurveTexture"), "set_param_texture", "get_param_texture", PARAM_RADIAL_ACCEL); ADD_SUBGROUP("Tangential Accel", "tangential_"); ADD_MIN_MAX_PROPERTY("tangential_accel", "-100,100,0.01,or_less,or_greater", PARAM_TANGENTIAL_ACCEL); ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "tangential_accel_curve", PROPERTY_HINT_RESOURCE_TYPE, "CurveTexture"), "set_param_texture", "get_param_texture", PARAM_TANGENTIAL_ACCEL); ADD_SUBGROUP("Damping", ""); ADD_MIN_MAX_PROPERTY("damping", "0,100,0.001,or_greater", PARAM_DAMPING); ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "damping_curve", PROPERTY_HINT_RESOURCE_TYPE, "CurveTexture"), "set_param_texture", "get_param_texture", PARAM_DAMPING); ADD_SUBGROUP("Attractor Interaction", "attractor_interaction_"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "attractor_interaction_enabled"), "set_attractor_interaction_enabled", "is_attractor_interaction_enabled"); ADD_GROUP("Display", ""); ADD_SUBGROUP("Scale", ""); ADD_MIN_MAX_PROPERTY("scale", "0,1000,0.01,or_greater", PARAM_SCALE); ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "scale_curve", PROPERTY_HINT_RESOURCE_TYPE, "CurveTexture,CurveXYZTexture"), "set_param_texture", "get_param_texture", PARAM_SCALE); ADD_SUBGROUP("Scale Over Velocity", ""); ADD_MIN_MAX_PROPERTY("scale_over_velocity", "0,1000,0.01,or_greater", PARAM_SCALE_OVER_VELOCITY); ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "scale_over_velocity_curve", PROPERTY_HINT_RESOURCE_TYPE, "CurveTexture,CurveXYZTexture"), "set_param_texture", "get_param_texture", PARAM_SCALE_OVER_VELOCITY); ADD_SUBGROUP("Color Curves", ""); ADD_PROPERTY(PropertyInfo(Variant::COLOR, "color"), "set_color", "get_color"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "color_ramp", PROPERTY_HINT_RESOURCE_TYPE, "GradientTexture1D"), "set_color_ramp", "get_color_ramp"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "color_initial_ramp", PROPERTY_HINT_RESOURCE_TYPE, "GradientTexture1D"), "set_color_initial_ramp", "get_color_initial_ramp"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "alpha_curve", PROPERTY_HINT_RESOURCE_TYPE, "CurveTexture"), "set_alpha_curve", "get_alpha_curve"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "emission_curve", PROPERTY_HINT_RESOURCE_TYPE, "CurveTexture"), "set_emission_curve", "get_emission_curve"); ADD_SUBGROUP("Hue Variation", "hue_"); ADD_MIN_MAX_PROPERTY("hue_variation", "-1,1,0.01", PARAM_HUE_VARIATION); ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "hue_variation_curve", PROPERTY_HINT_RESOURCE_TYPE, "CurveTexture"), "set_param_texture", "get_param_texture", PARAM_HUE_VARIATION); ADD_SUBGROUP("Animation", "anim_"); ADD_MIN_MAX_PROPERTY("anim_speed", "0,16,0.01,or_less,or_greater", PARAM_ANIM_SPEED); ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "anim_speed_curve", PROPERTY_HINT_RESOURCE_TYPE, "CurveTexture"), "set_param_texture", "get_param_texture", PARAM_ANIM_SPEED); ADD_MIN_MAX_PROPERTY("anim_offset", "0,1,0.0001", PARAM_ANIM_OFFSET); ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "anim_offset_curve", PROPERTY_HINT_RESOURCE_TYPE, "CurveTexture"), "set_param_texture", "get_param_texture", PARAM_ANIM_OFFSET); ADD_GROUP("Turbulence", "turbulence_"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "turbulence_enabled"), "set_turbulence_enabled", "get_turbulence_enabled"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "turbulence_noise_strength", PROPERTY_HINT_RANGE, "0,20,0.01"), "set_turbulence_noise_strength", "get_turbulence_noise_strength"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "turbulence_noise_scale", PROPERTY_