[vertex] /* from VisualServer: ARRAY_VERTEX=0, ARRAY_NORMAL=1, ARRAY_TANGENT=2, ARRAY_COLOR=3, ARRAY_TEX_UV=4, ARRAY_TEX_UV2=5, ARRAY_BONES=6, ARRAY_WEIGHTS=7, ARRAY_INDEX=8, */ //hack to use uv if no uv present so it works with lightmap /* INPUT ATTRIBS */ layout(location=0) in highp vec4 vertex_attrib; layout(location=1) in vec3 normal_attrib; #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) layout(location=2) in vec4 tangent_attrib; #endif #if defined(ENABLE_COLOR_INTERP) layout(location=3) in vec4 color_attrib; #endif #if defined(ENABLE_UV_INTERP) layout(location=4) in vec2 uv_attrib; #endif #if defined(ENABLE_UV2_INTERP) layout(location=5) in vec2 uv2_attrib; #endif uniform float normal_mult; #ifdef USE_SKELETON layout(location=6) in ivec4 bone_indices; // attrib:6 layout(location=7) in vec4 bone_weights; // attrib:7 #endif #ifdef USE_INSTANCING layout(location=8) in highp vec4 instance_xform0; layout(location=9) in highp vec4 instance_xform1; layout(location=10) in highp vec4 instance_xform2; layout(location=11) in lowp vec4 instance_color; #endif layout(std140) uniform SceneData { //ubo:0 highp mat4 projection_matrix; highp mat4 camera_inverse_matrix; highp mat4 camera_matrix; highp vec4 time; highp vec4 ambient_light_color; highp vec4 bg_color; float ambient_energy; float bg_energy; float shadow_z_offset; float shadow_z_slope_scale; float shadow_dual_paraboloid_render_zfar; float shadow_dual_paraboloid_render_side; vec2 shadow_atlas_pixel_size; vec2 directional_shadow_pixel_size; float reflection_multiplier; float subsurface_scatter_width; float ambient_occlusion_affect_light; }; uniform highp mat4 world_transform; #ifdef USE_LIGHT_DIRECTIONAL layout(std140) uniform DirectionalLightData { //ubo:3 highp vec4 light_pos_inv_radius; mediump vec4 light_direction_attenuation; mediump vec4 light_color_energy; mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled, mediump vec4 light_clamp; mediump vec4 shadow_color; highp mat4 shadow_matrix1; highp mat4 shadow_matrix2; highp mat4 shadow_matrix3; highp mat4 shadow_matrix4; mediump vec4 shadow_split_offsets; }; #endif /* Varyings */ out highp vec3 vertex_interp; out vec3 normal_interp; #if defined(ENABLE_COLOR_INTERP) out vec4 color_interp; #endif #if defined(ENABLE_UV_INTERP) out vec2 uv_interp; #endif #if defined(ENABLE_UV2_INTERP) out vec2 uv2_interp; #endif #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) out vec3 tangent_interp; out vec3 binormal_interp; #endif #if !defined(USE_DEPTH_SHADOWS) && defined(USE_SHADOW_PASS) varying vec4 position_interp; #endif VERTEX_SHADER_GLOBALS #if defined(USE_MATERIAL) layout(std140) uniform UniformData { //ubo:1 MATERIAL_UNIFORMS }; #endif #ifdef RENDER_SHADOW_DUAL_PARABOLOID out highp float dp_clip; #endif #ifdef USE_SKELETON layout(std140) uniform SkeletonData { //ubo:7 mat3x4 skeleton[MAX_SKELETON_BONES]; }; #endif void main() { highp vec4 vertex = vertex_attrib; // vec4(vertex_attrib.xyz * data_attrib.x,1.0); highp mat4 modelview = camera_inverse_matrix * world_transform; vec3 normal = normal_attrib * normal_mult; #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) vec3 tangent = tangent_attrib.xyz; tangent*=normal_mult; float binormalf = tangent_attrib.a; #endif #if defined(ENABLE_COLOR_INTERP) color_interp = color_attrib; #endif #ifdef USE_SKELETON { //skeleton transform highp mat3x4 m=skeleton[bone_indices.x]*bone_weights.x; m+=skeleton[bone_indices.y]*bone_weights.y; m+=skeleton[bone_indices.z]*bone_weights.z; m+=skeleton[bone_indices.w]*bone_weights.w; vertex.xyz = vertex * m; normal = vec4(normal,0.0) * m; #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) tangent.xyz = vec4(tangent.xyz,0.0) * mn; #endif } #endif // USE_SKELETON1 #ifdef USE_INSTANCING { highp mat3x4 m=mat3x4(instance_xform0,instance_xform1,instance_xform2); vertex.xyz = vertex * m; normal = vec4(normal,0.0) * m; #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) tangent.xyz = vec4(tangent.xyz,0.0) * mn; #endif #if defined(ENABLE_COLOR_INTERP) color_interp*=instance_color; #endif } #endif //USE_INSTANCING #if !defined(SKIP_TRANSFORM_USED) vertex = modelview * vertex; normal = normalize((modelview * vec4(normal,0.0)).xyz); #endif #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) # if !defined(SKIP_TRANSFORM_USED) tangent=normalize((modelview * vec4(tangent,0.0)).xyz); # endif vec3 binormal = normalize( cross(normal,tangent) * binormalf ); #endif #if defined(ENABLE_UV_INTERP) uv_interp = uv_attrib; #endif #if defined(ENABLE_UV2_INTERP) uv2_interp = uv2_attrib; #endif { VERTEX_SHADER_CODE } vertex_interp = vertex.xyz; normal_interp = normal; #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) tangent_interp = tangent; binormal_interp = binormal; #endif #ifdef RENDER_SHADOW #ifdef RENDER_SHADOW_DUAL_PARABOLOID vertex_interp.z*= shadow_dual_paraboloid_render_side; normal_interp.z*= shadow_dual_paraboloid_render_side; dp_clip=vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias //for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges highp vec3 vtx = vertex_interp+normalize(vertex_interp)*shadow_z_offset; highp float distance = length(vtx); vtx = normalize(vtx); vtx.xy/=1.0-vtx.z; vtx.z=(distance/shadow_dual_paraboloid_render_zfar); vtx.z=vtx.z * 2.0 - 1.0; vertex.xyz=vtx; vertex.w=1.0; #else float z_ofs = shadow_z_offset; z_ofs += (1.0-abs(normal_interp.z))*shadow_z_slope_scale; vertex_interp.z-=z_ofs; #endif //RENDER_SHADOW_DUAL_PARABOLOID #endif //RENDER_SHADOW #if !defined(SKIP_TRANSFORM_USED) && !defined(RENDER_SHADOW_DUAL_PARABOLOID) gl_Position = projection_matrix * vec4(vertex_interp,1.0); #else gl_Position = vertex; #endif } [fragment] #define M_PI 3.14159265359 /* Varyings */ #if defined(ENABLE_COLOR_INTERP) in vec4 color_interp; #endif #if defined(ENABLE_UV_INTERP) in vec2 uv_interp; #endif #if defined(ENABLE_UV2_INTERP) in vec2 uv2_interp; #endif #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) in vec3 tangent_interp; in vec3 binormal_interp; #endif in highp vec3 vertex_interp; in vec3 normal_interp; /* PBR CHANNELS */ //used on forward mainly uniform bool no_ambient_light; uniform sampler2D brdf_texture; //texunit:-1 #ifdef USE_RADIANCE_MAP uniform sampler2D radiance_map; //texunit:-2 layout(std140) uniform Radiance { //ubo:2 mat4 radiance_inverse_xform; vec3 radiance_box_min; vec3 radiance_box_max; float radiance_ambient_contribution; }; #endif /* Material Uniforms */ FRAGMENT_SHADER_GLOBALS #if defined(USE_MATERIAL) layout(std140) uniform UniformData { MATERIAL_UNIFORMS }; #endif layout(std140) uniform SceneData { highp mat4 projection_matrix; highp mat4 camera_inverse_matrix; highp mat4 camera_matrix; highp vec4 time; highp vec4 ambient_light_color; highp vec4 bg_color; float ambient_energy; float bg_energy; float shadow_z_offset; float shadow_z_slope_scale; float shadow_dual_paraboloid_render_zfar; float shadow_dual_paraboloid_render_side; vec2 shadow_atlas_pixel_size; vec2 directional_shadow_pixel_size; float reflection_multiplier; float subsurface_scatter_width; float ambient_occlusion_affect_light; }; //directional light data #ifdef USE_LIGHT_DIRECTIONAL layout(std140) uniform DirectionalLightData { highp vec4 light_pos_inv_radius; mediump vec4 