/*************************************************************************/ /* rasterizer_scene_rd.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "rasterizer_scene_rd.h" #include "core/os/os.h" #include "core/project_settings.h" #include "rasterizer_rd.h" #include "servers/rendering/rendering_server_raster.h" uint64_t RasterizerSceneRD::auto_exposure_counter = 2; void get_vogel_disk(float *r_kernel, int p_sample_count) { const float golden_angle = 2.4; for (int i = 0; i < p_sample_count; i++) { float r = Math::sqrt(float(i) + 0.5) / Math::sqrt(float(p_sample_count)); float theta = float(i) * golden_angle; r_kernel[i * 4] = Math::cos(theta) * r; r_kernel[i * 4 + 1] = Math::sin(theta) * r; } } void RasterizerSceneRD::_clear_reflection_data(ReflectionData &rd) { rd.layers.clear(); rd.radiance_base_cubemap = RID(); if (rd.downsampled_radiance_cubemap.is_valid()) { RD::get_singleton()->free(rd.downsampled_radiance_cubemap); } rd.downsampled_radiance_cubemap = RID(); rd.downsampled_layer.mipmaps.clear(); rd.coefficient_buffer = RID(); } void RasterizerSceneRD::_update_reflection_data(ReflectionData &rd, int p_size, int p_mipmaps, bool p_use_array, RID p_base_cube, int p_base_layer, bool p_low_quality) { //recreate radiance and all data int mipmaps = p_mipmaps; uint32_t w = p_size, h = p_size; if (p_use_array) { int layers = p_low_quality ? 8 : roughness_layers; for (int i = 0; i < layers; i++) { ReflectionData::Layer layer; uint32_t mmw = w; uint32_t mmh = h; layer.mipmaps.resize(mipmaps); layer.views.resize(mipmaps); for (int j = 0; j < mipmaps; j++) { ReflectionData::Layer::Mipmap &mm = layer.mipmaps.write[j]; mm.size.width = mmw; mm.size.height = mmh; for (int k = 0; k < 6; k++) { mm.views[k] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer + i * 6 + k, j); Vector fbtex; fbtex.push_back(mm.views[k]); mm.framebuffers[k] = RD::get_singleton()->framebuffer_create(fbtex); } layer.views.write[j] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer + i * 6, j, RD::TEXTURE_SLICE_CUBEMAP); mmw = MAX(1, mmw >> 1); mmh = MAX(1, mmh >> 1); } rd.layers.push_back(layer); } } else { mipmaps = p_low_quality ? 8 : mipmaps; //regular cubemap, lower quality (aliasing, less memory) ReflectionData::Layer layer; uint32_t mmw = w; uint32_t mmh = h; layer.mipmaps.resize(mipmaps); layer.views.resize(mipmaps); for (int j = 0; j < mipmaps; j++) { ReflectionData::Layer::Mipmap &mm = layer.mipmaps.write[j]; mm.size.width = mmw; mm.size.height = mmh; for (int k = 0; k < 6; k++) { mm.views[k] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer + k, j); Vector fbtex; fbtex.push_back(mm.views[k]); mm.framebuffers[k] = RD::get_singleton()->framebuffer_create(fbtex); } layer.views.write[j] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer, j, RD::TEXTURE_SLICE_CUBEMAP); mmw = MAX(1, mmw >> 1); mmh = MAX(1, mmh >> 1); } rd.layers.push_back(layer); } rd.radiance_base_cubemap = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer, 0, RD::TEXTURE_SLICE_CUBEMAP); RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; tf.width = 64; // Always 64x64 tf.height = 64; tf.type = RD::TEXTURE_TYPE_CUBE; tf.array_layers = 6; tf.mipmaps = 7; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; rd.downsampled_radiance_cubemap = RD::get_singleton()->texture_create(tf, RD::TextureView()); { uint32_t mmw = 64; uint32_t mmh = 64; rd.downsampled_layer.mipmaps.resize(7); for (int j = 0; j < rd.downsampled_layer.mipmaps.size(); j++) { ReflectionData::DownsampleLayer::Mipmap &mm = rd.downsampled_layer.mipmaps.write[j]; mm.size.width = mmw; mm.size.height = mmh; mm.view = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rd.downsampled_radiance_cubemap, 0, j, RD::TEXTURE_SLICE_CUBEMAP); mmw = MAX(1, mmw >> 1); mmh = MAX(1, mmh >> 1); } } } void RasterizerSceneRD::_create_reflection_fast_filter(ReflectionData &rd, bool p_use_arrays) { storage->get_effects()->cubemap_downsample(rd.radiance_base_cubemap, rd.downsampled_layer.mipmaps[0].view, rd.downsampled_layer.mipmaps[0].size); for (int i = 1; i < rd.downsampled_layer.mipmaps.size(); i++) { storage->get_effects()->cubemap_downsample(rd.downsampled_layer.mipmaps[i - 1].view, rd.downsampled_layer.mipmaps[i].view, rd.downsampled_layer.mipmaps[i].size); } Vector views; if (p_use_arrays) { for (int i = 1; i < rd.layers.size(); i++) { views.push_back(rd.layers[i].views[0]); } } else { for (int i = 1; i < rd.layers[0].views.size(); i++) { views.push_back(rd.layers[0].views[i]); } } storage->get_effects()->cubemap_filter(rd.downsampled_radiance_cubemap, views, p_use_arrays); } void RasterizerSceneRD::_create_reflection_importance_sample(ReflectionData &rd, bool p_use_arrays, int p_cube_side, int p_base_layer) { if (p_use_arrays) { //render directly to the layers storage->get_effects()->cubemap_roughness(rd.radiance_base_cubemap, rd.layers[p_base_layer].views[0], p_cube_side, sky_ggx_samples_quality, float(p_base_layer) / (rd.layers.size() - 1.0), rd.layers[p_base_layer].mipmaps[0].size.x); } else { storage->get_effects()->cubemap_roughness(rd.layers[0].views[p_base_layer - 1], rd.layers[0].views[p_base_layer], p_cube_side, sky_ggx_samples_quality, float(p_base_layer) / (rd.layers[0].mipmaps.size() - 1.0), rd.layers[0].mipmaps[p_base_layer].size.x); } } void RasterizerSceneRD::_update_reflection_mipmaps(ReflectionData &rd, int p_start, int p_end) { for (int i = p_start; i < p_end; i++) { for (int j = 0; j < rd.layers[i].mipmaps.size() - 1; j++) { for (int k = 0; k < 6; k++) { RID view = rd.layers[i].mipmaps[j].views[k]; RID texture = rd.layers[i].mipmaps[j + 1].views[k]; Size2i size = rd.layers[i].mipmaps[j + 1].size; storage->get_effects()->make_mipmap(view, texture, size); } } } } void RasterizerSceneRD::_sdfgi_erase(RenderBuffers *rb) { for (uint32_t i = 0; i < rb->sdfgi->cascades.size(); i++) { const SDFGI::Cascade &c = rb->sdfgi->cascades[i]; RD::get_singleton()->free(c.light_data); RD::get_singleton()->free(c.light_aniso_0_tex); RD::get_singleton()->free(c.light_aniso_1_tex); RD::get_singleton()->free(c.sdf_tex); RD::get_singleton()->free(c.solid_cell_dispatch_buffer); RD::get_singleton()->free(c.solid_cell_buffer); RD::get_singleton()->free(c.lightprobe_history_tex); RD::get_singleton()->free(c.lightprobe_average_tex); RD::get_singleton()->free(c.lights_buffer); } RD::get_singleton()->free(rb->sdfgi->render_albedo); RD::get_singleton()->free(rb->sdfgi->render_emission); RD::get_singleton()->free(rb->sdfgi->render_emission_aniso); RD::get_singleton()->free(rb->sdfgi->render_sdf[0]); RD::get_singleton()->free(rb->sdfgi->render_sdf[1]); RD::get_singleton()->free(rb->sdfgi->render_sdf_half[0]); RD::get_singleton()->free(rb->sdfgi->render_sdf_half[1]); for (int i = 0; i < 8; i++) { RD::get_singleton()->free(rb->sdfgi->render_occlusion[i]); } RD::get_singleton()->free(rb->sdfgi->render_geom_facing); RD::get_singleton()->free(rb->sdfgi->lightprobe_data); RD::get_singleton()->free(rb->sdfgi->lightprobe_history_scroll); RD::get_singleton()->free(rb->sdfgi->occlusion_data); RD::get_singleton()->free(rb->sdfgi->ambient_texture); RD::get_singleton()->free(rb->sdfgi->cascades_ubo); memdelete(rb->sdfgi); rb->sdfgi = nullptr; } const Vector3i RasterizerSceneRD::SDFGI::Cascade::DIRTY_ALL = Vector3i(0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF); void RasterizerSceneRD::sdfgi_update(RID p_render_buffers, RID p_environment, const Vector3 &p_world_position) { Environment *env = environment_owner.getornull(p_environment); RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); bool needs_sdfgi = env && env->sdfgi_enabled; if (!needs_sdfgi) { if (rb->sdfgi != nullptr) { //erase it _sdfgi_erase(rb); _render_buffers_uniform_set_changed(p_render_buffers); } return; } static const uint32_t history_frames_to_converge[RS::ENV_SDFGI_CONVERGE_MAX] = { 5, 10, 15, 20, 25, 30 }; uint32_t requested_history_size = history_frames_to_converge[sdfgi_frames_to_converge]; if (rb->sdfgi && (rb->sdfgi->cascade_mode != env->sdfgi_cascades || rb->sdfgi->min_cell_size != env->sdfgi_min_cell_size || requested_history_size != rb->sdfgi->history_size || rb->sdfgi->uses_occlusion != env->sdfgi_use_occlusion || rb->sdfgi->y_scale_mode != env->sdfgi_y_scale)) { //configuration changed, erase _sdfgi_erase(rb); } SDFGI *sdfgi = rb->sdfgi; if (sdfgi == nullptr) { //re-create rb->sdfgi = memnew(SDFGI); sdfgi = rb->sdfgi; sdfgi->cascade_mode = env->sdfgi_cascades; sdfgi->min_cell_size = env->sdfgi_min_cell_size; sdfgi->uses_occlusion = env->sdfgi_use_occlusion; sdfgi->y_scale_mode = env->sdfgi_y_scale; static const float y_scale[3] = { 1.0, 1.5, 2.0 }; sdfgi->y_mult = y_scale[sdfgi->y_scale_mode]; static const int cascasde_size[3] = { 4, 6, 8 }; sdfgi->cascades.resize(cascasde_size[sdfgi->cascade_mode]); sdfgi->probe_axis_count = SDFGI::PROBE_DIVISOR + 1; sdfgi->solid_cell_ratio = sdfgi_solid_cell_ratio; sdfgi->solid_cell_count = uint32_t(float(sdfgi->cascade_size * sdfgi->cascade_size * sdfgi->cascade_size) * sdfgi->solid_cell_ratio); float base_cell_size = sdfgi->min_cell_size; RD::TextureFormat tf_sdf; tf_sdf.format = RD::DATA_FORMAT_R8_UNORM; tf_sdf.width = sdfgi->cascade_size; // Always 64x64 tf_sdf.height = sdfgi->cascade_size; tf_sdf.depth = sdfgi->cascade_size; tf_sdf.type = RD::TEXTURE_TYPE_3D; tf_sdf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT; { RD::TextureFormat tf_render = tf_sdf; tf_render.format = RD::DATA_FORMAT_R16_UINT; sdfgi->render_albedo = RD::get_singleton()->texture_create(tf_render, RD::TextureView()); tf_render.format = RD::DATA_FORMAT_R32_UINT; sdfgi->render_emission = RD::get_singleton()->texture_create(tf_render, RD::TextureView()); sdfgi->render_emission_aniso = RD::get_singleton()->texture_create(tf_render, RD::TextureView()); tf_render.format = RD::DATA_FORMAT_R8_UNORM; //at least its easy to visualize for (int i = 0; i < 8; i++) { sdfgi->render_occlusion[i] = RD::get_singleton()->texture_create(tf_render, RD::TextureView()); } tf_render.format = RD::DATA_FORMAT_R32_UINT; sdfgi->render_geom_facing = RD::get_singleton()->texture_create(tf_render, RD::TextureView()); tf_render.format = RD::DATA_FORMAT_R8G8B8A8_UINT; sdfgi->render_sdf[0] = RD::get_singleton()->texture_create(tf_render, RD::TextureView()); sdfgi->render_sdf[1] = RD::get_singleton()->texture_create(tf_render, RD::TextureView()); tf_render.width /= 2; tf_render.height /= 2; tf_render.depth /= 2; sdfgi->render_sdf_half[0] = RD::get_singleton()->texture_create(tf_render, RD::TextureView()); sdfgi->render_sdf_half[1] = RD::get_singleton()->texture_create(tf_render, RD::TextureView()); } RD::TextureFormat tf_occlusion = tf_sdf; tf_occlusion.format = RD::DATA_FORMAT_R16_UINT; tf_occlusion.shareable_formats.push_back(RD::DATA_FORMAT_R16_UINT); tf_occlusion.shareable_formats.push_back(RD::DATA_FORMAT_R4G4B4A4_UNORM_PACK16); tf_occlusion.depth *= sdfgi->cascades.size(); //use depth for occlusion slices tf_occlusion.width *= 2; //use width for the other half RD::TextureFormat tf_light = tf_sdf; tf_light.format = RD::DATA_FORMAT_R32_UINT; tf_light.shareable_formats.push_back(RD::DATA_FORMAT_R32_UINT); tf_light.shareable_formats.push_back(RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32); RD::TextureFormat tf_aniso0 = tf_sdf; tf_aniso0.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; RD::TextureFormat tf_aniso1 = tf_sdf; tf_aniso1.format = RD::DATA_FORMAT_R8G8_UNORM; int passes = nearest_shift(sdfgi->cascade_size) - 1; //store lightprobe SH RD::TextureFormat tf_probes; tf_probes.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; tf_probes.width = sdfgi->probe_axis_count * sdfgi->probe_axis_count; tf_probes.height = sdfgi->probe_axis_count * SDFGI::SH_SIZE; tf_probes.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT; tf_probes.type = RD::TEXTURE_TYPE_2D_ARRAY; sdfgi->history_size = requested_history_size; RD::TextureFormat tf_probe_history = tf_probes; tf_probe_history.format = RD::DATA_FORMAT_R16G16B16A16_SINT; //signed integer because SH are signed tf_probe_history.array_layers = sdfgi->history_size; RD::TextureFormat tf_probe_average = tf_probes; tf_probe_average.format = RD::DATA_FORMAT_R32G32B32A32_SINT; //signed integer because SH are signed tf_probe_average.type = RD::TEXTURE_TYPE_2D_ARRAY; tf_probe_average.array_layers = 1; sdfgi->lightprobe_history_scroll = RD::get_singleton()->texture_create(tf_probe_history, RD::TextureView()); sdfgi->lightprobe_average_scroll = RD::get_singleton()->texture_create(tf_probe_average, RD::TextureView()); { //octahedral lightprobes RD::TextureFormat tf_octprobes = tf_probes; tf_octprobes.array_layers = sdfgi->cascades.size() * 2; tf_octprobes.format = RD::DATA_FORMAT_R32_UINT; //pack well with RGBE tf_octprobes.width = sdfgi->probe_axis_count * sdfgi->probe_axis_count * (SDFGI::LIGHTPROBE_OCT_SIZE + 2); tf_octprobes.height = sdfgi->probe_axis_count * (SDFGI::LIGHTPROBE_OCT_SIZE + 2); tf_octprobes.shareable_formats.push_back(RD::DATA_FORMAT_R32_UINT); tf_octprobes.shareable_formats.push_back(RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32); //lightprobe texture is an octahedral texture sdfgi->lightprobe_data = RD::get_singleton()->texture_create(tf_octprobes, RD::TextureView()); RD::TextureView tv; tv.format_override = RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32; sdfgi->lightprobe_texture = RD::get_singleton()->texture_create_shared(tv, sdfgi->lightprobe_data); //texture handling ambient data, to integrate with volumetric foc RD::TextureFormat tf_ambient = tf_probes; tf_ambient.array_layers = sdfgi->cascades.size(); tf_ambient.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; //pack well with RGBE tf_ambient.width = sdfgi->probe_axis_count * sdfgi->probe_axis_count; tf_ambient.height = sdfgi->probe_axis_count; tf_ambient.type = RD::TEXTURE_TYPE_2D_ARRAY; //lightprobe texture is an octahedral texture sdfgi->ambient_texture = RD::get_singleton()->texture_create(tf_ambient, RD::TextureView()); } sdfgi->cascades_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(SDFGI::Cascade::UBO) * SDFGI::MAX_CASCADES); sdfgi->occlusion_data = RD::get_singleton()->texture_create(tf_occlusion, RD::TextureView()); { RD::TextureView tv; tv.format_override = RD::DATA_FORMAT_R4G4B4A4_UNORM_PACK16; sdfgi->occlusion_texture = RD::get_singleton()->texture_create_shared(tv, sdfgi->occlusion_data); } for (uint32_t i = 0; i < sdfgi->cascades.size(); i++) { SDFGI::Cascade &cascade = sdfgi->cascades[i]; /* 3D Textures */ cascade.sdf_tex = RD::get_singleton()->texture_create(tf_sdf, RD::TextureView()); cascade.light_data = RD::get_singleton()->texture_create(tf_light, RD::TextureView()); cascade.light_aniso_0_tex = RD::get_singleton()->texture_create(tf_aniso0, RD::TextureView()); cascade.light_aniso_1_tex = RD::get_singleton()->texture_create(tf_aniso1, RD::TextureView()); { RD::TextureView tv; tv.format_override = RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32; cascade.light_tex = RD::get_singleton()->texture_create_shared(tv, cascade.light_data); RD::get_singleton()->texture_clear(cascade.light_tex, Color(0, 0, 0, 0), 0, 1, 0, 1); RD::get_singleton()->texture_clear(cascade.light_aniso_0_tex, Color(0, 0, 0, 0), 0, 1, 0, 1); RD::get_singleton()->texture_clear(cascade.light_aniso_1_tex, Color(0, 0, 0, 0), 0, 1, 0, 1); } cascade.cell_size = base_cell_size; Vector3 world_position = p_world_position; world_position.y *= sdfgi->y_mult; int32_t probe_cells = sdfgi->cascade_size / SDFGI::PROBE_DIVISOR; Vector3 probe_size = Vector3(1, 1, 1) * cascade.cell_size * probe_cells; Vector3i probe_pos = Vector3i((world_position / probe_size + Vector3(0.5, 0.5, 0.5)).floor()); cascade.position = probe_pos * probe_cells; cascade.dirty_regions = SDFGI::Cascade::DIRTY_ALL; base_cell_size *= 2.0; /* Probe History */ cascade.lightprobe_history_tex = RD::get_singleton()->texture_create(tf_probe_history, RD::TextureView()); RD::get_singleton()->texture_clear(cascade.lightprobe_history_tex, Color(0, 0, 0, 0), 0, 1, 0, tf_probe_history.array_layers); //needs to be cleared for average to work cascade.lightprobe_average_tex = RD::get_singleton()->texture_create(tf_probe_average, RD::TextureView()); RD::get_singleton()->texture_clear(cascade.lightprobe_average_tex, Color(0, 0, 0, 0), 0, 1, 0, 1); //needs to be cleared for average to work /* Buffers */ cascade.solid_cell_buffer = RD::get_singleton()->storage_buffer_create(sizeof(SDFGI::Cascade::SolidCell) * sdfgi->solid_cell_count); cascade.solid_cell_dispatch_buffer = RD::get_singleton()->storage_buffer_create(sizeof(uint32_t) * 4, Vector(), RD::STORAGE_BUFFER_USAGE_DISPATCH_INDIRECT); cascade.lights_buffer = RD::get_singleton()->storage_buffer_create(sizeof(SDGIShader::Light) * MAX(SDFGI::MAX_STATIC_LIGHTS, SDFGI::MAX_DYNAMIC_LIGHTS)); { Vector uniforms; { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 1; u.ids.push_back(sdfgi->render_sdf[(passes & 1) ? 1 : 0]); //if passes are even, we read from buffer 0, else we read from buffer 1 uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 2; u.ids.push_back(sdfgi->render_albedo); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 3; for (int j = 0; j < 8; j++) { u.ids.push_back(sdfgi->render_occlusion[j]); } uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 4; u.ids.push_back(sdfgi->render_emission); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 5; u.ids.push_back(sdfgi->render_emission_aniso); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 6; u.ids.push_back(sdfgi->render_geom_facing); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 7; u.ids.push_back(cascade.sdf_tex); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 8; u.ids.push_back(sdfgi->occlusion_data); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 10; u.ids.push_back(cascade.solid_cell_dispatch_buffer); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 11; u.ids.push_back(cascade.solid_cell_buffer); uniforms.push_back(u); } cascade.sdf_store_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_STORE), 0); } { Vector uniforms; { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 1; u.ids.push_back(sdfgi->render_albedo); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 2; u.ids.push_back(sdfgi->render_geom_facing); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 3; u.ids.push_back(sdfgi->render_emission); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 4; u.ids.push_back(sdfgi->render_emission_aniso); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 5; u.ids.push_back(cascade.solid_cell_dispatch_buffer); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 6; u.ids.push_back(cascade.solid_cell_buffer); uniforms.push_back(u); } cascade.scroll_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_SCROLL), 0); } { Vector uniforms; { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 1; for (int j = 0; j < 8; j++) { u.ids.push_back(sdfgi->render_occlusion[j]); } uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 2; u.ids.push_back(sdfgi->occlusion_data); uniforms.push_back(u); } cascade.scroll_occlusion_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_SCROLL_OCCLUSION), 0); } } //direct light for (uint32_t i = 0; i < sdfgi->cascades.size(); i++) { SDFGI::Cascade &cascade = sdfgi->cascades[i]; Vector uniforms; { RD::Uniform u; u.binding = 1; u.type = RD::UNIFORM_TYPE_TEXTURE; for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) { if (j < rb->sdfgi->cascades.size()) { u.ids.push_back(rb->sdfgi->cascades[j].sdf_tex); } else { u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE)); } } uniforms.push_back(u); } { RD::Uniform u; u.binding = 2; u.type = RD::UNIFORM_TYPE_SAMPLER; u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); uniforms.push_back(u); } { RD::Uniform u; u.binding = 3; u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.ids.push_back(cascade.solid_cell_dispatch_buffer); uniforms.push_back(u); } { RD::Uniform u; u.binding = 4; u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.ids.push_back(cascade.solid_cell_buffer); uniforms.push_back(u); } { RD::Uniform u; u.binding = 5; u.type = RD::UNIFORM_TYPE_IMAGE; u.ids.push_back(cascade.light_data); uniforms.push_back(u); } { RD::Uniform u; u.binding = 6; u.type = RD::UNIFORM_TYPE_IMAGE; u.ids.push_back(cascade.light_aniso_0_tex); uniforms.push_back(u); } { RD::Uniform u; u.binding = 7; u.type = RD::UNIFORM_TYPE_IMAGE; u.ids.push_back(cascade.light_aniso_1_tex); uniforms.push_back(u); } { RD::Uniform u; u.binding = 8; u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.ids.push_back(rb->sdfgi->cascades_ubo); uniforms.push_back(u); } { RD::Uniform u; u.binding = 9; u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.ids.push_back(cascade.lights_buffer); uniforms.push_back(u); } { RD::Uniform u; u.binding = 10; u.type = RD::UNIFORM_TYPE_TEXTURE; u.ids.push_back(rb->sdfgi->lightprobe_texture); uniforms.push_back(u); } cascade.sdf_direct_light_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.direct_light.version_get_shader(sdfgi_shader.direct_light_shader, 0), 0); } //preprocess initialize uniform set { Vector uniforms; { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 1; u.ids.push_back(sdfgi->render_albedo); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 2; u.ids.push_back(sdfgi->render_sdf[0]); uniforms.push_back(u); } sdfgi->sdf_initialize_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE), 0); } { Vector uniforms; { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 1; u.ids.push_back(sdfgi->render_albedo); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 2; u.ids.push_back(sdfgi->render_sdf_half[0]); uniforms.push_back(u); } sdfgi->sdf_initialize_half_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE_HALF), 0); } //jump flood uniform set { Vector uniforms; { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 1; u.ids.push_back(sdfgi->render_sdf[0]); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 2; u.ids.push_back(sdfgi->render_sdf[1]); uniforms.push_back(u); } sdfgi->jump_flood_uniform_set[0] = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_JUMP_FLOOD), 0); SWAP(uniforms.write[0].ids.write[0], uniforms.write[1].ids.write[0]); sdfgi->jump_flood_uniform_set[1] = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_JUMP_FLOOD), 0); } //jump flood half uniform set { Vector uniforms; { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 1; u.ids.push_back(sdfgi->render_sdf_half[0]); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 2; u.ids.push_back(sdfgi->render_sdf_half[1]); uniforms.push_back(u); } sdfgi->jump_flood_half_uniform_set[0] = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_JUMP_FLOOD), 0); SWAP(uniforms.write[0].ids.write[0], uniforms.write[1].ids.write[0]); sdfgi->jump_flood_half_uniform_set[1] = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_JUMP_FLOOD), 0); } //upscale half size sdf { Vector uniforms; { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 1; u.ids.push_back(sdfgi->render_albedo); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 2; u.ids.push_back(sdfgi->render_sdf_half[(passes & 1) ? 0 : 1]); //reverse pass order because half size uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 3; u.ids.push_back(sdfgi->render_sdf[(passes & 1) ? 0 : 1]); //reverse pass order because it needs an extra JFA pass uniforms.push_back(u); } sdfgi->upscale_jfa_uniform_set_index = (passes & 1) ? 0 : 1; sdfgi->sdf_upscale_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_JUMP_FLOOD_UPSCALE), 0); } //occlusion uniform set { Vector uniforms; { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 1; u.ids.push_back(sdfgi->render_albedo); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 2; for (int i = 0; i < 8; i++) { u.ids.push_back(sdfgi->render_occlusion[i]); } uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 3; u.ids.push_back(sdfgi->render_geom_facing); uniforms.push_back(u); } sdfgi->occlusion_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_OCCLUSION), 0); } for (uint32_t i = 0; i < sdfgi->cascades.size(); i++) { //integrate uniform Vector uniforms; { RD::Uniform u; u.binding = 1; u.type = RD::UNIFORM_TYPE_TEXTURE; for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) { if (j < sdfgi->cascades.size()) { u.ids.push_back(sdfgi->cascades[j].sdf_tex); } else { u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE)); } } uniforms.push_back(u); } { RD::Uniform u; u.binding = 2; u.type = RD::UNIFORM_TYPE_TEXTURE; for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) { if (j < sdfgi->cascades.size()) { u.ids.push_back(sdfgi->cascades[j].light_tex); } else { u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE)); } } uniforms.push_back(u); } { RD::Uniform u; u.binding = 3; u.type = RD::UNIFORM_TYPE_TEXTURE; for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) { if (j < sdfgi->cascades.size()) { u.ids.push_back(sdfgi->cascades[j].light_aniso_0_tex); } else { u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE)); } } uniforms.push_back(u); } { RD::Uniform u; u.binding = 4; u.type = RD::UNIFORM_TYPE_TEXTURE; for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) { if (j < sdfgi->cascades.size()) { u.ids.push_back(sdfgi->cascades[j].light_aniso_1_tex); } else { u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE)); } } uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 6; u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.binding = 7; u.ids.push_back(sdfgi->cascades_ubo); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 8; u.ids.push_back(sdfgi->lightprobe_data); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 9; u.ids.push_back(sdfgi->cascades[i].lightprobe_history_tex); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 10; u.ids.push_back(sdfgi->cascades[i].lightprobe_average_tex); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 11; u.ids.push_back(sdfgi->lightprobe_history_scroll); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 12; u.ids.push_back(sdfgi->lightprobe_average_scroll); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 13; RID parent_average; if (i < sdfgi->cascades.size() - 1) { parent_average = sdfgi->cascades[i + 1].lightprobe_average_tex; } else { parent_average = sdfgi->cascades[i - 1].lightprobe_average_tex; //to use something, but it won't be used } u.ids.push_back(parent_average); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 14; u.ids.push_back(sdfgi->ambient_texture); uniforms.push_back(u); } sdfgi->cascades[i].integrate_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.integrate.version_get_shader(sdfgi_shader.integrate_shader, 0), 0); } sdfgi->uses_multibounce = env->sdfgi_use_multibounce; sdfgi->energy = env->sdfgi_energy; sdfgi->normal_bias = env->sdfgi_normal_bias; sdfgi->probe_bias = env->sdfgi_probe_bias; sdfgi->reads_sky = env->sdfgi_read_sky_light; _render_buffers_uniform_set_changed(p_render_buffers); return; //done. all levels will need to be rendered which its going to take a bit } //check for updates sdfgi->uses_multibounce = env->sdfgi_use_multibounce; sdfgi->energy = env->sdfgi_energy; sdfgi->normal_bias = env->sdfgi_normal_bias; sdfgi->probe_bias = env->sdfgi_probe_bias; sdfgi->reads_sky = env->sdfgi_read_sky_light; int32_t drag_margin = (sdfgi->cascade_size / SDFGI::PROBE_DIVISOR) / 2; for (uint32_t i = 0; i < sdfgi->cascades.size(); i++) { SDFGI::Cascade &cascade = sdfgi->cascades[i]; cascade.dirty_regions = Vector3i(); Vector3 probe_half_size = Vector3(1, 1, 1) * cascade.cell_size * float(sdfgi->cascade_size / SDFGI::PROBE_DIVISOR) * 0.5; probe_half_size = Vector3(0, 0, 0); Vector3 world_position = p_world_position; world_position.y *= sdfgi->y_mult; Vector3i pos_in_cascade = Vector3i((world_position + probe_half_size) / cascade.cell_size); for (int j = 0; j < 3; j++) { if (pos_in_cascade[j] < cascade.position[j]) { while (pos_in_cascade[j] < (cascade.position[j] - drag_margin)) { cascade.position[j] -= drag_margin * 2; cascade.dirty_regions[j] += drag_margin * 2; } } else if (pos_in_cascade[j] > cascade.position[j]) { while (pos_in_cascade[j] > (cascade.position[j] + drag_margin)) { cascade.position[j] += drag_margin * 2; cascade.dirty_regions[j] -= drag_margin * 2; } } if (cascade.dirty_regions[j] == 0) { continue; // not dirty } else if (uint32_t(ABS(cascade.dirty_regions[j])) >= sdfgi->cascade_size) { //moved too much, just redraw everything (make all dirty) cascade.dirty_regions = SDFGI::Cascade::DIRTY_ALL; break; } } if (cascade.dirty_regions != Vector3i() && cascade.dirty_regions != SDFGI::Cascade::DIRTY_ALL) { //see how much the total dirty volume represents from the total volume uint32_t total_volume = sdfgi->cascade_size * sdfgi->cascade_size * sdfgi->cascade_size; uint32_t safe_volume = 1; for (int j = 0; j < 3; j++) { safe_volume *= sdfgi->cascade_size - ABS(cascade.dirty_regions[j]); } uint32_t dirty_volume = total_volume - safe_volume; if (dirty_volume > (safe_volume / 2)) { //more than half the volume is dirty, make all dirty so its only rendered once cascade.dirty_regions = SDFGI::Cascade::DIRTY_ALL; } } } } int RasterizerSceneRD::sdfgi_get_pending_region_count(RID p_render_buffers) const { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(rb == nullptr, 0); if (rb->sdfgi == nullptr) { return 0; } int dirty_count = 0; for (uint32_t i = 0; i < rb->sdfgi->cascades.size(); i++) { const SDFGI::Cascade &c = rb->sdfgi->cascades[i]; if (c.dirty_regions == SDFGI::Cascade::DIRTY_ALL) { dirty_count++; } else { for (int j = 0; j < 3; j++) { if (c.dirty_regions[j] != 0) { dirty_count++; } } } } return dirty_count; } int RasterizerSceneRD::_sdfgi_get_pending_region_data(RID p_render_buffers, int p_region, Vector3i &r_local_offset, Vector3i &r_local_size, AABB &r_bounds) const { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(rb == nullptr, -1); ERR_FAIL_COND_V(rb->sdfgi == nullptr, -1); int dirty_count = 0; for (uint32_t i = 0; i < rb->sdfgi->cascades.size(); i++) { const SDFGI::Cascade &c = rb->sdfgi->cascades[i]; if (c.dirty_regions == SDFGI::Cascade::DIRTY_ALL) { if (dirty_count == p_region) { r_local_offset = Vector3i(); r_local_size = Vector3i(1, 1, 1) * rb->sdfgi->cascade_size; r_bounds.position = Vector3((Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + c.position)) * c.cell_size * Vector3(1, 1.0 / rb->sdfgi->y_mult, 1); r_bounds.size = Vector3(r_local_size) * c.cell_size * Vector3(1, 1.0 / rb->sdfgi->y_mult, 1); return i; } dirty_count++; } else { for (int j = 0; j < 3; j++) { if (c.dirty_regions[j] != 0) { if (dirty_count == p_region) { Vector3i from = Vector3i(0, 0, 0); Vector3i to = Vector3i(1, 1, 1) * rb->sdfgi->cascade_size; if (c.dirty_regions[j] > 0) { //fill from the beginning to[j] = c.dirty_regions[j]; } else { //fill from the end from[j] = to[j] + c.dirty_regions[j]; } for (int k = 0; k < j; k++) { // "chip" away previous regions to avoid re-voxelizing the same thing if (c.dirty_regions[k] > 0) { from[k] += c.dirty_regions[k]; } else if (c.dirty_regions[k] < 0) { to[k] += c.dirty_regions[k]; } } r_local_offset = from; r_local_size = to - from; r_bounds.position = Vector3(from + Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + c.position) * c.cell_size * Vector3(1, 1.0 / rb->sdfgi->y_mult, 1); r_bounds.size = Vector3(r_local_size) * c.cell_size * Vector3(1, 1.0 / rb->sdfgi->y_mult, 1); return i; } dirty_count++; } } } } return -1; } AABB RasterizerSceneRD::sdfgi_get_pending_region_bounds(RID p_render_buffers, int p_region) const { AABB bounds; Vector3i from; Vector3i size; int c = _sdfgi_get_pending_region_data(p_render_buffers, p_region, from, size, bounds); ERR_FAIL_COND_V(c == -1, AABB()); return bounds; } uint32_t RasterizerSceneRD::sdfgi_get_pending_region_cascade(RID p_render_buffers, int p_region) const { AABB bounds; Vector3i from; Vector3i size; return _sdfgi_get_pending_region_data(p_render_buffers, p_region, from, size, bounds); } void RasterizerSceneRD::_sdfgi_update_cascades(RID p_render_buffers) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND(rb == nullptr); if (rb->sdfgi == nullptr) { return; } //update cascades SDFGI::Cascade::UBO cascade_data[SDFGI::MAX_CASCADES]; int32_t probe_divisor = rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR; for (uint32_t i = 0; i < rb->sdfgi->cascades.size(); i++) { Vector3 pos = Vector3((Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + rb->sdfgi->cascades[i].position)) * rb->sdfgi->cascades[i].cell_size; cascade_data[i].offset[0] = pos.x; cascade_data[i].offset[1] = pos.y; cascade_data[i].offset[2] = pos.z; cascade_data[i].to_cell = 1.0 / rb->sdfgi->cascades[i].cell_size; cascade_data[i].probe_offset[0] = rb->sdfgi->cascades[i].position.x / probe_divisor; cascade_data[i].probe_offset[1] = rb->sdfgi->cascades[i].position.y / probe_divisor; cascade_data[i].probe_offset[2] = rb->sdfgi->cascades[i].position.z / probe_divisor; cascade_data[i].pad = 0; } RD::get_singleton()->buffer_update(rb->sdfgi->cascades_ubo, 0, sizeof(SDFGI::Cascade::UBO) * SDFGI::MAX_CASCADES, cascade_data, true); } void RasterizerSceneRD::sdfgi_update_probes(RID p_render_buffers, RID p_environment, const RID *p_directional_light_instances, uint32_t p_directional_light_count, const RID *p_positional_light_instances, uint32_t p_positional_light_count) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND(rb == nullptr); if (rb->sdfgi == nullptr) { return; } Environment *env = environment_owner.getornull(p_environment); RENDER_TIMESTAMP(">SDFGI Update Probes"); /* Update Cascades UBO */ _sdfgi_update_cascades(p_render_buffers); /* Update Dynamic Lights Buffer */ RENDER_TIMESTAMP("Update Lights"); /* Update dynamic lights */ { RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.direct_light_pipeline[SDGIShader::DIRECT_LIGHT_MODE_DYNAMIC]); SDGIShader::DirectLightPushConstant push_constant; push_constant.grid_size[0] = rb->sdfgi->cascade_size; push_constant.grid_size[1] = rb->sdfgi->cascade_size; push_constant.grid_size[2] = rb->sdfgi->cascade_size; push_constant.max_cascades = rb->sdfgi->cascades.size(); push_constant.probe_axis_size = rb->sdfgi->probe_axis_count; push_constant.multibounce = rb->sdfgi->uses_multibounce; push_constant.y_mult = rb->sdfgi->y_mult; push_constant.process_offset = 0; push_constant.process_increment = 1; for (uint32_t i = 0; i < rb->sdfgi->cascades.size(); i++) { SDFGI::Cascade &cascade = rb->sdfgi->cascades[i]; { //fill light buffer SDGIShader::Light lights[SDFGI::MAX_DYNAMIC_LIGHTS]; uint32_t idx = 0; for (uint32_t j = 0; j < p_directional_light_count; j++) { if (idx == SDFGI::MAX_DYNAMIC_LIGHTS) { break; } LightInstance *li = light_instance_owner.getornull(p_directional_light_instances[j]); ERR_CONTINUE(!li); Vector3 dir = -li->transform.basis.get_axis(Vector3::AXIS_Z); dir.y *= rb->sdfgi->y_mult; dir.normalize(); lights[idx].direction[0] = dir.x; lights[idx].direction[1] = dir.y; lights[idx].direction[2] = dir.z; Color color = storage->light_get_color(li->light); color = color.to_linear(); lights[idx].color[0] = color.r; lights[idx].color[1] = color.g; lights[idx].color[2] = color.b; lights[idx].type = RS::LIGHT_DIRECTIONAL; lights[idx].energy = storage->light_get_param(li->light, RS::LIGHT_PARAM_ENERGY); lights[idx].has_shadow = storage->light_has_shadow(li->light); idx++; } AABB cascade_aabb; cascade_aabb.position = Vector3((Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + cascade.position)) * cascade.cell_size; cascade_aabb.size = Vector3(1, 1, 1) * rb->sdfgi->cascade_size * cascade.cell_size; for (uint32_t j = 0; j < p_positional_light_count; j++) { if (idx == SDFGI::MAX_DYNAMIC_LIGHTS) { break; } LightInstance *li = light_instance_owner.getornull(p_positional_light_instances[j]); ERR_CONTINUE(!li); uint32_t max_sdfgi_cascade = storage->light_get_max_sdfgi_cascade(li->light); if (i > max_sdfgi_cascade) { continue; } if (!cascade_aabb.intersects(li->aabb)) { continue; } Vector3 dir = -li->transform.basis.get_axis(Vector3::AXIS_Z); //faster to not do this here //dir.y *= rb->sdfgi->y_mult; //dir.normalize(); lights[idx].direction[0] = dir.x; lights[idx].direction[1] = dir.y; lights[idx].direction[2] = dir.z; Vector3 pos = li->transform.origin; pos.y *= rb->sdfgi->y_mult; lights[idx].position[0] = pos.x; lights[idx].position[1] = pos.y; lights[idx].position[2] = pos.z; Color color = storage->light_get_color(li->light); color = color.to_linear(); lights[idx].color[0] = color.r; lights[idx].color[1] = color.g; lights[idx].color[2] = color.b; lights[idx].type = storage->light_get_type(li->light); lights[idx].energy = storage->light_get_param(li->light, RS::LIGHT_PARAM_ENERGY); lights[idx].has_shadow = storage->light_has_shadow(li->light); lights[idx].attenuation = storage->light_get_param(li->light, RS::LIGHT_PARAM_ATTENUATION); lights[idx].radius = storage->light_get_param(li->light, RS::LIGHT_PARAM_RANGE); lights[idx].spot_angle = Math::deg2rad(storage->light_get_param(li->light, RS::LIGHT_PARAM_SPOT_ANGLE)); lights[idx].spot_attenuation = storage->light_get_param(li->light, RS::LIGHT_PARAM_SPOT_ATTENUATION); idx++; } if (idx > 0) { RD::get_singleton()->buffer_update(cascade.lights_buffer, 0, idx * sizeof(SDGIShader::Light), lights, true); } push_constant.light_count = idx; } push_constant.cascade = i; RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascade.sdf_direct_light_uniform_set, 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::DirectLightPushConstant)); RD::get_singleton()->compute_list_dispatch_indirect(compute_list, cascade.solid_cell_dispatch_buffer, 0); } RD::get_singleton()->compute_list_end(); } RENDER_TIMESTAMP("Raytrace"); SDGIShader::IntegratePushConstant push_constant; push_constant.grid_size[1] = rb->sdfgi->cascade_size; push_constant.grid_size[2] = rb->sdfgi->cascade_size; push_constant.grid_size[0] = rb->sdfgi->cascade_size; push_constant.max_cascades = rb->sdfgi->cascades.size(); push_constant.probe_axis_size = rb->sdfgi->probe_axis_count; push_constant.history_index = rb->sdfgi->render_pass % rb->sdfgi->history_size; push_constant.history_size = rb->sdfgi->history_size; static const uint32_t ray_count[RS::ENV_SDFGI_RAY_COUNT_MAX] = { 8, 16, 32, 64, 96, 128 }; push_constant.ray_count = ray_count[sdfgi_ray_count]; push_constant.ray_bias = rb->sdfgi->probe_bias; push_constant.image_size[0] = rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count; push_constant.image_size[1] = rb->sdfgi->probe_axis_count; push_constant.store_ambient_texture = env->volumetric_fog_enabled; RID sky_uniform_set = sdfgi_shader.integrate_default_sky_uniform_set; push_constant.sky_mode = SDGIShader::IntegratePushConstant::SKY_MODE_DISABLED; push_constant.y_mult = rb->sdfgi->y_mult; if (rb->sdfgi->reads_sky && env) { push_constant.sky_energy = env->bg_energy; if (env->background == RS::ENV_BG_CLEAR_COLOR) { push_constant.sky_mode = SDGIShader::IntegratePushConstant::SKY_MODE_COLOR; Color c = storage->get_default_clear_color().to_linear(); push_constant.sky_color[0] = c.r; push_constant.sky_color[1] = c.g; push_constant.sky_color[2] = c.b; } else if (env->background == RS::ENV_BG_COLOR) { push_constant.sky_mode = SDGIShader::IntegratePushConstant::SKY_MODE_COLOR; Color c = env->bg_color; push_constant.sky_color[0] = c.r; push_constant.sky_color[1] = c.g; push_constant.sky_color[2] = c.b; } else if (env->background == RS::ENV_BG_SKY) { Sky *sky = sky_owner.getornull(env->sky); if (sky && sky->radiance.is_valid()) { if (sky->sdfgi_integrate_sky_uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(sky->sdfgi_integrate_sky_uniform_set)) { Vector uniforms; { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 0; u.ids.push_back(sky->radiance); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 1; u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); uniforms.push_back(u); } sky->sdfgi_integrate_sky_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.integrate.version_get_shader(sdfgi_shader.integrate_shader, 0), 1); } sky_uniform_set = sky->sdfgi_integrate_sky_uniform_set; push_constant.sky_mode = SDGIShader::IntegratePushConstant::SKY_MODE_SKY; } } } rb->sdfgi->render_pass++; RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.integrate_pipeline[SDGIShader::INTEGRATE_MODE_PROCESS]); int32_t probe_divisor = rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR; for (uint32_t i = 0; i < rb->sdfgi->cascades.size(); i++) { push_constant.cascade = i; push_constant.world_offset[0] = rb->sdfgi->cascades[i].position.x / probe_divisor; push_constant.world_offset[1] = rb->sdfgi->cascades[i].position.y / probe_divisor; push_constant.world_offset[2] = rb->sdfgi->cascades[i].position.z / probe_divisor; RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->cascades[i].integrate_uniform_set, 0); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sky_uniform_set, 1); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::IntegratePushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count, rb->sdfgi->probe_axis_count, 1, 8, 8, 1); } RD::get_singleton()->compute_list_add_barrier(compute_list); //wait until done // Then store values into the lightprobe texture. Separating these steps has a small performance hit, but it allows for multiple bounces RENDER_TIMESTAMP("Average Probes"); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.integrate_pipeline[SDGIShader::INTEGRATE_MODE_STORE]); //convert to octahedral to store push_constant.image_size[0] *= SDFGI::LIGHTPROBE_OCT_SIZE; push_constant.image_size[1] *= SDFGI::LIGHTPROBE_OCT_SIZE; for (uint32_t i = 0; i < rb->sdfgi->cascades.size(); i++) { push_constant.cascade = i; RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->cascades[i].integrate_uniform_set, 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::IntegratePushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count * SDFGI::LIGHTPROBE_OCT_SIZE, rb->sdfgi->probe_axis_count * SDFGI::LIGHTPROBE_OCT_SIZE, 1, 8, 8, 1); } RD::get_singleton()->compute_list_end(); RENDER_TIMESTAMP("texture; GI::GIProbeData &gipd = gi_probe_data[i]; RID base_probe = gipi->probe; Transform to_cell = storage->gi_probe_get_to_cell_xform(gipi->probe) * gipi->transform.affine_inverse() * to_camera; gipd.xform[0] = to_cell.basis.elements[0][0]; gipd.xform[1] = to_cell.basis.elements[1][0]; gipd.xform[2] = to_cell.basis.elements[2][0]; gipd.xform[3] = 0; gipd.xform[4] = to_cell.basis.elements[0][1]; gipd.xform[5] = to_cell.basis.elements[1][1]; gipd.xform[6] = to_cell.basis.elements[2][1]; gipd.xform[7] = 0; gipd.xform[8] = to_cell.basis.elements[0][2]; gipd.xform[9] = to_cell.basis.elements[1][2]; gipd.xform[10] = to_cell.basis.elements[2][2]; gipd.xform[11] = 0; gipd.xform[12] = to_cell.origin.x; gipd.xform[13] = to_cell.origin.y; gipd.xform[14] = to_cell.origin.z; gipd.xform[15] = 1; Vector3 bounds = storage->gi_probe_get_octree_size(base_probe); gipd.bounds[0] = bounds.x; gipd.bounds[1] = bounds.y; gipd.bounds[2] = bounds.z; gipd.dynamic_range = storage->gi_probe_get_dynamic_range(base_probe) * storage->gi_probe_get_energy(base_probe); gipd.bias = storage->gi_probe_get_bias(base_probe); gipd.normal_bias = storage->gi_probe_get_normal_bias(base_probe); gipd.blend_ambient = !storage->gi_probe_is_interior(base_probe); gipd.anisotropy_strength = 0; gipd.ao = storage->gi_probe_get_ao(base_probe); gipd.ao_size = Math::pow(storage->gi_probe_get_ao_size(base_probe), 4.0f); gipd.mipmaps = gipi->mipmaps.size(); } r_gi_probes_used++; } if (texture == RID()) { texture = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE); } if (texture != rb->giprobe_textures[i]) { giprobes_changed = true; rb->giprobe_textures[i] = texture; } } if (giprobes_changed) { RD::get_singleton()->free(rb->gi_uniform_set); rb->gi_uniform_set = RID(); if (rb->volumetric_fog) { if (RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set)) { RD::get_singleton()->free(rb->volumetric_fog->uniform_set); RD::get_singleton()->free(rb->volumetric_fog->uniform_set2); } rb->volumetric_fog->uniform_set = RID(); rb->volumetric_fog->uniform_set2 = RID(); } } if (p_gi_probe_cull_count > 0) { RD::get_singleton()->buffer_update(gi_probe_buffer, 0, sizeof(GI::GIProbeData) * MIN(RenderBuffers::MAX_GIPROBES, p_gi_probe_cull_count), gi_probe_data, true); } } void RasterizerSceneRD::_process_gi(RID p_render_buffers, RID p_normal_roughness_buffer, RID p_ambient_buffer, RID p_reflection_buffer, RID p_gi_probe_buffer, RID p_environment, const CameraMatrix &p_projection, const Transform &p_transform, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count) { RENDER_TIMESTAMP("Render GI"); RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND(rb == nullptr); Environment *env = environment_owner.getornull(p_environment); GI::PushConstant push_constant; push_constant.screen_size[0] = rb->width; push_constant.screen_size[1] = rb->height; push_constant.z_near = p_projection.get_z_near(); push_constant.z_far = p_projection.get_z_far(); push_constant.orthogonal = p_projection.is_orthogonal(); push_constant.proj_info[0] = -2.0f / (rb->width * p_projection.matrix[0][0]); push_constant.proj_info[1] = -2.0f / (rb->height * p_projection.matrix[1][1]); push_constant.proj_info[2] = (1.0f - p_projection.matrix[0][2]) / p_projection.matrix[0][0]; push_constant.proj_info[3] = (1.0f + p_projection.matrix[1][2]) / p_projection.matrix[1][1]; push_constant.max_giprobes = MIN(RenderBuffers::MAX_GIPROBES, p_gi_probe_cull_count); push_constant.high_quality_vct = gi_probe_quality == RS::GI_PROBE_QUALITY_HIGH; push_constant.use_sdfgi = rb->sdfgi != nullptr; if (env) { push_constant.ao_color[0] = env->ao_color.r; push_constant.ao_color[1] = env->ao_color.g; push_constant.ao_color[2] = env->ao_color.b; } else { push_constant.ao_color[0] = 0; push_constant.ao_color[1] = 0; push_constant.ao_color[2] = 0; } push_constant.cam_rotation[0] = p_transform.basis[0][0]; push_constant.cam_rotation[1] = p_transform.basis[1][0]; push_constant.cam_rotation[2] = p_transform.basis[2][0]; push_constant.cam_rotation[3] = 0; push_constant.cam_rotation[4] = p_transform.basis[0][1]; push_constant.cam_rotation[5] = p_transform.basis[1][1]; push_constant.cam_rotation[6] = p_transform.basis[2][1]; push_constant.cam_rotation[7] = 0; push_constant.cam_rotation[8] = p_transform.basis[0][2]; push_constant.cam_rotation[9] = p_transform.basis[1][2]; push_constant.cam_rotation[10] = p_transform.basis[2][2]; push_constant.cam_rotation[11] = 0; if (rb->sdfgi) { GI::SDFGIData sdfgi_data; sdfgi_data.grid_size[0] = rb->sdfgi->cascade_size; sdfgi_data.grid_size[1] = rb->sdfgi->cascade_size; sdfgi_data.grid_size[2] = rb->sdfgi->cascade_size; sdfgi_data.max_cascades = rb->sdfgi->cascades.size(); sdfgi_data.probe_axis_size = rb->sdfgi->probe_axis_count; sdfgi_data.cascade_probe_size[0] = sdfgi_data.probe_axis_size - 1; //float version for performance sdfgi_data.cascade_probe_size[1] = sdfgi_data.probe_axis_size - 1; sdfgi_data.cascade_probe_size[2] = sdfgi_data.probe_axis_size - 1; float csize = rb->sdfgi->cascade_size; sdfgi_data.probe_to_uvw = 1.0 / float(sdfgi_data.cascade_probe_size[0]); sdfgi_data.use_occlusion = rb->sdfgi->uses_occlusion; //sdfgi_data.energy = rb->sdfgi->energy; sdfgi_data.y_mult = rb->sdfgi->y_mult; float cascade_voxel_size = (csize / sdfgi_data.cascade_probe_size[0]); float occlusion_clamp = (cascade_voxel_size - 0.5) / cascade_voxel_size; sdfgi_data.occlusion_clamp[0] = occlusion_clamp; sdfgi_data.occlusion_clamp[1] = occlusion_clamp; sdfgi_data.occlusion_clamp[2] = occlusion_clamp; sdfgi_data.normal_bias = (rb->sdfgi->normal_bias / csize) * sdfgi_data.cascade_probe_size[0]; //vec2 tex_pixel_size = 1.0 / vec2(ivec2( (OCT_SIZE+2) * params.probe_axis_size * params.probe_axis_size, (OCT_SIZE+2) * params.probe_axis_size ) ); //vec3 probe_uv_offset = (ivec3(OCT_SIZE+2,OCT_SIZE+2,(OCT_SIZE+2) * params.probe_axis_size)) * tex_pixel_size.xyx; uint32_t oct_size = SDFGI::LIGHTPROBE_OCT_SIZE; sdfgi_data.lightprobe_tex_pixel_size[0] = 1.0 / ((oct_size + 2) * sdfgi_data.probe_axis_size * sdfgi_data.probe_axis_size); sdfgi_data.lightprobe_tex_pixel_size[1] = 1.0 / ((oct_size + 2) * sdfgi_data.probe_axis_size); sdfgi_data.lightprobe_tex_pixel_size[2] = 1.0; sdfgi_data.energy = rb->sdfgi->energy; sdfgi_data.lightprobe_uv_offset[0] = float(oct_size + 2) * sdfgi_data.lightprobe_tex_pixel_size[0]; sdfgi_data.lightprobe_uv_offset[1] = float(oct_size + 2) * sdfgi_data.lightprobe_tex_pixel_size[1]; sdfgi_data.lightprobe_uv_offset[2] = float((oct_size + 2) * sdfgi_data.probe_axis_size) * sdfgi_data.lightprobe_tex_pixel_size[0]; sdfgi_data.occlusion_renormalize[0] = 0.5; sdfgi_data.occlusion_renormalize[1] = 1.0; sdfgi_data.occlusion_renormalize[2] = 1.0 / float(sdfgi_data.max_cascades); int32_t probe_divisor = rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR; for (uint32_t i = 0; i < sdfgi_data.max_cascades; i++) { GI::SDFGIData::ProbeCascadeData &c = sdfgi_data.cascades[i]; Vector3 pos = Vector3((Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + rb->sdfgi->cascades[i].position)) * rb->sdfgi->cascades[i].cell_size; Vector3 cam_origin = p_transform.origin; cam_origin.y *= rb->sdfgi->y_mult; pos -= cam_origin; //make pos local to camera, to reduce numerical error c.position[0] = pos.x; c.position[1] = pos.y; c.position[2] = pos.z; c.to_probe = 1.0 / (float(rb->sdfgi->cascade_size) * rb->sdfgi->cascades[i].cell_size / float(rb->sdfgi->probe_axis_count - 1)); Vector3i probe_ofs = rb->sdfgi->cascades[i].position / probe_divisor; c.probe_world_offset[0] = probe_ofs.x; c.probe_world_offset[1] = probe_ofs.y; c.probe_world_offset[2] = probe_ofs.z; c.to_cell = 1.0 / rb->sdfgi->cascades[i].cell_size; } RD::get_singleton()->buffer_update(gi.sdfgi_ubo, 0, sizeof(GI::SDFGIData), &sdfgi_data, true); } if (rb->gi_uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(rb->gi_uniform_set)) { Vector uniforms; { RD::Uniform u; u.binding = 1; u.type = RD::UNIFORM_TYPE_TEXTURE; for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) { if (rb->sdfgi && j < rb->sdfgi->cascades.size()) { u.ids.push_back(rb->sdfgi->cascades[j].sdf_tex); } else { u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE)); } } uniforms.push_back(u); } { RD::Uniform u; u.binding = 2; u.type = RD::UNIFORM_TYPE_TEXTURE; for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) { if (rb->sdfgi && j < rb->sdfgi->cascades.size()) { u.ids.push_back(rb->sdfgi->cascades[j].light_tex); } else { u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE)); } } uniforms.push_back(u); } { RD::Uniform u; u.binding = 3; u.type = RD::UNIFORM_TYPE_TEXTURE; for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) { if (rb->sdfgi && j < rb->sdfgi->cascades.size()) { u.ids.push_back(rb->sdfgi->cascades[j].light_aniso_0_tex); } else { u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE)); } } uniforms.push_back(u); } { RD::Uniform u; u.binding = 4; u.type = RD::UNIFORM_TYPE_TEXTURE; for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) { if (rb->sdfgi && j < rb->sdfgi->cascades.size()) { u.ids.push_back(rb->sdfgi->cascades[j].light_aniso_1_tex); } else { u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE)); } } uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 5; if (rb->sdfgi) { u.ids.push_back(rb->sdfgi->occlusion_texture); } else { u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE)); } uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 6; u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 7; u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 9; u.ids.push_back(p_ambient_buffer); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 10; u.ids.push_back(p_reflection_buffer); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 11; if (rb->sdfgi) { u.ids.push_back(rb->sdfgi->lightprobe_texture); } else { u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_2D_ARRAY_WHITE)); } uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 12; u.ids.push_back(rb->depth_texture); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 13; u.ids.push_back(p_normal_roughness_buffer); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 14; RID buffer = p_gi_probe_buffer.is_valid() ? p_gi_probe_buffer : storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_BLACK); u.ids.push_back(buffer); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.binding = 15; u.ids.push_back(gi.sdfgi_ubo); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.binding = 16; u.ids.push_back(rb->giprobe_buffer); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 17; for (int i = 0; i < RenderBuffers::MAX_GIPROBES; i++) { u.ids.push_back(rb->giprobe_textures[i]); } uniforms.push_back(u); } rb->gi_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi.shader.version_get_shader(gi.shader_version, 0), 0); } RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi.pipelines[0]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->gi_uniform_set, 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GI::PushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->width, rb->height, 1, 8, 8, 1); RD::get_singleton()->compute_list_end(); } RID RasterizerSceneRD::sky_create() { return sky_owner.make_rid(Sky()); } void RasterizerSceneRD::_sky_invalidate(Sky *p_sky) { if (!p_sky->dirty) { p_sky->dirty = true; p_sky->dirty_list = dirty_sky_list; dirty_sky_list = p_sky; } } void RasterizerSceneRD::sky_set_radiance_size(RID p_sky, int p_radiance_size) { Sky *sky = sky_owner.getornull(p_sky); ERR_FAIL_COND(!sky); ERR_FAIL_COND(p_radiance_size < 32 || p_radiance_size > 2048); if (sky->radiance_size == p_radiance_size) { return; } sky->radiance_size = p_radiance_size; if (sky->mode == RS::SKY_MODE_REALTIME && sky->radiance_size != 256) { WARN_PRINT("Realtime Skies can only use a radiance size of 256. Radiance size will be set to 256 internally."); sky->radiance_size = 256; } _sky_invalidate(sky); if (sky->radiance.is_valid()) { RD::get_singleton()->free(sky->radiance); sky->radiance = RID(); } _clear_reflection_data(sky->reflection); } void RasterizerSceneRD::sky_set_mode(RID p_sky, RS::SkyMode p_mode) { Sky *sky = sky_owner.getornull(p_sky); ERR_FAIL_COND(!sky); if (sky->mode == p_mode) { return; } sky->mode = p_mode; if (sky->mode == RS::SKY_MODE_REALTIME && sky->radiance_size != 256) { WARN_PRINT("Realtime Skies can only use a radiance size of 256. Radiance size will be set to 256 internally."); sky_set_radiance_size(p_sky, 256); } _sky_invalidate(sky); if (sky->radiance.is_valid()) { RD::get_singleton()->free(sky->radiance); sky->radiance = RID(); } _clear_reflection_data(sky->reflection); } void RasterizerSceneRD::sky_set_material(RID p_sky, RID p_material) { Sky *sky = sky_owner.getornull(p_sky); ERR_FAIL_COND(!sky); sky->material = p_material; _sky_invalidate(sky); } Ref RasterizerSceneRD::sky_bake_panorama(RID p_sky, float p_energy, bool p_bake_irradiance, const Size2i &p_size) { Sky *sky = sky_owner.getornull(p_sky); ERR_FAIL_COND_V(!sky, Ref()); _update_dirty_skys(); if (sky->radiance.is_valid()) { RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT; tf.width = p_size.width; tf.height = p_size.height; tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT; RID rad_tex = RD::get_singleton()->texture_create(tf, RD::TextureView()); storage->get_effects()->copy_cubemap_to_panorama(sky->radiance, rad_tex, p_size, p_bake_irradiance ? roughness_layers : 0, sky->reflection.layers.size() > 1); Vector data = RD::get_singleton()->texture_get_data(rad_tex, 0); RD::get_singleton()->free(rad_tex); Ref img; img.instance(); img->create(p_size.width, p_size.height, false, Image::FORMAT_RGBAF, data); for (int i = 0; i < p_size.width; i++) { for (int j = 0; j < p_size.height; j++) { Color c = img->get_pixel(i, j); c.r *= p_energy; c.g *= p_energy; c.b *= p_energy; img->set_pixel(i, j, c); } } return img; } return Ref(); } void RasterizerSceneRD::_update_dirty_skys() { Sky *sky = dirty_sky_list; while (sky) { bool texture_set_dirty = false; //update sky configuration if texture is missing if (sky->radiance.is_null()) { int mipmaps = Image::get_image_required_mipmaps(sky->radiance_size, sky->radiance_size, Image::FORMAT_RGBAH) + 1; uint32_t w = sky->radiance_size, h = sky->radiance_size; int layers = roughness_layers; if (sky->mode == RS::SKY_MODE_REALTIME) { layers = 8; if (roughness_layers != 8) { WARN_PRINT("When using REALTIME skies, roughness_layers should be set to 8 in the project settings for best quality reflections"); } } if (sky_use_cubemap_array) { //array (higher quality, 6 times more memory) RD::TextureFormat tf; tf.array_layers = layers * 6; tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; tf.type = RD::TEXTURE_TYPE_CUBE_ARRAY; tf.mipmaps = mipmaps; tf.width = w; tf.height = h; tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; sky->radiance = RD::get_singleton()->texture_create(tf, RD::TextureView()); _update_reflection_data(sky->reflection, sky->radiance_size, mipmaps, true, sky->radiance, 0, sky->mode == RS::SKY_MODE_REALTIME); } else { //regular cubemap, lower quality (aliasing, less memory) RD::TextureFormat tf; tf.array_layers = 6; tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; tf.type = RD::TEXTURE_TYPE_CUBE; tf.mipmaps = MIN(mipmaps, layers); tf.width = w; tf.height = h; tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; sky->radiance = RD::get_singleton()->texture_create(tf, RD::TextureView()); _update_reflection_data(sky->reflection, sky->radiance_size, MIN(mipmaps, layers), false, sky->radiance, 0, sky->mode == RS::SKY_MODE_REALTIME); } texture_set_dirty = true; } // Create subpass buffers if they haven't been created already if (sky->half_res_pass.is_null() && !RD::get_singleton()->texture_is_valid(sky->half_res_pass) && sky->screen_size.x >= 4 && sky->screen_size.y >= 4) { RD::TextureFormat tformat; tformat.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; tformat.width = sky->screen_size.x / 2; tformat.height = sky->screen_size.y / 2; tformat.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; tformat.type = RD::TEXTURE_TYPE_2D; sky->half_res_pass = RD::get_singleton()->texture_create(tformat, RD::TextureView()); Vector texs; texs.push_back(sky->half_res_pass); sky->half_res_framebuffer = RD::get_singleton()->framebuffer_create(texs); texture_set_dirty = true; } if (sky->quarter_res_pass.is_null() && !RD::get_singleton()->texture_is_valid(sky->quarter_res_pass) && sky->screen_size.x >= 4 && sky->screen_size.y >= 4) { RD::TextureFormat tformat; tformat.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; tformat.width = sky->screen_size.x / 4; tformat.height = sky->screen_size.y / 4; tformat.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; tformat.type = RD::TEXTURE_TYPE_2D; sky->quarter_res_pass = RD::get_singleton()->texture_create(tformat, RD::TextureView()); Vector texs; texs.push_back(sky->quarter_res_pass); sky->quarter_res_framebuffer = RD::get_singleton()->framebuffer_create(texs); texture_set_dirty = true; } if (texture_set_dirty) { for (int i = 0; i < SKY_TEXTURE_SET_MAX; i++) { if (sky->texture_uniform_sets[i].is_valid() && RD::get_singleton()->uniform_set_is_valid(sky->texture_uniform_sets[i])) { RD::get_singleton()->free(sky->texture_uniform_sets[i]); sky->texture_uniform_sets[i] = RID(); } } } sky->reflection.dirty = true; sky->processing_layer = 0; Sky *next = sky->dirty_list; sky->dirty_list = nullptr; sky->dirty = false; sky = next; } dirty_sky_list = nullptr; } RID RasterizerSceneRD::sky_get_radiance_texture_rd(RID p_sky) const { Sky *sky = sky_owner.getornull(p_sky); ERR_FAIL_COND_V(!sky, RID()); return sky->radiance; } RID RasterizerSceneRD::sky_get_radiance_uniform_set_rd(RID p_sky, RID p_shader, int p_set) const { Sky *sky = sky_owner.getornull(p_sky); ERR_FAIL_COND_V(!sky, RID()); if (sky->uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(sky->uniform_set)) { sky->uniform_set = RID(); if (sky->radiance.is_valid()) { Vector uniforms; { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 0; u.ids.push_back(sky->radiance); uniforms.push_back(u); } sky->uniform_set = RD::get_singleton()->uniform_set_create(uniforms, p_shader, p_set); } } return sky->uniform_set; } RID RasterizerSceneRD::_get_sky_textures(Sky *p_sky, SkyTextureSetVersion p_version) { if (p_sky->texture_uniform_sets[p_version].is_valid() && RD::get_singleton()->uniform_set_is_valid(p_sky->texture_uniform_sets[p_version])) { return p_sky->texture_uniform_sets[p_version]; } Vector uniforms; { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 0; if (p_sky->radiance.is_valid() && p_version <= SKY_TEXTURE_SET_QUARTER_RES) { u.ids.push_back(p_sky->radiance); } else { u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK)); } uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 1; // half res if (p_sky->half_res_pass.is_valid() && p_version != SKY_TEXTURE_SET_HALF_RES && p_version != SKY_TEXTURE_SET_CUBEMAP_HALF_RES) { if (p_version >= SKY_TEXTURE_SET_CUBEMAP) { u.ids.push_back(p_sky->reflection.layers[0].views[1]); } else { u.ids.push_back(p_sky->half_res_pass); } } else { if (p_version < SKY_TEXTURE_SET_CUBEMAP) { u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE)); } else { u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK)); } } uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 2; // quarter res if (p_sky->quarter_res_pass.is_valid() && p_version != SKY_TEXTURE_SET_QUARTER_RES && p_version != SKY_TEXTURE_SET_CUBEMAP_QUARTER_RES) { if (p_version >= SKY_TEXTURE_SET_CUBEMAP) { u.ids.push_back(p_sky->reflection.layers[0].views[2]); } else { u.ids.push_back(p_sky->quarter_res_pass); } } else { if (p_version < SKY_TEXTURE_SET_CUBEMAP) { u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE)); } else { u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK)); } } uniforms.push_back(u); } p_sky->texture_uniform_sets[p_version] = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_TEXTURES); return p_sky->texture_uniform_sets[p_version]; } RID RasterizerSceneRD::sky_get_material(RID p_sky) const { Sky *sky = sky_owner.getornull(p_sky); ERR_FAIL_COND_V(!sky, RID()); return sky->material; } void RasterizerSceneRD::_draw_sky(bool p_can_continue_color, bool p_can_continue_depth, RID p_fb, RID p_environment, const CameraMatrix &p_projection, const Transform &p_transform) { ERR_FAIL_COND(!is_environment(p_environment)); SkyMaterialData *material = nullptr; Sky *sky = sky_owner.getornull(environment_get_sky(p_environment)); RID sky_material; RS::EnvironmentBG background = environment_get_background(p_environment); if (!(background == RS::ENV_BG_CLEAR_COLOR || background == RS::ENV_BG_COLOR) || sky) { ERR_FAIL_COND(!sky); sky_material = sky_get_material(environment_get_sky(p_environment)); if (sky_material.is_valid()) { material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY); if (!material || !material->shader_data->valid) { material = nullptr; } } if (!material) { sky_material = sky_shader.default_material; material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY); } } if (background == RS::ENV_BG_CLEAR_COLOR || background == RS::ENV_BG_COLOR) { sky_material = sky_scene_state.fog_material; material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY); } ERR_FAIL_COND(!material); SkyShaderData *shader_data = material->shader_data; ERR_FAIL_COND(!shader_data); Basis sky_transform = environment_get_sky_orientation(p_environment); sky_transform.invert(); float multiplier = environment_get_bg_energy(p_environment); float custom_fov = environment_get_sky_custom_fov(p_environment); // Camera CameraMatrix camera; if (custom_fov) { float near_plane = p_projection.get_z_near(); float far_plane = p_projection.get_z_far(); float aspect = p_projection.get_aspect(); camera.set_perspective(custom_fov, aspect, near_plane, far_plane); } else { camera = p_projection; } sky_transform = p_transform.basis * sky_transform; if (shader_data->uses_quarter_res) { RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_QUARTER_RES]; RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_QUARTER_RES); Vector clear_colors; clear_colors.push_back(Color(0.0, 0.0, 0.0)); RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(sky->quarter_res_framebuffer, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, clear_colors); storage->get_effects()->render_sky(draw_list, time, sky->quarter_res_framebuffer, sky_scene_state.uniform_set, sky_scene_state.fog_uniform_set, pipeline, material->uniform_set, texture_uniform_set, camera, sky_transform, multiplier, p_transform.origin); RD::get_singleton()->draw_list_end(); } if (shader_data->uses_half_res) { RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_HALF_RES]; RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_HALF_RES); Vector clear_colors; clear_colors.push_back(Color(0.0, 0.0, 0.0)); RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(sky->half_res_framebuffer, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, clear_colors); storage->get_effects()->render_sky(draw_list, time, sky->half_res_framebuffer, sky_scene_state.uniform_set, sky_scene_state.fog_uniform_set, pipeline, material->uniform_set, texture_uniform_set, camera, sky_transform, multiplier, p_transform.origin); RD::get_singleton()->draw_list_end(); } RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_BACKGROUND]; RID texture_uniform_set; if (sky) { texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_BACKGROUND); } else { texture_uniform_set = sky_scene_state.fog_only_texture_uniform_set; } RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_fb, RD::INITIAL_ACTION_CONTINUE, p_can_continue_color ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CONTINUE, p_can_continue_depth ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ); storage->get_effects()->render_sky(draw_list, time, p_fb, sky_scene_state.uniform_set, sky_scene_state.fog_uniform_set, pipeline, material->uniform_set, texture_uniform_set, camera, sky_transform, multiplier, p_transform.origin); RD::get_singleton()->draw_list_end(); } void RasterizerSceneRD::_setup_sky(RID p_environment, RID p_render_buffers, const CameraMatrix &p_projection, const Transform &p_transform, const Size2i p_screen_size) { ERR_FAIL_COND(!is_environment(p_environment)); SkyMaterialData *material = nullptr; Sky *sky = sky_owner.getornull(environment_get_sky(p_environment)); RID sky_material; SkyShaderData *shader_data = nullptr; RS::EnvironmentBG background = environment_get_background(p_environment); if (!(background == RS::ENV_BG_CLEAR_COLOR || background == RS::ENV_BG_COLOR) || sky) { ERR_FAIL_COND(!sky); sky_material = sky_get_material(environment_get_sky(p_environment)); if (sky_material.is_valid()) { material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY); if (!material || !material->shader_data->valid) { material = nullptr; } } if (!material) { sky_material = sky_shader.default_material; material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY); } ERR_FAIL_COND(!material); shader_data = material->shader_data; ERR_FAIL_COND(!shader_data); } if (sky) { // Invalidate supbass buffers if screen size changes if (sky->screen_size != p_screen_size) { sky->screen_size = p_screen_size; sky->screen_size.x = sky->screen_size.x < 4 ? 4 : sky->screen_size.x; sky->screen_size.y = sky->screen_size.y < 4 ? 