HINT_RANGE, "0,10,0.001,or_greater"), "set_turbulence_noise_scale", "get_turbulence_noise_scale"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "turbulence_noise_speed"), "set_turbulence_noise_speed", "get_turbulence_noise_speed"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "turbulence_noise_speed_random", PROPERTY_HINT_RANGE, "0,4,0.01"), "set_turbulence_noise_speed_random", "get_turbulence_noise_speed_random"); ADD_MIN_MAX_PROPERTY("turbulence_influence", "0,1,0.001", PARAM_TURB_VEL_INFLUENCE); ADD_MIN_MAX_PROPERTY("turbulence_initial_displacement", "-100,100,0.1", PARAM_TURB_INIT_DISPLACEMENT); ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "turbulence_influence_over_life", PROPERTY_HINT_RESOURCE_TYPE, "CurveTexture"), "set_param_texture", "get_param_texture", PARAM_TURB_INFLUENCE_OVER_LIFE); ADD_GROUP("Collision", "collision_"); ADD_PROPERTY(PropertyInfo(Variant::INT, "collision_mode", PROPERTY_HINT_ENUM, "Disabled,Rigid,Hide On Contact"), "set_collision_mode", "get_collision_mode"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "collision_friction", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_collision_friction", "get_collision_friction"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "collision_bounce", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_collision_bounce", "get_collision_bounce"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "collision_use_scale"), "set_collision_use_scale", "is_collision_using_scale"); ADD_GROUP("Sub Emitter", "sub_emitter_"); ADD_PROPERTY(PropertyInfo(Variant::INT, "sub_emitter_mode", PROPERTY_HINT_ENUM, "Disabled,Constant,At End,At Collision"), "set_sub_emitter_mode", "get_sub_emitter_mode"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "sub_emitter_frequency", PROPERTY_HINT_RANGE, "0.01,100,0.01,suffix:Hz"), "set_sub_emitter_frequency", "get_sub_emitter_frequency"); ADD_PROPERTY(PropertyInfo(Variant::INT, "sub_emitter_amount_at_end", PROPERTY_HINT_RANGE, "1,32,1"), "set_sub_emitter_amount_at_end", "get_sub_emitter_amount_at_end"); ADD_PROPERTY(PropertyInfo(Variant::INT, "sub_emitter_amount_at_collision", PROPERTY_HINT_RANGE, "1,32,1"), "set_sub_emitter_amount_at_collision", "get_sub_emitter_amount_at_collision"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "sub_emitter_keep_velocity"), "set_sub_emitter_keep_velocity", "get_sub_emitter_keep_velocity"); BIND_ENUM_CONSTANT(PARAM_INITIAL_LINEAR_VELOCITY); BIND_ENUM_CONSTANT(PARAM_ANGULAR_VELOCITY); BIND_ENUM_CONSTANT(PARAM_ORBIT_VELOCITY); BIND_ENUM_CONSTANT(PARAM_LINEAR_ACCEL); BIND_ENUM_CONSTANT(PARAM_RADIAL_ACCEL); BIND_ENUM_CONSTANT(PARAM_TANGENTIAL_ACCEL); BIND_ENUM_CONSTANT(PARAM_DAMPING); BIND_ENUM_CONSTANT(PARAM_ANGLE); BIND_ENUM_CONSTANT(PARAM_SCALE); BIND_ENUM_CONSTANT(PARAM_HUE_VARIATION); BIND_ENUM_CONSTANT(PARAM_ANIM_SPEED); BIND_ENUM_CONSTANT(PARAM_ANIM_OFFSET); BIND_ENUM_CONSTANT(PARAM_RADIAL_VELOCITY); BIND_ENUM_CONSTANT(PARAM_DIRECTIONAL_VELOCITY); BIND_ENUM_CONSTANT(PARAM_SCALE_OVER_VELOCITY); BIND_ENUM_CONSTANT(PARAM_MAX); BIND_ENUM_CONSTANT(PARTICLE_FLAG_ALIGN_Y_TO_VELOCITY); BIND_ENUM_CONSTANT(PARTICLE_FLAG_ROTATE_Y); BIND_ENUM_CONSTANT(PARTICLE_FLAG_DISABLE_Z); BIND_ENUM_CONSTANT(PARTICLE_FLAG_DAMPING_AS_FRICTION); BIND_ENUM_CONSTANT(PARTICLE_FLAG_MAX); BIND_ENUM_CONSTANT(EMISSION_SHAPE_POINT); BIND_ENUM_CONSTANT(EMISSION_SHAPE_SPHERE); BIND_ENUM_CONSTANT(EMISSION_SHAPE_SPHERE_SURFACE); BIND_ENUM_CONSTANT(EMISSION_SHAPE_BOX); BIND_ENUM_CONSTANT(EMISSION_SHAPE_POINTS); BIND_ENUM_CONSTANT(EMISSION_SHAPE_DIRECTED_POINTS); BIND_ENUM_CONSTANT(EMISSION_SHAPE_RING); BIND_ENUM_CONSTANT(EMISSION_SHAPE_MAX); BIND_ENUM_CONSTANT(PARAM_TURB_VEL_INFLUENCE); BIND_ENUM_CONSTANT(PARAM_TURB_INIT_DISPLACEMENT); BIND_ENUM_CONSTANT(PARAM_TURB_INFLUENCE_OVER_LIFE); BIND_ENUM_CONSTANT(SUB_EMITTER_DISABLED); BIND_ENUM_CONSTANT(SUB_EMITTER_CONSTANT); BIND_ENUM_CONSTANT(SUB_EMITTER_AT_END); BIND_ENUM_CONSTANT(SUB_EMITTER_AT_COLLISION); BIND_ENUM_CONSTANT(SUB_EMITTER_MAX); BIND_ENUM_CONSTANT(COLLISION_DISABLED); BIND_ENUM_CONSTANT(COLLISION_RIGID); BIND_ENUM_CONSTANT(COLLISION_HIDE_ON_CONTACT); BIND_ENUM_CONSTANT(COLLISION_MAX); #undef