light_direction_attenuation; mediump vec4 light_color_energy; mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled, mediump vec4 light_clamp; mediump vec4 shadow_color; highp mat4 shadow_matrix1; highp mat4 shadow_matrix2; highp mat4 shadow_matrix3; highp mat4 shadow_matrix4; mediump vec4 shadow_split_offsets; }; uniform highp sampler2DShadow directional_shadow; //texunit:-4 #endif //omni and spot struct LightData { highp vec4 light_pos_inv_radius; mediump vec4 light_direction_attenuation; mediump vec4 light_color_energy; mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled, mediump vec4 light_clamp; mediump vec4 shadow_color; highp mat4 shadow_matrix; }; layout(std140) uniform OmniLightData { //ubo:4 LightData omni_lights[MAX_LIGHT_DATA_STRUCTS]; }; layout(std140) uniform SpotLightData { //ubo:5 LightData spot_lights[MAX_LIGHT_DATA_STRUCTS]; }; uniform highp sampler2DShadow shadow_atlas; //texunit:-3 struct ReflectionData { mediump vec4 box_extents; mediump vec4 box_offset; mediump vec4 params; // intensity, 0, interior , boxproject mediump vec4 ambient; //ambient color, energy mediump vec4 atlas_clamp; highp mat4 local_matrix; //up to here for spot and omni, rest is for directional //notes: for ambientblend, use distance to edge to blend between already existing global environment }; layout(std140) uniform ReflectionProbeData { //ubo:6 ReflectionData reflections[MAX_REFLECTION_DATA_STRUCTS]; }; uniform mediump sampler2D reflection_atlas; //texunit:-5 #ifdef USE_FORWARD_LIGHTING uniform int omni_light_indices[MAX_FORWARD_LIGHTS]; uniform int omni_light_count; uniform int spot_light_indices[MAX_FORWARD_LIGHTS]; uniform int spot_light_count; uniform int reflection_indices[MAX_FORWARD_LIGHTS]; uniform int reflection_count; #endif #ifdef USE_MULTIPLE_RENDER_TARGETS layout(location=0) out vec4 diffuse_buffer; layout(location=1) out vec4 specular_buffer; layout(location=2) out vec4 normal_mr_buffer; #if defined (ENABLE_SSS_MOTION) layout(location=3) out uint motion_ssr_buffer; #endif #else layout(location=0) out vec4 frag_color; #endif // GGX Specular // Source: http://www.filmicworlds.com/images/ggx-opt/optimized-ggx.hlsl float G1V(float dotNV, float k) { return 1.0 / (dotNV * (1.0 - k) + k); } float SchlickFresnel(float u) { float m = 1.0-u; float m2 = m*m; return m2*m2*m; // pow(m,5) } float GTR1(float NdotH, float a) { if (a >= 1.0) return 1.0/M_PI; float a2 = a*a; float t = 1.0 + (a2-1.0)*NdotH*NdotH; return (a2-1.0) / (M_PI*log(a2)*t); } void light_compute(vec3 N, vec3 L,vec3 V,vec3 B, vec3 T,vec3 light_color,vec3 diffuse_color, vec3 specular_color, float specular_blob_intensity, float roughness, float rim,float rim_tint, float clearcoat, float clearcoat_gloss,float anisotropy,inout vec3 diffuse, inout vec3 specular) { float dotNL = max(dot(N,L), 0.0 ); float dotNV = max(dot(N,V), 0.0 ); #if defined(LIGHT_USE_RIM) float rim_light = pow(1.0-dotNV,(1.0-roughness)*16.0); diffuse += rim_light * rim * mix(vec3(1.0),diffuse_color,rim_tint) * light_color; #endif diffuse += dotNL * light_color * diffuse_color; if (roughness > 0.0) { float alpha = roughness * roughness; vec3 H = normalize(V + L); float dotNH = max(dot(N,H), 0.0 ); float dotLH = max(dot(L,H), 0.0 ); // D #if defined(LIGHT_USE_ANISOTROPY) float aspect = sqrt(1.0-anisotropy*0.9); float rx = roughness/aspect; float ry = roughness*aspect; float ax = rx*rx; float ay = ry*ry; float dotXH = dot( T, H ); float dotYH = dot( B, H ); float pi = M_PI; float denom = dotXH*dotXH / (ax*ax) + dotYH*dotYH / (ay*ay) + dotNH*dotNH; float D = 1.0 / ( pi * ax*ay * denom*denom ); #else float alphaSqr = alpha * alpha; float