4 : sky->screen_size.y; if (shader_data->uses_half_res) { if (sky->half_res_pass.is_valid()) { RD::get_singleton()->free(sky->half_res_pass); sky->half_res_pass = RID(); } _sky_invalidate(sky); } if (shader_data->uses_quarter_res) { if (sky->quarter_res_pass.is_valid()) { RD::get_singleton()->free(sky->quarter_res_pass); sky->quarter_res_pass = RID(); } _sky_invalidate(sky); } } // Create new subpass buffers if necessary if ((shader_data->uses_half_res && sky->half_res_pass.is_null()) || (shader_data->uses_quarter_res && sky->quarter_res_pass.is_null()) || sky->radiance.is_null()) { _sky_invalidate(sky); _update_dirty_skys(); } if (shader_data->uses_time && time - sky->prev_time > 0.00001) { sky->prev_time = time; sky->reflection.dirty = true; RenderingServerRaster::redraw_request(); } if (material != sky->prev_material) { sky->prev_material = material; sky->reflection.dirty = true; } if (material->uniform_set_updated) { material->uniform_set_updated = false; sky->reflection.dirty = true; } if (!p_transform.origin.is_equal_approx(sky->prev_position) && shader_data->uses_position) { sky->prev_position = p_transform.origin; sky->reflection.dirty = true; } if (shader_data->uses_light) { // Check whether the directional_light_buffer changes bool light_data_dirty = false; if (sky_scene_state.ubo.directional_light_count != sky_scene_state.last_frame_directional_light_count) { light_data_dirty = true; for (uint32_t i = sky_scene_state.ubo.directional_light_count; i < sky_scene_state.max_directional_lights; i++) { sky_scene_state.directional_lights[i].enabled = false; } } if (!light_data_dirty) { for (uint32_t i = 0; i < sky_scene_state.ubo.directional_light_count; i++) { if (sky_scene_state.directional_lights[i].direction[0] != sky_scene_state.last_frame_directional_lights[i].direction[0] || sky_scene_state.directional_lights[i].direction[1] != sky_scene_state.last_frame_directional_lights[i].direction[1] || sky_scene_state.directional_lights[i].direction[2] != sky_scene_state.last_frame_directional_lights[i].direction[2] || sky_scene_state.directional_lights[i].energy != sky_scene_state.last_frame_directional_lights[i].energy || sky_scene_state.directional_lights[i].color[0] != sky_scene_state.last_frame_directional_lights[i].color[0] || sky_scene_state.directional_lights[i].color[1] != sky_scene_state.last_frame_directional_lights[i].color[1] || sky_scene_state.directional_lights[i].color[2] != sky_scene_state.last_frame_directional_lights[i].color[2] || sky_scene_state.directional_lights[i].enabled != sky_scene_state.last_frame_directional_lights[i].enabled || sky_scene_state.directional_lights[i].size != sky_scene_state.last_frame_directional_lights[i].size) { light_data_dirty = true; break; } } } if (light_data_dirty) { RD::get_singleton()->buffer_update(sky_scene_state.directional_light_buffer, 0, sizeof(SkyDirectionalLightData) * sky_scene_state.max_directional_lights, sky_scene_state.directional_lights, true); RasterizerSceneRD::SkyDirectionalLightData *temp = sky_scene_state.last_frame_directional_lights; sky_scene_state.last_frame_directional_lights = sky_scene_state.directional_lights; sky_scene_state.directional_lights = temp; sky_scene_state.last_frame_directional_light_count = sky_scene_state.ubo.directional_light_count; sky->reflection.dirty = true; } } } //setup fog variables sky_scene_state.ubo.volumetric_fog_enabled = false; if (p_render_buffers.is_valid()) { if (render_buffers_has_volumetric_fog(p_render_buffers)) { sky_scene_state.ubo.volumetric_fog_enabled = true; float fog_end = render_buffers_get_volumetric_fog_end(p_render_buffers); if (fog_end > 0.0) { sky_scene_state.ubo.volumetric_fog_inv_length = 1.0 / fog_end; } else { sky_scene_state.ubo.volumetric_fog_inv_length = 1.0; } float fog_detail_spread = render_buffers_get_volumetric_fog_detail_spread(p_render_buffers); //reverse lookup if (fog_detail_spread > 0.0) { sky_scene_state.ubo.volumetric_fog_detail_spread = 1.0 / fog_detail_spread; } else { sky_scene_state.ubo.volumetric_fog_detail_spread = 1.0; } } RID fog_uniform_set = render_buffers_get_volumetric_fog_sky_uniform_set(p_render_buffers); if (fog_uniform_set != RID()) { sky_scene_state.fog_uniform_set = fog_uniform_set; } else { sky_scene_state.fog_uniform_set = sky_scene_state.default_fog_uniform_set; } } sky_scene_state.ubo.z_far = p_projection.get_z_far(); sky_scene_state.ubo.fog_enabled = environment_is_fog_enabled(p_environment); sky_scene_state.ubo.fog_density = environment_get_fog_density(p_environment); Color fog_color = environment_get_fog_light_color(p_environment).to_linear(); float fog_energy = environment_get_fog_light_energy(p_environment); sky_scene_state.ubo.fog_light_color[0] = fog_color.r * fog_energy; sky_scene_state.ubo.fog_light_color[1] = fog_color.g * fog_energy; sky_scene_state.ubo.fog_light_color[2] = fog_color.b * fog_energy; sky_scene_state.ubo.fog_sun_scatter = environment_get_fog_sun_scatter(p_environment); RD::get_singleton()->buffer_update(sky_scene_state.uniform_buffer, 0, sizeof(SkySceneState::UBO), &sky_scene_state.ubo, true); } void RasterizerSceneRD::_update_sky(RID p_environment, const CameraMatrix &p_projection, const Transform &p_transform) { ERR_FAIL_COND(!is_environment(p_environment)); Sky *sky = sky_owner.getornull(environment_get_sky(p_environment)); ERR_FAIL_COND(!sky); RID sky_material = sky_get_material(environment_get_sky(p_environment)); SkyMaterialData *material = nullptr; if (sky_material.is_valid()) { material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY); if (!material || !material->shader_data->valid) { material = nullptr; } } if (!material) { sky_material = sky_shader.default_material; material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY); } ERR_FAIL_COND(!material); SkyShaderData *shader_data = material->shader_data; ERR_FAIL_COND(!shader_data); float multiplier = environment_get_bg_energy(p_environment); bool update_single_frame = sky->mode == RS::SKY_MODE_REALTIME || sky->mode == RS::SKY_MODE_QUALITY; RS::SkyMode sky_mode = sky->mode; if (sky_mode == RS::SKY_MODE_AUTOMATIC) { if (shader_data->uses_time || shader_data->uses_position) { update_single_frame = true; sky_mode = RS::SKY_MODE_REALTIME; } else if (shader_data->uses_light || shader_data->ubo_size > 0) { update_single_frame = false; sky_mode = RS::SKY_MODE_INCREMENTAL; } else { update_single_frame = true; sky_mode = RS::SKY_MODE_QUALITY; } } if (sky->processing_layer == 0 && sky_mode == RS::SKY_MODE_INCREMENTAL) { // On the first frame after creating sky, rebuild in single frame update_single_frame = true; sky_mode = RS::SKY_MODE_QUALITY; } int max_processing_layer = sky_use_cubemap_array ? sky->reflection.layers.size() : sky->reflection.layers[0].mipmaps.size(); // Update radiance cubemap if (sky->reflection.dirty && (sky->processing_layer >= max_processing_layer || update_single_frame)) { static const Vector3 view_normals[6] = { Vector3(+1, 0, 0), Vector3(-1, 0, 0), Vector3(0, +1, 0), Vector3(0, -1, 0), Vector3(0, 0, +1), Vector3(0, 0, -1) }; static const Vector3 view_up[6] = { Vector3(0, -1, 0), Vector3(0, -1, 0), Vector3(0, 0, +1), Vector3(0, 0, -1), Vector3(0, -1, 0), Vector3(0, -1, 0) }; CameraMatrix cm; cm.set_perspective(90, 1, 0.01, 10.0); CameraMatrix correction; correction.set_depth_correction(true); cm = correction * cm; if (shader_data->uses_quarter_res) { RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_CUBEMAP_QUARTER_RES]; Vector clear_colors; clear_colors.push_back(Color(0.0, 0.0, 0.0)); RD::DrawListID cubemap_draw_list; for (int i = 0; i < 6; i++) { Transform local_view; local_view.set_look_at(Vector3(0, 0, 0), view_normals[i], view_up[i]); RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_CUBEMAP_QUARTER_RES); cubemap_draw_list = RD::get_singleton()->draw_list_begin(sky->reflection.layers[0].mipmaps[2].framebuffers[i], RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD); storage->get_effects()->render_sky(cubemap_draw_list, time, sky->reflection.layers[0].mipmaps[2].framebuffers[i], sky_scene_state.uniform_set, sky_scene_state.fog_uniform_set, pipeline, material->uniform_set, texture_uniform_set, cm, local_view.basis, multiplier, p_transform.origin); RD::get_singleton()->draw_list_end(); } } if (shader_data->uses_half_res) { RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_CUBEMAP_HALF_RES]; Vector clear_colors; clear_colors.push_back(Color(0.0, 0.0, 0.0)); RD::DrawListID cubemap_draw_list; for (int i = 0; i < 6; i++) { Transform local_view; local_view.set_look_at(Vector3(0, 0, 0), view_normals[i], view_up[i]); RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_CUBEMAP_HALF_RES); cubemap_draw_list = RD::get_singleton()->draw_list_begin(sky->reflection.layers[0].mipmaps[1].framebuffers[i], RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD); storage->get_effects()->render_sky(cubemap_draw_list, time, sky->reflection.layers[0].mipmaps[1].framebuffers[i], sky_scene_state.uniform_set, sky_scene_state.fog_uniform_set, pipeline, material->uniform_set, texture_uniform_set, cm, local_view.basis, multiplier, p_transform.origin); RD::get_singleton()->draw_list_end(); } } RD::DrawListID cubemap_draw_list; RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_CUBEMAP]; for (int i = 0; i < 6; i++) { Transform local_view; local_view.set_look_at(Vector3(0, 0, 0), view_normals[i], view_up[i]); RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_CUBEMAP); cubemap_draw_list = RD::get_singleton()->draw_list_begin(sky->reflection.layers[0].mipmaps[0].framebuffers[i], RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD); storage->get_effects()->render_sky(cubemap_draw_list, time, sky->reflection.layers[0].mipmaps[0].framebuffers[i], sky_scene_state.uniform_set, sky_scene_state.fog_uniform_set, pipeline, material->uniform_set, texture_uniform_set, cm, local_view.basis, multiplier, p_transform.origin); RD::get_singleton()->draw_list_end(); } if (sky_mode == RS::SKY_MODE_REALTIME) { _create_reflection_fast_filter(sky->reflection, sky_use_cubemap_array); if (sky_use_cubemap_array) { _update_reflection_mipmaps(sky->reflection, 0, sky->reflection.layers.size()); } } else { if (update_single_frame) { for (int i = 1; i < max_processing_layer; i++) { _create_reflection_importance_sample(sky->reflection, sky_use_cubemap_array, 10, i); } if (sky_use_cubemap_array) { _update_reflection_mipmaps(sky->reflection, 0, sky->reflection.layers.size()); } } else { if (sky_use_cubemap_array) { // Multi-Frame so just update the first array level _update_reflection_mipmaps(sky->reflection, 0, 1); } } sky->processing_layer = 1; } sky->reflection.dirty = false; } else { if (sky_mode == RS::SKY_MODE_INCREMENTAL && sky->processing_layer < max_processing_layer) { _create_reflection_importance_sample(sky->reflection, sky_use_cubemap_array, 10, sky->processing_layer); if (sky_use_cubemap_array) { _update_reflection_mipmaps(sky->reflection, sky->processing_layer, sky->processing_layer + 1); } sky->processing_layer++; } } } /* SKY SHADER */ void RasterizerSceneRD::SkyShaderData::set_code(const String &p_code) { //compile code = p_code; valid = false; ubo_size = 0; uniforms.clear(); if (code == String()) { return; //just invalid, but no error } ShaderCompilerRD::GeneratedCode gen_code; ShaderCompilerRD::IdentifierActions actions; uses_time = false; uses_half_res = false; uses_quarter_res = false; uses_position = false; uses_light = false; actions.render_mode_flags["use_half_res_pass"] = &uses_half_res; actions.render_mode_flags["use_quarter_res_pass"] = &uses_quarter_res; actions.usage_flag_pointers["TIME"] = &uses_time; actions.usage_flag_pointers["POSITION"] = &uses_position; actions.usage_flag_pointers["LIGHT0_ENABLED"] = &uses_light; actions.usage_flag_pointers["LIGHT0_ENERGY"] = &uses_light; actions.usage_flag_pointers["LIGHT0_DIRECTION"] = &uses_light; actions.usage_flag_pointers["LIGHT0_COLOR"] = &uses_light; actions.usage_flag_pointers["LIGHT0_SIZE"] = &uses_light; actions.usage_flag_pointers["LIGHT1_ENABLED"] = &uses_light; actions.usage_flag_pointers["LIGHT1_ENERGY"] = &uses_light; actions.usage_flag_pointers["LIGHT1_DIRECTION"] = &uses_light; actions.usage_flag_pointers["LIGHT1_COLOR"] = &uses_light; actions.usage_flag_pointers["LIGHT1_SIZE"] = &uses_light; actions.usage_flag_pointers["LIGHT2_ENABLED"] = &uses_light; actions.usage_flag_pointers["LIGHT2_ENERGY"] = &uses_light; actions.usage_flag_pointers["LIGHT2_DIRECTION"] = &uses_light; actions.usage_flag_pointers["LIGHT2_COLOR"] = &uses_light; actions.usage_flag_pointers["LIGHT2_SIZE"] = &uses_light; actions.usage_flag_pointers["LIGHT3_ENABLED"] = &uses_light; actions.usage_flag_pointers["LIGHT3_ENERGY"] = &uses_light; actions.usage_flag_pointers["LIGHT3_DIRECTION"] = &uses_light; actions.usage_flag_pointers["LIGHT3_COLOR"] = &uses_light; actions.usage_flag_pointers["LIGHT3_SIZE"] = &uses_light; actions.uniforms = &uniforms; RasterizerSceneRD *scene_singleton = (RasterizerSceneRD *)RasterizerSceneRD::singleton; Error err = scene_singleton->sky_shader.compiler.compile(RS::SHADER_SKY, code, &actions, path, gen_code); ERR_FAIL_COND(err != OK); if (version.is_null()) { version = scene_singleton->sky_shader.shader.version_create(); } #if 0 print_line("**compiling shader:"); print_line("**defines:\n"); for (int i = 0; i < gen_code.defines.size(); i++) { print_line(gen_code.defines[i]); } print_line("\n**uniforms:\n" + gen_code.uniforms); // print_line("\n**vertex_globals:\n" + gen_code.vertex_global); // print_line("\n**vertex_code:\n" + gen_code.vertex); print_line("\n**fragment_globals:\n" + gen_code.fragment_global); print_line("\n**fragment_code:\n" + gen_code.fragment); print_line("\n**light_code:\n" + gen_code.light); #endif scene_singleton->sky_shader.shader.version_set_code(version, gen_code.uniforms, gen_code.vertex_global, gen_code.vertex, gen_code.fragment_global, gen_code.light, gen_code.fragment, gen_code.defines); ERR_FAIL_COND(!scene_singleton->sky_shader.shader.version_is_valid(version)); ubo_size = gen_code.uniform_total_size; ubo_offsets = gen_code.uniform_offsets; texture_uniforms = gen_code.texture_uniforms; //update pipelines for (int i = 0; i < SKY_VERSION_MAX; i++) { RD::PipelineDepthStencilState depth_stencil_state; depth_stencil_state.enable_depth_test = true; depth_stencil_state.depth_compare_operator = RD::COMPARE_OP_LESS_OR_EQUAL; RID shader_variant = scene_singleton->sky_shader.shader.version_get_shader(version, i); pipelines[i].setup(shader_variant, RD::RENDER_PRIMITIVE_TRIANGLES, RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), depth_stencil_state, RD::PipelineColorBlendState::create_disabled(), 0); } valid = true; } void RasterizerSceneRD::SkyShaderData::set_default_texture_param(const StringName &p_name, RID p_texture) { if (!p_texture.is_valid()) { default_texture_params.erase(p_name); } else { default_texture_params[p_name] = p_texture; } } void RasterizerSceneRD::SkyShaderData::get_param_list(List *p_param_list) const { Map order; for (Map::Element *E = uniforms.front(); E; E = E->next()) { if (E->get().scope == ShaderLanguage::ShaderNode::Uniform::SCOPE_GLOBAL || E->get().scope == ShaderLanguage::ShaderNode::Uniform::SCOPE_INSTANCE) { continue; } if (E->get().texture_order >= 0) { order[E->get().texture_order + 100000] = E->key(); } else { order[E->get().order] = E->key(); } } for (Map::Element *E = order.front(); E; E = E->next()) { PropertyInfo pi = ShaderLanguage::uniform_to_property_info(uniforms[E->get()]); pi.name = E->get(); p_param_list->push_back(pi); } } void RasterizerSceneRD::SkyShaderData::get_instance_param_list(List *p_param_list) const { for (Map::Element *E = uniforms.front(); E; E = E->next()) { if (E->get().scope != ShaderLanguage::ShaderNode::Uniform::SCOPE_INSTANCE) { continue; } RasterizerStorage::InstanceShaderParam p; p.info = ShaderLanguage::uniform_to_property_info(E->get()); p.info.name = E->key(); //supply name p.index = E->get().instance_index; p.default_value = ShaderLanguage::constant_value_to_variant(E->get().default_value, E->get().type, E->get().hint); p_param_list->push_back(p); } } bool RasterizerSceneRD::SkyShaderData::is_param_texture(const StringName &p_param) const { if (!uniforms.has(p_param)) { return false; } return uniforms[p_param].texture_order >= 0; } bool RasterizerSceneRD::SkyShaderData::is_animated() const { return false; } bool RasterizerSceneRD::SkyShaderData::casts_shadows() const { return false; } Variant RasterizerSceneRD::SkyShaderData::get_default_parameter(const StringName &p_parameter) const { if (uniforms.has(p_parameter)) { ShaderLanguage::ShaderNode::Uniform uniform = uniforms[p_parameter]; Vector default_value = uniform.default_value; return ShaderLanguage::constant_value_to_variant(default_value, uniform.type, uniform.hint); } return Variant(); } RasterizerSceneRD::SkyShaderData::SkyShaderData() { valid = false; } RasterizerSceneRD::SkyShaderData::~SkyShaderData() { RasterizerSceneRD *scene_singleton = (RasterizerSceneRD *)RasterizerSceneRD::singleton; ERR_FAIL_COND(!scene_singleton); //pipeline variants will clear themselves if shader is gone if (version.is_valid()) { scene_singleton->sky_shader.shader.version_free(version); } } RasterizerStorageRD::ShaderData *RasterizerSceneRD::_create_sky_shader_func() { SkyShaderData *shader_data = memnew(SkyShaderData); return shader_data; } void RasterizerSceneRD::SkyMaterialData::update_parameters(const Map &p_parameters, bool p_uniform_dirty, bool p_textures_dirty) { RasterizerSceneRD *scene_singleton = (RasterizerSceneRD *)RasterizerSceneRD::singleton; uniform_set_updated = true; if ((uint32_t)ubo_data.size() != shader_data->ubo_size) { p_uniform_dirty = true; if (uniform_buffer.is_valid()) { RD::get_singleton()->free(uniform_buffer); uniform_buffer = RID(); } ubo_data.resize(shader_data->ubo_size); if (ubo_data.size()) { uniform_buffer = RD::get_singleton()->uniform_buffer_create(ubo_data.size()); memset(ubo_data.ptrw(), 0, ubo_data.size()); //clear } //clear previous uniform set if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) { RD::get_singleton()->free(uniform_set); uniform_set = RID(); } } //check whether buffer changed if (p_uniform_dirty && ubo_data.size()) { update_uniform_buffer(shader_data->uniforms, shader_data->ubo_offsets.ptr(), p_parameters, ubo_data.ptrw(), ubo_data.size(), false); RD::get_singleton()->buffer_update(uniform_buffer, 0, ubo_data.size(), ubo_data.ptrw()); } uint32_t tex_uniform_count = shader_data->texture_uniforms.size(); if ((uint32_t)texture_cache.size() != tex_uniform_count) { texture_cache.resize(tex_uniform_count); p_textures_dirty = true; //clear previous uniform set if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) { RD::get_singleton()->free(uniform_set); uniform_set = RID(); } } if (p_textures_dirty && tex_uniform_count) { update_textures(p_parameters, shader_data->default_texture_params, shader_data->texture_uniforms, texture_cache.ptrw(), true); } if (shader_data->ubo_size == 0 && shader_data->texture_uniforms.size() == 0) { // This material does not require an uniform set, so don't create it. return; } if (!p_textures_dirty && uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) { //no reason to update uniform set, only UBO (or nothing) was needed to update return; } Vector uniforms; { if (shader_data->ubo_size) { RD::Uniform u; u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.binding = 0; u.ids.push_back(uniform_buffer); uniforms.push_back(u); } const RID *textures = texture_cache.ptrw(); for (uint32_t i = 0; i < tex_uniform_count; i++) { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 1 + i; u.ids.push_back(textures[i]); uniforms.push_back(u); } } uniform_set = RD::get_singleton()->uniform_set_create(uniforms, scene_singleton->sky_shader.shader.version_get_shader(shader_data->version, 0), SKY_SET_MATERIAL); } RasterizerSceneRD::SkyMaterialData::~SkyMaterialData() { if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) { RD::get_singleton()->free(uniform_set); } if (uniform_buffer.is_valid()) { RD::get_singleton()->free(uniform_buffer); } } RasterizerStorageRD::MaterialData *RasterizerSceneRD::_create_sky_material_func(SkyShaderData *p_shader) { SkyMaterialData *material_data = memnew(SkyMaterialData); material_data->shader_data = p_shader; material_data->last_frame = false; //update will happen later anyway so do nothing. return material_data; } RID RasterizerSceneRD::environment_create() { return environment_owner.make_rid(Environment()); } void RasterizerSceneRD::environment_set_background(RID p_env, RS::EnvironmentBG p_bg) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->background = p_bg; } void RasterizerSceneRD::environment_set_sky(RID p_env, RID p_sky) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->sky = p_sky; } void RasterizerSceneRD::environment_set_sky_custom_fov(RID p_env, float p_scale) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->sky_custom_fov = p_scale; } void RasterizerSceneRD::environment_set_sky_orientation(RID p_env, const Basis &p_orientation) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->sky_orientation = p_orientation; } void RasterizerSceneRD::environment_set_bg_color(RID p_env, const Color &p_color) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->bg_color = p_color; } void RasterizerSceneRD::environment_set_bg_energy(RID p_env, float p_energy) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->bg_energy = p_energy; } void RasterizerSceneRD::environment_set_canvas_max_layer(RID p_env, int p_max_layer) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->canvas_max_layer = p_max_layer; } void RasterizerSceneRD::environment_set_ambient_light(RID p_env, const Color &p_color, RS::EnvironmentAmbientSource p_ambient, float p_energy, float p_sky_contribution, RS::EnvironmentReflectionSource p_reflection_source, const Color &p_ao_color) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->ambient_light = p_color; env->ambient_source = p_ambient; env->ambient_light_energy = p_energy; env->ambient_sky_contribution = p_sky_contribution; env->reflection_source = p_reflection_source; env->ao_color = p_ao_color; } RS::EnvironmentBG RasterizerSceneRD::environment_get_background(RID p_env) const { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, RS::ENV_BG_MAX); return env->background; } RID RasterizerSceneRD::environment_get_sky(RID p_env) const { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, RID()); return env->sky; } float RasterizerSceneRD::environment_get_sky_custom_fov(RID p_env) const { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->sky_custom_fov; } Basis RasterizerSceneRD::environment_get_sky_orientation(RID p_env) const { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, Basis()); return env->sky_orientation; } Color RasterizerSceneRD::environment_get_bg_color(RID p_env) const { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, Color()); return env->bg_color; } float RasterizerSceneRD::environment_get_bg_energy(RID p_env) const { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->bg_energy; } int RasterizerSceneRD::environment_get_canvas_max_layer(RID p_env) const { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->canvas_max_layer; } Color RasterizerSceneRD::environment_get_ambient_light_color(RID p_env) const { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, Color()); return env->ambient_light; } RS::EnvironmentAmbientSource RasterizerSceneRD::environment_get_ambient_source(RID p_env) const { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, RS::ENV_AMBIENT_SOURCE_BG); return env->ambient_source; } float RasterizerSceneRD::environment_get_ambient_light_energy(RID p_env) const { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->ambient_light_energy; } float RasterizerSceneRD::environment_get_ambient_sky_contribution(RID p_env) const { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->ambient_sky_contribution; } RS::EnvironmentReflectionSource RasterizerSceneRD::environment_get_reflection_source(RID p_env) const { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, RS::ENV_REFLECTION_SOURCE_DISABLED); return env->reflection_source; } Color RasterizerSceneRD::environment_get_ao_color(RID p_env) const { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, Color()); return env->ao_color; } void RasterizerSceneRD::environment_set_tonemap(RID p_env, RS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white, bool p_auto_exposure, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->exposure = p_exposure; env->tone_mapper = p_tone_mapper; if (!env->auto_exposure && p_auto_exposure) { env->auto_exposure_version = ++auto_exposure_counter; } env->auto_exposure = p_auto_exposure; env->white = p_white; env->min_luminance = p_min_luminance; env->max_luminance = p_max_luminance; env->auto_exp_speed = p_auto_exp_speed; env->auto_exp_scale = p_auto_exp_scale; } void RasterizerSceneRD::environment_set_glow(RID p_env, bool p_enable, int p_level_flags, float p_intensity, float p_strength, float p_mix, float p_bloom_threshold, RS::EnvironmentGlowBlendMode p_blend_mode, float p_hdr_bleed_threshold, float p_hdr_bleed_scale, float p_hdr_luminance_cap) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->glow_enabled = p_enable; env->glow_levels = p_level_flags; env->glow_intensity = p_intensity; env->glow_strength = p_strength; env->glow_mix = p_mix; env->glow_bloom = p_bloom_threshold; env->glow_blend_mode = p_blend_mode; env->glow_hdr_bleed_threshold = p_hdr_bleed_threshold; env->glow_hdr_bleed_scale = p_hdr_bleed_scale; env->glow_hdr_luminance_cap = p_hdr_luminance_cap; } void RasterizerSceneRD::environment_glow_set_use_bicubic_upscale(bool p_enable) { glow_bicubic_upscale = p_enable; } void RasterizerSceneRD::environment_set_sdfgi(RID p_env, bool p_enable, RS::EnvironmentSDFGICascades p_cascades, float p_min_cell_size, RS::EnvironmentSDFGIYScale p_y_scale, bool p_use_occlusion, bool p_use_multibounce, bool p_read_sky, float p_energy, float p_normal_bias, float p_probe_bias) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->sdfgi_enabled = p_enable; env->sdfgi_cascades = p_cascades; env->sdfgi_min_cell_size = p_min_cell_size; env->sdfgi_use_occlusion = p_use_occlusion; env->sdfgi_use_multibounce = p_use_multibounce; env->sdfgi_read_sky_light = p_read_sky; env->sdfgi_energy = p_energy; env->sdfgi_normal_bias = p_normal_bias; env->sdfgi_probe_bias = p_probe_bias; env->sdfgi_y_scale = p_y_scale; } void RasterizerSceneRD::environment_set_fog(RID p_env, bool p_enable, const Color &p_light_color, float p_light_energy, float p_sun_scatter, float p_density, float p_height, float p_height_density) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->fog_enabled = p_enable; env->fog_light_color = p_light_color; env->fog_light_energy = p_light_energy; env->fog_sun_scatter = p_sun_scatter; env->fog_density = p_density; env->fog_height = p_height; env->fog_height_density = p_height_density; } bool RasterizerSceneRD::environment_is_fog_enabled(RID p_env) const { const Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, false); return env->fog_enabled; } Color RasterizerSceneRD::environment_get_fog_light_color(RID p_env) const { const Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, Color()); return env->fog_light_color; } float RasterizerSceneRD::environment_get_fog_light_energy(RID p_env) const { const Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->fog_light_energy; } float RasterizerSceneRD::environment_get_fog_sun_scatter(RID p_env) const { const Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->fog_sun_scatter; } float RasterizerSceneRD::environment_get_fog_density(RID p_env) const { const Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->fog_density; } float RasterizerSceneRD::environment_get_fog_height(RID p_env) const { const Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->fog_height; } float RasterizerSceneRD::environment_get_fog_height_density(RID p_env) const { const Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->fog_height_density; } void RasterizerSceneRD::environment_set_volumetric_fog(RID p_env, bool p_enable, float p_density, const Color &p_light, float p_light_energy, float p_length, float p_detail_spread, float p_gi_inject, RenderingServer::EnvVolumetricFogShadowFilter p_shadow_filter) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->volumetric_fog_enabled = p_enable; env->volumetric_fog_density = p_density; env->volumetric_fog_light = p_light; env->volumetric_fog_light_energy = p_light_energy; env->volumetric_fog_length = p_length; env->volumetric_fog_detail_spread = p_detail_spread; env->volumetric_fog_shadow_filter = p_shadow_filter; env->volumetric_fog_gi_inject = p_gi_inject; } void RasterizerSceneRD::environment_set_volumetric_fog_volume_size(int p_size, int p_depth) { volumetric_fog_size = p_size; volumetric_fog_depth = p_depth; } void RasterizerSceneRD::environment_set_volumetric_fog_filter_active(bool p_enable) { volumetric_fog_filter_active = p_enable; } void RasterizerSceneRD::environment_set_volumetric_fog_directional_shadow_shrink_size(int p_shrink_size) { p_shrink_size = nearest_power_of_2_templated(p_shrink_size); if (volumetric_fog_directional_shadow_shrink == (uint32_t)p_shrink_size) { return; } _clear_shadow_shrink_stages(directional_shadow.shrink_stages); } void RasterizerSceneRD::environment_set_volumetric_fog_positional_shadow_shrink_size(int p_shrink_size) { p_shrink_size = nearest_power_of_2_templated(p_shrink_size); if (volumetric_fog_positional_shadow_shrink == (uint32_t)p_shrink_size) { return; } for (uint32_t i = 0; i < shadow_atlas_owner.get_rid_count(); i++) { ShadowAtlas *sa = shadow_atlas_owner.get_ptr_by_index(i); _clear_shadow_shrink_stages(sa->shrink_stages); } } void RasterizerSceneRD::environment_set_sdfgi_ray_count(RS::EnvironmentSDFGIRayCount p_ray_count) { sdfgi_ray_count = p_ray_count; } void RasterizerSceneRD::environment_set_sdfgi_frames_to_converge(RS::EnvironmentSDFGIFramesToConverge p_frames) { sdfgi_frames_to_converge = p_frames; } void RasterizerSceneRD::environment_set_ssr(RID p_env, bool p_enable, int p_max_steps, float p_fade_int, float p_fade_out, float p_depth_tolerance) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->ssr_enabled = p_enable; env->ssr_max_steps = p_max_steps; env->ssr_fade_in = p_fade_int; env->ssr_fade_out = p_fade_out; env->ssr_depth_tolerance = p_depth_tolerance; } void RasterizerSceneRD::environment_set_ssr_roughness_quality(RS::EnvironmentSSRRoughnessQuality p_quality) { ssr_roughness_quality = p_quality; } RS::EnvironmentSSRRoughnessQuality RasterizerSceneRD::environment_get_ssr_roughness_quality() const { return ssr_roughness_quality; } void RasterizerSceneRD::environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_bias, float p_light_affect, float p_ao_channel_affect, RS::EnvironmentSSAOBlur p_blur, float p_bilateral_sharpness) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->ssao_enabled = p_enable; env->ssao_radius = p_radius; env->ssao_intensity = p_intensity; env->ssao_bias = p_bias; env->ssao_direct_light_affect = p_light_affect; env->ssao_ao_channel_affect = p_ao_channel_affect; env->ssao_blur = p_blur; } void RasterizerSceneRD::environment_set_ssao_quality(RS::EnvironmentSSAOQuality p_quality, bool p_half_size) { ssao_quality = p_quality; ssao_half_size = p_half_size; } bool RasterizerSceneRD::environment_is_ssao_enabled(RID p_env) const { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, false); return env->ssao_enabled; } float RasterizerSceneRD::environment_get_ssao_ao_affect(RID p_env) const { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, false); return env->ssao_ao_channel_affect; } float RasterizerSceneRD::environment_get_ssao_light_affect(RID p_env) const { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, false); return env->ssao_direct_light_affect; } bool RasterizerSceneRD::environment_is_ssr_enabled(RID p_env) const { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, false); return env->ssr_enabled; } bool RasterizerSceneRD::environment_is_sdfgi_enabled(RID p_env) const { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, false); return env->sdfgi_enabled; } bool RasterizerSceneRD::is_environment(RID p_env) const { return environment_owner.owns(p_env); } Ref RasterizerSceneRD::environment_bake_panorama(RID p_env, bool p_bake_irradiance, const Size2i &p_size) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, Ref()); if (env->background == RS::ENV_BG_CAMERA_FEED || env->background == RS::ENV_BG_CANVAS || env->background == RS::ENV_BG_KEEP) { return Ref(); //nothing to bake } if (env->background == RS::ENV_BG_CLEAR_COLOR || env->background == RS::ENV_BG_COLOR) { Color color; if (env->background == RS::ENV_BG_CLEAR_COLOR) { color = storage->get_default_clear_color(); } else { color = env->bg_color; } color.r *= env->bg_energy; color.g *= env->bg_energy; color.b *= env->bg_energy; Ref ret; ret.instance(); ret->create(p_size.width, p_size.height, false, Image::FORMAT_RGBAF); for (int i = 0; i < p_size.width; i++) { for (int j = 0; j < p_size.height; j++) { ret->set_pixel(i, j, color); } } return ret; } if (env->background == RS::ENV_BG_SKY && env->sky.is_valid()) { return sky_bake_panorama(env->sky, env->bg_energy, p_bake_irradiance, p_size); } return Ref(); } //////////////////////////////////////////////////////////// RID RasterizerSceneRD::reflection_atlas_create() { ReflectionAtlas ra; ra.count = GLOBAL_GET("rendering/quality/reflection_atlas/reflection_count"); ra.size = GLOBAL_GET("rendering/quality/reflection_atlas/reflection_size"); return reflection_atlas_owner.make_rid(ra); } void RasterizerSceneRD::reflection_atlas_set_size(RID p_ref_atlas, int p_reflection_size, int p_reflection_count) { ReflectionAtlas *ra = reflection_atlas_owner.getornull(p_ref_atlas); ERR_FAIL_COND(!ra); if (ra->size == p_reflection_size && ra->count == p_reflection_count) { return; //no changes } ra->size = p_reflection_size; ra->count = p_reflection_count; if (ra->reflection.is_valid()) { //clear and invalidate everything RD::get_singleton()->free(ra->reflection); ra->reflection = RID(); RD::get_singleton()->free(ra->depth_buffer); ra->depth_buffer = RID(); for (int i = 0; i < ra->reflections.size(); i++) { _clear_reflection_data(ra->reflections.write[i].data); if (ra->reflections[i].owner.is_null()) { continue; } reflection_probe_release_atlas_index(ra->reflections[i].owner); //rp->atlasindex clear } ra->reflections.clear(); } } //////////////////////// RID RasterizerSceneRD::reflection_probe_instance_create(RID p_probe) { ReflectionProbeInstance rpi; rpi.probe = p_probe; return reflection_probe_instance_owner.make_rid(rpi); } void RasterizerSceneRD::reflection_probe_instance_set_transform(RID p_instance, const Transform &p_transform) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND(!rpi); rpi->transform = p_transform; rpi->dirty = true; } void RasterizerSceneRD::reflection_probe_release_atlas_index(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND(!rpi); if (rpi->atlas.is_null()) { return; //nothing to release } ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas); ERR_FAIL_COND(!atlas); ERR_FAIL_INDEX(rpi->atlas_index, atlas->reflections.size()); atlas->reflections.write[rpi->atlas_index].owner = RID(); rpi->atlas_index = -1; rpi->atlas = RID(); } bool RasterizerSceneRD::reflection_probe_instance_needs_redraw(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, false); if (rpi->rendering) { return false; } if (rpi->dirty) { return true; } if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) { return true; } return rpi->atlas_index == -1; } bool RasterizerSceneRD::reflection_probe_instance_has_reflection(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, false); return rpi->atlas.is_valid(); } bool RasterizerSceneRD::reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) { ReflectionAtlas *atlas = reflection_atlas_owner.getornull(p_reflection_atlas); ERR_FAIL_COND_V(!atlas, false); ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, false); if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS && atlas->reflection.is_valid() && atlas->size != 256) { WARN_PRINT("ReflectionProbes set to UPDATE_ALWAYS must have an atlas size of 256. Please update the atlas size in the ProjectSettings."); reflection_atlas_set_size(p_reflection_atlas, 256, atlas->count); } if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS && atlas->reflection.is_valid() && atlas->reflections[0].data.layers[0].mipmaps.size() != 8) { // Invalidate reflection atlas, need to regenerate RD::get_singleton()->free(atlas->reflection); atlas->reflection = RID(); for (int i = 0; i < atlas->reflections.size(); i++) { if (atlas->reflections[i].owner.is_null()) { continue; } reflection_probe_release_atlas_index(atlas->reflections[i].owner); } atlas->reflections.clear(); } if (atlas->reflection.is_null()) { int mipmaps = MIN(roughness_layers, Image::get_image_required_mipmaps(atlas->size, atlas->size, Image::FORMAT_RGBAH) + 1); mipmaps = storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS ? 