[vertex] layout(location = 0) in highp vec4 vertex_attrib; layout(location = 4) in vec2 uv_in; out vec2 uv_interp; void main() { uv_interp = uv_in; gl_Position = vertex_attrib; } [fragment] //#define QUALIFIER uniform // some guy on the interweb says it may be faster with this #define QUALIFIER const #ifdef USE_25_SAMPLES const int kernel_size = 25; QUALIFIER vec2 kernel[25] = vec2[]( vec2(0.530605, 0.0), vec2(0.000973794, -3.0), vec2(0.00333804, -2.52083), vec2(0.00500364, -2.08333), vec2(0.00700976, -1.6875), vec2(0.0094389, -1.33333), vec2(0.0128496, -1.02083), vec2(0.017924, -0.75), vec2(0.0263642, -0.520833), vec2(0.0410172, -0.333333), vec2(0.0493588, -0.1875), vec2(0.0402784, -0.0833333), vec2(0.0211412, -0.0208333), vec2(0.0211412, 0.0208333), vec2(0.0402784, 0.0833333), vec2(0.0493588, 0.1875), vec2(0.0410172, 0.333333), vec2(0.0263642, 0.520833), vec2(0.017924, 0.75), vec2(0.0128496, 1.02083), vec2(0.0094389, 1.33333), vec2(0.00700976, 1.6875), vec2(0.00500364, 2.08333), vec2(0.00333804, 2.52083), vec2(0.000973794, 3.0)); #endif //USE_25_SAMPLES #ifdef USE_17_SAMPLES const int kernel_size = 17; QUALIFIER vec2 kernel[17] = vec2[]( vec2(0.536343, 0.0), vec2(0.00317394, -2.0), vec2(0.0100386, -1.53125), vec2(0.0144609, -1.125), vec2(0.0216301, -0.78125), vec2(0.0347317, -0.5), vec2(0.0571056, -0.28125), vec2(0.0582416, -0.125), vec2(0.0324462, -0.03125), vec2(0.0324462, 0.03125), vec2(0.0582416, 0.125), vec2(0.0571056, 0.28125), vec2(0.0347317, 0.5), vec2(0.0216301, 0.78125), vec2(0.0144609, 1.125), vec2(0.0100386, 1.53125), vec2(0.00317394, 2.0)); #endif //USE_17_SAMPLES #ifdef USE_11_SAMPLES const int kernel_size = 11; QUALIFIER vec2 kernel[11] = vec2[]( vec2(0.560479, 0.0), vec2(0.00471691, -2.0), vec2(0.0192831, -1.28), vec2(0.03639, -0.72), vec2(0.0821904, -0.32), vec2(0.0771802, -0.08), vec2(0.0771802, 0.08), vec2(0.0821904, 0.32), vec2(0.03639, 0.72), vec2(0.0192831, 1.28), vec2(0.00471691, 2.0)); #endif //USE_11_SAMPLES uniform float max_radius; uniform float camera_z_far; uniform float camera_z_near; uniform float unit_size; uniform vec2 dir; in vec2 uv_interp; uniform sampler2D source_diffuse; //texunit:0 uniform sampler2D source_sss; //texunit:1 uniform sampler2D source_depth; //texunit:2 layout(location = 0) out vec4 frag_color; void main() { float strength = texture(source_sss, uv_interp).r; strength *= strength; //stored as sqrt // Fetch color of current pixel: vec4 base_color = texture(source_diffuse, uv_interp); if (strength > 0.0) { // Fetch linear depth of current pixel: float depth = texture(source_depth, uv_interp).r * 2.0 - 1.0; #ifdef USE_ORTHOGONAL_PROJECTION depth = ((depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0; float scale = unit_size; //remember depth is negative by default in OpenGL #else depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near)); float scale = unit_size / depth; //remember depth is negative by default in OpenGL #endif // Calculate the final step to fetch the surrounding pixels: vec2 step = max_radius * scale * dir; step *= strength; // Modulate it using the alpha channel. step *= 1.0 / 3.0; // Divide by 3 as the kernels range from -3 to 3. // Accumulate the center sample: vec3 color_accum = base_color.rgb; color_accum *= kernel[0].x; #ifdef ENABLE_STRENGTH_WEIGHTING float color_weight = kernel[0].x; #endif // Accumulate the other samples: for (int i = 1; i < kernel_size; i++) { // Fetch color and depth for current sample: vec2 offset = uv_interp + kernel[i].y * step; vec3 color = texture(source_diffuse, offset).rgb; #ifdef ENABLE_FOLLOW_SURFACE // If the difference in depth is huge, we lerp color back to "colorM": float depth_cmp = texture(source_depth, offset).r * 2.0 - 1.0; #ifdef USE_ORTHOGONAL_PROJECTION depth_cmp = ((depth_cmp + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0; #else depth_cmp = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth_cmp * (camera_z_far - camera_z_near)); #endif float s = clamp(300.0f * scale * max_radius * abs(depth - depth_cmp), 0.0, 1.0); color = mix(color, base_color.rgb, s); #endif // Accumulate: color *= kernel[i].x; #ifdef ENABLE_STRENGTH_WEIGHTING float color_s = texture(source_sss, offset).r; color_weight += color_s * kernel[i].x; color *= color_s; #endif color_accum += color; } #ifdef ENABLE_STRENGTH_WEIGHTING color_accum /= color_weight; #endif frag_color = vec4(color_accum, base_color.a); //keep alpha (used for SSAO) } else { frag_color = base_color; } }