pi = M_PI; float denom = dotNH * dotNH * (alphaSqr - 1.0) + 1.0; float D = alphaSqr / (pi * denom * denom); #endif // F float F0 = 1.0; float dotLH5 = SchlickFresnel( dotLH ); float F = F0 + (1.0 - F0) * (dotLH5); // V float k = alpha / 2.0f; float vis = G1V(dotNL, k) * G1V(dotNV, k); float speci = dotNL * D * F * vis; specular += speci * light_color /* specular_color*/ * specular_blob_intensity; #if defined(LIGHT_USE_CLEARCOAT) float Dr = GTR1(dotNH, mix(.1,.001,clearcoat_gloss)); float Fr = mix(.04, 1.0, dotLH5); float Gr = G1V(dotNL, .25) * G1V(dotNV, .25); specular += .25*clearcoat*Gr*Fr*Dr; #endif } } float sample_shadow(highp sampler2DShadow shadow, vec2 shadow_pixel_size, vec2 pos, float depth, vec4 clamp_rect) { #ifdef SHADOW_MODE_PCF_13 float avg=textureProj(shadow,vec4(pos,depth,1.0)); avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,0.0),depth,1.0)); avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,0.0),depth,1.0)); avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y),depth,1.0)); avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y),depth,1.0)); avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,shadow_pixel_size.y),depth,1.0)); avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,shadow_pixel_size.y),depth,1.0)); avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,-shadow_pixel_size.y),depth,1.0)); avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,-shadow_pixel_size.y),depth,1.0)); avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x*2.0,0.0),depth,1.0)); avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x*2.0,0.0),depth,1.0)); avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y*2.0),depth,1.0)); avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y*2.0),depth,1.0)); return avg*(1.0/13.0); #endif #ifdef SHADOW_MODE_PCF_5 float avg=textureProj(shadow,vec4(pos,depth,1.0)); avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,0.0),depth,1.0)); avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,0.0),depth,1.0)); avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y),depth,1.0)); avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y),depth,1.0)); return avg*(1.0/5.0); #endif #if !defined(SHADOW_MODE_PCF_5) && !defined(SHADOW_MODE_PCF_13) return textureProj(shadow,vec4(pos,depth,1.0)); #endif } #ifdef RENDER_SHADOW_DUAL_PARABOLOID in highp float dp_clip; #endif #if 0 //need to save texture depth for this vec3 light_transmittance(float translucency,vec3 light_vec, vec3 normal, vec3 pos, float distance) { float scale = 8.25 * (1.0 - translucency) / subsurface_scatter_width; float d = scale * distance; /** * Armed with the thickness, we can now calculate the color by means of the * precalculated transmittance profile. * (It can be precomputed into a texture, for maximum performance): */ float dd = -d * d; vec3 profile = vec3(0.233, 0.455, 0.649) * exp(dd / 0.0064) + vec3(0.1, 0.336, 0.344) * exp(dd / 0.0484) + vec3(0.118, 0.198, 0.0) * exp(dd / 0.187) + vec3(0.113, 0.007, 0.007) * exp(dd / 0.567) + vec3(0.358, 0.004, 0.0) * exp(dd / 1.99) + vec3(0.078, 0.0, 0.0) * exp(dd / 7.41); /** * Using the profile, we finally approximate the transmitted lighting from * the back of the object: */ return profile * clamp(0.3 + dot(light_vec, normal),0.0,1.0); } #endif void light_process_omni(int idx, vec3 vertex, vec3 eye_vec,vec3 normal,vec3 binormal, vec3 tangent, vec3 albedo, vec3 specular, float roughness, float rim, float rim_tint, float clearcoat, float clearcoat_gloss,float anisotropy,inout vec3 diffuse_light, inout vec3 specular_light) { vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz-vertex; float