8 : mipmaps; // always use 8 mipmaps with real time filtering { //reflection atlas was unused, create: RD::TextureFormat tf; tf.array_layers = 6 * atlas->count; tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; tf.type = RD::TEXTURE_TYPE_CUBE_ARRAY; tf.mipmaps = mipmaps; tf.width = atlas->size; tf.height = atlas->size; tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; atlas->reflection = RD::get_singleton()->texture_create(tf, RD::TextureView()); } { RD::TextureFormat tf; tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32; tf.width = atlas->size; tf.height = atlas->size; tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT; atlas->depth_buffer = RD::get_singleton()->texture_create(tf, RD::TextureView()); } atlas->reflections.resize(atlas->count); for (int i = 0; i < atlas->count; i++) { _update_reflection_data(atlas->reflections.write[i].data, atlas->size, mipmaps, false, atlas->reflection, i * 6, storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS); for (int j = 0; j < 6; j++) { Vector fb; fb.push_back(atlas->reflections.write[i].data.layers[0].mipmaps[0].views[j]); fb.push_back(atlas->depth_buffer); atlas->reflections.write[i].fbs[j] = RD::get_singleton()->framebuffer_create(fb); } } Vector fb; fb.push_back(atlas->depth_buffer); atlas->depth_fb = RD::get_singleton()->framebuffer_create(fb); } if (rpi->atlas_index == -1) { for (int i = 0; i < atlas->reflections.size(); i++) { if (atlas->reflections[i].owner.is_null()) { rpi->atlas_index = i; break; } } //find the one used last if (rpi->atlas_index == -1) { //everything is in use, find the one least used via LRU uint64_t pass_min = 0; for (int i = 0; i < atlas->reflections.size(); i++) { ReflectionProbeInstance *rpi2 = reflection_probe_instance_owner.getornull(atlas->reflections[i].owner); if (rpi2->last_pass < pass_min) { pass_min = rpi2->last_pass; rpi->atlas_index = i; } } } } rpi->atlas = p_reflection_atlas; rpi->rendering = true; rpi->dirty = false; rpi->processing_layer = 1; rpi->processing_side = 0; return true; } bool RasterizerSceneRD::reflection_probe_instance_postprocess_step(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, false); ERR_FAIL_COND_V(!rpi->rendering, false); ERR_FAIL_COND_V(rpi->atlas.is_null(), false); ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas); if (!atlas || rpi->atlas_index == -1) { //does not belong to an atlas anymore, cancel (was removed from atlas or atlas changed while rendering) rpi->rendering = false; return false; } if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) { // Using real time reflections, all roughness is done in one step _create_reflection_fast_filter(atlas->reflections.write[rpi->atlas_index].data, false); rpi->rendering = false; rpi->processing_side = 0; rpi->processing_layer = 1; return true; } if (rpi->processing_layer > 1) { _create_reflection_importance_sample(atlas->reflections.write[rpi->atlas_index].data, false, 10, rpi->processing_layer); rpi->processing_layer++; if (rpi->processing_layer == atlas->reflections[rpi->atlas_index].data.layers[0].mipmaps.size()) { rpi->rendering = false; rpi->processing_side = 0; rpi->processing_layer = 1; return true; } return false; } else { _create_reflection_importance_sample(atlas->reflections.write[rpi->atlas_index].data, false, rpi->processing_side, rpi->processing_layer); } rpi->processing_side++; if (rpi->processing_side == 6) { rpi->processing_side = 0; rpi->processing_layer++; } return false; } uint32_t RasterizerSceneRD::reflection_probe_instance_get_resolution(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, 0); ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas); ERR_FAIL_COND_V(!atlas, 0); return atlas->size; } RID RasterizerSceneRD::reflection_probe_instance_get_framebuffer(RID p_instance, int p_index) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, RID()); ERR_FAIL_INDEX_V(p_index, 6, RID()); ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas); ERR_FAIL_COND_V(!atlas, RID()); return atlas->reflections[rpi->atlas_index].fbs[p_index]; } RID RasterizerSceneRD::reflection_probe_instance_get_depth_framebuffer(RID p_instance, int p_index) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, RID()); ERR_FAIL_INDEX_V(p_index, 6, RID()); ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas); ERR_FAIL_COND_V(!atlas, RID()); return atlas->depth_fb; } /////////////////////////////////////////////////////////// RID RasterizerSceneRD::shadow_atlas_create() { return shadow_atlas_owner.make_rid(ShadowAtlas()); } void RasterizerSceneRD::shadow_atlas_set_size(RID p_atlas, int p_size) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas); ERR_FAIL_COND(!shadow_atlas); ERR_FAIL_COND(p_size < 0); p_size = next_power_of_2(p_size); if (p_size == shadow_atlas->size) { return; } // erasing atlas if (shadow_atlas->depth.is_valid()) { RD::get_singleton()->free(shadow_atlas->depth); shadow_atlas->depth = RID(); _clear_shadow_shrink_stages(shadow_atlas->shrink_stages); } for (int i = 0; i < 4; i++) { //clear subdivisions shadow_atlas->quadrants[i].shadows.resize(0); shadow_atlas->quadrants[i].shadows.resize(1 << shadow_atlas->quadrants[i].subdivision); } //erase shadow atlas reference from lights for (Map::Element *E = shadow_atlas->shadow_owners.front(); E; E = E->next()) { LightInstance *li = light_instance_owner.getornull(E->key()); ERR_CONTINUE(!li); li->shadow_atlases.erase(p_atlas); } //clear owners shadow_atlas->shadow_owners.clear(); shadow_atlas->size = p_size; if (shadow_atlas->size) { RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R32_SFLOAT; tf.width = shadow_atlas->size; tf.height = shadow_atlas->size; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; shadow_atlas->depth = RD::get_singleton()->texture_create(tf, RD::TextureView()); } } void RasterizerSceneRD::shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas); ERR_FAIL_COND(!shadow_atlas); ERR_FAIL_INDEX(p_quadrant, 4); ERR_FAIL_INDEX(p_subdivision, 16384); uint32_t subdiv = next_power_of_2(p_subdivision); if (subdiv & 0xaaaaaaaa) { //sqrt(subdiv) must be integer subdiv <<= 1; } subdiv = int(Math::sqrt((float)subdiv)); //obtain the number that will be x*x if (shadow_atlas->quadrants[p_quadrant].subdivision == subdiv) { return; } //erase all data from quadrant for (int i = 0; i < shadow_atlas->quadrants[p_quadrant].shadows.size(); i++) { if (shadow_atlas->quadrants[p_quadrant].shadows[i].owner.is_valid()) { shadow_atlas->shadow_owners.erase(shadow_atlas->quadrants[p_quadrant].shadows[i].owner); LightInstance *li = light_instance_owner.getornull(shadow_atlas->quadrants[p_quadrant].shadows[i].owner); ERR_CONTINUE(!li); li->shadow_atlases.erase(p_atlas); } } shadow_atlas->quadrants[p_quadrant].shadows.resize(0); shadow_atlas->quadrants[p_quadrant].shadows.resize(subdiv * subdiv); shadow_atlas->quadrants[p_quadrant].subdivision = subdiv; //cache the smallest subdiv (for faster allocation in light update) shadow_atlas->smallest_subdiv = 1 << 30; for (int i = 0; i < 4; i++) { if (shadow_atlas->quadrants[i].subdivision) { shadow_atlas->smallest_subdiv = MIN(shadow_atlas->smallest_subdiv, shadow_atlas->quadrants[i].subdivision); } } if (shadow_atlas->smallest_subdiv == 1 << 30) { shadow_atlas->smallest_subdiv = 0; } //resort the size orders, simple bublesort for 4 elements.. int swaps = 0; do { swaps = 0; for (int i = 0; i < 3; i++) { if (shadow_atlas->quadrants[shadow_atlas->size_order[i]].subdivision < shadow_atlas->quadrants[shadow_atlas->size_order[i + 1]].subdivision) { SWAP(shadow_atlas->size_order[i], shadow_atlas->size_order[i + 1]); swaps++; } } } while (swaps > 0); } bool RasterizerSceneRD::_shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow) { for (int i = p_quadrant_count - 1; i >= 0; i--) { int qidx = p_in_quadrants[i]; if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) { return false; } //look for an empty space int sc = shadow_atlas->quadrants[qidx].shadows.size(); ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptrw(); int found_free_idx = -1; //found a free one int found_used_idx = -1; //found existing one, must steal it uint64_t min_pass = 0; // pass of the existing one, try to use the least recently used one (LRU fashion) for (int j = 0; j < sc; j++) { if (!sarr[j].owner.is_valid()) { found_free_idx = j; break; } LightInstance *sli = light_instance_owner.getornull(sarr[j].owner); ERR_CONTINUE(!sli); if (sli->last_scene_pass != scene_pass) { //was just allocated, don't kill it so soon, wait a bit.. if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec) { continue; } if (found_used_idx == -1 || sli->last_scene_pass < min_pass) { found_used_idx = j; min_pass = sli->last_scene_pass; } } } if (found_free_idx == -1 && found_used_idx == -1) { continue; //nothing found } if (found_free_idx == -1 && found_used_idx != -1) { found_free_idx = found_used_idx; } r_quadrant = qidx; r_shadow = found_free_idx; return true; } return false; } bool RasterizerSceneRD::shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas); ERR_FAIL_COND_V(!shadow_atlas, false); LightInstance *li = light_instance_owner.getornull(p_light_intance); ERR_FAIL_COND_V(!li, false); if (shadow_atlas->size == 0 || shadow_atlas->smallest_subdiv == 0) { return false; } uint32_t quad_size = shadow_atlas->size >> 1; int desired_fit = MIN(quad_size / shadow_atlas->smallest_subdiv, next_power_of_2(quad_size * p_coverage)); int valid_quadrants[4]; int valid_quadrant_count = 0; int best_size = -1; //best size found int best_subdiv = -1; //subdiv for the best size //find the quadrants this fits into, and the best possible size it can fit into for (int i = 0; i < 4; i++) { int q = shadow_atlas->size_order[i]; int sd = shadow_atlas->quadrants[q].subdivision; if (sd == 0) { continue; //unused } int max_fit = quad_size / sd; if (best_size != -1 && max_fit > best_size) { break; //too large } valid_quadrants[valid_quadrant_count++] = q; best_subdiv = sd; if (max_fit >= desired_fit) { best_size = max_fit; } } ERR_FAIL_COND_V(valid_quadrant_count == 0, false); uint64_t tick = OS::get_singleton()->get_ticks_msec(); //see if it already exists if (shadow_atlas->shadow_owners.has(p_light_intance)) { //it does! uint32_t key = shadow_atlas->shadow_owners[p_light_intance]; uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK; bool should_realloc = shadow_atlas->quadrants[q].subdivision != (uint32_t)best_subdiv && (shadow_atlas->quadrants[q].shadows[s].alloc_tick - tick > shadow_atlas_realloc_tolerance_msec); bool should_redraw = shadow_atlas->quadrants[q].shadows[s].version != p_light_version; if (!should_realloc) { shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version; //already existing, see if it should redraw or it's just OK return should_redraw; } int new_quadrant, new_shadow; //find a better place if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, shadow_atlas->quadrants[q].subdivision, tick, new_quadrant, new_shadow)) { //found a better place! ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow]; if (sh->owner.is_valid()) { //is taken, but is invalid, erasing it shadow_atlas->shadow_owners.erase(sh->owner); LightInstance *sli = light_instance_owner.getornull(sh->owner); sli->shadow_atlases.erase(p_atlas); } //erase previous shadow_atlas->quadrants[q].shadows.write[s].version = 0; shadow_atlas->quadrants[q].shadows.write[s].owner = RID(); sh->owner = p_light_intance; sh->alloc_tick = tick; sh->version = p_light_version; li->shadow_atlases.insert(p_atlas); //make new key key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT; key |= new_shadow; //update it in map shadow_atlas->shadow_owners[p_light_intance] = key; //make it dirty, as it should redraw anyway return true; } //no better place for this shadow found, keep current //already existing, see if it should redraw or it's just OK shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version; return should_redraw; } int new_quadrant, new_shadow; //find a better place if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, -1, tick, new_quadrant, new_shadow)) { //found a better place! ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow]; if (sh->owner.is_valid()) { //is taken, but is invalid, erasing it shadow_atlas->shadow_owners.erase(sh->owner); LightInstance *sli = light_instance_owner.getornull(sh->owner); sli->shadow_atlases.erase(p_atlas); } sh->owner = p_light_intance; sh->alloc_tick = tick; sh->version = p_light_version; li->shadow_atlases.insert(p_atlas); //make new key uint32_t key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT; key |= new_shadow; //update it in map shadow_atlas->shadow_owners[p_light_intance] = key; //make it dirty, as it should redraw anyway return true; } //no place to allocate this light, apologies return false; } void RasterizerSceneRD::directional_shadow_atlas_set_size(int p_size) { p_size = nearest_power_of_2_templated(p_size); if (directional_shadow.size == p_size) { return; } directional_shadow.size = p_size; if (directional_shadow.depth.is_valid()) { RD::get_singleton()->free(directional_shadow.depth); _clear_shadow_shrink_stages(directional_shadow.shrink_stages); directional_shadow.depth = RID(); } if (p_size > 0) { RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R32_SFLOAT; tf.width = p_size; tf.height = p_size; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; directional_shadow.depth = RD::get_singleton()->texture_create(tf, RD::TextureView()); } _base_uniforms_changed(); } void RasterizerSceneRD::set_directional_shadow_count(int p_count) { directional_shadow.light_count = p_count; directional_shadow.current_light = 0; } static Rect2i _get_directional_shadow_rect(int p_size, int p_shadow_count, int p_shadow_index) { int split_h = 1; int split_v = 1; while (split_h * split_v < p_shadow_count) { if (split_h == split_v) { split_h <<= 1; } else { split_v <<= 1; } } Rect2i rect(0, 0, p_size, p_size); rect.size.width /= split_h; rect.size.height /= split_v; rect.position.x = rect.size.width * (p_shadow_index % split_h); rect.position.y = rect.size.height * (p_shadow_index / split_h); return rect; } int RasterizerSceneRD::get_directional_light_shadow_size(RID p_light_intance) { ERR_FAIL_COND_V(directional_shadow.light_count == 0, 0); Rect2i r = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, 0); LightInstance *light_instance = light_instance_owner.getornull(p_light_intance); ERR_FAIL_COND_V(!light_instance, 0); switch (storage->light_directional_get_shadow_mode(light_instance->light)) { case RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: break; //none case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: r.size.height /= 2; break; case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: r.size /= 2; break; } return MAX(r.size.width, r.size.height); } ////////////////////////////////////////////////// RID RasterizerSceneRD::camera_effects_create() { return camera_effects_owner.make_rid(CameraEffects()); } void RasterizerSceneRD::camera_effects_set_dof_blur_quality(RS::DOFBlurQuality p_quality, bool p_use_jitter) { dof_blur_quality = p_quality; dof_blur_use_jitter = p_use_jitter; } void RasterizerSceneRD::camera_effects_set_dof_blur_bokeh_shape(RS::DOFBokehShape p_shape) { dof_blur_bokeh_shape = p_shape; } void RasterizerSceneRD::camera_effects_set_dof_blur(RID p_camera_effects, bool p_far_enable, float p_far_distance, float p_far_transition, bool p_near_enable, float p_near_distance, float p_near_transition, float p_amount) { CameraEffects *camfx = camera_effects_owner.getornull(p_camera_effects); ERR_FAIL_COND(!camfx); camfx->dof_blur_far_enabled = p_far_enable; camfx->dof_blur_far_distance = p_far_distance; camfx->dof_blur_far_transition = p_far_transition; camfx->dof_blur_near_enabled = p_near_enable; camfx->dof_blur_near_distance = p_near_distance; camfx->dof_blur_near_transition = p_near_transition; camfx->dof_blur_amount = p_amount; } void RasterizerSceneRD::camera_effects_set_custom_exposure(RID p_camera_effects, bool p_enable, float p_exposure) { CameraEffects *camfx = camera_effects_owner.getornull(p_camera_effects); ERR_FAIL_COND(!camfx); camfx->override_exposure_enabled = p_enable; camfx->override_exposure = p_exposure; } RID RasterizerSceneRD::light_instance_create(RID p_light) { RID li = light_instance_owner.make_rid(LightInstance()); LightInstance *light_instance = light_instance_owner.getornull(li); light_instance->self = li; light_instance->light = p_light; light_instance->light_type = storage->light_get_type(p_light); return li; } void RasterizerSceneRD::light_instance_set_transform(RID p_light_instance, const Transform &p_transform) { LightInstance *light_instance = light_instance_owner.getornull(p_light_instance); ERR_FAIL_COND(!light_instance); light_instance->transform = p_transform; } void RasterizerSceneRD::light_instance_set_aabb(RID p_light_instance, const AABB &p_aabb) { LightInstance *light_instance = light_instance_owner.getornull(p_light_instance); ERR_FAIL_COND(!light_instance); light_instance->aabb = p_aabb; } void RasterizerSceneRD::light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale, float p_range_begin, const Vector2 &p_uv_scale) { LightInstance *light_instance = light_instance_owner.getornull(p_light_instance); ERR_FAIL_COND(!light_instance); if (storage->light_get_type(light_instance->light) != RS::LIGHT_DIRECTIONAL) { p_pass = 0; } ERR_FAIL_INDEX(p_pass, 4); light_instance->shadow_transform[p_pass].camera = p_projection; light_instance->shadow_transform[p_pass].transform = p_transform; light_instance->shadow_transform[p_pass].farplane = p_far; light_instance->shadow_transform[p_pass].split = p_split; light_instance->shadow_transform[p_pass].bias_scale = p_bias_scale; light_instance->shadow_transform[p_pass].range_begin = p_range_begin; light_instance->shadow_transform[p_pass].shadow_texel_size = p_shadow_texel_size; light_instance->shadow_transform[p_pass].uv_scale = p_uv_scale; } void RasterizerSceneRD::light_instance_mark_visible(RID p_light_instance) { LightInstance *light_instance = light_instance_owner.getornull(p_light_instance); ERR_FAIL_COND(!light_instance); light_instance->last_scene_pass = scene_pass; } RasterizerSceneRD::ShadowCubemap *RasterizerSceneRD::_get_shadow_cubemap(int p_size) { if (!shadow_cubemaps.has(p_size)) { ShadowCubemap sc; { RD::TextureFormat tf; tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32; tf.width = p_size; tf.height = p_size; tf.type = RD::TEXTURE_TYPE_CUBE; tf.array_layers = 6; tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT; sc.cubemap = RD::get_singleton()->texture_create(tf, RD::TextureView()); } for (int i = 0; i < 6; i++) { RID side_texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), sc.cubemap, i, 0); Vector fbtex; fbtex.push_back(side_texture); sc.side_fb[i] = RD::get_singleton()->framebuffer_create(fbtex); } shadow_cubemaps[p_size] = sc; } return &shadow_cubemaps[p_size]; } RasterizerSceneRD::ShadowMap *RasterizerSceneRD::_get_shadow_map(const Size2i &p_size) { if (!shadow_maps.has(p_size)) { ShadowMap sm; { RD::TextureFormat tf; tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32; tf.width = p_size.width; tf.height = p_size.height; tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT; sm.depth = RD::get_singleton()->texture_create(tf, RD::TextureView()); } Vector fbtex; fbtex.push_back(sm.depth); sm.fb = RD::get_singleton()->framebuffer_create(fbtex); shadow_maps[p_size] = sm; } return &shadow_maps[p_size]; } ////////////////////////// RID RasterizerSceneRD::decal_instance_create(RID p_decal) { DecalInstance di; di.decal = p_decal; return decal_instance_owner.make_rid(di); } void RasterizerSceneRD::decal_instance_set_transform(RID p_decal, const Transform &p_transform) { DecalInstance *di = decal_instance_owner.getornull(p_decal); ERR_FAIL_COND(!di); di->transform = p_transform; } ///////////////////////////////// RID RasterizerSceneRD::gi_probe_instance_create(RID p_base) { GIProbeInstance gi_probe; gi_probe.probe = p_base; RID rid = gi_probe_instance_owner.make_rid(gi_probe); return rid; } void RasterizerSceneRD::gi_probe_instance_set_transform_to_data(RID p_probe, const Transform &p_xform) { GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe); ERR_FAIL_COND(!gi_probe); gi_probe->transform = p_xform; } bool RasterizerSceneRD::gi_probe_needs_update(RID p_probe) const { GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe); ERR_FAIL_COND_V(!gi_probe, false); //return true; return gi_probe->last_probe_version != storage->gi_probe_get_version(gi_probe->probe); } void RasterizerSceneRD::gi_probe_update(RID p_probe, bool p_update_light_instances, const Vector &p_light_instances, int p_dynamic_object_count, InstanceBase **p_dynamic_objects) { GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe); ERR_FAIL_COND(!gi_probe); uint32_t data_version = storage->gi_probe_get_data_version(gi_probe->probe); // (RE)CREATE IF NEEDED if (gi_probe->last_probe_data_version != data_version) { //need to re-create everything if (gi_probe->texture.is_valid()) { RD::get_singleton()->free(gi_probe->texture); RD::get_singleton()->free(gi_probe->write_buffer); gi_probe->mipmaps.clear(); } for (int i = 0; i < gi_probe->dynamic_maps.size(); i++) { RD::get_singleton()->free(gi_probe->dynamic_maps[i].texture); RD::get_singleton()->free(gi_probe->dynamic_maps[i].depth); } gi_probe->dynamic_maps.clear(); Vector3i octree_size = storage->gi_probe_get_octree_size(gi_probe->probe); if (octree_size != Vector3i()) { //can create a 3D texture Vector levels = storage->gi_probe_get_level_counts(gi_probe->probe); RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; tf.width = octree_size.x; tf.height = octree_size.y; tf.depth = octree_size.z; tf.type = RD::TEXTURE_TYPE_3D; tf.mipmaps = levels.size(); tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT; gi_probe->texture = RD::get_singleton()->texture_create(tf, RD::TextureView()); RD::get_singleton()->texture_clear(gi_probe->texture, Color(0, 0, 0, 0), 0, levels.size(), 0, 1, false); { int total_elements = 0; for (int i = 0; i < levels.size(); i++) { total_elements += levels[i]; } gi_probe->write_buffer = RD::get_singleton()->storage_buffer_create(total_elements * 16); } for (int i = 0; i < levels.size(); i++) { GIProbeInstance::Mipmap mipmap; mipmap.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), gi_probe->texture, 0, i, RD::TEXTURE_SLICE_3D); mipmap.level = levels.size() - i - 1; mipmap.cell_offset = 0; for (uint32_t j = 0; j < mipmap.level; j++) { mipmap.cell_offset += levels[j]; } mipmap.cell_count = levels[mipmap.level]; Vector uniforms; { RD::Uniform u; u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 1; u.ids.push_back(storage->gi_probe_get_octree_buffer(gi_probe->probe)); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 2; u.ids.push_back(storage->gi_probe_get_data_buffer(gi_probe->probe)); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 4; u.ids.push_back(gi_probe->write_buffer); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 9; u.ids.push_back(storage->gi_probe_get_sdf_texture(gi_probe->probe)); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 10; u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); uniforms.push_back(u); } { Vector copy_uniforms = uniforms; if (i == 0) { { RD::Uniform u; u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.binding = 3; u.ids.push_back(gi_probe_lights_uniform); copy_uniforms.push_back(u); } mipmap.uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_COMPUTE_LIGHT], 0); copy_uniforms = uniforms; //restore { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 5; u.ids.push_back(gi_probe->texture); copy_uniforms.push_back(u); } mipmap.second_bounce_uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_COMPUTE_SECOND_BOUNCE], 0); } else { mipmap.uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_COMPUTE_MIPMAP], 0); } } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 5; u.ids.push_back(mipmap.texture); uniforms.push_back(u); } mipmap.write_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_WRITE_TEXTURE], 0); gi_probe->mipmaps.push_back(mipmap); } { uint32_t dynamic_map_size = MAX(MAX(octree_size.x, octree_size.y), octree_size.z); uint32_t oversample = nearest_power_of_2_templated(4); int mipmap_index = 0; while (mipmap_index < gi_probe->mipmaps.size()) { GIProbeInstance::DynamicMap dmap; if (oversample > 0) { dmap.size = dynamic_map_size * (1 << oversample); dmap.mipmap = -1; oversample--; } else { dmap.size = dynamic_map_size >> mipmap_index; dmap.mipmap = mipmap_index; mipmap_index++; } RD::TextureFormat dtf; dtf.width = dmap.size; dtf.height = dmap.size; dtf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT; if (gi_probe->dynamic_maps.size() == 0) { dtf.usage_bits |= RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; } dmap.texture = RD::get_singleton()->texture_create(dtf, RD::TextureView()); if (gi_probe->dynamic_maps.size() == 0) { //render depth for first one dtf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32; dtf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; dmap.fb_depth = RD::get_singleton()->texture_create(dtf, RD::TextureView()); } //just use depth as-is dtf.format = RD::DATA_FORMAT_R32_SFLOAT; dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; dmap.depth = RD::get_singleton()->texture_create(dtf, RD::TextureView()); if (gi_probe->dynamic_maps.size() == 0) { dtf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; dmap.albedo = RD::get_singleton()->texture_create(dtf, RD::TextureView()); dmap.normal = RD::get_singleton()->texture_create(dtf, RD::TextureView()); dmap.orm = RD::get_singleton()->texture_create(dtf, RD::TextureView()); Vector fb; fb.push_back(dmap.albedo); fb.push_back(dmap.normal); fb.push_back(dmap.orm); fb.push_back(dmap.texture); //emission fb.push_back(dmap.depth); fb.push_back(dmap.fb_depth); dmap.fb = RD::get_singleton()->framebuffer_create(fb); { Vector uniforms; { RD::Uniform u; u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.binding = 3; u.ids.push_back(gi_probe_lights_uniform); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 5; u.ids.push_back(dmap.albedo); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 6; u.ids.push_back(dmap.normal); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 7; u.ids.push_back(dmap.orm); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 8; u.ids.push_back(dmap.fb_depth); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 9; u.ids.push_back(storage->gi_probe_get_sdf_texture(gi_probe->probe)); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 10; u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 11; u.ids.push_back(dmap.texture); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 12; u.ids.push_back(dmap.depth); uniforms.push_back(u); } dmap.uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_DYNAMIC_OBJECT_LIGHTING], 0); } } else { bool plot = dmap.mipmap >= 0; bool write = dmap.mipmap < (gi_probe->mipmaps.size() - 1); Vector uniforms; { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 5; u.ids.push_back(gi_probe->dynamic_maps[gi_probe->dynamic_maps.size() - 1].texture); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 6; u.ids.push_back(gi_probe->dynamic_maps[gi_probe->dynamic_maps.size() - 1].depth); uniforms.push_back(u); } if (write) { { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 7; u.ids.push_back(dmap.texture); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 8; u.ids.push_back(dmap.depth); uniforms.push_back(u); } } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 9; u.ids.push_back(storage->gi_probe_get_sdf_texture(gi_probe->probe)); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 10; u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); uniforms.push_back(u); } if (plot) { { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 11; u.ids.push_back(gi_probe->mipmaps[dmap.mipmap].texture); uniforms.push_back(u); } } dmap.uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_lighting_shader_version_shaders[(write && plot) ? GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE_PLOT : write ? GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE : GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_PLOT], 0); } gi_probe->dynamic_maps.push_back(dmap); } } } gi_probe->last_probe_data_version = data_version; p_update_light_instances = true; //just in case _base_uniforms_changed(); } // UDPDATE TIME if (gi_probe->has_dynamic_object_data) { //if it has dynamic object data, it needs to be cleared RD::get_singleton()->texture_clear(gi_probe->texture, Color(0, 0, 0, 0), 0, gi_probe->mipmaps.size(), 0, 1, true); } uint32_t light_count = 0; if (p_update_light_instances || p_dynamic_object_count > 0) { light_count = MIN(gi_probe_max_lights, (uint32_t)p_light_instances.size()); { Transform to_cell = storage->gi_probe_get_to_cell_xform(gi_probe->probe); Transform to_probe_xform = (gi_probe->transform * to_cell.affine_inverse()).affine_inverse(); //update lights for (uint32_t i = 0; i < light_count; i++) { GIProbeLight &l = gi_probe_lights[i]; RID light_instance = p_light_instances[i]; RID light = light_instance_get_base_light(light_instance); l.type = storage->light_get_type(light); l.attenuation = storage->light_get_param(light, RS::LIGHT_PARAM_ATTENUATION); l.energy = storage->light_get_param(light, RS::LIGHT_PARAM_ENERGY) * storage->light_get_param(light, RS::LIGHT_PARAM_INDIRECT_ENERGY); l.radius = to_cell.basis.xform(Vector3(storage->light_get_param(light, RS::LIGHT_PARAM_RANGE), 0, 0)).length(); Color color = storage->light_get_color(light).to_linear(); l.color[0] = color.r; l.color[1] = color.g; l.color[2] = color.b; l.spot_angle_radians = Math::deg2rad(storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ANGLE)); l.spot_attenuation = storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ATTENUATION); Transform xform = light_instance_get_base_transform(light_instance); Vector3 pos = to_probe_xform.xform(xform.origin); Vector3 dir = to_probe_xform.basis.xform(-xform.basis.get_axis(2)).normalized(); l.position[0] = pos.x; l.position[1] = pos.y; l.position[2] = pos.z; l.direction[0] = dir.x; l.direction[1] = dir.y; l.direction[2] = dir.z; l.has_shadow = storage->light_has_shadow(light); } RD::get_singleton()->buffer_update(gi_probe_lights_uniform, 0, sizeof(GIProbeLight) * light_count, gi_probe_lights, true); } } if (gi_probe->has_dynamic_object_data || p_update_light_instances || p_dynamic_object_count) { // PROCESS MIPMAPS if (gi_probe->mipmaps.size()) { //can update mipmaps Vector3i probe_size = storage->gi_probe_get_octree_size(gi_probe->probe); GIProbePushConstant push_constant; push_constant.limits[0] = probe_size.x; push_constant.limits[1] = probe_size.y; push_constant.limits[2] = probe_size.z; push_constant.stack_size = gi_probe->mipmaps.size(); push_constant.emission_scale = 1.0; push_constant.propagation = storage->gi_probe_get_propagation(gi_probe->probe); push_constant.dynamic_range = storage->gi_probe_get_dynamic_range(gi_probe->probe); push_constant.light_count = light_count; push_constant.aniso_strength = 0; /* print_line("probe update to version " + itos(gi_probe->last_probe_version)); print_line("propagation " + rtos(push_constant.propagation)); print_line("dynrange " + rtos(push_constant.dynamic_range)); */ RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(); int passes; if (p_update_light_instances) { passes = storage->gi_probe_is_using_two_bounces(gi_probe->probe) ? 