ADD_MIN_MAX_PROPERTY } ParticleProcessMaterial::ParticleProcessMaterial() : element(this) { set_direction(Vector3(1, 0, 0)); set_spread(45); set_flatness(0); set_param_min(PARAM_INITIAL_LINEAR_VELOCITY, 0); set_param_min(PARAM_ANGULAR_VELOCITY, 0); set_param_min(PARAM_ORBIT_VELOCITY, 0); set_param_min(PARAM_LINEAR_ACCEL, 0); set_param_min(PARAM_RADIAL_ACCEL, 0); set_param_min(PARAM_TANGENTIAL_ACCEL, 0); set_param_min(PARAM_DAMPING, 0); set_param_min(PARAM_ANGLE, 0); set_param_min(PARAM_SCALE, 1); set_param_min(PARAM_HUE_VARIATION, 0); set_param_min(PARAM_ANIM_SPEED, 0); set_param_min(PARAM_ANIM_OFFSET, 0); set_param_max(PARAM_INITIAL_LINEAR_VELOCITY, 0); set_param_max(PARAM_ANGULAR_VELOCITY, 0); set_param_max(PARAM_ORBIT_VELOCITY, 0); set_param_max(PARAM_LINEAR_ACCEL, 0); set_param_max(PARAM_RADIAL_ACCEL, 0); set_param_max(PARAM_TANGENTIAL_ACCEL, 0); set_param_max(PARAM_DAMPING, 0); set_param_max(PARAM_ANGLE, 0); set_param_max(PARAM_SCALE, 1); set_param_max(PARAM_HUE_VARIATION, 0); set_param_max(PARAM_ANIM_SPEED, 0); set_param_max(PARAM_ANIM_OFFSET, 0); set_param_min(PARAM_DIRECTIONAL_VELOCITY, 1.0); set_param_max(PARAM_DIRECTIONAL_VELOCITY, 1.0); set_emission_shape(EMISSION_SHAPE_POINT); set_emission_sphere_radius(1); set_emission_box_extents(Vector3(1, 1, 1)); set_emission_ring_axis(Vector3(0, 0, 1.0)); set_emission_ring_height(1); set_emission_ring_radius(1); set_emission_ring_inner_radius(0); set_emission_ring_cone_angle(90); set_emission_shape_offset(Vector3(0.0, 0.0, 0.0)); set_emission_shape_scale(Vector3(1.0, 1.0, 1.0)); set_turbulence_enabled(false); set_turbulence_noise_speed(Vector3(0.0, 0.0, 0.0)); set_turbulence_noise_strength(1); set_turbulence_noise_scale(9); set_turbulence_noise_speed_random(0.2); set_param_min(PARAM_TURB_VEL_INFLUENCE, 0.1); set_param_max(PARAM_TURB_VEL_INFLUENCE, 0.1); set_param_min(PARAM_TURB_INIT_DISPLACEMENT, 0.0); set_param_max(PARAM_TURB_INIT_DISPLACEMENT, 0.0); set_gravity(Vector3(0, -9.8, 0)); set_lifetime_randomness(0); set_sub_emitter_mode(SUB_EMITTER_DISABLED); set_sub_emitter_frequency(4); set_sub_emitter_amount_at_end(1); set_sub_emitter_amount_at_collision(1); set_sub_emitter_keep_velocity(false); set_attractor_interaction_enabled(true); set_collision_mode(COLLISION_DISABLED); set_collision_bounce(0.0); set_collision_friction(0.0); set_collision_use_scale(false); for (int i = 0; i < PARTICLE_FLAG_MAX; i++) { particle_flags[i] = false; } set_color(Color(1, 1, 1, 1)); current_key.invalid_key = 1; _mark_initialized(callable_mp(this, &ParticleProcessMaterial::_queue_shader_change), callable_mp(this, &ParticleProcessMaterial::_update_shader)); } ParticleProcessMaterial::~ParticleProcessMaterial() { ERR_FAIL_NULL(RenderingServer::get_singleton()); MutexLock lock(material_mutex); if (shader_map.has(current_key)) { shader_map[current_key].users--; if (shader_map[current_key].users == 0) { //deallocate shader, as it's no longer in use RS::get_singleton()->free(shader_map[current_key].shader); shader_map.erase(current_key); } RS::get_singleton()->material_set_shader(_get_material(), RID()); } }