normalized_distance = length( light_rel_vec )*omni_lights[idx].light_pos_inv_radius.w; vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w )); if (omni_lights[idx].light_params.w>0.5) { //there is a shadowmap highp vec3 splane=(omni_lights[idx].shadow_matrix * vec4(vertex,1.0)).xyz; float shadow_len=length(splane); splane=normalize(splane); vec4 clamp_rect=omni_lights[idx].light_clamp; if (splane.z>=0.0) { splane.z+=1.0; clamp_rect.y+=clamp_rect.w; } else { splane.z=1.0 - splane.z; //if (clamp_rect.z0.5) { //there is a shadowmap highp vec4 splane=(spot_lights[idx].shadow_matrix * vec4(vertex,1.0)); splane.xyz/=splane.w; light_attenuation*=mix(spot_lights[idx].shadow_color.rgb,vec3(1.0),sample_shadow(shadow_atlas,shadow_atlas_pixel_size,splane.xy,splane.z,spot_lights[idx].light_clamp)); } light_compute(normal,normalize(light_rel_vec),eye_vec,binormal,tangent,spot_lights[idx].light_color_energy.rgb*light_attenuation,albedo,specular,spot_lights[idx].light_params.z,roughness,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light); } void reflection_process(int idx, vec3 vertex, vec3 normal,vec3 binormal, vec3 tangent,float roughness,float anisotropy,vec3 ambient,vec3 skybox,vec2 brdf, inout highp vec4 reflection_accum,inout highp vec4 ambient_accum) { vec3 ref_vec = normalize(reflect(vertex,normal)); vec3 local_pos = (reflections[idx].local_matrix * vec4(vertex,1.0)).xyz; vec3 box_extents = reflections[idx].box_extents.xyz; if (any(greaterThan(abs(local_pos),box_extents))) { //out of the reflection box return; } vec3 inner_pos = abs(local_pos / box_extents); float blend = max(inner_pos.x,max(inner_pos.y,inner_pos.z)); //make blend more rounded blend=mix(length(inner_pos),blend,blend); blend*=blend; blend=1.001-blend; if (reflections[idx].params.x>0.0){// compute reflection vec3 local_ref_vec = (reflections[idx].local_matrix * vec4(ref_vec,0.0)).xyz; if (reflections[idx].params.w > 0.5) { //box project vec3 nrdir = normalize(local_ref_vec); vec3 rbmax = (box_extents - local_pos)/nrdir; vec3 rbmin = (-box_extents - local_pos)/nrdir; vec3 rbminmax = mix(rbmin,rbmax,greaterThan(nrdir,vec3(0.0,0.0,0.0))); float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z); vec3 posonbox = local_pos + nrdir * fa; local_ref_vec = posonbox - reflections[idx].box_offset.xyz; } vec3 splane=normalize(local_ref_vec); vec4 clamp_rect=reflections[idx].atlas_clamp; splane.z*=-1.0; if (splane.z>=0.0) { splane.z+=1.0; clamp_rect.y+=clamp_rect.w; } else { splane.z=1.0 - splane.z; splane.y=-splane.y; } splane.xy/=splane.z; splane.xy=splane.xy * 0.5 + 0.5; splane.xy = splane.xy * clamp_rect.zw + clamp_rect.xy; splane.xy = clamp(splane.xy,clamp_rect.xy,clamp_rect.xy+clamp_rect.zw); highp vec4 reflection; reflection.rgb = textureLod(reflection_atlas,splane.xy,roughness*5.0).rgb * brdf.x + brdf.y; if (reflections[idx].params.z < 0.5) { reflection.rgb = mix(skybox,reflection.rgb,blend); } reflection.rgb*=reflections[idx].params.x; reflection.a = blend; reflection.rgb*=reflection.a; reflection_accum+=reflection; } if (reflections[idx].ambient.a>0.0) { //compute ambient using skybox vec3 local_amb_vec = (reflections[idx].local_matrix * vec4(normal,0.0)).xyz; vec3 splane=normalize(local_amb_vec); vec4 clamp_rect=reflections[idx].atlas_clamp; splane.z*=-1.0; if (splane.z>=0.0) { splane.z+=1.0; clamp_rect.y+=clamp_rect.w; } else { splane.z=1.0 - splane.z; splane.y=-splane.y; } splane.xy/=splane.z; splane.xy=splane.xy * 0.5 + 0.5; splane.xy = splane.xy * clamp_rect.zw + clamp_rect.xy; splane.xy = clamp(splane.xy,clamp_rect.xy,clamp_rect.xy+clamp_rect.zw); highp