2 : 1; } else { passes = 1; //only re-blitting is necessary } int wg_size = 64; int wg_limit_x = RD::get_singleton()->limit_get(RD::LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_X); for (int pass = 0; pass < passes; pass++) { if (p_update_light_instances) { for (int i = 0; i < gi_probe->mipmaps.size(); i++) { if (i == 0) { RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[pass == 0 ? GI_PROBE_SHADER_VERSION_COMPUTE_LIGHT : GI_PROBE_SHADER_VERSION_COMPUTE_SECOND_BOUNCE]); } else if (i == 1) { RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_COMPUTE_MIPMAP]); } if (pass == 1 || i > 0) { RD::get_singleton()->compute_list_add_barrier(compute_list); //wait til previous step is done } if (pass == 0 || i > 0) { RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->mipmaps[i].uniform_set, 0); } else { RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->mipmaps[i].second_bounce_uniform_set, 0); } push_constant.cell_offset = gi_probe->mipmaps[i].cell_offset; push_constant.cell_count = gi_probe->mipmaps[i].cell_count; int wg_todo = (gi_probe->mipmaps[i].cell_count - 1) / wg_size + 1; while (wg_todo) { int wg_count = MIN(wg_todo, wg_limit_x); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbePushConstant)); RD::get_singleton()->compute_list_dispatch(compute_list, wg_count, 1, 1); wg_todo -= wg_count; push_constant.cell_offset += wg_count * wg_size; } } RD::get_singleton()->compute_list_add_barrier(compute_list); //wait til previous step is done } RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_WRITE_TEXTURE]); for (int i = 0; i < gi_probe->mipmaps.size(); i++) { RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->mipmaps[i].write_uniform_set, 0); push_constant.cell_offset = gi_probe->mipmaps[i].cell_offset; push_constant.cell_count = gi_probe->mipmaps[i].cell_count; int wg_todo = (gi_probe->mipmaps[i].cell_count - 1) / wg_size + 1; while (wg_todo) { int wg_count = MIN(wg_todo, wg_limit_x); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbePushConstant)); RD::get_singleton()->compute_list_dispatch(compute_list, wg_count, 1, 1); wg_todo -= wg_count; push_constant.cell_offset += wg_count * wg_size; } } } RD::get_singleton()->compute_list_end(); } } gi_probe->has_dynamic_object_data = false; //clear until dynamic object data is used again if (p_dynamic_object_count && gi_probe->dynamic_maps.size()) { Vector3i octree_size = storage->gi_probe_get_octree_size(gi_probe->probe); int multiplier = gi_probe->dynamic_maps[0].size / MAX(MAX(octree_size.x, octree_size.y), octree_size.z); Transform oversample_scale; oversample_scale.basis.scale(Vector3(multiplier, multiplier, multiplier)); Transform to_cell = oversample_scale * storage->gi_probe_get_to_cell_xform(gi_probe->probe); Transform to_world_xform = gi_probe->transform * to_cell.affine_inverse(); Transform to_probe_xform = to_world_xform.affine_inverse(); AABB probe_aabb(Vector3(), octree_size); //this could probably be better parallelized in compute.. for (int i = 0; i < p_dynamic_object_count; i++) { InstanceBase *instance = p_dynamic_objects[i]; //not used, so clear instance->depth_layer = 0; instance->depth = 0; //transform aabb to giprobe AABB aabb = (to_probe_xform * instance->transform).xform(instance->aabb); //this needs to wrap to grid resolution to avoid jitter //also extend margin a bit just in case Vector3i begin = aabb.position - Vector3i(1, 1, 1); Vector3i end = aabb.position + aabb.size + Vector3i(1, 1, 1); for (int j = 0; j < 3; j++) { if ((end[j] - begin[j]) & 1) { end[j]++; //for half extents split, it needs to be even } begin[j] = MAX(begin[j], 0); end[j] = MIN(end[j], octree_size[j] * multiplier); } //aabb = aabb.intersection(probe_aabb); //intersect aabb.position = begin; aabb.size = end - begin; //print_line("aabb: " + aabb); for (int j = 0; j < 6; j++) { //if (j != 0 && j != 3) { // continue; //} static const Vector3 render_z[6] = { Vector3(1, 0, 0), Vector3(0, 1, 0), Vector3(0, 0, 1), Vector3(-1, 0, 0), Vector3(0, -1, 0), Vector3(0, 0, -1), }; static const Vector3 render_up[6] = { Vector3(0, 1, 0), Vector3(0, 0, 1), Vector3(0, 1, 0), Vector3(0, 1, 0), Vector3(0, 0, 1), Vector3(0, 1, 0), }; Vector3 render_dir = render_z[j]; Vector3 up_dir = render_up[j]; Vector3 center = aabb.position + aabb.size * 0.5; Transform xform; xform.set_look_at(center - aabb.size * 0.5 * render_dir, center, up_dir); Vector3 x_dir = xform.basis.get_axis(0).abs(); int x_axis = int(Vector3(0, 1, 2).dot(x_dir)); Vector3 y_dir = xform.basis.get_axis(1).abs(); int y_axis = int(Vector3(0, 1, 2).dot(y_dir)); Vector3 z_dir = -xform.basis.get_axis(2); int z_axis = int(Vector3(0, 1, 2).dot(z_dir.abs())); Rect2i rect(aabb.position[x_axis], aabb.position[y_axis], aabb.size[x_axis], aabb.size[y_axis]); bool x_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_axis(0)) < 0); bool y_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_axis(1)) < 0); bool z_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_axis(2)) > 0); CameraMatrix cm; cm.set_orthogonal(-rect.size.width / 2, rect.size.width / 2, -rect.size.height / 2, rect.size.height / 2, 0.0001, aabb.size[z_axis]); _render_material(to_world_xform * xform, cm, true, &instance, 1, gi_probe->dynamic_maps[0].fb, Rect2i(Vector2i(), rect.size)); GIProbeDynamicPushConstant push_constant; zeromem(&push_constant, sizeof(GIProbeDynamicPushConstant)); push_constant.limits[0] = octree_size.x; push_constant.limits[1] = octree_size.y; push_constant.limits[2] = octree_size.z; push_constant.light_count = p_light_instances.size(); push_constant.x_dir[0] = x_dir[0]; push_constant.x_dir[1] = x_dir[1]; push_constant.x_dir[2] = x_dir[2]; push_constant.y_dir[0] = y_dir[0]; push_constant.y_dir[1] = y_dir[1]; push_constant.y_dir[2] = y_dir[2]; push_constant.z_dir[0] = z_dir[0]; push_constant.z_dir[1] = z_dir[1]; push_constant.z_dir[2] = z_dir[2]; push_constant.z_base = xform.origin[z_axis]; push_constant.z_sign = (z_flip ? -1.0 : 1.0); push_constant.pos_multiplier = float(1.0) / multiplier; push_constant.dynamic_range = storage->gi_probe_get_dynamic_range(gi_probe->probe); push_constant.flip_x = x_flip; push_constant.flip_y = y_flip; push_constant.rect_pos[0] = rect.position[0]; push_constant.rect_pos[1] = rect.position[1]; push_constant.rect_size[0] = rect.size[0]; push_constant.rect_size[1] = rect.size[1]; push_constant.prev_rect_ofs[0] = 0; push_constant.prev_rect_ofs[1] = 0; push_constant.prev_rect_size[0] = 0; push_constant.prev_rect_size[1] = 0; push_constant.on_mipmap = false; push_constant.propagation = storage->gi_probe_get_propagation(gi_probe->probe); push_constant.pad[0] = 0; push_constant.pad[1] = 0; push_constant.pad[2] = 0; //process lighting RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_OBJECT_LIGHTING]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->dynamic_maps[0].uniform_set, 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbeDynamicPushConstant)); RD::get_singleton()->compute_list_dispatch(compute_list, (rect.size.x - 1) / 8 + 1, (rect.size.y - 1) / 8 + 1, 1); //print_line("rect: " + itos(i) + ": " + rect); for (int k = 1; k < gi_probe->dynamic_maps.size(); k++) { // enlarge the rect if needed so all pixels fit when downscaled, // this ensures downsampling is smooth and optimal because no pixels are left behind //x if (rect.position.x & 1) { rect.size.x++; push_constant.prev_rect_ofs[0] = 1; //this is used to ensure reading is also optimal } else { push_constant.prev_rect_ofs[0] = 0; } if (rect.size.x & 1) { rect.size.x++; } rect.position.x >>= 1; rect.size.x = MAX(1, rect.size.x >> 1); //y if (rect.position.y & 1) { rect.size.y++; push_constant.prev_rect_ofs[1] = 1; } else { push_constant.prev_rect_ofs[1] = 0; } if (rect.size.y & 1) { rect.size.y++; } rect.position.y >>= 1; rect.size.y = MAX(1, rect.size.y >> 1); //shrink limits to ensure plot does not go outside map if (gi_probe->dynamic_maps[k].mipmap > 0) { for (int l = 0; l < 3; l++) { push_constant.limits[l] = MAX(1, push_constant.limits[l] >> 1); } } //print_line("rect: " + itos(i) + ": " + rect); push_constant.rect_pos[0] = rect.position[0]; push_constant.rect_pos[1] = rect.position[1]; push_constant.prev_rect_size[0] = push_constant.rect_size[0]; push_constant.prev_rect_size[1] = push_constant.rect_size[1]; push_constant.rect_size[0] = rect.size[0]; push_constant.rect_size[1] = rect.size[1]; push_constant.on_mipmap = gi_probe->dynamic_maps[k].mipmap > 0; RD::get_singleton()->compute_list_add_barrier(compute_list); if (gi_probe->dynamic_maps[k].mipmap < 0) { RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE]); } else if (k < gi_probe->dynamic_maps.size() - 1) { RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE_PLOT]); } else { RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_PLOT]); } RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->dynamic_maps[k].uniform_set, 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbeDynamicPushConstant)); RD::get_singleton()->compute_list_dispatch(compute_list, (rect.size.x - 1) / 8 + 1, (rect.size.y - 1) / 8 + 1, 1); } RD::get_singleton()->compute_list_end(); } } gi_probe->has_dynamic_object_data = true; //clear until dynamic object data is used again } gi_probe->last_probe_version = storage->gi_probe_get_version(gi_probe->probe); } void RasterizerSceneRD::_debug_giprobe(RID p_gi_probe, RD::DrawListID p_draw_list, RID p_framebuffer, const CameraMatrix &p_camera_with_transform, bool p_lighting, bool p_emission, float p_alpha) { GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_gi_probe); ERR_FAIL_COND(!gi_probe); if (gi_probe->mipmaps.size() == 0) { return; } CameraMatrix transform = (p_camera_with_transform * CameraMatrix(gi_probe->transform)) * CameraMatrix(storage->gi_probe_get_to_cell_xform(gi_probe->probe).affine_inverse()); int level = 0; Vector3i octree_size = storage->gi_probe_get_octree_size(gi_probe->probe); GIProbeDebugPushConstant push_constant; push_constant.alpha = p_alpha; push_constant.dynamic_range = storage->gi_probe_get_dynamic_range(gi_probe->probe); push_constant.cell_offset = gi_probe->mipmaps[level].cell_offset; push_constant.level = level; push_constant.bounds[0] = octree_size.x >> level; push_constant.bounds[1] = octree_size.y >> level; push_constant.bounds[2] = octree_size.z >> level; push_constant.pad = 0; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { push_constant.projection[i * 4 + j] = transform.matrix[i][j]; } } if (giprobe_debug_uniform_set.is_valid()) { RD::get_singleton()->free(giprobe_debug_uniform_set); } Vector uniforms; { RD::Uniform u; u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 1; u.ids.push_back(storage->gi_probe_get_data_buffer(gi_probe->probe)); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 2; u.ids.push_back(gi_probe->texture); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 3; u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); uniforms.push_back(u); } int cell_count; if (!p_emission && p_lighting && gi_probe->has_dynamic_object_data) { cell_count = push_constant.bounds[0] * push_constant.bounds[1] * push_constant.bounds[2]; } else { cell_count = gi_probe->mipmaps[level].cell_count; } giprobe_debug_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_debug_shader_version_shaders[0], 0); RD::get_singleton()->draw_list_bind_render_pipeline(p_draw_list, giprobe_debug_shader_version_pipelines[p_emission ? GI_PROBE_DEBUG_EMISSION : p_lighting ? (gi_probe->has_dynamic_object_data ? GI_PROBE_DEBUG_LIGHT_FULL : GI_PROBE_DEBUG_LIGHT) : GI_PROBE_DEBUG_COLOR].get_render_pipeline(RD::INVALID_ID, RD::get_singleton()->framebuffer_get_format(p_framebuffer))); RD::get_singleton()->draw_list_bind_uniform_set(p_draw_list, giprobe_debug_uniform_set, 0); RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(GIProbeDebugPushConstant)); RD::get_singleton()->draw_list_draw(p_draw_list, false, cell_count, 36); } void RasterizerSceneRD::_debug_sdfgi_probes(RID p_render_buffers, RD::DrawListID p_draw_list, RID p_framebuffer, const CameraMatrix &p_camera_with_transform) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND(!rb); if (!rb->sdfgi) { return; //nothing to debug } SDGIShader::DebugProbesPushConstant push_constant; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { push_constant.projection[i * 4 + j] = p_camera_with_transform.matrix[i][j]; } } //gen spheres from strips uint32_t band_points = 16; push_constant.band_power = 4; push_constant.sections_in_band = ((band_points / 2) - 1); push_constant.band_mask = band_points - 2; push_constant.section_arc = (Math_PI * 2.0) / float(push_constant.sections_in_band); push_constant.y_mult = rb->sdfgi->y_mult; uint32_t total_points = push_constant.sections_in_band * band_points; uint32_t total_probes = rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count; push_constant.grid_size[0] = rb->sdfgi->cascade_size; push_constant.grid_size[1] = rb->sdfgi->cascade_size; push_constant.grid_size[2] = rb->sdfgi->cascade_size; push_constant.cascade = 0; push_constant.probe_axis_size = rb->sdfgi->probe_axis_count; if (!rb->sdfgi->debug_probes_uniform_set.is_valid() || !RD::get_singleton()->uniform_set_is_valid(rb->sdfgi->debug_probes_uniform_set)) { Vector uniforms; { RD::Uniform u; u.binding = 1; u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.ids.push_back(rb->sdfgi->cascades_ubo); uniforms.push_back(u); } { RD::Uniform u; u.binding = 2; u.type = RD::UNIFORM_TYPE_TEXTURE; u.ids.push_back(rb->sdfgi->lightprobe_texture); uniforms.push_back(u); } { RD::Uniform u; u.binding = 3; u.type = RD::UNIFORM_TYPE_SAMPLER; u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); uniforms.push_back(u); } { RD::Uniform u; u.binding = 4; u.type = RD::UNIFORM_TYPE_TEXTURE; u.ids.push_back(rb->sdfgi->occlusion_texture); uniforms.push_back(u); } rb->sdfgi->debug_probes_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.debug_probes.version_get_shader(sdfgi_shader.debug_probes_shader, 0), 0); } RD::get_singleton()->draw_list_bind_render_pipeline(p_draw_list, sdfgi_shader.debug_probes_pipeline[SDGIShader::PROBE_DEBUG_PROBES].get_render_pipeline(RD::INVALID_FORMAT_ID, RD::get_singleton()->framebuffer_get_format(p_framebuffer))); RD::get_singleton()->draw_list_bind_uniform_set(p_draw_list, rb->sdfgi->debug_probes_uniform_set, 0); RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(SDGIShader::DebugProbesPushConstant)); RD::get_singleton()->draw_list_draw(p_draw_list, false, total_probes, total_points); if (sdfgi_debug_probe_dir != Vector3()) { print_line("CLICK DEBUG ME?"); uint32_t cascade = 0; Vector3 offset = Vector3((Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + rb->sdfgi->cascades[cascade].position)) * rb->sdfgi->cascades[cascade].cell_size * Vector3(1.0, 1.0 / rb->sdfgi->y_mult, 1.0); Vector3 probe_size = rb->sdfgi->cascades[cascade].cell_size * (rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR) * Vector3(1.0, 1.0 / rb->sdfgi->y_mult, 1.0); Vector3 ray_from = sdfgi_debug_probe_pos; Vector3 ray_to = sdfgi_debug_probe_pos + sdfgi_debug_probe_dir * rb->sdfgi->cascades[cascade].cell_size * Math::sqrt(3.0) * rb->sdfgi->cascade_size; float sphere_radius = 0.2; float closest_dist = 1e20; sdfgi_debug_probe_enabled = false; Vector3i probe_from = rb->sdfgi->cascades[cascade].position / (rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR); for (int i = 0; i < (SDFGI::PROBE_DIVISOR + 1); i++) { for (int j = 0; j < (SDFGI::PROBE_DIVISOR + 1); j++) { for (int k = 0; k < (SDFGI::PROBE_DIVISOR + 1); k++) { Vector3 pos = offset + probe_size * Vector3(i, j, k); Vector3 res; if (Geometry3D::segment_intersects_sphere(ray_from, ray_to, pos, sphere_radius, &res)) { float d = ray_from.distance_to(res); if (d < closest_dist) { closest_dist = d; sdfgi_debug_probe_enabled = true; sdfgi_debug_probe_index = probe_from + Vector3i(i, j, k); } } } } } if (sdfgi_debug_probe_enabled) { print_line("found: " + sdfgi_debug_probe_index); } else { print_line("no found"); } sdfgi_debug_probe_dir = Vector3(); } if (sdfgi_debug_probe_enabled) { uint32_t cascade = 0; uint32_t probe_cells = (rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR); Vector3i probe_from = rb->sdfgi->cascades[cascade].position / probe_cells; Vector3i ofs = sdfgi_debug_probe_index - probe_from; if (ofs.x < 0 || ofs.y < 0 || ofs.z < 0) { return; } if (ofs.x > SDFGI::PROBE_DIVISOR || ofs.y > SDFGI::PROBE_DIVISOR || ofs.z > SDFGI::PROBE_DIVISOR) { return; } uint32_t mult = (SDFGI::PROBE_DIVISOR + 1); uint32_t index = ofs.z * mult * mult + ofs.y * mult + ofs.x; push_constant.probe_debug_index = index; uint32_t cell_count = probe_cells * 2 * probe_cells * 2 * probe_cells * 2; RD::get_singleton()->draw_list_bind_render_pipeline(p_draw_list, sdfgi_shader.debug_probes_pipeline[SDGIShader::PROBE_DEBUG_VISIBILITY].get_render_pipeline(RD::INVALID_FORMAT_ID, RD::get_singleton()->framebuffer_get_format(p_framebuffer))); RD::get_singleton()->draw_list_bind_uniform_set(p_draw_list, rb->sdfgi->debug_probes_uniform_set, 0); RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(SDGIShader::DebugProbesPushConstant)); RD::get_singleton()->draw_list_draw(p_draw_list, false, cell_count, total_points); } } //////////////////////////////// RID RasterizerSceneRD::render_buffers_create() { RenderBuffers rb; rb.data = _create_render_buffer_data(); return render_buffers_owner.make_rid(rb); } void RasterizerSceneRD::_allocate_blur_textures(RenderBuffers *rb) { ERR_FAIL_COND(!rb->blur[0].texture.is_null()); uint32_t mipmaps_required = Image::get_image_required_mipmaps(rb->width, rb->height, Image::FORMAT_RGBAH); RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; tf.width = rb->width; tf.height = rb->height; tf.type = RD::TEXTURE_TYPE_2D; tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT; tf.mipmaps = mipmaps_required; rb->blur[0].texture = RD::get_singleton()->texture_create(tf, RD::TextureView()); //the second one is smaller (only used for separatable part of blur) tf.width >>= 1; tf.height >>= 1; tf.mipmaps--; rb->blur[1].texture = RD::get_singleton()->texture_create(tf, RD::TextureView()); int base_width = rb->width; int base_height = rb->height; for (uint32_t i = 0; i < mipmaps_required; i++) { RenderBuffers::Blur::Mipmap mm; mm.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->blur[0].texture, 0, i); mm.width = base_width; mm.height = base_height; rb->blur[0].mipmaps.push_back(mm); if (i > 0) { mm.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->blur[1].texture, 0, i - 1); rb->blur[1].mipmaps.push_back(mm); } base_width = MAX(1, base_width >> 1); base_height = MAX(1, base_height >> 1); } } void RasterizerSceneRD::_allocate_luminance_textures(RenderBuffers *rb) { ERR_FAIL_COND(!rb->luminance.current.is_null()); int w = rb->width; int h = rb->height; while (true) { w = MAX(w / 8, 1); h = MAX(h / 8, 1); RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R32_SFLOAT; tf.width = w; tf.height = h; tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT; bool final = w == 1 && h == 1; if (final) { tf.usage_bits |= RD::TEXTURE_USAGE_SAMPLING_BIT; } RID texture = RD::get_singleton()->texture_create(tf, RD::TextureView()); rb->luminance.reduce.push_back(texture); if (final) { rb->luminance.current = RD::get_singleton()->texture_create(tf, RD::TextureView()); break; } } } void RasterizerSceneRD::_free_render_buffer_data(RenderBuffers *rb) { if (rb->texture.is_valid()) { RD::get_singleton()->free(rb->texture); rb->texture = RID(); } if (rb->depth_texture.is_valid()) { RD::get_singleton()->free(rb->depth_texture); rb->depth_texture = RID(); } for (int i = 0; i < 2; i++) { if (rb->blur[i].texture.is_valid()) { RD::get_singleton()->free(rb->blur[i].texture); rb->blur[i].texture = RID(); rb->blur[i].mipmaps.clear(); } } for (int i = 0; i < rb->luminance.reduce.size(); i++) { RD::get_singleton()->free(rb->luminance.reduce[i]); } for (int i = 0; i < rb->luminance.reduce.size(); i++) { RD::get_singleton()->free(rb->luminance.reduce[i]); } rb->luminance.reduce.clear(); if (rb->luminance.current.is_valid()) { RD::get_singleton()->free(rb->luminance.current); rb->luminance.current = RID(); } if (rb->ssao.ao[0].is_valid()) { RD::get_singleton()->free(rb->ssao.depth); RD::get_singleton()->free(rb->ssao.ao[0]); if (rb->ssao.ao[1].is_valid()) { RD::get_singleton()->free(rb->ssao.ao[1]); } if (rb->ssao.ao_full.is_valid()) { RD::get_singleton()->free(rb->ssao.ao_full); } rb->ssao.depth = RID(); rb->ssao.ao[0] = RID(); rb->ssao.ao[1] = RID(); rb->ssao.ao_full = RID(); rb->ssao.depth_slices.clear(); } if (rb->ssr.blur_radius[0].is_valid()) { RD::get_singleton()->free(rb->ssr.blur_radius[0]); RD::get_singleton()->free(rb->ssr.blur_radius[1]); rb->ssr.blur_radius[0] = RID(); rb->ssr.blur_radius[1] = RID(); } if (rb->ssr.depth_scaled.is_valid()) { RD::get_singleton()->free(rb->ssr.depth_scaled); rb->ssr.depth_scaled = RID(); RD::get_singleton()->free(rb->ssr.normal_scaled); rb->ssr.normal_scaled = RID(); } } void RasterizerSceneRD::_process_sss(RID p_render_buffers, const CameraMatrix &p_camera) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND(!rb); bool can_use_effects = rb->width >= 8 && rb->height >= 8; if (!can_use_effects) { //just copy return; } if (rb->blur[0].texture.is_null()) { _allocate_blur_textures(rb); _render_buffers_uniform_set_changed(p_render_buffers); } storage->get_effects()->sub_surface_scattering(rb->texture, rb->blur[0].mipmaps[0].texture, rb->depth_texture, p_camera, Size2i(rb->width, rb->height), sss_scale, sss_depth_scale, sss_quality); } void RasterizerSceneRD::_process_ssr(RID p_render_buffers, RID p_dest_framebuffer, RID p_normal_buffer, RID p_specular_buffer, RID p_metallic, const Color &p_metallic_mask, RID p_environment, const CameraMatrix &p_projection, bool p_use_additive) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND(!rb); bool can_use_effects = rb->width >= 8 && rb->height >= 8; if (!can_use_effects) { //just copy storage->get_effects()->merge_specular(p_dest_framebuffer, p_specular_buffer, p_use_additive ? RID() : rb->texture, RID()); return; } Environment *env = environment_owner.getornull(p_environment); ERR_FAIL_COND(!env); ERR_FAIL_COND(!env->ssr_enabled); if (rb->ssr.depth_scaled.is_null()) { RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R32_SFLOAT; tf.width = rb->width / 2; tf.height = rb->height / 2; tf.type = RD::TEXTURE_TYPE_2D; tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT; rb->ssr.depth_scaled = RD::get_singleton()->texture_create(tf, RD::TextureView()); tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; rb->ssr.normal_scaled = RD::get_singleton()->texture_create(tf, RD::TextureView()); } if (ssr_roughness_quality != RS::ENV_SSR_ROUGNESS_QUALITY_DISABLED && !rb->ssr.blur_radius[0].is_valid()) { RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R8_UNORM; tf.width = rb->width / 2; tf.height = rb->height / 2; tf.type = RD::TEXTURE_TYPE_2D; tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT; rb->ssr.blur_radius[0] = RD::get_singleton()->texture_create(tf, RD::TextureView()); rb->ssr.blur_radius[1] = RD::get_singleton()->texture_create(tf, RD::TextureView()); } if (rb->blur[0].texture.is_null()) { _allocate_blur_textures(rb); _render_buffers_uniform_set_changed(p_render_buffers); } storage->get_effects()->screen_space_reflection(rb->texture, p_normal_buffer, ssr_roughness_quality, rb->ssr.blur_radius[0], rb->ssr.blur_radius[1], p_metallic, p_metallic_mask, rb->depth_texture, rb->ssr.depth_scaled, rb->ssr.normal_scaled, rb->blur[0].mipmaps[1].texture, rb->blur[1].mipmaps[0].texture, Size2i(rb->width / 2, rb->height / 2), env->ssr_max_steps, env->ssr_fade_in, env->ssr_fade_out, env->ssr_depth_tolerance, p_projection); storage->get_effects()->merge_specular(p_dest_framebuffer, p_specular_buffer, p_use_additive ? RID() : rb->texture, rb->blur[0].mipmaps[1].texture); } void RasterizerSceneRD::_process_ssao(RID p_render_buffers, RID p_environment, RID p_normal_buffer, const CameraMatrix &p_projection) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND(!rb); Environment *env = environment_owner.getornull(p_environment); ERR_FAIL_COND(!env); RENDER_TIMESTAMP("Process SSAO"); if (rb->ssao.ao[0].is_valid() && rb->ssao.ao_full.is_valid() != ssao_half_size) { RD::get_singleton()->free(rb->ssao.depth); RD::get_singleton()->free(rb->ssao.ao[0]); if (rb->ssao.ao[1].is_valid()) { RD::get_singleton()->free(rb->ssao.ao[1]); } if (rb->ssao.ao_full.is_valid()) { RD::get_singleton()->free(rb->ssao.ao_full); } rb->ssao.depth = RID(); rb->ssao.ao[0] = RID(); rb->ssao.ao[1] = RID(); rb->ssao.ao_full = RID(); rb->ssao.depth_slices.clear(); } if (!rb->ssao.ao[0].is_valid()) { //allocate depth slices { RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R32_SFLOAT; tf.width = rb->width / 2; tf.height = rb->height / 2; tf.mipmaps = Image::get_image_required_mipmaps(tf.width, tf.height, Image::FORMAT_RF) + 1; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; rb->ssao.depth = RD::get_singleton()->texture_create(tf, RD::TextureView()); for (uint32_t i = 0; i < tf.mipmaps; i++) { RID slice = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->ssao.depth, 0, i); rb->ssao.depth_slices.push_back(slice); } } { RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R8_UNORM; tf.width = ssao_half_size ? rb->width / 2 : rb->width; tf.height = ssao_half_size ? rb->height / 2 : rb->height; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; rb->ssao.ao[0] = RD::get_singleton()->texture_create(tf, RD::TextureView()); rb->ssao.ao[1] = RD::get_singleton()->texture_create(tf, RD::TextureView()); } if (ssao_half_size) { //upsample texture RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R8_UNORM; tf.width = rb->width; tf.height = rb->height; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; rb->ssao.ao_full = RD::get_singleton()->texture_create(tf, RD::TextureView()); } _render_buffers_uniform_set_changed(p_render_buffers); } storage->get_effects()->generate_ssao(rb->depth_texture, p_normal_buffer, Size2i(rb->width, rb->height), rb->ssao.depth, rb->ssao.depth_slices, rb->ssao.ao[0], rb->ssao.ao_full.is_valid(), rb->ssao.ao[1], rb->ssao.ao_full, env->ssao_intensity, env->ssao_radius, env->ssao_bias, p_projection, ssao_quality, env->ssao_blur, env->ssao_blur_edge_sharpness); } void RasterizerSceneRD::_render_buffers_post_process_and_tonemap(RID p_render_buffers, RID p_environment, RID p_camera_effects, const CameraMatrix &p_projection) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND(!rb); Environment *env = environment_owner.getornull(p_environment); //glow (if enabled) CameraEffects *camfx = camera_effects_owner.getornull(p_camera_effects); bool can_use_effects = rb->width >= 8 && rb->height >= 8; if (can_use_effects && camfx && (camfx->dof_blur_near_enabled || camfx->dof_blur_far_enabled) && camfx->dof_blur_amount > 0.0) { if (rb->blur[0].texture.is_null()) { _allocate_blur_textures(rb); _render_buffers_uniform_set_changed(p_render_buffers); } float bokeh_size = camfx->dof_blur_amount * 64.0; storage->get_effects()->bokeh_dof(rb->texture, rb->depth_texture, Size2i(rb->width, rb->height), rb->blur[0].mipmaps[0].texture, rb->blur[1].mipmaps[0].texture, rb->blur[0].mipmaps[1].texture, camfx->dof_blur_far_enabled, camfx->dof_blur_far_distance, camfx->dof_blur_far_transition, camfx->dof_blur_near_enabled, camfx->dof_blur_near_distance, camfx->dof_blur_near_transition, bokeh_size, dof_blur_bokeh_shape, dof_blur_quality, dof_blur_use_jitter, p_projection.get_z_near(), p_projection.get_z_far(), p_projection.is_orthogonal()); } if (can_use_effects && env && env->auto_exposure) { if (rb->luminance.current.is_null()) { _allocate_luminance_textures(rb); _render_buffers_uniform_set_changed(p_render_buffers); } bool set_immediate = env->auto_exposure_version != rb->auto_exposure_version; rb->auto_exposure_version = env->auto_exposure_version; double step = env->auto_exp_speed * time_step; storage->get_effects()->luminance_reduction(rb->texture, Size2i(rb->width, rb->height), rb->luminance.reduce, rb->luminance.current, env->min_luminance, env->max_luminance, step, set_immediate); //swap final reduce with prev luminance SWAP(rb->luminance.current, rb->luminance.reduce.write[rb->luminance.reduce.size() - 1]); RenderingServerRaster::redraw_request(); //redraw all the time if auto exposure rendering is on } int max_glow_level = -1; int glow_mask = 0; if (can_use_effects && env && env->glow_enabled) { /* see that blur textures are allocated */ if (rb->blur[0].texture.is_null()) { _allocate_blur_textures(rb); _render_buffers_uniform_set_changed(p_render_buffers); } for (int i = 0; i < RS::MAX_GLOW_LEVELS; i++) { if (env->glow_levels & (1 << i)) { if (i >= rb->blur[1].mipmaps.size()) { max_glow_level = rb->blur[1].mipmaps.size() - 1; glow_mask |= 1 << max_glow_level; } else { max_glow_level = i; glow_mask |= (1 << i); } } } for (int i = 0; i < (max_glow_level + 1); i++) { int vp_w = rb->blur[1].mipmaps[i].width; int vp_h = rb->blur[1].mipmaps[i].height; if (i == 0) { RID luminance_texture; if (env->auto_exposure && rb->luminance.current.is_valid()) { luminance_texture = rb->luminance.current; } storage->get_effects()->gaussian_glow(rb->texture, rb->blur[0].mipmaps[i + 1].texture, rb->blur[1].mipmaps[i].texture, Size2i(vp_w, vp_h), env->glow_strength, true, env->glow_hdr_luminance_cap, env->exposure, env->glow_bloom, env->glow_hdr_bleed_threshold, env->glow_hdr_bleed_scale, luminance_texture, env->auto_exp_scale); } else { storage->get_effects()->gaussian_glow(rb->blur[1].mipmaps[i - 1].texture, rb->blur[0].mipmaps[i + 1].texture, rb->blur[1].mipmaps[i].texture, Size2i(vp_w, vp_h), env->glow_strength); } } } { //tonemap RasterizerEffectsRD::TonemapSettings tonemap; tonemap.color_correction_texture = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE); if (can_use_effects && env && env->auto_exposure && rb->luminance.current.is_valid()) { tonemap.use_auto_exposure = true; tonemap.exposure_texture = rb->luminance.current; tonemap.auto_exposure_grey = env->auto_exp_scale; } else { tonemap.exposure_texture = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE); } if (can_use_effects && env && env->glow_enabled) { tonemap.use_glow = true; tonemap.glow_mode = RasterizerEffectsRD::TonemapSettings::GlowMode(env->glow_blend_mode); tonemap.glow_intensity = env->glow_blend_mode == RS::ENV_GLOW_BLEND_MODE_MIX ? env->glow_mix : env->glow_intensity; tonemap.glow_level_flags = glow_mask; tonemap.glow_texture_size.x = rb->blur[1].mipmaps[0].width; tonemap.glow_texture_size.y = rb->blur[1].mipmaps[0].height; tonemap.glow_use_bicubic_upscale = glow_bicubic_upscale; tonemap.glow_texture = rb->blur[1].texture; } else { tonemap.glow_texture = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_BLACK); } if (rb->screen_space_aa == RS::VIEWPORT_SCREEN_SPACE_AA_FXAA) { tonemap.use_fxaa = true; } tonemap.texture_size = Vector2i(rb->width, rb->height); if (env) { tonemap.tonemap_mode = env->tone_mapper; tonemap.white = env->white; tonemap.exposure = env->exposure; } storage->get_effects()->tonemapper(rb->texture, storage->render_target_get_rd_framebuffer(rb->render_target), tonemap); } storage->render_target_disable_clear_request(rb->render_target); } void RasterizerSceneRD::_render_buffers_debug_draw(RID p_render_buffers, RID p_shadow_atlas) { RasterizerEffectsRD *effects = storage->get_effects(); RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND(!rb); if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SHADOW_ATLAS) { if (p_shadow_atlas.is_valid()) { RID shadow_atlas_texture = shadow_atlas_get_texture(p_shadow_atlas); Size2 rtsize = storage->render_target_get_size(rb->render_target); effects->copy_to_fb_rect(shadow_atlas_texture, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2i(Vector2(), rtsize / 2), false, true); } } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DIRECTIONAL_SHADOW_ATLAS) { if (directional_shadow_get_texture().is_valid()) { RID shadow_atlas_texture = directional_shadow_get_texture(); Size2 rtsize = storage->render_target_get_size(rb->render_target); effects->copy_to_fb_rect(shadow_atlas_texture, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2i(Vector2(), rtsize / 2), false, true); } } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DECAL_ATLAS) { RID decal_atlas = storage->decal_atlas_get_texture(); if (decal_atlas.is_valid()) { Size2 rtsize = storage->render_target_get_size(rb->render_target); effects->copy_to_fb_rect(decal_atlas, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2i(Vector2(), rtsize / 2), false, false, true); } } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SCENE_LUMINANCE) { if (rb->luminance.current.is_valid()) { Size2 rtsize = storage->render_target_get_size(rb->render_target); effects->copy_to_fb_rect(rb->luminance.current, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize / 8), false, true); } } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SSAO && rb->ssao.ao[0].is_valid()) { Size2 rtsize = storage->render_target_get_size(rb->render_target); RID ao_buf = rb->ssao.ao_full.is_valid() ? rb->ssao.ao_full : rb->ssao.ao[0]; effects->copy_to_fb_rect(ao_buf, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), false, true); } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_NORMAL_BUFFER && _render_buffers_get_normal_texture(p_render_buffers).is_valid()) { Size2 rtsize = storage->render_target_get_size(rb->render_target); effects->copy_to_fb_rect(_render_buffers_get_normal_texture(p_render_buffers), storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), false, false); } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_GI_BUFFER && _render_buffers_get_ambient_texture(p_render_buffers).is_valid()) { Size2 rtsize = storage->render_target_get_size(rb->render_target); RID ambient_texture = _render_buffers_get_ambient_texture(p_render_buffers); RID reflection_texture = _render_buffers_get_reflection_texture(p_render_buffers); effects->copy_to_fb_rect(ambient_texture, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), false, false, false, true, reflection_texture); } } void RasterizerSceneRD::_sdfgi_debug_draw(RID p_render_buffers, const CameraMatrix &p_projection, const Transform &p_transform) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND(!rb); if (!rb->sdfgi) { return; //eh } if (!rb->sdfgi->debug_uniform_set.is_valid() || !RD::get_singleton()->uniform_set_is_valid(rb->sdfgi->debug_uniform_set)) { Vector uniforms; { RD::Uniform u; u.binding = 1; u.type = RD::UNIFORM_TYPE_TEXTURE; for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) { if (i < rb->sdfgi->cascades.size()) { u.ids.push_back(rb->sdfgi->cascades[i].sdf_tex); } else { u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE)); } } uniforms.push_back(u); } { RD::Uniform u; u.binding = 2; u.type = RD::UNIFORM_TYPE_TEXTURE; for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) { if (i < rb->sdfgi->cascades.size()) { u.ids.push_back(rb->sdfgi->cascades[i].light_tex); } else { u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE)); } } uniforms.push_back(u); } { RD::Uniform u; u.binding = 3; u.type = RD::UNIFORM_TYPE_TEXTURE; for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) { if (i < rb->sdfgi->cascades.size()) { u.ids.push_back(rb->sdfgi->cascades[i].light_aniso_0_tex); } else { u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE)); } } uniforms.push_back(u); } { RD::Uniform u; u.binding = 4; u.type = RD::UNIFORM_TYPE_TEXTURE; for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) { if (i < rb->sdfgi->cascades.size()) { u.ids.push_back(rb->sdfgi->cascades[i].light_aniso_1_tex); } else { u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE)); } } uniforms.push_back(u); } { RD::Uniform u; u.binding = 5; u.type = RD::UNIFORM_TYPE_TEXTURE; u.ids.push_back(rb->sdfgi->occlusion_texture); uniforms.push_back(u); } { RD::Uniform u; u.binding = 8; u.type = RD::UNIFORM_TYPE_SAMPLER; u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); uniforms.push_back(u); } { RD::Uniform u; u.binding = 9; u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.ids.push_back(rb->sdfgi->cascades_ubo); uniforms.push_back(u); } { RD::Uniform u; u.binding = 10; u.type = RD::UNIFORM_TYPE_IMAGE; u.ids.push_back(rb->texture); uniforms.push_back(u); } { RD::Uniform u; u.binding = 11; u.type = RD::UNIFORM_TYPE_TEXTURE; u.ids.push_back(rb->sdfgi->lightprobe_texture); uniforms.push_back(u); } rb->sdfgi->debug_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.debug_shader_version, 0); } RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.debug_pipeline); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->debug_uniform_set, 0); SDGIShader::DebugPushConstant push_constant; push_constant.grid_size[0] = rb->sdfgi->cascade_size; push_constant.grid_size[1] = rb->sdfgi->cascade_size; push_constant.grid_size[2] = rb->sdfgi->cascade_size; push_constant.max_cascades = rb->sdfgi->cascades.size(); push_constant.screen_size[0] = rb->width; push_constant.screen_size[1] = rb->height; push_constant.probe_axis_size = rb->sdfgi->probe_axis_count; push_constant.use_occlusion = rb->sdfgi->uses_occlusion; push_constant.y_mult = rb->sdfgi->y_mult; Vector2 vp_half = p_projection.get_viewport_half_extents(); push_constant.cam_extent[0] = vp_half.x; push_constant.cam_extent[1] = vp_half.y; push_constant.cam_extent[2] = -p_projection.get_z_near(); push_constant.cam_transform[0] = p_transform.basis.elements[0][0]; push_constant.cam_transform[1] = p_transform.basis.elements[1][0]; push_constant.cam_transform[2] = p_transform.basis.elements[2][0]; push_constant.cam_transform[3] = 0; push_constant.cam_transform[4] = p_transform.basis.elements[0][1]; push_constant.cam_transform[5] = p_transform.basis.elements[1][1]; push_constant.cam_transform[6] = p_transform.basis.elements[2][1]; push_constant.cam_transform[7] = 0; push_constant.cam_transform[8] = p_transform.basis.elements[0][2]; push_constant.cam_transform[9] = p_transform.basis.elements[1][2]; push_constant.cam_transform[10] = p_transform.basis.elements[2][2]; push_constant.cam_transform[11] = 0; push_constant.cam_transform[12] = p_transform.origin.x; push_constant.cam_transform[13] = p_transform.origin.y; push_constant.cam_transform[14] = p_transform.origin.z; push_constant.cam_transform[15] = 1; RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::DebugPushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->width, rb->height, 1, 8, 8, 1); RD::get_singleton()->compute_list_end(); Size2 rtsize = storage->render_target_get_size(rb->render_target); storage->get_effects()->copy_to_fb_rect(rb->texture, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), true); } RID RasterizerSceneRD::render_buffers_get_back_buffer_texture(RID p_render_buffers) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, RID()); if (!rb->blur[0].texture.is_valid()) { return RID(); //not valid at the moment } return rb->blur[0].texture; } RID RasterizerSceneRD::render_buffers_get_ao_texture(RID p_render_buffers) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, RID()); return rb->ssao.ao_full.is_valid() ? rb->ssao.ao_full : rb->ssao.ao[0]; } RID RasterizerSceneRD::render_buffers_get_gi_probe_buffer(RID p_render_buffers) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, RID()); if (rb->giprobe_buffer.is_null()) { rb->giprobe_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(GI::GIProbeData) * RenderBuffers::MAX_GIPROBES); } return rb->giprobe_buffer; } RID RasterizerSceneRD::render_buffers_get_default_gi_probe_buffer() { return default_giprobe_buffer; } uint32_t RasterizerSceneRD::render_buffers_get_sdfgi_cascade_count(RID p_render_buffers) const { const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, 0); ERR_FAIL_COND_V(!rb->sdfgi, 0); return rb->sdfgi->cascades.size(); } bool RasterizerSceneRD::render_buffers_is_sdfgi_enabled(RID p_render_buffers) const { const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, false); return rb->sdfgi != nullptr; } RID RasterizerSceneRD::render_buffers_get_sdfgi_irradiance_probes(RID p_render_buffers) const { const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, RID()); ERR_FAIL_COND_V(!rb->sdfgi, RID()); return rb->sdfgi->lightprobe_texture; } Vector3 RasterizerSceneRD::render_buffers_get_sdfgi_cascade_offset(RID p_render_buffers, uint32_t p_cascade) const { const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, Vector3()); ERR_FAIL_COND_V(!rb->sdfgi, Vector3()); ERR_FAIL_UNSIGNED_INDEX_V(p_cascade, rb->sdfgi->cascades.size(), Vector3()); return Vector3((Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + rb->sdfgi->cascades[p_cascade].position)) * rb->sdfgi->cascades[p_cascade].cell_size; } Vector3i RasterizerSceneRD::render_buffers_get_sdfgi_cascade_probe_offset(RID p_render_buffers, uint32_t p_cascade) const { const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, Vector3i()); ERR_FAIL_COND_V(!rb->sdfgi, Vector3i()); ERR_FAIL_UNSIGNED_INDEX_V(p_cascade, rb->sdfgi->cascades.size(), Vector3i()); int32_t probe_divisor = rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR; return rb->sdfgi->cascades[p_cascade].position / probe_divisor; } float RasterizerSceneRD::render_buffers_get_sdfgi_normal_bias(RID p_render_buffers) const { const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, 0); ERR_FAIL_COND_V(!rb->sdfgi, 0); return rb->sdfgi->normal_bias; } float RasterizerSceneRD::render_buffers_get_sdfgi_cascade_probe_size(RID p_render_buffers, uint32_t p_cascade) const { const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, 0); ERR_FAIL_COND_V(!rb->sdfgi, 0); ERR_FAIL_UNSIGNED_INDEX_V(p_cascade, rb->sdfgi->cascades.size(), 0); return float(rb->sdfgi->cascade_size) * rb->sdfgi->cascades[p_cascade].cell_size / float(rb->sdfgi->probe_axis_count - 1); } uint32_t RasterizerSceneRD::render_buffers_get_sdfgi_cascade_probe_count(RID p_render_buffers) const { const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, 0); ERR_FAIL_COND_V(!rb->sdfgi, 0); return rb->sdfgi->probe_axis_count; } uint32_t RasterizerSceneRD::render_buffers_get_sdfgi_cascade_size(RID p_render_buffers) const { const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, 0); ERR_FAIL_COND_V(!rb->sdfgi, 0); return rb->sdfgi->cascade_size; } bool RasterizerSceneRD::render_buffers_is_sdfgi_using_occlusion(RID p_render_buffers) const { const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, false); ERR_FAIL_COND_V(!rb->sdfgi, false); return rb->sdfgi->uses_occlusion; } float RasterizerSceneRD::render_buffers_get_sdfgi_energy(RID p_render_buffers) const { const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, 0); ERR_FAIL_COND_V(!rb->sdfgi, false); return rb->sdfgi->energy; } RID RasterizerSceneRD::render_buffers_get_sdfgi_occlusion_texture(RID p_render_buffers) const { const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, RID()); ERR_FAIL_COND_V(!rb->sdfgi, RID()); return rb->sdfgi->occlusion_texture; } bool RasterizerSceneRD::render_buffers_has_volumetric_fog(RID p_render_buffers) const { const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, false); return rb->volumetric_fog != nullptr; } RID RasterizerSceneRD::render_buffers_get_volumetric_fog_texture(RID p_render_buffers) { const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb || !rb->volumetric_fog, RID()); return rb->volumetric_fog->fog_map; } RID RasterizerSceneRD::render_buffers_get_volumetric_fog_sky_uniform_set(RID p_render_buffers) { const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, RID()); if (!rb->volumetric_fog) { return RID(); } return rb->volumetric_fog->sky_uniform_set; } float RasterizerSceneRD::render_buffers_get_volumetric_fog_end(RID p_render_buffers) { const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb || !rb->volumetric_fog, 0); return rb->volumetric_fog->length; } float RasterizerSceneRD::render_buffers_get_volumetric_fog_detail_spread(RID p_render_buffers) { const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb || !rb->volumetric_fog, 0); return rb->volumetric_fog->spread; } void RasterizerSceneRD::render_buffers_configure(RID p_render_buffers, RID p_render_target, int p_width, int p_height, RS::ViewportMSAA p_msaa, RenderingServer::ViewportScreenSpaceAA p_screen_space_aa) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); rb->width = p_width; rb->height = p_height; rb->render_target = p_render_target; rb->msaa = p_msaa; rb->screen_space_aa = p_screen_space_aa; _free_render_buffer_data(rb); { RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; tf.width = rb->width; tf.height = rb->height; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; if (rb->msaa != RS::VIEWPORT_MSAA_DISABLED) { tf.usage_bits |= RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; } else { tf.usage_bits |= RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; } rb->texture = RD::get_singleton()->texture_create(tf, RD::TextureView()); } { RD::TextureFormat tf; if (rb->msaa == RS::VIEWPORT_MSAA_DISABLED) { tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D24_UNORM_S8_UINT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D24_UNORM_S8_UINT : RD::DATA_FORMAT_D32_SFLOAT_S8_UINT; } else { tf.format = RD::DATA_FORMAT_R32_SFLOAT; } tf.width = p_width; tf.height = p_height; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT; if (rb->msaa != RS::VIEWPORT_MSAA_DISABLED) { tf.usage_bits |= RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; } else { tf.usage_bits |= RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; } rb->depth_texture = RD::get_singleton()->texture_create(tf, RD::TextureView()); } rb->data->configure(rb->texture, rb->depth_texture, p_width, p_height, p_msaa); _render_buffers_uniform_set_changed(p_render_buffers); } void RasterizerSceneRD::sub_surface_scattering_set_quality(RS::SubSurfaceScatteringQuality p_quality) { sss_quality = p_quality; } RS::SubSurfaceScatteringQuality RasterizerSceneRD::sub_surface_scattering_get_quality() const { return sss_quality; } void RasterizerSceneRD::sub_surface_scattering_set_scale(float p_scale, float p_depth_scale) { sss_scale = p_scale; sss_depth_scale = p_depth_scale; } void RasterizerSceneRD::shadows_quality_set(RS::ShadowQuality p_quality) { ERR_FAIL_INDEX_MSG(p_quality, RS::SHADOW_QUALITY_MAX, "Shadow quality too high, please see RenderingServer's ShadowQuality enum"); if (shadows_quality != p_quality) { shadows_quality = p_quality; switch (shadows_quality) { case RS::SHADOW_QUALITY_HARD: { penumbra_shadow_samples = 4; soft_shadow_samples = 1; shadows_quality_radius = 1.0; } break; case RS::SHADOW_QUALITY_SOFT_LOW: { penumbra_shadow_samples = 8; soft_shadow_samples = 4; shadows_quality_radius = 2.0; } break; case RS::SHADOW_QUALITY_SOFT_MEDIUM: { penumbra_shadow_samples = 12; soft_shadow_samples = 8; shadows_quality_radius = 2.0; } break; case RS::SHADOW_QUALITY_SOFT_HIGH: { penumbra_shadow_samples = 24; soft_shadow_samples = 16; shadows_quality_radius = 3.0; } break; case RS::SHADOW_QUALITY_SOFT_ULTRA: { penumbra_shadow_samples = 32; soft_shadow_samples = 32; shadows_quality_radius = 4.0; } break; case RS::SHADOW_QUALITY_MAX: break; } get_vogel_disk(penumbra_shadow_kernel, penumbra_shadow_samples); get_vogel_disk(soft_shadow_kernel, soft_shadow_samples); } } void RasterizerSceneRD::directional_shadow_quality_set(RS::ShadowQuality p_quality) { ERR_FAIL_INDEX_MSG(p_quality, RS::SHADOW_QUALITY_MAX, "Shadow quality too high, please see RenderingServer's ShadowQuality enum"); if (directional_shadow_quality != p_quality) { directional_shadow_quality = p_quality; switch (directional_shadow_quality) { case RS::SHADOW_QUALITY_HARD: { directional_penumbra_shadow_samples = 4; directional_soft_shadow_samples = 1; directional_shadow_quality_radius = 1.0; } break; case RS::SHADOW_QUALITY_SOFT_LOW: { directional_penumbra_shadow_samples = 8; directional_soft_shadow_samples = 4; directional_shadow_quality_radius = 2.0; } break; case RS::SHADOW_QUALITY_SOFT_MEDIUM: { directional_penumbra_shadow_samples = 12; directional_soft_shadow_samples = 8; directional_shadow_quality_radius = 2.0; } break; case RS::SHADOW_QUALITY_SOFT_HIGH: { directional_penumbra_shadow_samples = 24; directional_soft_shadow_samples = 16; directional_shadow_quality_radius = 3.0; } break; case RS::SHADOW_QUALITY_SOFT_ULTRA: { directional_penumbra_shadow_samples = 32; directional_soft_shadow_samples = 32; directional_shadow_quality_radius = 4.0; } break; case RS::SHADOW_QUALITY_MAX: break; } get_vogel_disk(directional_penumbra_shadow_kernel, directional_penumbra_shadow_samples); get_vogel_disk(directional_soft_shadow_kernel, directional_soft_shadow_samples); } } int RasterizerSceneRD::get_roughness_layers() const { return roughness_layers; } bool RasterizerSceneRD::is_using_radiance_cubemap_array() const { return sky_use_cubemap_array; } RasterizerSceneRD::RenderBufferData *RasterizerSceneRD::render_buffers_get_data(RID p_render_buffers) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, nullptr); return rb->data; } void RasterizerSceneRD::_setup_reflections(RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, const Transform &p_camera_inverse_transform, RID p_environment) { for (int i = 0; i < p_reflection_probe_cull_count; i++) { RID rpi = p_reflection_probe_cull_result[i]; if (i >= (int)cluster.max_reflections) { reflection_probe_instance_set_render_index(rpi, 0); //invalid, but something needs to be set continue; } reflection_probe_instance_set_render_index(rpi, i); RID base_probe = reflection_probe_instance_get_probe(rpi); Cluster::ReflectionData &reflection_ubo = cluster.reflections[i]; Vector3 extents = storage->reflection_probe_get_extents(base_probe); reflection_ubo.box_extents[0] = extents.x; reflection_ubo.box_extents[1] = extents.y; reflection_ubo.box_extents[2] = extents.z; reflection_ubo.index = reflection_probe_instance_get_atlas_index(rpi); Vector3 origin_offset = storage->reflection_probe_get_origin_offset(base_probe); reflection_ubo.box_offset[0] = origin_offset.x; reflection_ubo.box_offset[1] = origin_offset.y; reflection_ubo.box_offset[2] = origin_offset.z; reflection_ubo.mask = storage->reflection_probe_get_cull_mask(base_probe); float intensity = storage->reflection_probe_get_intensity(base_probe); bool interior = storage->reflection_probe_is_interior(base_probe); bool box_projection = storage->reflection_probe_is_box_projection(base_probe); reflection_ubo.params[0] = intensity; reflection_ubo.params[1] = 0; reflection_ubo.params[2] = interior ? 1.0 : 0.0; reflection_ubo.params[3] = box_projection ? 1.0 : 0.0; Color ambient_linear = storage->reflection_probe_get_ambient_color(base_probe).to_linear(); float interior_ambient_energy = storage->reflection_probe_get_ambient_color_energy(base_probe); uint32_t ambient_mode = storage->reflection_probe_get_ambient_mode(base_probe); reflection_ubo.ambient[0] = ambient_linear.r * interior_ambient_energy; reflection_ubo.ambient[1] = ambient_linear.g * interior_ambient_energy; reflection_ubo.ambient[2] = ambient_linear.b * interior_ambient_energy; reflection_ubo.ambient_mode = ambient_mode; Transform transform = reflection_probe_instance_get_transform(rpi); Transform proj = (p_camera_inverse_transform * transform).inverse(); RasterizerStorageRD::store_transform(proj, reflection_ubo.local_matrix); cluster.builder.add_reflection_probe(transform, extents); reflection_probe_instance_set_render_pass(rpi, RSG::rasterizer->get_frame_number()); } if (p_reflection_probe_cull_count) { RD::get_singleton()->buffer_update(cluster.reflection_buffer, 0, MIN(cluster.max_reflections, (unsigned int)p_reflection_probe_cull_count) * sizeof(ReflectionData), cluster.reflections, true); } } void RasterizerSceneRD::_setup_lights(RID *p_light_cull_result, int p_light_cull_count, const Transform &p_camera_inverse_transform, RID p_shadow_atlas, bool p_using_shadows, uint32_t &r_directional_light_count, uint32_t &r_positional_light_count) { uint32_t light_count = 0; r_directional_light_count = 0; r_positional_light_count = 0; sky_scene_state.ubo.directional_light_count = 0; for (int i = 0; i < p_light_cull_count; i++) { RID li = p_light_cull_result[i]; RID base = light_instance_get_base_light(li); ERR_CONTINUE(base.is_null()); RS::LightType type = storage->light_get_type(base); switch (type) { case RS::LIGHT_DIRECTIONAL: { if (r_directional_light_count >= cluster.max_directional_lights) { continue; } Cluster::DirectionalLightData &light_data = cluster.directional_lights[r_directional_light_count]; Transform light_transform = light_instance_get_base_transform(li); Vector3 direction = p_camera_inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, 1))).normalized(); light_data.direction[0] = direction.x; light_data.direction[1] = direction.y; light_data.direction[2] = direction.z; float sign = storage->light_is_negative(base) ? -1 : 1; light_data.energy = sign * storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * Math_PI; Color linear_col = storage->light_get_color(base).to_linear(); light_data.color[0] = linear_col.r; light_data.color[1] = linear_col.g; light_data.color[2] = linear_col.b; light_data.specular = storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR); light_data.mask = storage->light_get_cull_mask(base); float size = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE); light_data.size = 1.0 - Math::cos(Math::deg2rad(size)); //angle to cosine offset Color shadow_col = storage->light_get_shadow_color(base).to_linear(); if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_PSSM_SPLITS) { light_data.shadow_color1[0] = 1.0; light_data.shadow_color1[1] = 0.0; light_data.shadow_color1[2] = 0.0; light_data.shadow_color1[3] = 1.0; light_data.shadow_color2[0] = 0.0; light_data.shadow_color2[1] = 1.0; light_data.shadow_color2[2] = 0.0; light_data.shadow_color2[3] = 1.0; light_data.shadow_color3[0] = 0.0; light_data.shadow_color3[1] = 0.0; light_data.shadow_color3[2] = 1.0; light_data.shadow_color3[3] = 1.0; light_data.shadow_color4[0] = 1.0; light_data.shadow_color4[1] = 1.0; light_data.shadow_color4[2] = 0.0; light_data.shadow_color4[3] = 1.0; } else { light_data.shadow_color1[0] = shadow_col.r; light_data.shadow_color1[1] = shadow_col.g; light_data.shadow_color1[2] = shadow_col.b; light_data.shadow_color1[3] = 1.0; light_data.shadow_color2[0] = shadow_col.r; light_data.shadow_color2[1] = shadow_col.g; light_data.shadow_color2[2] = shadow_col.b; light_data.shadow_color2[3] = 1.0; light_data.shadow_color3[0] = shadow_col.r; light_data.shadow_color3[1] = shadow_col.g; light_data.shadow_color3[2] = shadow_col.b; light_data.shadow_color3[3] = 1.0; light_data.shadow_color4[0] = shadow_col.r; light_data.shadow_color4[1] = shadow_col.g; light_data.shadow_color4[2] = shadow_col.b; light_data.shadow_color4[3] = 1.0; } light_data.shadow_enabled = p_using_shadows && storage->light_has_shadow(base); float angular_diameter = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE); if (angular_diameter > 0.0) { // I know tan(0) is 0, but let's not risk it with numerical precision. // technically this will keep expanding until reaching the sun, but all we care // is expand until we reach the radius of the near plane (there can't be more occluders than that) angular_diameter = Math::tan(Math::deg2rad(angular_diameter)); } else { angular_diameter = 0.0; } if (light_data.shadow_enabled) { RS::LightDirectionalShadowMode smode = storage->light_directional_get_shadow_mode(base); int limit = smode == RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL ? 0 : (smode == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS ? 1 : 3); light_data.blend_splits = storage->light_directional_get_blend_splits(base); for (int j = 0; j < 4; j++) { Rect2 atlas_rect = light_instance_get_directional_shadow_atlas_rect(li, j); CameraMatrix matrix = light_instance_get_shadow_camera(li, j); float split = light_instance_get_directional_shadow_split(li, MIN(limit, j)); CameraMatrix bias; bias.set_light_bias(); CameraMatrix rectm; rectm.set_light_atlas_rect(atlas_rect); Transform modelview = (p_camera_inverse_transform * light_instance_get_shadow_transform(li, j)).inverse(); CameraMatrix shadow_mtx = rectm * bias * matrix * modelview; light_data.shadow_split_offsets[j] = split; float bias_scale = light_instance_get_shadow_bias_scale(li, j); light_data.shadow_bias[j] = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) * bias_scale; light_data.shadow_normal_bias[j] = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * light_instance_get_directional_shadow_texel_size(li, j); light_data.shadow_transmittance_bias[j] = storage->light_get_transmittance_bias(base) * bias_scale; light_data.shadow_z_range[j] = light_instance_get_shadow_range(li, j); light_data.shadow_range_begin[j] = light_instance_get_shadow_range_begin(li, j); RasterizerStorageRD::store_camera(shadow_mtx, light_data.shadow_matrices[j]); Vector2 uv_scale = light_instance_get_shadow_uv_scale(li, j); uv_scale *= atlas_rect.size; //adapt to atlas size switch (j) { case 0: { light_data.uv_scale1[0] = uv_scale.x; light_data.uv_scale1[1] = uv_scale.y; } break; case 1: { light_data.uv_scale2[0] = uv_scale.x; light_data.uv_scale2[1] = uv_scale.y; } break; case 2: { light_data.uv_scale3[0] = uv_scale.x; light_data.uv_scale3[1] = uv_scale.y; } break; case 3: { light_data.uv_scale4[0] = uv_scale.x; light_data.uv_scale4[1] = uv_scale.y; } break; } } float fade_start = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_FADE_START); light_data.fade_from = -light_data.shadow_split_offsets[3] * MIN(fade_start, 0.999); //using 1.0 would break smoothstep light_data.fade_to = -light_data.shadow_split_offsets[3]; light_data.shadow_volumetric_fog_fade = 1.0 / storage->light_get_shadow_volumetric_fog_fade(base); light_data.soft_shadow_scale = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR); light_data.softshadow_angle = angular_diameter; if (angular_diameter <= 0.0) { light_data.soft_shadow_scale *= directional_shadow_quality_radius_get(); // Only use quality radius for PCF } } // Copy to SkyDirectionalLightData if (r_directional_light_count < sky_scene_state.max_directional_lights) { SkyDirectionalLightData &sky_light_data = sky_scene_state.directional_lights[r_directional_light_count]; Vector3 world_direction = light_transform.basis.xform(Vector3(0, 0, 1)).normalized(); sky_light_data.direction[0] = world_direction.x; sky_light_data.direction[1] = world_direction.y; sky_light_data.direction[2] = -world_direction.z; sky_light_data.energy = light_data.energy / Math_PI; sky_light_data.color[0] = light_data.color[0]; sky_light_data.color[1] = light_data.color[1]; sky_light_data.color[2] = light_data.color[2]; sky_light_data.enabled = true; sky_light_data.size = angular_diameter; sky_scene_state.ubo.directional_light_count++; } r_directional_light_count++; } break; case RS::LIGHT_SPOT: case RS::LIGHT_OMNI: { if (light_count >= cluster.max_lights) { continue; } Transform light_transform = light_instance_get_base_transform(li); Cluster::LightData &light_data = cluster.lights[light_count]; cluster.lights_instances[light_count] = li; float sign = storage->light_is_negative(base) ? -1 : 1; Color linear_col = storage->light_get_color(base).to_linear(); light_data.attenuation_energy[0] = Math::make_half_float(storage->light_get_param(base, RS::LIGHT_PARAM_ATTENUATION)); light_data.attenuation_energy[1] = Math::make_half_float(sign * storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * Math_PI); light_data.color_specular[0] = MIN(uint32_t(linear_col.r * 255), 255); light_data.color_specular[1] = MIN(uint32_t(linear_col.g * 255), 255); light_data.color_specular[2] = MIN(uint32_t(linear_col.b * 255), 255); light_data.color_specular[3] = MIN(uint32_t(storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR) * 255), 255); float radius = MAX(0.001, storage->light_get_param(base, RS::LIGHT_PARAM_RANGE)); light_data.inv_radius = 1.0 / radius; Vector3 pos = p_camera_inverse_transform.xform(light_transform.origin); light_data.position[0] = pos.x; light_data.position[1] = pos.y; light_data.position[2] = pos.z; Vector3 direction = p_camera_inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, -1))).normalized(); light_data.direction[0] = direction.x; light_data.direction[1] = direction.y; light_data.direction[2] = direction.z; float size = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE); light_data.size = size; light_data.cone_attenuation_angle[0] = Math::make_half_float(storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ATTENUATION)); float spot_angle = storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ANGLE); light_data.cone_attenuation_angle[1] = Math::make_half_float(Math::cos(Math::deg2rad(spot_angle))); light_data.mask = storage->light_get_cull_mask(base); light_data.atlas_rect[0] = 0; light_data.atlas_rect[1] = 0; light_data.atlas_rect[2] = 0; light_data.atlas_rect[3] = 0; RID projector = storage->light_get_projector(base); if (projector.is_valid()) { Rect2 rect = storage->decal_atlas_get_texture_rect(projector); if (type == RS::LIGHT_SPOT) { light_data.projector_rect[0] = rect.position.x; light_data.projector_rect[1] = rect.position.y + rect.size.height; //flip because shadow is flipped light_data.projector_rect[2] = rect.size.width; light_data.projector_rect[3] = -rect.size.height; } else { light_data.projector_rect[0] = rect.position.x; light_data.projector_rect[1] = rect.position.y; light_data.projector_rect[2] = rect.size.width; light_data.projector_rect[3] = rect.size.height * 0.5; //used by dp, so needs to be half } } else { light_data.projector_rect[0] = 0; light_data.projector_rect[1] = 0; light_data.projector_rect[2] = 0; light_data.projector_rect[3] = 0; } if (p_using_shadows && p_shadow_atlas.is_valid() && shadow_atlas_owns_light_instance(p_shadow_atlas, li)) { // fill in the shadow information Color shadow_color = storage->light_get_shadow_color(base); light_data.shadow_color_enabled[0] = MIN(uint32_t(shadow_color.r * 255), 255); light_data.shadow_color_enabled[1] = MIN(uint32_t(shadow_color.g * 255), 255); light_data.shadow_color_enabled[2] = MIN(uint32_t(shadow_color.b * 255), 255); light_data.shadow_color_enabled[3] = 255; if (type == RS::LIGHT_SPOT) { light_data.shadow_bias = (storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) * radius / 10.0); float shadow_texel_size = Math::tan(Math::deg2rad(spot_angle)) * radius * 2.0; shadow_texel_size *= light_instance_get_shadow_texel_size(li, p_shadow_atlas); light_data.shadow_normal_bias = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * shadow_texel_size; } else { //omni light_data.shadow_bias = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) * radius / 10.0; float shadow_texel_size = light_instance_get_shadow_texel_size(li, p_shadow_atlas); light_data.shadow_normal_bias = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * shadow_texel_size * 2.0; // applied in -1 .. 1 space } light_data.transmittance_bias = storage->light_get_transmittance_bias(base); Rect2 rect = light_instance_get_shadow_atlas_rect(li, p_shadow_atlas); light_data.atlas_rect[0] = rect.position.x; light_data.atlas_rect[1] = rect.position.y; light_data.atlas_rect[2] = rect.size.width; light_data.atlas_rect[3] = rect.size.height; light_data.soft_shadow_scale = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR); light_data.shadow_volumetric_fog_fade = 1.0 / storage->light_get_shadow_volumetric_fog_fade(base); if (type == RS::LIGHT_OMNI) { light_data.atlas_rect[3] *= 0.5; //one paraboloid on top of another Transform proj = (p_camera_inverse_transform * light_transform).inverse(); RasterizerStorageRD::store_transform(proj, light_data.shadow_matrix); if (size > 0.0) { light_data.soft_shadow_size = size; } else { light_data.soft_shadow_size = 0.0; light_data.soft_shadow_scale *= shadows_quality_radius_get(); // Only use quality radius for PCF } } else if (type == RS::LIGHT_SPOT) { Transform modelview = (p_camera_inverse_transform * light_transform).inverse(); CameraMatrix bias; bias.set_light_bias(); CameraMatrix shadow_mtx = bias * light_instance_get_shadow_camera(li, 0) * modelview; RasterizerStorageRD::store_camera(shadow_mtx, light_data.shadow_matrix); if (size > 0.0) { CameraMatrix cm = light_instance_get_shadow_camera(li, 0); float half_np = cm.get_z_near() * Math::tan(Math::deg2rad(spot_angle)); light_data.soft_shadow_size = (size * 0.5 / radius) / (half_np / cm.get_z_near()) * rect.size.width; } else { light_data.soft_shadow_size = 0.0; light_data.soft_shadow_scale *= shadows_quality_radius_get(); // Only use quality radius for PCF } } } else { light_data.shadow_color_enabled[3] = 0; } light_instance_set_index(li, light_count); cluster.builder.add_light(type == RS::LIGHT_SPOT ? LightClusterBuilder::LIGHT_TYPE_SPOT : LightClusterBuilder::LIGHT_TYPE_OMNI, light_transform, radius, spot_angle); light_count++; r_positional_light_count++; } break; } light_instance_set_render_pass(li, RSG::rasterizer->get_frame_number()); //update UBO for forward rendering, blit to texture for clustered } if (light_count) { RD::get_singleton()->buffer_update(cluster.light_buffer, 0, sizeof(Cluster::LightData) * light_count, cluster.lights, true); } if (r_directional_light_count) { RD::get_singleton()->buffer_update(cluster.directional_light_buffer, 0, sizeof(Cluster::DirectionalLightData) * r_directional_light_count, cluster.directional_lights, true); } } void RasterizerSceneRD::_setup_decals(const RID *p_decal_instances, int p_decal_count, const Transform &p_camera_inverse_xform) { Transform uv_xform; uv_xform.basis.scale(Vector3(2.0, 1.0, 2.0)); uv_xform.origin = Vector3(-1.0, 0.0, -1.0); p_decal_count = MIN((uint32_t)p_decal_count, cluster.max_decals); int idx = 0; for (int i = 0; i < p_decal_count; i++) { RID di = p_decal_instances[i]; RID decal = decal_instance_get_base(di); Transform xform = decal_instance_get_transform(di); float fade = 1.0; if (storage->decal_is_distance_fade_enabled(decal)) { real_t distance = -p_camera_inverse_xform.xform(xform.origin).z; float fade_begin = storage->decal_get_distance_fade_begin(decal); float fade_length = storage->decal_get_distance_fade_length(decal); if (distance > fade_begin) { if (distance > fade_begin + fade_length) { continue; // do not use this decal, its invisible } fade = 1.0 - (distance - fade_begin) / fade_length; } } Cluster::DecalData &dd = cluster.decals[idx]; Vector3 decal_extents = storage->decal_get_extents(decal); Transform scale_xform; scale_xform.basis.scale(Vector3(decal_extents.x, decal_extents.y, decal_extents.z)); Transform to_decal_xform = (p_camera_inverse_xform * decal_instance_get_transform(di) * scale_xform * uv_xform).affine_inverse(); RasterizerStorageRD::store_transform(to_decal_xform, dd.xform); Vector3 normal = xform.basis.get_axis(Vector3::AXIS_Y).normalized(); normal = p_camera_inverse_xform.basis.xform(normal); //camera is normalized, so fine dd.normal[0] = normal.x; dd.normal[1] = normal.y; dd.normal[2] = normal.z; dd.normal_fade = storage->decal_get_normal_fade(decal); RID albedo_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_ALBEDO); RID emission_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_EMISSION); if (albedo_tex.is_valid()) { Rect2 rect = storage->decal_atlas_get_texture_rect(albedo_tex); dd.albedo_rect[0] = rect.position.x; dd.albedo_rect[1] = rect.position.y; dd.albedo_rect[2] = rect.size.x; dd.albedo_rect[3] = rect.size.y; } else { if (!emission_tex.is_valid()) { continue; //no albedo, no emission, no decal. } dd.albedo_rect[0] = 0; dd.albedo_rect[1] = 0; dd.albedo_rect[2] = 0; dd.albedo_rect[3] = 0; } RID normal_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_NORMAL); if (normal_tex.is_valid()) { Rect2 rect = storage->decal_atlas_get_texture_rect(normal_tex); dd.normal_rect[0] = rect.position.x; dd.normal_rect[1] = rect.position.y; dd.normal_rect[2] = rect.size.x; dd.normal_rect[3] = rect.size.y; Basis normal_xform = p_camera_inverse_xform.basis * xform.basis.orthonormalized(); RasterizerStorageRD::store_basis_3x4(normal_xform, dd.normal_xform); } else { dd.normal_rect[0] = 0; dd.normal_rect[1] = 0; dd.normal_rect[2] = 0; dd.normal_rect[3] = 0; } RID orm_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_ORM); if (orm_tex.is_valid()) { Rect2 rect = storage->decal_atlas_get_texture_rect(orm_tex); dd.orm_rect[0] = rect.position.x; dd.orm_rect[1] = rect.position.y; dd.orm_rect[2] = rect.size.x; dd.orm_rect[3] = rect.size.y; } else { dd.orm_rect[0] = 0; dd.orm_rect[1] = 0; dd.orm_rect[2] = 0; dd.orm_rect[3] = 0; } if (emission_tex.is_valid()) { Rect2 rect = storage->decal_atlas_get_texture_rect(emission_tex); dd.emission_rect[0] = rect.position.x; dd.emission_rect[1] = rect.position.y; dd.emission_rect[2] = rect.size.x; dd.emission_rect[3] = rect.size.y; } else { dd.emission_rect[0] = 0; dd.emission_rect[1] = 0; dd.emission_rect[2] = 0; dd.emission_rect[3] = 0; } Color modulate = storage->decal_get_modulate(decal); dd.modulate[0] = modulate.r; dd.modulate[1] = modulate.g; dd.modulate[2] = modulate.b; dd.modulate[3] = modulate.a * fade; dd.emission_energy = storage->decal_get_emission_energy(decal) * fade; dd.albedo_mix = storage->decal_get_albedo_mix(decal); dd.mask = storage->decal_get_cull_mask(decal); dd.upper_fade = storage->decal_get_upper_fade(decal); dd.lower_fade = storage->decal_get_lower_fade(decal); cluster.builder.add_decal(xform, decal_extents); idx++; } if (idx > 0) { RD::get_singleton()->buffer_update(cluster.decal_buffer, 0, sizeof(Cluster::DecalData) * idx, cluster.decals, true); } } void RasterizerSceneRD::_volumetric_fog_erase(RenderBuffers *rb) { ERR_FAIL_COND(!rb->volumetric_fog); RD::get_singleton()->free(rb->volumetric_fog->light_density_map); RD::get_singleton()->free(rb->volumetric_fog->fog_map); if (rb->volumetric_fog->uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set)) { RD::get_singleton()->free(rb->volumetric_fog->uniform_set); } if (rb->volumetric_fog->uniform_set2.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set2)) { RD::get_singleton()->free(rb->volumetric_fog->uniform_set2); } if (rb->volumetric_fog->sdfgi_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->sdfgi_uniform_set)) { RD::get_singleton()->free(rb->volumetric_fog->sdfgi_uniform_set); } if (rb->volumetric_fog->sky_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->sky_uniform_set)) { RD::get_singleton()->free(rb->volumetric_fog->sky_uniform_set); } memdelete(rb->volumetric_fog); rb->volumetric_fog = nullptr; } void RasterizerSceneRD::_allocate_shadow_shrink_stages(RID p_base, int p_base_size, Vector &shrink_stages, uint32_t p_target_size) { //create fog mipmaps uint32_t fog_texture_size = p_target_size; uint32_t base_texture_size = p_base_size; ShadowShrinkStage first; first.size = base_texture_size; first.texture = p_base; shrink_stages.push_back(first); //put depth first in case we dont find smaller ones while (fog_texture_size < base_texture_size) { base_texture_size = MAX(base_texture_size / 8, fog_texture_size); ShadowShrinkStage s; s.size = base_texture_size; RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R32_SFLOAT; tf.width = base_texture_size; tf.height = base_texture_size; tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT; if (base_texture_size == fog_texture_size) { s.filter_texture = RD::get_singleton()->texture_create(tf, RD::TextureView()); tf.usage_bits |= RD::TEXTURE_USAGE_SAMPLING_BIT; } s.texture = RD::get_singleton()->texture_create(tf, RD::TextureView()); shrink_stages.push_back(s); } } void RasterizerSceneRD::_clear_shadow_shrink_stages(Vector &shrink_stages) { for (int i = 1; i < shrink_stages.size(); i++) { RD::get_singleton()->free(shrink_stages[i].texture); if (shrink_stages[i].filter_texture.is_valid()) { RD::get_singleton()->free(shrink_stages[i].filter_texture); } } shrink_stages.clear(); } void RasterizerSceneRD::_update_volumetric_fog(RID p_render_buffers, RID p_environment, const CameraMatrix &p_cam_projection, const Transform &p_cam_transform, RID p_shadow_atlas, int p_directional_light_count, bool p_use_directional_shadows, int p_positional_light_count, int p_gi_probe_count) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND(!rb); Environment *env = environment_owner.getornull(p_environment); float ratio = float(rb->width) / float((rb->width + rb->height) / 2); uint32_t target_width = uint32_t(float(volumetric_fog_size) * ratio); uint32_t target_height = uint32_t(float(volumetric_fog_size) / ratio); if (rb->volumetric_fog) { //validate if (!env || !env->volumetric_fog_enabled || rb->volumetric_fog->width != target_width || rb->volumetric_fog->height != target_height || rb->volumetric_fog->depth != volumetric_fog_depth) { _volumetric_fog_erase(rb); _render_buffers_uniform_set_changed(p_render_buffers); } } if (!env || !env->volumetric_fog_enabled) { //no reason to enable or update, bye return; } if (env && env->volumetric_fog_enabled && !rb->volumetric_fog) { //required volumetric fog but not existing, create rb->volumetric_fog = memnew(VolumetricFog); rb->volumetric_fog->width = target_width; rb->volumetric_fog->height = target_height; rb->volumetric_fog->depth = volumetric_fog_depth; RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; tf.width = target_width; tf.height = target_height; tf.depth = volumetric_fog_depth; tf.type = RD::TEXTURE_TYPE_3D; tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT; rb->volumetric_fog->light_density_map = RD::get_singleton()->texture_create(tf, RD::TextureView()); tf.usage_bits |= RD::TEXTURE_USAGE_SAMPLING_BIT; rb->volumetric_fog->fog_map = RD::get_singleton()->texture_create(tf, RD::TextureView()); _render_buffers_uniform_set_changed(p_render_buffers); Vector uniforms; { RD::Uniform u; u.binding = 0; u.type = RD::UNIFORM_TYPE_TEXTURE; u.ids.push_back(rb->volumetric_fog->fog_map); uniforms.push_back(u); } rb->volumetric_fog->sky_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_FOG); } //update directional shadow if (p_use_directional_shadows) { if (directional_shadow.shrink_stages.empty()) { if (rb->volumetric_fog->uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set)) { //invalidate uniform set, we will need a new one RD::get_singleton()->free(rb->volumetric_fog->uniform_set); rb->volumetric_fog->uniform_set = RID(); } _allocate_shadow_shrink_stages(directional_shadow.depth, directional_shadow.size, directional_shadow.shrink_stages, volumetric_fog_directional_shadow_shrink); } if (directional_shadow.shrink_stages.size() > 1) { RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(); for (int i = 1; i < directional_shadow.shrink_stages.size(); i++) { int32_t src_size = directional_shadow.shrink_stages[i - 1].size; int32_t dst_size = directional_shadow.shrink_stages[i].size; Rect2i r(0, 0, src_size, src_size); int32_t shrink_limit = 8 / (src_size / dst_size); storage->get_effects()->reduce_shadow(directional_shadow.shrink_stages[i - 1].texture, directional_shadow.shrink_stages[i].texture, Size2i(src_size, src_size), r, shrink_limit, compute_list); RD::get_singleton()->compute_list_add_barrier(compute_list); if (env->volumetric_fog_shadow_filter != RS::ENV_VOLUMETRIC_FOG_SHADOW_FILTER_DISABLED && directional_shadow.shrink_stages[i].filter_texture.is_valid()) { Rect2i rf(0, 0, dst_size, dst_size); storage->get_effects()->filter_shadow(directional_shadow.shrink_stages[i].texture, directional_shadow.shrink_stages[i].filter_texture, Size2i(dst_size, dst_size), rf, env->volumetric_fog_shadow_filter, compute_list); } } RD::get_singleton()->compute_list_end(); } } ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas); if (shadow_atlas) { //shrink shadows that need to be shrunk bool force_shrink_shadows = false; if (shadow_atlas->shrink_stages.empty()) { if (rb->volumetric_fog->uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set)) { //invalidate uniform set, we will need a new one RD::get_singleton()->free(rb->volumetric_fog->uniform_set); rb->volumetric_fog->uniform_set = RID(); } _allocate_shadow_shrink_stages(shadow_atlas->depth, shadow_atlas->size, shadow_atlas->shrink_stages, volumetric_fog_positional_shadow_shrink); force_shrink_shadows = true; } if (rb->volumetric_fog->last_shadow_filter != env->volumetric_fog_shadow_filter) { //if shadow filter changed, invalidate caches rb->volumetric_fog->last_shadow_filter = env->volumetric_fog_shadow_filter; force_shrink_shadows = true; } cluster.lights_shadow_rect_cache_count = 0; for (int i = 0; i < p_positional_light_count; i++) { if (cluster.lights[i].shadow_color_enabled[3] > 127) { RID li = cluster.lights_instances[i]; ERR_CONTINUE(!shadow_atlas->shadow_owners.has(li)); uint32_t key = shadow_atlas->shadow_owners[li]; uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK; ERR_CONTINUE((int)shadow >= shadow_atlas->quadrants[quadrant].shadows.size()); ShadowAtlas::Quadrant::Shadow &s = shadow_atlas->quadrants[quadrant].shadows.write[shadow]; if (!force_shrink_shadows && s.fog_version == s.version) { continue; //do not update, no need } s.fog_version = s.version; uint32_t quadrant_size = shadow_atlas->size >> 1; Rect2i atlas_rect; atlas_rect.position.x = (quadrant & 1) * quadrant_size; atlas_rect.position.y = (quadrant >> 1) * quadrant_size; uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision); atlas_rect.position.x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; atlas_rect.position.y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; atlas_rect.size.x = shadow_size; atlas_rect.size.y = shadow_size; cluster.lights_shadow_rect_cache[cluster.lights_shadow_rect_cache_count] = atlas_rect; cluster.lights_shadow_rect_cache_count++; if (cluster.lights_shadow_rect_cache_count == cluster.max_lights) { break; //light limit reached } } } if (cluster.lights_shadow_rect_cache_count > 0) { //there are shadows to be shrunk, try to do them in parallel RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(); for (int i = 1; i < shadow_atlas->shrink_stages.size(); i++) { int32_t base_size = shadow_atlas->shrink_stages[0].size; int32_t src_size = shadow_atlas->shrink_stages[i - 1].size; int32_t dst_size = shadow_atlas->shrink_stages[i].size; uint32_t rect_divisor = base_size / src_size; int32_t shrink_limit = 8 / (src_size / dst_size); //shrink in parallel for more performance for (uint32_t j = 0; j < cluster.lights_shadow_rect_cache_count; j++) { Rect2i src_rect = cluster.lights_shadow_rect_cache[j]; src_rect.position /= rect_divisor; src_rect.size /= rect_divisor; storage->get_effects()->reduce_shadow(shadow_atlas->shrink_stages[i - 1].texture, shadow_atlas->shrink_stages[i].texture, Size2i(src_size, src_size), src_rect, shrink_limit, compute_list); } RD::get_singleton()->compute_list_add_barrier(compute_list); if (env->volumetric_fog_shadow_filter != RS::ENV_VOLUMETRIC_FOG_SHADOW_FILTER_DISABLED && shadow_atlas->shrink_stages[i].filter_texture.is_valid()) { uint32_t filter_divisor = base_size / dst_size; //filter in parallel for more performance for (uint32_t j = 0; j < cluster.lights_shadow_rect_cache_count; j++) { Rect2i dst_rect = cluster.lights_shadow_rect_cache[j]; dst_rect.position /= filter_divisor; dst_rect.size /= filter_divisor; storage->get_effects()->filter_shadow(shadow_atlas->shrink_stages[i].texture, shadow_atlas->shrink_stages[i].filter_texture, Size2i(dst_size, dst_size), dst_rect, env->volumetric_fog_shadow_filter, compute_list, true, false); } RD::get_singleton()->compute_list_add_barrier(compute_list); for (uint32_t j = 0; j < cluster.lights_shadow_rect_cache_count; j++) { Rect2i dst_rect = cluster.lights_shadow_rect_cache[j]; dst_rect.position /= filter_divisor; dst_rect.size /= filter_divisor; storage->get_effects()->filter_shadow(shadow_atlas->shrink_stages[i].texture, shadow_atlas->shrink_stages[i].filter_texture, Size2i(dst_size, dst_size), dst_rect, env->volumetric_fog_shadow_filter, compute_list, false, true); } } } RD::get_singleton()->compute_list_end(); } } //update volumetric fog if (rb->volumetric_fog->uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set)) { //re create uniform set if needed Vector uniforms; { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 1; if (shadow_atlas == nullptr || shadow_atlas->shrink_stages.size() == 0) { u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_BLACK)); } else { u.ids.push_back(shadow_atlas->shrink_stages[shadow_atlas->shrink_stages.size() - 1].texture); } uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 2; if (directional_shadow.shrink_stages.size() == 0) { u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_BLACK)); } else { u.ids.push_back(directional_shadow.shrink_stages[directional_shadow.shrink_stages.size() - 1].texture); } uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 3; u.ids.push_back(get_positional_light_buffer()); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.binding = 4; u.ids.push_back(get_directional_light_buffer()); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 5; u.ids.push_back(get_cluster_builder_texture()); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 6; u.ids.push_back(get_cluster_builder_indices_buffer()); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 7; u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 8; u.ids.push_back(rb->volumetric_fog->light_density_map); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 9; u.ids.push_back(rb->volumetric_fog->fog_map); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 10; u.ids.push_back(shadow_sampler); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.binding = 11; u.ids.push_back(render_buffers_get_gi_probe_buffer(p_render_buffers)); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 12; for (int i = 0; i < RenderBuffers::MAX_GIPROBES; i++) { u.ids.push_back(rb->giprobe_textures[i]); } uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 13; u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); uniforms.push_back(u); } rb->volumetric_fog->uniform_set = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.shader.version_get_shader(volumetric_fog.shader_version, 0), 0); SWAP(uniforms.write[7].ids.write[0], uniforms.write[8].ids.write[0]); rb->volumetric_fog->uniform_set2 = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.shader.version_get_shader(volumetric_fog.shader_version, 0), 0); } bool using_sdfgi = env->volumetric_fog_gi_inject > 0.0001 && env->sdfgi_enabled && (rb->sdfgi != nullptr); if (using_sdfgi) { if (rb->volumetric_fog->sdfgi_uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->sdfgi_uniform_set)) { Vector uniforms; { RD::Uniform u; u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.binding = 0; u.ids.push_back(gi.sdfgi_ubo); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 1; u.ids.push_back(rb->sdfgi->ambient_texture); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 2; u.ids.push_back(rb->sdfgi->occlusion_texture); uniforms.push_back(u); } rb->volumetric_fog->sdfgi_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.shader.version_get_shader(volumetric_fog.shader_version, VOLUMETRIC_FOG_SHADER_DENSITY_WITH_SDFGI), 1); } } rb->volumetric_fog->length = env->volumetric_fog_length; rb->volumetric_fog->spread = env->volumetric_fog_detail_spread; VolumetricFogShader::PushConstant push_constant; Vector2 frustum_near_size = p_cam_projection.get_viewport_half_extents(); Vector2 frustum_far_size = p_cam_projection.get_far_plane_half_extents(); float z_near = p_cam_projection.get_z_near(); float z_far = p_cam_projection.get_z_far(); float fog_end = env->volumetric_fog_length; Vector2 fog_far_size = frustum_near_size.lerp(frustum_far_size, (fog_end - z_near) / (z_far - z_near)); Vector2 fog_near_size; if (p_cam_projection.is_orthogonal()) { fog_near_size = fog_far_size; } else { fog_near_size = Vector2(); } push_constant.fog_frustum_size_begin[0] = fog_near_size.x; push_constant.fog_frustum_size_begin[1] = fog_near_size.y; push_constant.fog_frustum_size_end[0] = fog_far_size.x; push_constant.fog_frustum_size_end[1] = fog_far_size.y; push_constant.z_near = z_near; push_constant.z_far = z_far; push_constant.fog_frustum_end = fog_end; push_constant.fog_volume_size[0] = rb->volumetric_fog->width; push_constant.fog_volume_size[1] = rb->volumetric_fog->height; push_constant.fog_volume_size[2] = rb->volumetric_fog->depth; push_constant.directional_light_count = p_directional_light_count; Color light = env->volumetric_fog_light.to_linear(); push_constant.light_energy[0] = light.r * env->volumetric_fog_light_energy; push_constant.light_energy[1] = light.g * env->volumetric_fog_light_energy; push_constant.light_energy[2] = light.b * env->volumetric_fog_light_energy; push_constant.base_density = env->volumetric_fog_density; push_constant.detail_spread = env->volumetric_fog_detail_spread; push_constant.gi_inject = env->volumetric_fog_gi_inject; push_constant.cam_rotation[0] = p_cam_transform.basis[0][0]; push_constant.cam_rotation[1] = p_cam_transform.basis[1][0]; push_constant.cam_rotation[2] = p_cam_transform.basis[2][0]; push_constant.cam_rotation[3] = 0; push_constant.cam_rotation[4] = p_cam_transform.basis[0][1]; push_constant.cam_rotation[5] = p_cam_transform.basis[1][1]; push_constant.cam_rotation[6] = p_cam_transform.basis[2][1]; push_constant.cam_rotation[7] = 0; push_constant.cam_rotation[8] = p_cam_transform.basis[0][2]; push_constant.cam_rotation[9] = p_cam_transform.basis[1][2]; push_constant.cam_rotation[10] = p_cam_transform.basis[2][2]; push_constant.cam_rotation[11] = 0; push_constant.filter_axis = 0; push_constant.max_gi_probes = env->volumetric_fog_gi_inject > 0.001 ? p_gi_probe_count : 0; /* Vector2 dssize = directional_shadow_get_size(); push_constant.directional_shadow_pixel_size[0] = 1.0 / dssize.x; push_constant.directional_shadow_pixel_size[1] = 1.0 / dssize.y; */ RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(); bool use_filter = volumetric_fog_filter_active; RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.pipelines[using_sdfgi ? VOLUMETRIC_FOG_SHADER_DENSITY_WITH_SDFGI : VOLUMETRIC_FOG_SHADER_DENSITY]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->uniform_set, 0); if (using_sdfgi) { RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->sdfgi_uniform_set, 1); } RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VolumetricFogShader::PushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->volumetric_fog->width, rb->volumetric_fog->height, rb->volumetric_fog->depth, 4, 4, 4); RD::get_singleton()->compute_list_add_barrier(compute_list); if (use_filter) { RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.pipelines[VOLUMETRIC_FOG_SHADER_FILTER]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->uniform_set, 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VolumetricFogShader::PushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->volumetric_fog->width, rb->volumetric_fog->height, rb->volumetric_fog->depth, 8, 8, 1); RD::get_singleton()->compute_list_add_barrier(compute_list); push_constant.filter_axis = 1; RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->uniform_set2, 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VolumetricFogShader::PushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->volumetric_fog->width, rb->volumetric_fog->height, rb->volumetric_fog->depth, 8, 8, 1); RD::get_singleton()->compute_list_add_barrier(compute_list); } RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.pipelines[VOLUMETRIC_FOG_SHADER_FOG]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->uniform_set, 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VolumetricFogShader::PushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->volumetric_fog->width, rb->volumetric_fog->height, 1, 8, 8, 1); RD::get_singleton()->compute_list_end(); } void RasterizerSceneRD::render_scene(RID p_render_buffers, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, RID *p_decal_cull_result, int p_decal_cull_count, InstanceBase **p_lightmap_cull_result, int p_lightmap_cull_count, RID p_environment, RID p_camera_effects, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass) { Color clear_color; if (p_render_buffers.is_valid()) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND(!rb); clear_color = storage->render_target_get_clear_request_color(rb->render_target); } else { clear_color = storage->get_default_clear_color(); } //assign render indices to giprobes for (int i = 0; i < p_gi_probe_cull_count; i++) { GIProbeInstance *giprobe_inst = gi_probe_instance_owner.getornull(p_gi_probe_cull_result[i]); if (giprobe_inst) { giprobe_inst->render_index = i; } } if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_UNSHADED) { p_light_cull_count = 0; p_reflection_probe_cull_count = 0; p_gi_probe_cull_count = 0; } cluster.builder.begin(p_cam_transform.affine_inverse(), p_cam_projection); //prepare cluster bool using_shadows = true; if (p_reflection_probe.is_valid()) { if (!storage->reflection_probe_renders_shadows(reflection_probe_instance_get_probe(p_reflection_probe))) { using_shadows = false; } } else { //do not render reflections when rendering a reflection probe _setup_reflections(p_reflection_probe_cull_result, p_reflection_probe_cull_count, p_cam_transform.affine_inverse(), p_environment); } uint32_t directional_light_count = 0; uint32_t positional_light_count = 0; _setup_lights(p_light_cull_result, p_light_cull_count, p_cam_transform.affine_inverse(), p_shadow_atlas, using_shadows, directional_light_count, positional_light_count); _setup_decals(p_decal_cull_result, p_decal_cull_count, p_cam_transform.affine_inverse()); cluster.builder.bake_cluster(); //bake to cluster uint32_t gi_probe_count = 0; _setup_giprobes(p_render_buffers, p_cam_transform, p_gi_probe_cull_result, p_gi_probe_cull_count, gi_probe_count); if (p_render_buffers.is_valid()) { bool directional_shadows = false; for (uint32_t i = 0; i < directional_light_count; i++) { if (cluster.directional_lights[i].shadow_enabled) { directional_shadows = true; break; } } _update_volumetric_fog(p_render_buffers, p_environment, p_cam_projection, p_cam_transform, p_shadow_atlas, directional_light_count, directional_shadows, positional_light_count, gi_probe_count); } _render_scene(p_render_buffers, p_cam_transform, p_cam_projection, p_cam_ortogonal, p_cull_result, p_cull_count, directional_light_count, p_gi_probe_cull_result, p_gi_probe_cull_count, p_lightmap_cull_result, p_lightmap_cull_count, p_environment, p_camera_effects, p_shadow_atlas, p_reflection_atlas, p_reflection_probe, p_reflection_probe_pass, clear_color); if (p_render_buffers.is_valid()) { RENDER_TIMESTAMP("Tonemap"); _render_buffers_post_process_and_tonemap(p_render_buffers, p_environment, p_camera_effects, p_cam_projection); _render_buffers_debug_draw(p_render_buffers, p_shadow_atlas); if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SDFGI) { _sdfgi_debug_draw(p_render_buffers, p_cam_projection, p_cam_transform); } } } void RasterizerSceneRD::render_shadow(RID p_light, RID p_shadow_atlas, int p_pass, InstanceBase **p_cull_result, int p_cull_count) { LightInstance *light_instance = light_instance_owner.getornull(p_light); ERR_FAIL_COND(!light_instance); Rect2i atlas_rect; RID atlas_texture; bool using_dual_paraboloid = false; bool using_dual_paraboloid_flip = false; float znear = 0; float zfar = 0; RID render_fb; RID render_texture; float bias = 0; float normal_bias = 0; bool use_pancake = false; bool use_linear_depth = false; bool render_cubemap = false; bool finalize_cubemap = false; CameraMatrix light_projection; Transform light_transform; if (storage->light_get_type(light_instance->light) == RS::LIGHT_DIRECTIONAL) { //set pssm stuff if (light_instance->last_scene_shadow_pass != scene_pass) { light_instance->directional_rect = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, directional_shadow.current_light); directional_shadow.current_light++; light_instance->last_scene_shadow_pass = scene_pass; } use_pancake = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE) > 0; light_projection = light_instance->shadow_transform[p_pass].camera; light_transform = light_instance->shadow_transform[p_pass].transform; atlas_rect.position.x = light_instance->directional_rect.position.x; atlas_rect.position.y = light_instance->directional_rect.position.y; atlas_rect.size.width = light_instance->directional_rect.size.x; atlas_rect.size.height = light_instance->directional_rect.size.y; if (storage->light_directional_get_shadow_mode(light_instance->light) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) { atlas_rect.size.width /= 2; atlas_rect.size.height /= 2; if (p_pass == 1) { atlas_rect.position.x += atlas_rect.size.width; } else if (p_pass == 2) { atlas_rect.position.y += atlas_rect.size.height; } else if (p_pass == 3) { atlas_rect.position.x += atlas_rect.size.width; atlas_rect.position.y += atlas_rect.size.height; } } else if (storage->light_directional_get_shadow_mode(light_instance->light) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) { atlas_rect.size.height /= 2; if (p_pass == 0) { } else { atlas_rect.position.y += atlas_rect.size.height; } } light_instance->shadow_transform[p_pass].atlas_rect = atlas_rect; light_instance->shadow_transform[p_pass].atlas_rect.position /= directional_shadow.size; light_instance->shadow_transform[p_pass].atlas_rect.size /= directional_shadow.size; float bias_mult = light_instance->shadow_transform[p_pass].bias_scale; zfar = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_RANGE); bias = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_BIAS) * bias_mult; normal_bias = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * bias_mult; ShadowMap *shadow_map = _get_shadow_map(atlas_rect.size); render_fb = shadow_map->fb; render_texture = shadow_map->depth; atlas_texture = directional_shadow.depth; } else { //set from shadow atlas ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas); ERR_FAIL_COND(!shadow_atlas); ERR_FAIL_COND(!shadow_atlas->shadow_owners.has(p_light)); uint32_t key = shadow_atlas->shadow_owners[p_light]; uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK; ERR_FAIL_INDEX((int)shadow, shadow_atlas->quadrants[quadrant].shadows.size()); uint32_t quadrant_size = shadow_atlas->size >> 1; atlas_rect.position.x = (quadrant & 1) * quadrant_size; atlas_rect.position.y = (quadrant >> 1) * quadrant_size; uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision); atlas_rect.position.x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; atlas_rect.position.y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; atlas_rect.size.width = shadow_size; atlas_rect.size.height = shadow_size; atlas_texture = shadow_atlas->depth; zfar = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_RANGE); bias = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_BIAS); normal_bias = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS); if (storage->light_get_type(light_instance->light) == RS::LIGHT_OMNI) { if (storage->light_omni_get_shadow_mode(light_instance->light) == RS::LIGHT_OMNI_SHADOW_CUBE) { ShadowCubemap *cubemap = _get_shadow_cubemap(shadow_size / 2); render_fb = cubemap->side_fb[p_pass]; render_texture = cubemap->cubemap; light_projection = light_instance->shadow_transform[0].camera; light_transform = light_instance->shadow_transform[0].transform; render_cubemap = true; finalize_cubemap = p_pass == 5; } else { light_projection = light_instance->shadow_transform[0].camera; light_transform = light_instance->shadow_transform[0].transform; atlas_rect.size.height /= 2; atlas_rect.position.y += p_pass * atlas_rect.size.height; using_dual_paraboloid = true; using_dual_paraboloid_flip = p_pass == 1; ShadowMap *shadow_map = _get_shadow_map(atlas_rect.size); render_fb = shadow_map->fb; render_texture = shadow_map->depth; } } else if (storage->light_get_type(light_instance->light) == RS::LIGHT_SPOT) { light_projection = light_instance->shadow_transform[0].camera; light_transform = light_instance->shadow_transform[0].transform; ShadowMap *shadow_map = _get_shadow_map(atlas_rect.size); render_fb = shadow_map->fb; render_texture = shadow_map->depth; znear = light_instance->shadow_transform[0].camera.get_z_near(); use_linear_depth = true; } } if (render_cubemap) { //rendering to cubemap _render_shadow(render_fb, p_cull_result, p_cull_count, light_projection, light_transform, zfar, 0, 0, false, false, use_pancake); if (finalize_cubemap) { //reblit atlas_rect.size.height /= 2; storage->get_effects()->copy_cubemap_to_dp(render_texture, atlas_texture, atlas_rect, light_projection.get_z_near(), light_projection.get_z_far(), 0.0, false); atlas_rect.position.y += atlas_rect.size.height; storage->get_effects()->copy_cubemap_to_dp(render_texture, atlas_texture, atlas_rect, light_projection.get_z_near(), light_projection.get_z_far(), 0.0, true); } } else { //render shadow _render_shadow(render_fb, p_cull_result, p_cull_count, light_projection, light_transform, zfar, bias, normal_bias, using_dual_paraboloid, using_dual_paraboloid_flip, use_pancake); //copy to atlas if (use_linear_depth) { storage->get_effects()->copy_depth_to_rect_and_linearize(render_texture, atlas_texture, atlas_rect, true, znear, zfar); } else { storage->get_effects()->copy_depth_to_rect(render_texture, atlas_texture, atlas_rect, true); } //does not work from depth to color //RD::get_singleton()->texture_copy(render_texture, atlas_texture, Vector3(0, 0, 0), Vector3(atlas_rect.position.x, atlas_rect.position.y, 0), Vector3(atlas_rect.size.x, atlas_rect.size.y, 1), 0, 0, 0, 0, true); } } void RasterizerSceneRD::render_material(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID p_framebuffer, const Rect2i &p_region) { _render_material(p_cam_transform, p_cam_projection, p_cam_ortogonal, p_cull_result, p_cull_count, p_framebuffer, p_region); } void RasterizerSceneRD::render_sdfgi(RID p_render_buffers, int p_region, InstanceBase **p_cull_result, int p_cull_count) { //print_line("rendering region " + itos(p_region)); RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND(!rb); ERR_FAIL_COND(!rb->sdfgi); AABB bounds; Vector3i from; Vector3i size; int cascade_prev = _sdfgi_get_pending_region_data(p_render_buffers, p_region - 1, from, size, bounds); int cascade_next = _sdfgi_get_pending_region_data(p_render_buffers, p_region + 1, from, size, bounds); int cascade = _sdfgi_get_pending_region_data(p_render_buffers, p_region, from, size, bounds); ERR_FAIL_COND(cascade < 0); if (cascade_prev != cascade) { //initialize render RD::get_singleton()->texture_clear(rb->sdfgi->render_albedo, Color(0, 0, 0, 0), 0, 1, 0, 1, true); RD::get_singleton()->texture_clear(rb->sdfgi->render_emission, Color(0, 0, 0, 0), 0, 1, 0, 1, true); RD::get_singleton()->texture_clear(rb->sdfgi->render_emission_aniso, Color(0, 0, 0, 0), 0, 1, 0, 1, true); RD::get_singleton()->texture_clear(rb->sdfgi->render_geom_facing, Color(0, 0, 0, 0), 0, 1, 0, 1, true); } //print_line("rendering cascade " + itos(p_region) + " objects: " + itos(p_cull_count) + " bounds: " + bounds + " from: " + from + " size: " + size + " cell size: " + rtos(rb->sdfgi->cascades[cascade].cell_size)); _render_sdfgi(p_render_buffers, from, size, bounds, p_cull_result, p_cull_count, rb->sdfgi->render_albedo, rb->sdfgi->render_emission, rb->sdfgi->render_emission_aniso, rb->sdfgi->render_geom_facing); if (cascade_next != cascade) { RENDER_TIMESTAMP(">SDFGI Update SDF"); //done rendering! must update SDF //clear dispatch indirect data SDGIShader::PreprocessPushConstant push_constant; zeromem(&push_constant, sizeof(SDGIShader::PreprocessPushConstant)); RENDER_TIMESTAMP("Scroll SDF"); //scroll if (rb->sdfgi->cascades[cascade].dirty_regions != SDFGI::Cascade::DIRTY_ALL) { //for scroll Vector3i dirty = rb->sdfgi->cascades[cascade].dirty_regions; push_constant.scroll[0] = dirty.x; push_constant.scroll[1] = dirty.y; push_constant.scroll[2] = dirty.z; } else { //for no scroll push_constant.scroll[0] = 0; push_constant.scroll[1] = 0; push_constant.scroll[2] = 0; } push_constant.grid_size = rb->sdfgi->cascade_size; push_constant.cascade = cascade; RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(); if (rb->sdfgi->cascades[cascade].dirty_regions != SDFGI::Cascade::DIRTY_ALL) { //must pre scroll existing data because not all is dirty RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_SCROLL]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->cascades[cascade].scroll_uniform_set, 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant)); RD::get_singleton()->compute_list_dispatch_indirect(compute_list, rb->sdfgi->cascades[cascade].solid_cell_dispatch_buffer, 0); // no barrier do all together RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_SCROLL_OCCLUSION]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->cascades[cascade].scroll_occlusion_uniform_set, 0); Vector3i dirty = rb->sdfgi->cascades[cascade].dirty_regions; Vector3i groups; groups.x = rb->sdfgi->cascade_size - ABS(dirty.x); groups.y = rb->sdfgi->cascade_size - ABS(dirty.y); groups.z = rb->sdfgi->cascade_size - ABS(dirty.z); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, groups.x, groups.y, groups.z, 4, 4, 4); //no barrier, continue together { //scroll probes and their history also SDGIShader::IntegratePushConstant ipush_constant; ipush_constant.grid_size[1] = rb->sdfgi->cascade_size; ipush_constant.grid_size[2] = rb->sdfgi->cascade_size; ipush_constant.grid_size[0] = rb->sdfgi->cascade_size; ipush_constant.max_cascades = rb->sdfgi->cascades.size(); ipush_constant.probe_axis_size = rb->sdfgi->probe_axis_count; ipush_constant.history_index = 0; ipush_constant.history_size = rb->sdfgi->history_size; ipush_constant.ray_count = 0; ipush_constant.ray_bias = 0; ipush_constant.sky_mode = 0; ipush_constant.sky_energy = 0; ipush_constant.sky_color[0] = 0; ipush_constant.sky_color[1] = 0; ipush_constant.sky_color[2] = 0; ipush_constant.y_mult = rb->sdfgi->y_mult; ipush_constant.store_ambient_texture = false; ipush_constant.image_size[0] = rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count; ipush_constant.image_size[1] = rb->sdfgi->probe_axis_count; ipush_constant.image_size[1] = rb->sdfgi->probe_axis_count; int32_t probe_divisor = rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR; ipush_constant.cascade = cascade; ipush_constant.world_offset[0] = rb->sdfgi->cascades[cascade].position.x / probe_divisor; ipush_constant.world_offset[1] = rb->sdfgi->cascades[cascade].position.y / probe_divisor; ipush_constant.world_offset[2] = rb->sdfgi->cascades[cascade].position.z / probe_divisor; ipush_constant.scroll[0] = dirty.x / probe_divisor; ipush_constant.scroll[1] = dirty.y / probe_divisor; ipush_constant.scroll[2] = dirty.z / probe_divisor; RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.integrate_pipeline[SDGIShader::INTEGRATE_MODE_SCROLL]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->cascades[cascade].integrate_uniform_set, 0); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sdfgi_shader.integrate_default_sky_uniform_set, 1); RD::get_singleton()->compute_list_set_push_constant(compute_list, &ipush_constant, sizeof(SDGIShader::IntegratePushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count, rb->sdfgi->probe_axis_count, 1, 8, 8, 1); RD::get_singleton()->compute_list_add_barrier(compute_list); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.integrate_pipeline[SDGIShader::INTEGRATE_MODE_SCROLL_STORE]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->cascades[cascade].integrate_uniform_set, 0); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sdfgi_shader.integrate_default_sky_uniform_set, 1); RD::get_singleton()->compute_list_set_push_constant(compute_list, &ipush_constant, sizeof(SDGIShader::IntegratePushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count, rb->sdfgi->probe_axis_count, 1, 8, 8, 1); } //ok finally barrier RD::get_singleton()->compute_list_add_barrier(compute_list); } //clear dispatch indirect data uint32_t dispatch_indirct_data[4] = { 0, 0, 0, 0 }; RD::get_singleton()->buffer_update(rb->sdfgi->cascades[cascade].solid_cell_dispatch_buffer, 0, sizeof(uint32_t) * 4, dispatch_indirct_data, true); bool half_size = true; //much faster, very little difference static const int optimized_jf_group_size = 8; if (half_size) { push_constant.grid_size >>= 1; uint32_t cascade_half_size = rb->sdfgi->cascade_size >> 1; RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE_HALF]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->sdf_initialize_half_uniform_set, 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_half_size, cascade_half_size, cascade_half_size, 4, 4, 4); RD::get_singleton()->compute_list_add_barrier(compute_list); //must start with regular jumpflood push_constant.half_size = true; { RENDER_TIMESTAMP("SDFGI Jump Flood (Half Size)"); uint32_t s = cascade_half_size; RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_JUMP_FLOOD]); int jf_us = 0; //start with regular jump flood for very coarse reads, as this is impossible to optimize while (s > 1) { s /= 2; push_constant.step_size = s; RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->jump_flood_half_uniform_set[jf_us], 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_half_size, cascade_half_size, cascade_half_size, 4, 4, 4); RD::get_singleton()->compute_list_add_barrier(compute_list); jf_us = jf_us == 0 ? 1 : 0; if (cascade_half_size / (s / 2) >= optimized_jf_group_size) { break; } } RENDER_TIMESTAMP("SDFGI Jump Flood Optimized (Half Size)"); //continue with optimized jump flood for smaller reads RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_JUMP_FLOOD_OPTIMIZED]); while (s > 1) { s /= 2; push_constant.step_size = s; RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->jump_flood_half_uniform_set[jf_us], 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_half_size, cascade_half_size, cascade_half_size, optimized_jf_group_size, optimized_jf_group_size, optimized_jf_group_size); RD::get_singleton()->compute_list_add_barrier(compute_list); jf_us = jf_us == 0 ? 1 : 0; } } // restore grid size for last passes push_constant.grid_size = rb->sdfgi->cascade_size; RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_JUMP_FLOOD_UPSCALE]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->sdf_upscale_uniform_set, 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, 4, 4, 4); RD::get_singleton()->compute_list_add_barrier(compute_list); //run one pass of fullsize jumpflood to fix up half size arctifacts push_constant.half_size = false; push_constant.step_size = 1; RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_JUMP_FLOOD_OPTIMIZED]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->jump_flood_uniform_set[rb->sdfgi->upscale_jfa_uniform_set_index], 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, optimized_jf_group_size, optimized_jf_group_size, optimized_jf_group_size); RD::get_singleton()->compute_list_add_barrier(compute_list); } else { //full size jumpflood RENDER_TIMESTAMP("SDFGI Jump Flood"); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->sdf_initialize_uniform_set, 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, 4, 4, 4); RD::get_singleton()->compute_list_add_barrier(compute_list); push_constant.half_size = false; { uint32_t s = rb->sdfgi->cascade_size; RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_JUMP_FLOOD]); int jf_us = 0; //start with regular jump flood for very coarse reads, as this is impossible to optimize while (s > 1) { s /= 2; push_constant.step_size = s; RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->jump_flood_uniform_set[jf_us], 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, 4, 4, 4); RD::get_singleton()->compute_list_add_barrier(compute_list); jf_us = jf_us == 0 ? 1 : 0; if (rb->sdfgi->cascade_size / (s / 2) >= optimized_jf_group_size) { break; } } RENDER_TIMESTAMP("SDFGI Jump Flood Optimized"); //continue with optimized jump flood for smaller reads RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_JUMP_FLOOD_OPTIMIZED]); while (s > 1) { s /= 2; push_constant.step_size = s; RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->jump_flood_uniform_set[jf_us], 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, optimized_jf_group_size, optimized_jf_group_size, optimized_jf_group_size); RD::get_singleton()->compute_list_add_barrier(compute_list); jf_us = jf_us == 0 ? 1 : 0; } } } RENDER_TIMESTAMP("SDFGI Occlusion"); // occlusion { uint32_t probe_size = rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR; Vector3i probe_global_pos = rb->sdfgi->cascades[cascade].position / probe_size; RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_OCCLUSION]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->occlusion_uniform_set, 0); for (int i = 0; i < 8; i++) { //dispatch all at once for performance Vector3i offset(i & 1, (i >> 1) & 1, (i >> 2) & 1); if ((probe_global_pos.x & 1) != 0) { offset.x = (offset.x + 1) & 1; } if ((probe_global_pos.y & 1) != 0) { offset.y = (offset.y + 1) & 1; } if ((probe_global_pos.z & 1) != 0) { offset.z = (offset.z + 1) & 1; } push_constant.probe_offset[0] = offset.x; push_constant.probe_offset[1] = offset.y; push_constant.probe_offset[2] = offset.z; push_constant.occlusion_index = i; RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant)); Vector3i groups = Vector3i(probe_size + 1, probe_size + 1, probe_size + 1) - offset; //if offset, it's one less probe per axis to compute RD::get_singleton()->compute_list_dispatch(compute_list, groups.x, groups.y, groups.z); } RD::get_singleton()->compute_list_add_barrier(compute_list); } RENDER_TIMESTAMP("SDFGI Store"); // store RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_STORE]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->cascades[cascade].sdf_store_uniform_set, 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, 4, 4, 4); RD::get_singleton()->compute_list_end(); //clear these textures, as they will have previous garbage on next draw RD::get_singleton()->texture_clear(rb->sdfgi->cascades[cascade].light_tex, Color(0, 0, 0, 0), 0, 1, 0, 1, true); RD::get_singleton()->texture_clear(rb->sdfgi->cascades[cascade].light_aniso_0_tex, Color(0, 0, 0, 0), 0, 1, 0, 1, true); RD::get_singleton()->texture_clear(rb->sdfgi->cascades[cascade].light_aniso_1_tex, Color(0, 0, 0, 0), 0, 1, 0, 1, true); #if 0 Vector data = RD::get_singleton()->texture_get_data(rb->sdfgi->cascades[cascade].sdf, 0); Ref img; img.instance(); for (uint32_t i = 0; i < rb->sdfgi->cascade_size; i++) { Vector subarr = data.subarray(128 * 128 * i, 128 * 128 * (i + 1) - 1); img->create(rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, false, Image::FORMAT_L8, subarr); img->save_png("res://cascade_sdf_" + itos(cascade) + "_" + itos(i) + ".png"); } //finalize render and update sdf #endif #if 0 Vector data = RD::get_singleton()->texture_get_data(rb->sdfgi->render_albedo, 0); Ref img; img.instance(); for (uint32_t i = 0; i < rb->sdfgi->cascade_size; i++) { Vector subarr = data.subarray(128 * 128 * i * 2, 128 * 128 * (i + 1) * 2 - 1); img->create(rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, false, Image::FORMAT_RGB565, subarr); img->convert(Image::FORMAT_RGBA8); img->save_png("res://cascade_" + itos(cascade) + "_" + itos(i) + ".png"); } //finalize render and update sdf #endif RENDER_TIMESTAMP("sdfgi); ERR_FAIL_COND(p_positional_light_cull_count == 0); _sdfgi_update_cascades(p_render_buffers); //need cascades updated for this RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.direct_light_pipeline[SDGIShader::DIRECT_LIGHT_MODE_STATIC]); SDGIShader::DirectLightPushConstant dl_push_constant; dl_push_constant.grid_size[0] = rb->sdfgi->cascade_size; dl_push_constant.grid_size[1] = rb->sdfgi->cascade_size; dl_push_constant.grid_size[2] = rb->sdfgi->cascade_size; dl_push_constant.max_cascades = rb->sdfgi->cascades.size(); dl_push_constant.probe_axis_size = rb->sdfgi->probe_axis_count; dl_push_constant.multibounce = false; // this is static light, do not multibounce yet dl_push_constant.y_mult = rb->sdfgi->y_mult; //all must be processed dl_push_constant.process_offset = 0; dl_push_constant.process_increment = 1; SDGIShader::Light lights[SDFGI::MAX_STATIC_LIGHTS]; for (uint32_t i = 0; i < p_cascade_count; i++) { ERR_CONTINUE(p_cascade_indices[i] >= rb->sdfgi->cascades.size()); SDFGI::Cascade &cc = rb->sdfgi->cascades[p_cascade_indices[i]]; { //fill light buffer AABB cascade_aabb; cascade_aabb.position = Vector3((Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + cc.position)) * cc.cell_size; cascade_aabb.size = Vector3(1, 1, 1) * rb->sdfgi->cascade_size * cc.cell_size; int idx = 0; for (uint32_t j = 0; j < p_positional_light_cull_count[i]; j++) { if (idx == SDFGI::MAX_STATIC_LIGHTS) { break; } LightInstance *li = light_instance_owner.getornull(p_positional_light_cull_result[i][j]); ERR_CONTINUE(!li); uint32_t max_sdfgi_cascade = storage->light_get_max_sdfgi_cascade(li->light); if (p_cascade_indices[i] > max_sdfgi_cascade) { continue; } if (!cascade_aabb.intersects(li->aabb)) { continue; } lights[idx].type = storage->light_get_type(li->light); Vector3 dir = -li->transform.basis.get_axis(Vector3::AXIS_Z); if (lights[idx].type == RS::LIGHT_DIRECTIONAL) { dir.y *= rb->sdfgi->y_mult; //only makes sense for directional dir.normalize(); } lights[idx].direction[0] = dir.x; lights[idx].direction[1] = dir.y; lights[idx].direction[2] = dir.z; Vector3 pos = li->transform.origin; pos.y *= rb->sdfgi->y_mult; lights[idx].position[0] = pos.x; lights[idx].position[1] = pos.y; lights[idx].position[2] = pos.z; Color color = storage->light_get_color(li->light); color = color.to_linear(); lights[idx].color[0] = color.r; lights[idx].color[1] = color.g; lights[idx].color[2] = color.b; lights[idx].energy = storage->light_get_param(li->light, RS::LIGHT_PARAM_ENERGY); lights[idx].has_shadow = storage->light_has_shadow(li->light); lights[idx].attenuation = storage->light_get_param(li->light, RS::LIGHT_PARAM_ATTENUATION); lights[idx].radius = storage->light_get_param(li->light, RS::LIGHT_PARAM_RANGE); lights[idx].spot_angle = Math::deg2rad(storage->light_get_param(li->light, RS::LIGHT_PARAM_SPOT_ANGLE)); lights[idx].spot_attenuation = storage->light_get_param(li->light, RS::LIGHT_PARAM_SPOT_ATTENUATION); idx++; } if (idx > 0) { RD::get_singleton()->buffer_update(cc.lights_buffer, 0, idx * sizeof(SDGIShader::Light), lights, true); } dl_push_constant.light_count = idx; } dl_push_constant.cascade = p_cascade_indices[i]; if (dl_push_constant.light_count > 0) { RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cc.sdf_direct_light_uniform_set, 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &dl_push_constant, sizeof(SDGIShader::DirectLightPushConstant)); RD::get_singleton()->compute_list_dispatch_indirect(compute_list, cc.solid_cell_dispatch_buffer, 0); } } RD::get_singleton()->compute_list_end(); } bool RasterizerSceneRD::free(RID p_rid) { if (render_buffers_owner.owns(p_rid)) { RenderBuffers *rb = render_buffers_owner.getornull(p_rid); _free_render_buffer_data(rb); memdelete(rb->data); if (rb->sdfgi) { _sdfgi_erase(rb); } if (rb->volumetric_fog) { _volumetric_fog_erase(rb); } render_buffers_owner.free(p_rid); } else if (environment_owner.owns(p_rid)) { //not much to delete, just free it environment_owner.free(p_rid); } else if (camera_effects_owner.owns(p_rid)) { //not much to delete, just free it camera_effects_owner.free(p_rid); } else if (reflection_atlas_owner.owns(p_rid)) { reflection_atlas_set_size(p_rid, 0, 0); reflection_atlas_owner.free(p_rid); } else if (reflection_probe_instance_owner.owns(p_rid)) { //not much to delete, just free it //ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_rid); reflection_probe_release_atlas_index(p_rid); reflection_probe_instance_owner.free(p_rid); } else if (decal_instance_owner.owns(p_rid)) { decal_instance_owner.free(p_rid); } else if (gi_probe_instance_owner.owns(p_rid)) { GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_rid); if (gi_probe->texture.is_valid()) { RD::get_singleton()->free(gi_probe->texture); RD::get_singleton()->free(gi_probe->write_buffer); } for (int i = 0; i < gi_probe->dynamic_maps.size(); i++) { RD::get_singleton()->free(gi_probe->dynamic_maps[i].texture); RD::get_singleton()->free(gi_probe->dynamic_maps[i].depth); } gi_probe_instance_owner.free(p_rid); } else if (sky_owner.owns(p_rid)) { _update_dirty_skys(); Sky *sky = sky_owner.getornull(p_rid); if (sky->radiance.is_valid()) { RD::get_singleton()->free(sky->radiance); sky->radiance = RID(); } _clear_reflection_data(sky->reflection); if (sky->uniform_buffer.is_valid()) { RD::get_singleton()->free(sky->uniform_buffer); sky->uniform_buffer = RID(); } if (sky->half_res_pass.is_valid()) { RD::get_singleton()->free(sky->half_res_pass); sky->half_res_pass = RID(); } if (sky->quarter_res_pass.is_valid()) { RD::get_singleton()->free(sky->quarter_res_pass); sky->quarter_res_pass = RID(); } if (sky->material.is_valid()) { storage->free(sky->material); } sky_owner.free(p_rid); } else if (light_instance_owner.owns(p_rid)) { LightInstance *light_instance = light_instance_owner.getornull(p_rid); //remove from shadow atlases.. for (Set::Element *E = light_instance->shadow_atlases.front(); E; E = E->next()) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(E->get()); ERR_CONTINUE(!shadow_atlas->shadow_owners.has(p_rid)); uint32_t key = shadow_atlas->shadow_owners[p_rid]; uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK; shadow_atlas->quadrants[q].shadows.write[s].owner = RID(); shadow_atlas->shadow_owners.erase(p_rid); } light_instance_owner.free(p_rid); } else if (shadow_atlas_owner.owns(p_rid)) { shadow_atlas_set_size(p_rid, 0); shadow_atlas_owner.free(p_rid); } else { return false; } return true; } void RasterizerSceneRD::set_debug_draw_mode(RS::ViewportDebugDraw p_debug_draw) { debug_draw = p_debug_draw; } void RasterizerSceneRD::update() { _update_dirty_skys(); } void RasterizerSceneRD::set_time(double p_time, double p_step) { time = p_time; time_step = p_step; } void RasterizerSceneRD::screen_space_roughness_limiter_set_active(bool p_enable, float p_amount, float p_limit) { screen_space_roughness_limiter = p_enable; screen_space_roughness_limiter_amount = p_amount; screen_space_roughness_limiter_limit = p_limit; } bool RasterizerSceneRD::screen_space_roughness_limiter_is_active() const { return screen_space_roughness_limiter; } float RasterizerSceneRD::screen_space_roughness_limiter_get_amount() const { return screen_space_roughness_limiter_amount; } float RasterizerSceneRD::screen_space_roughness_limiter_get_limit() const { return screen_space_roughness_limiter_limit; } TypedArray RasterizerSceneRD::bake_render_uv2(RID p_base, const Vector &p_material_overrides, const Size2i &p_image_size) { RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; tf.width = p_image_size.width; // Always 64x64 tf.height = p_image_size.height; tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT; RID albedo_alpha_tex = RD::get_singleton()->texture_create(tf, RD::TextureView()); RID normal_tex = RD::get_singleton()->texture_create(tf, RD::TextureView()); RID orm_tex = RD::get_singleton()->texture_create(tf, RD::TextureView()); tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; RID emission_tex = RD::get_singleton()->texture_create(tf, RD::TextureView()); tf.format = RD::DATA_FORMAT_R32_SFLOAT; RID depth_write_tex = RD::get_singleton()->texture_create(tf, RD::TextureView()); tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT; tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32; RID depth_tex = RD::get_singleton()->texture_create(tf, RD::TextureView()); Vector fb_tex; fb_tex.push_back(albedo_alpha_tex); fb_tex.push_back(normal_tex); fb_tex.push_back(orm_tex); fb_tex.push_back(emission_tex); fb_tex.push_back(depth_write_tex); fb_tex.push_back(depth_tex); RID fb = RD::get_singleton()->framebuffer_create(fb_tex); //RID sampled_light; InstanceBase ins; ins.base_type = RSG::storage->get_base_type(p_base); ins.base = p_base; ins.materials.resize(RSG::storage->mesh_get_surface_count(p_base)); for (int i = 0; i < ins.materials.size(); i++) { if (i < p_material_overrides.size()) { ins.materials.write[i] = p_material_overrides[i]; } } InstanceBase *cull = &ins; _render_uv2(&cull, 1, fb, Rect2i(0, 0, p_image_size.width, p_image_size.height)); TypedArray ret; { PackedByteArray data = RD::get_singleton()->texture_get_data(albedo_alpha_tex, 0); Ref img; img.instance(); img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data); RD::get_singleton()->free(albedo_alpha_tex); ret.push_back(img); } { PackedByteArray data = RD::get_singleton()->texture_get_data(normal_tex, 0); Ref img; img.instance(); img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data); RD::get_singleton()->free(normal_tex); ret.push_back(img); } { PackedByteArray data = RD::get_singleton()->texture_get_data(orm_tex, 0); Ref img; img.instance(); img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data); RD::get_singleton()->free(orm_tex); ret.push_back(img); } { PackedByteArray data = RD::get_singleton()->texture_get_data(emission_tex, 0); Ref img; img.instance(); img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBAH, data); RD::get_singleton()->free(emission_tex); ret.push_back(img); } RD::get_singleton()->free(depth_write_tex); RD::get_singleton()->free(depth_tex); return ret; } void RasterizerSceneRD::sdfgi_set_debug_probe_select(const Vector3 &p_position, const Vector3 &p_dir) { sdfgi_debug_probe_pos = p_position; sdfgi_debug_probe_dir = p_dir; } RasterizerSceneRD *RasterizerSceneRD::singleton = nullptr; RID RasterizerSceneRD::get_cluster_builder_texture() { return cluster.builder.get_cluster_texture(); } RID RasterizerSceneRD::get_cluster_builder_indices_buffer() { return cluster.builder.get_cluster_indices_buffer(); } RID RasterizerSceneRD::get_reflection_probe_buffer() { return cluster.reflection_buffer; } RID RasterizerSceneRD::get_positional_light_buffer() { return cluster.light_buffer; } RID RasterizerSceneRD::get_directional_light_buffer() { return cluster.directional_light_buffer; } RID RasterizerSceneRD::get_decal_buffer() { return cluster.decal_buffer; } int RasterizerSceneRD::get_max_directional_lights() const { return cluster.max_directional_lights; } RasterizerSceneRD::RasterizerSceneRD(RasterizerStorageRD *p_storage) { storage = p_storage; singleton = this; roughness_layers = GLOBAL_GET("rendering/quality/reflections/roughness_layers"); sky_ggx_samples_quality = GLOBAL_GET("rendering/quality/reflections/ggx_samples"); sky_use_cubemap_array = GLOBAL_GET("rendering/quality/reflections/texture_array_reflections"); // sky_use_cubemap_array = false; //uint32_t textures_per_stage = RD::get_singleton()->limit_get(RD::LIMIT_MAX_TEXTURES_PER_SHADER_STAGE); { //kinda complicated to compute the amount of slots, we try to use as many as we can gi_probe_max_lights = 32; gi_probe_lights = memnew_arr(GIProbeLight, gi_probe_max_lights); gi_probe_lights_uniform = RD::get_singleton()->uniform_buffer_create(gi_probe_max_lights * sizeof(GIProbeLight)); gi_probe_quality = RS::GIProbeQuality(CLAMP(int(GLOBAL_GET("rendering/quality/gi_probes/quality")), 0, 1)); String defines = "\n#define MAX_LIGHTS " + itos(gi_probe_max_lights) + "\n"; Vector versions; versions.push_back("\n#define MODE_COMPUTE_LIGHT\n"); versions.push_back("\n#define MODE_SECOND_BOUNCE\n"); versions.push_back("\n#define MODE_UPDATE_MIPMAPS\n"); versions.push_back("\n#define MODE_WRITE_TEXTURE\n"); versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_LIGHTING\n"); versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_WRITE\n"); versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_PLOT\n"); versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_PLOT\n#define MODE_DYNAMIC_SHRINK_WRITE\n"); giprobe_shader.initialize(versions, defines); giprobe_lighting_shader_version = giprobe_shader.version_create(); for (int i = 0; i < GI_PROBE_SHADER_VERSION_MAX; i++) { giprobe_lighting_shader_version_shaders[i] = giprobe_shader.version_get_shader(giprobe_lighting_shader_version, i); giprobe_lighting_shader_version_pipelines[i] = RD::get_singleton()->compute_pipeline_create(giprobe_lighting_shader_version_shaders[i]); } } { String defines; Vector versions; versions.push_back("\n#define MODE_DEBUG_COLOR\n"); versions.push_back("\n#define MODE_DEBUG_LIGHT\n"); versions.push_back("\n#define MODE_DEBUG_EMISSION\n"); versions.push_back("\n#define MODE_DEBUG_LIGHT\n#define MODE_DEBUG_LIGHT_FULL\n"); giprobe_debug_shader.initialize(versions, defines); giprobe_debug_shader_version = giprobe_debug_shader.version_create(); for (int i = 0; i < GI_PROBE_DEBUG_MAX; i++) { giprobe_debug_shader_version_shaders[i] = giprobe_debug_shader.version_get_shader(giprobe_debug_shader_version, i); RD::PipelineRasterizationState rs; rs.cull_mode = RD::POLYGON_CULL_FRONT; RD::PipelineDepthStencilState ds; ds.enable_depth_test = true; ds.enable_depth_write = true; ds.depth_compare_operator = RD::COMPARE_OP_LESS_OR_EQUAL; giprobe_debug_shader_version_pipelines[i].setup(giprobe_debug_shader_version_shaders[i], RD::RENDER_PRIMITIVE_TRIANGLES, rs, RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(), 0); } } /* SKY SHADER */ { // Start with the directional lights for the sky sky_scene_state.max_directional_lights = 4; uint32_t directional_light_buffer_size = sky_scene_state.max_directional_lights * sizeof(SkyDirectionalLightData); sky_scene_state.directional_lights = memnew_arr(SkyDirectionalLightData, sky_scene_state.max_directional_lights); sky_scene_state.last_frame_directional_lights = memnew_arr(SkyDirectionalLightData, sky_scene_state.max_directional_lights); sky_scene_state.last_frame_directional_light_count = sky_scene_state.max_directional_lights + 1; sky_scene_state.directional_light_buffer = RD::get_singleton()->uniform_buffer_create(directional_light_buffer_size); String defines = "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(sky_scene_state.max_directional_lights) + "\n"; // Initialize sky Vector sky_modes; sky_modes.push_back(""); // Full size sky_modes.push_back("\n#define USE_HALF_RES_PASS\n"); // Half Res sky_modes.push_back("\n#define USE_QUARTER_RES_PASS\n"); // Quarter res sky_modes.push_back("\n#define USE_CUBEMAP_PASS\n"); // Cubemap sky_modes.push_back("\n#define USE_CUBEMAP_PASS\n#define USE_HALF_RES_PASS\n"); // Half Res Cubemap sky_modes.push_back("\n#define USE_CUBEMAP_PASS\n#define USE_QUARTER_RES_PASS\n"); // Quarter res Cubemap sky_shader.shader.initialize(sky_modes, defines); } // register our shader funds storage->shader_set_data_request_function(RasterizerStorageRD::SHADER_TYPE_SKY, _create_sky_shader_funcs); storage->material_set_data_request_function(RasterizerStorageRD::SHADER_TYPE_SKY, _create_sky_material_funcs); { ShaderCompilerRD::DefaultIdentifierActions actions; actions.renames["COLOR"] = "color"; actions.renames["ALPHA"] = "alpha"; actions.renames["EYEDIR"] = "cube_normal"; actions.renames["POSITION"] = "params.position_multiplier.xyz"; actions.renames["SKY_COORDS"] = "panorama_coords"; actions.renames["SCREEN_UV"] = "uv"; actions.renames["TIME"] = "params.time"; actions.renames["HALF_RES_COLOR"] = "half_res_color"; actions.renames["QUARTER_RES_COLOR"] = "quarter_res_color"; actions.renames["RADIANCE"] = "radiance"; actions.renames["FOG"] = "custom_fog"; actions.renames["LIGHT0_ENABLED"] = "directional_lights.data[0].enabled"; actions.renames["LIGHT0_DIRECTION"] = "directional_lights.data[0].direction_energy.xyz"; actions.renames["LIGHT0_ENERGY"] = "directional_lights.data[0].direction_energy.w"; actions.renames["LIGHT0_COLOR"] = "directional_lights.data[0].color_size.xyz"; actions.renames["LIGHT0_SIZE"] = "directional_lights.data[0].color_size.w"; actions.renames["LIGHT1_ENABLED"] = "directional_lights.data[1].enabled"; actions.renames["LIGHT1_DIRECTION"] = "directional_lights.data[1].direction_energy.xyz"; actions.renames["LIGHT1_ENERGY"] = "directional_lights.data[1].direction_energy.w"; actions.renames["LIGHT1_COLOR"] = "directional_lights.data[1].color_size.xyz"; actions.renames["LIGHT1_SIZE"] = "directional_lights.data[1].color_size.w"; actions.renames["LIGHT2_ENABLED"] = "directional_lights.data[2].enabled"; actions.renames["LIGHT2_DIRECTION"] = "directional_lights.data[2].direction_energy.xyz"; actions.renames["LIGHT2_ENERGY"] = "directional_lights.data[2].direction_energy.w"; actions.renames["LIGHT2_COLOR"] = "directional_lights.data[2].color_size.xyz"; actions.renames["LIGHT2_SIZE"] = "directional_lights.data[2].color_size.w"; actions.renames["LIGHT3_ENABLED"] = "directional_lights.data[3].enabled"; actions.renames["LIGHT3_DIRECTION"] = "directional_lights.data[3].direction_energy.xyz"; actions.renames["LIGHT3_ENERGY"] = "directional_lights.data[3].direction_energy.w"; actions.renames["LIGHT3_COLOR"] = "directional_lights.data[3].color_size.xyz"; actions.renames["LIGHT3_SIZE"] = "directional_lights.data[3].color_size.w"; actions.renames["AT_CUBEMAP_PASS"] = "AT_CUBEMAP_PASS"; actions.renames["AT_HALF_RES_PASS"] = "AT_HALF_RES_PASS"; actions.renames["AT_QUARTER_RES_PASS"] = "AT_QUARTER_RES_PASS"; actions.custom_samplers["RADIANCE"] = "material_samplers[3]"; actions.usage_defines["HALF_RES_COLOR"] = "\n#define USES_HALF_RES_COLOR\n"; actions.usage_defines["QUARTER_RES_COLOR"] = "\n#define USES_QUARTER_RES_COLOR\n"; actions.render_mode_defines["disable_fog"] = "#define DISABLE_FOG\n"; actions.sampler_array_name = "material_samplers"; actions.base_texture_binding_index = 1; actions.texture_layout_set = 1; actions.base_uniform_string = "material."; actions.base_varying_index = 10; actions.default_filter = ShaderLanguage::FILTER_LINEAR_MIPMAP; actions.default_repeat = ShaderLanguage::REPEAT_ENABLE; actions.global_buffer_array_variable = "global_variables.data"; sky_shader.compiler.initialize(actions); } { // default material and shader for sky shader sky_shader.default_shader = storage->shader_create(); storage->shader_set_code(sky_shader.default_shader, "shader_type sky; void fragment() { COLOR = vec3(0.0); } \n"); sky_shader.default_material = storage->material_create(); storage->material_set_shader(sky_shader.default_material, sky_shader.default_shader); SkyMaterialData *md = (SkyMaterialData *)storage->material_get_data(sky_shader.default_material, RasterizerStorageRD::SHADER_TYPE_SKY); sky_shader.default_shader_rd = sky_shader.shader.version_get_shader(md->shader_data->version, SKY_VERSION_BACKGROUND); sky_scene_state.uniform_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(SkySceneState::UBO)); Vector uniforms; { RD::Uniform u; u.type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 0; u.ids.resize(12); RID *ids_ptr = u.ids.ptrw(); ids_ptr[0] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); ids_ptr[1] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); ids_ptr[2] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); ids_ptr[3] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); ids_ptr[4] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); ids_ptr[5] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); ids_ptr[6] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); ids_ptr[7] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); ids_ptr[8] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); ids_ptr[9] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); ids_ptr[10] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); ids_ptr[11] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 1; u.ids.push_back(storage->global_variables_get_storage_buffer()); uniforms.push_back(u); } { RD::Uniform u; u.binding = 2; u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.ids.push_back(sky_scene_state.uniform_buffer); uniforms.push_back(u); } { RD::Uniform u; u.binding = 3; u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.ids.push_back(sky_scene_state.directional_light_buffer); uniforms.push_back(u); } sky_scene_state.uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_UNIFORMS); } { Vector uniforms; { RD::Uniform u; u.binding = 0; u.type = RD::UNIFORM_TYPE_TEXTURE; RID vfog = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE); u.ids.push_back(vfog); uniforms.push_back(u); } sky_scene_state.default_fog_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_FOG); } { // Need defaults for using fog with clear color sky_scene_state.fog_shader = storage->shader_create(); storage->shader_set_code(sky_scene_state.fog_shader, "shader_type sky; uniform vec4 clear_color; void fragment() { COLOR = clear_color.rgb; } \n"); sky_scene_state.fog_material = storage->material_create(); storage->material_set_shader(sky_scene_state.fog_material, sky_scene_state.fog_shader); Vector uniforms; { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 0; u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK)); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 1; u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE)); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 2; u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE)); uniforms.push_back(u); } sky_scene_state.fog_only_texture_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_TEXTURES); } { Vector preprocess_modes; preprocess_modes.push_back("\n#define MODE_SCROLL\n"); preprocess_modes.push_back("\n#define MODE_SCROLL_OCCLUSION\n"); preprocess_modes.push_back("\n#define MODE_INITIALIZE_JUMP_FLOOD\n"); preprocess_modes.push_back("\n#define MODE_INITIALIZE_JUMP_FLOOD_HALF\n"); preprocess_modes.push_back("\n#define MODE_JUMPFLOOD\n"); preprocess_modes.push_back("\n#define MODE_JUMPFLOOD_OPTIMIZED\n"); preprocess_modes.push_back("\n#define MODE_UPSCALE_JUMP_FLOOD\n"); preprocess_modes.push_back("\n#define MODE_OCCLUSION\n"); preprocess_modes.push_back("\n#define MODE_STORE\n"); String defines = "\n#define OCCLUSION_SIZE " + itos(SDFGI::CASCADE_SIZE / SDFGI::PROBE_DIVISOR) + "\n"; sdfgi_shader.preprocess.initialize(preprocess_modes, defines); sdfgi_shader.preprocess_shader = sdfgi_shader.preprocess.version_create(); for (int i = 0; i < SDGIShader::PRE_PROCESS_MAX; i++) { sdfgi_shader.preprocess_pipeline[i] = RD::get_singleton()->compute_pipeline_create(sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, i)); } } { //calculate tables String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n"; Vector direct_light_modes; direct_light_modes.push_back("\n#define MODE_PROCESS_STATIC\n"); direct_light_modes.push_back("\n#define MODE_PROCESS_DYNAMIC\n"); sdfgi_shader.direct_light.initialize(direct_light_modes, defines); sdfgi_shader.direct_light_shader = sdfgi_shader.direct_light.version_create(); for (int i = 0; i < SDGIShader::DIRECT_LIGHT_MODE_MAX; i++) { sdfgi_shader.direct_light_pipeline[i] = RD::get_singleton()->compute_pipeline_create(sdfgi_shader.direct_light.version_get_shader(sdfgi_shader.direct_light_shader, i)); } } { //calculate tables String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n"; defines += "\n#define SH_SIZE " + itos(SDFGI::SH_SIZE) + "\n"; Vector integrate_modes; integrate_modes.push_back("\n#define MODE_PROCESS\n"); integrate_modes.push_back("\n#define MODE_STORE\n"); integrate_modes.push_back("\n#define MODE_SCROLL\n"); integrate_modes.push_back("\n#define MODE_SCROLL_STORE\n"); sdfgi_shader.integrate.initialize(integrate_modes, defines); sdfgi_shader.integrate_shader = sdfgi_shader.integrate.version_create(); for (int i = 0; i < SDGIShader::INTEGRATE_MODE_MAX; i++) { sdfgi_shader.integrate_pipeline[i] = RD::get_singleton()->compute_pipeline_create(sdfgi_shader.integrate.version_get_shader(sdfgi_shader.integrate_shader, i)); } { Vector uniforms; { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 0; u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE)); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 1; u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); uniforms.push_back(u); } sdfgi_shader.integrate_default_sky_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.integrate.version_get_shader(sdfgi_shader.integrate_shader, 0), 1); } } { //calculate tables String defines = "\n#define SDFGI_OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n"; Vector gi_modes; gi_modes.push_back(""); gi.shader.initialize(gi_modes, defines); gi.shader_version = gi.shader.version_create(); for (int i = 0; i < GI::MODE_MAX; i++) { gi.pipelines[i] = RD::get_singleton()->compute_pipeline_create(gi.shader.version_get_shader(gi.shader_version, i)); } gi.sdfgi_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(GI::SDFGIData)); } { String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n"; Vector debug_modes; debug_modes.push_back(""); sdfgi_shader.debug.initialize(debug_modes, defines); sdfgi_shader.debug_shader = sdfgi_shader.debug.version_create(); sdfgi_shader.debug_shader_version = sdfgi_shader.debug.version_get_shader(sdfgi_shader.debug_shader, 0); sdfgi_shader.debug_pipeline = RD::get_singleton()->compute_pipeline_create(sdfgi_shader.debug_shader_version); } { String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n"; Vector versions; versions.push_back("\n#define MODE_PROBES\n"); versions.push_back("\n#define MODE_VISIBILITY\n"); sdfgi_shader.debug_probes.initialize(versions, defines); sdfgi_shader.debug_probes_shader = sdfgi_shader.debug_probes.version_create(); { RD::PipelineRasterizationState rs; rs.cull_mode = RD::POLYGON_CULL_DISABLED; RD::PipelineDepthStencilState ds; ds.enable_depth_test = true; ds.enable_depth_write = true; ds.depth_compare_operator = RD::COMPARE_OP_LESS_OR_EQUAL; for (int i = 0; i < SDGIShader::PROBE_DEBUG_MAX; i++) { RID debug_probes_shader_version = sdfgi_shader.debug_probes.version_get_shader(sdfgi_shader.debug_probes_shader, i); sdfgi_shader.debug_probes_pipeline[i].setup(debug_probes_shader_version, RD::RENDER_PRIMITIVE_TRIANGLE_STRIPS, rs, RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(), 0); } } } //cluster setup uint32_t uniform_max_size = RD::get_singleton()->limit_get(RD::LIMIT_MAX_UNIFORM_BUFFER_SIZE); { //reflections uint32_t reflection_buffer_size; if (uniform_max_size < 65536) { //Yes, you guessed right, ARM again reflection_buffer_size = uniform_max_size; } else { reflection_buffer_size = 65536; } cluster.max_reflections = reflection_buffer_size / sizeof(Cluster::ReflectionData); cluster.reflections = memnew_arr(Cluster::ReflectionData, cluster.max_reflections); cluster.reflection_buffer = RD::get_singleton()->storage_buffer_create(reflection_buffer_size); } { //lights cluster.max_lights = MIN(1024 * 1024, uniform_max_size) / sizeof(Cluster::LightData); //1mb of lights uint32_t light_buffer_size = cluster.max_lights * sizeof(Cluster::LightData); cluster.lights = memnew_arr(Cluster::LightData, cluster.max_lights); cluster.light_buffer = RD::get_singleton()->storage_buffer_create(light_buffer_size); //defines += "\n#define MAX_LIGHT_DATA_STRUCTS " + itos(cluster.max_lights) + "\n"; cluster.lights_instances = memnew_arr(RID, cluster.max_lights); cluster.lights_shadow_rect_cache = memnew_arr(Rect2i, cluster.max_lights); cluster.max_directional_lights = 8; uint32_t directional_light_buffer_size = cluster.max_directional_lights * sizeof(Cluster::DirectionalLightData); cluster.directional_lights = memnew_arr(Cluster::DirectionalLightData, cluster.max_directional_lights); cluster.directional_light_buffer = RD::get_singleton()->uniform_buffer_create(directional_light_buffer_size); } { //decals cluster.max_decals = MIN(1024 * 1024, uniform_max_size) / sizeof(Cluster::DecalData); //1mb of decals uint32_t decal_buffer_size = cluster.max_decals * sizeof(Cluster::DecalData); cluster.decals = memnew_arr(Cluster::DecalData, cluster.max_decals); cluster.decal_buffer = RD::get_singleton()->storage_buffer_create(decal_buffer_size); } cluster.builder.setup(16, 8, 24); { String defines = "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(cluster.max_directional_lights) + "\n"; Vector volumetric_fog_modes; volumetric_fog_modes.push_back("\n#define MODE_DENSITY\n"); volumetric_fog_modes.push_back("\n#define MODE_DENSITY\n#define ENABLE_SDFGI\n"); volumetric_fog_modes.push_back("\n#define MODE_FILTER\n"); volumetric_fog_modes.push_back("\n#define MODE_FOG\n"); volumetric_fog.shader.initialize(volumetric_fog_modes, defines); volumetric_fog.shader_version = volumetric_fog.shader.version_create(); for (int i = 0; i < VOLUMETRIC_FOG_SHADER_MAX; i++) { volumetric_fog.pipelines[i] = RD::get_singleton()->compute_pipeline_create(volumetric_fog.shader.version_get_shader(volumetric_fog.shader_version, i)); } } default_giprobe_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(GI::GIProbeData) * RenderBuffers::MAX_GIPROBES); { RD::SamplerState sampler; sampler.mag_filter = RD::SAMPLER_FILTER_LINEAR; sampler.min_filter = RD::SAMPLER_FILTER_LINEAR; sampler.enable_compare = true; sampler.compare_op = RD::COMPARE_OP_LESS; shadow_sampler = RD::get_singleton()->sampler_create(sampler); } camera_effects_set_dof_blur_bokeh_shape(RS::DOFBokehShape(int(GLOBAL_GET("rendering/quality/depth_of_field/depth_of_field_bokeh_shape")))); camera_effects_set_dof_blur_quality(RS::DOFBlurQuality(int(GLOBAL_GET("rendering/quality/depth_of_field/depth_of_field_bokeh_quality"))), GLOBAL_GET("rendering/quality/depth_of_field/depth_of_field_use_jitter")); environment_set_ssao_quality(RS::EnvironmentSSAOQuality(int(GLOBAL_GET("rendering/quality/ssao/quality"))), GLOBAL_GET("rendering/quality/ssao/half_size")); screen_space_roughness_limiter = GLOBAL_GET("rendering/quality/screen_filters/screen_space_roughness_limiter_enabled"); screen_space_roughness_limiter_amount = GLOBAL_GET("rendering/quality/screen_filters/screen_space_roughness_limiter_amount"); screen_space_roughness_limiter_limit = GLOBAL_GET("rendering/quality/screen_filters/screen_space_roughness_limiter_limit"); glow_bicubic_upscale = int(GLOBAL_GET("rendering/quality/glow/upscale_mode")) > 0; ssr_roughness_quality = RS::EnvironmentSSRRoughnessQuality(int(GLOBAL_GET("rendering/quality/screen_space_reflection/roughness_quality"))); sss_quality = RS::SubSurfaceScatteringQuality(int(GLOBAL_GET("rendering/quality/subsurface_scattering/subsurface_scattering_quality"))); sss_scale = GLOBAL_GET("rendering/quality/subsurface_scattering/subsurface_scattering_scale"); sss_depth_scale = GLOBAL_GET("rendering/quality/subsurface_scattering/subsurface_scattering_depth_scale"); directional_penumbra_shadow_kernel = memnew_arr(float, 128); directional_soft_shadow_kernel = memnew_arr(float, 128); penumbra_shadow_kernel = memnew_arr(float, 128); soft_shadow_kernel = memnew_arr(float, 128); shadows_quality_set(RS::ShadowQuality(int(GLOBAL_GET("rendering/quality/shadows/soft_shadow_quality")))); directional_shadow_quality_set(RS::ShadowQuality(int(GLOBAL_GET("rendering/quality/directional_shadow/soft_shadow_quality")))); environment_set_volumetric_fog_volume_size(GLOBAL_GET("rendering/volumetric_fog/volume_size"), GLOBAL_GET("rendering/volumetric_fog/volume_depth")); environment_set_volumetric_fog_filter_active(GLOBAL_GET("rendering/volumetric_fog/use_filter")); environment_set_volumetric_fog_directional_shadow_shrink_size(GLOBAL_GET("rendering/volumetric_fog/directional_shadow_shrink")); environment_set_volumetric_fog_positional_shadow_shrink_size(GLOBAL_GET("rendering/volumetric_fog/positional_shadow_shrink")); } RasterizerSceneRD::~RasterizerSceneRD() { for (Map::Element *E = shadow_maps.front(); E; E = E->next()) { RD::get_singleton()->free(E->get().depth); } for (Map::Element *E = shadow_cubemaps.front(); E; E = E->next()) { RD::get_singleton()->free(E->get().cubemap); } if (sky_scene_state.uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(sky_scene_state.uniform_set)) { RD::get_singleton()->free(sky_scene_state.uniform_set); } RD::get_singleton()->free(default_giprobe_buffer); RD::get_singleton()->free(gi_probe_lights_uniform); RD::get_singleton()->free(gi.sdfgi_ubo); giprobe_debug_shader.version_free(giprobe_debug_shader_version); giprobe_shader.version_free(giprobe_lighting_shader_version); gi.shader.version_free(gi.shader_version); sdfgi_shader.debug_probes.version_free(sdfgi_shader.debug_probes_shader); sdfgi_shader.debug.version_free(sdfgi_shader.debug_shader); sdfgi_shader.direct_light.version_free(sdfgi_shader.direct_light_shader); sdfgi_shader.integrate.version_free(sdfgi_shader.integrate_shader); sdfgi_shader.preprocess.version_free(sdfgi_shader.preprocess_shader); volumetric_fog.shader.version_free(volumetric_fog.shader_version); memdelete_arr(gi_probe_lights); SkyMaterialData *md = (SkyMaterialData *)storage->material_get_data(sky_shader.default_material, RasterizerStorageRD::SHADER_TYPE_SKY); sky_shader.shader.version_free(md->shader_data->version); RD::get_singleton()->free(sky_scene_state.directional_light_buffer); RD::get_singleton()->free(sky_scene_state.uniform_buffer); memdelete_arr(sky_scene_state.directional_lights); memdelete_arr(sky_scene_state.last_frame_directional_lights); storage->free(sky_shader.default_shader); storage->free(sky_shader.default_material); storage->free(sky_scene_state.fog_shader); storage->free(sky_scene_state.fog_material); memdelete_arr(directional_penumbra_shadow_kernel); memdelete_arr(directional_soft_shadow_kernel); memdelete_arr(penumbra_shadow_kernel); memdelete_arr(soft_shadow_kernel); { RD::get_singleton()->free(cluster.directional_light_buffer); RD::get_singleton()->free(cluster.light_buffer); RD::get_singleton()->free(cluster.reflection_buffer); RD::get_singleton()->free(cluster.decal_buffer); memdelete_arr(cluster.directional_lights); memdelete_arr(cluster.lights); memdelete_arr(cluster.lights_shadow_rect_cache); memdelete_arr(cluster.lights_instances); memdelete_arr(cluster.reflections); memdelete_arr(cluster.decals); } RD::get_singleton()->free(shadow_sampler); directional_shadow_atlas_set_size(0); }