vec4 ambient_out; ambient_out.a=blend; ambient_out.rgb = textureLod(reflection_atlas,splane.xy,5.0).rgb; ambient_out.rgb=mix(reflections[idx].ambient.rgb,ambient_out.rgb,reflections[idx].ambient.a); if (reflections[idx].params.z < 0.5) { ambient_out.rgb = mix(ambient,ambient_out.rgb,blend); } ambient_out.rgb *= ambient_out.a; ambient_accum+=ambient_out; } else { highp vec4 ambient_out; ambient_out.a=blend; ambient_out.rgb=reflections[idx].ambient.rgb; if (reflections[idx].params.z < 0.5) { ambient_out.rgb = mix(ambient,ambient_out.rgb,blend); } ambient_out.rgb *= ambient_out.a; ambient_accum+=ambient_out; } } #ifdef USE_GI_PROBES uniform mediump sampler3D gi_probe1; //texunit:-6 uniform highp mat4 gi_probe_xform1; uniform highp vec3 gi_probe_bounds1; uniform highp vec3 gi_probe_cell_size1; uniform highp float gi_probe_multiplier1; uniform bool gi_probe_blend_ambient1; uniform mediump sampler3D gi_probe2; //texunit:-7 uniform highp mat4 gi_probe_xform2; uniform highp vec3 gi_probe_bounds2; uniform highp vec3 gi_probe_cell_size2; uniform highp float gi_probe_multiplier2; uniform bool gi_probe2_enabled; uniform bool gi_probe_blend_ambient2; vec3 voxel_cone_trace(sampler3D probe, vec3 cell_size, vec3 pos, vec3 ambient, bool blend_ambient, vec3 direction, float tan_half_angle, float max_distance) { float dist = dot(direction,mix(vec3(-1.0),vec3(1.0),greaterThan(direction,vec3(0.0))))*2.0; float alpha=0.0; vec4 color = vec4(0.0); while(dist < max_distance && alpha < 0.95) { float diameter = max(1.0, 2.0 * tan_half_angle * dist); vec4 scolor = textureLod(probe, (pos + dist * direction) * cell_size, log2(diameter) ); float a = (1.0 - alpha); color.rgb += a * scolor.rgb; alpha += a * scolor.a; dist += diameter * 0.5; } //color.rgb = mix(color.rgb,mix(ambient,color.rgb,alpha),blend_ambient); return color.rgb; } void gi_probe_compute(sampler3D probe, mat4 probe_xform, vec3 bounds,vec3 cell_size,vec3 pos, vec3 ambient, vec3 environment, bool blend_ambient,float multiplier, mat3 normal_mtx,vec3 ref_vec, float roughness, out vec4 out_spec, out vec4 out_diff) { vec3 probe_pos = (probe_xform * vec4(pos,1.0)).xyz; vec3 ref_pos = (probe_xform * vec4(pos+ref_vec,1.0)).xyz; ref_vec = normalize(ref_pos - probe_pos); /* out_diff.rgb = voxel_cone_trace(probe,cell_size,probe_pos,normalize((probe_xform * vec4(ref_vec,0.0)).xyz),0.0 ,100.0); out_diff.a = 1.0; return;*/ //out_diff = vec4(textureLod(probe,probe_pos*cell_size,3.0).rgb,1.0); //return; if (any(bvec2(any(lessThan(probe_pos,vec3(0.0))),any(greaterThan(probe_pos,bounds))))) return; vec3 blendv = probe_pos/bounds * 2.0 - 1.0; float blend = 1.001-max(blendv.x,max(blendv.y,blendv.z)); blend=1.0; float max_distance = length(bounds); //radiance #ifndef VCT_QUALITY_HIGH #define MAX_CONE_DIRS 6 vec3 cone_dirs[MAX_CONE_DIRS] = vec3[] ( vec3(0, 0, 1), vec3(0.866025, 0, 0.5), vec3(0.267617, 0.823639, 0.5), vec3(-0.700629, 0.509037, 0.5), vec3(-0.700629, -0.509037, 0.5), vec3(0.267617, -0.823639, 0.5) ); float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15); float cone_angle_tan = 0.577; float min_ref_tan = 0.0; #else #define MAX_CONE_DIRS 4 vec3 cone_dirs[MAX_CONE_DIRS] = vec3[] ( vec3(0.707107, 0, 0.707107), vec3(0, 0.707107, 0.707107), vec3(-0.707107, 0, 0.707107), vec3(0, -0.707107, 0.707107) ); float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.25, 0.25, 0.25); float cone_angle_tan = 0.98269; max_distance*=0.5; float min_ref_tan = 0.2; #endif vec3 light=vec3(0.0); for(int i=0;i0.0) { diff_accum.rgb/=diff_accum.a; } if (spec_accum.a>0.0) { spec_accum.rgb/=spec_accum.a; } out_specular+=spec_accum.rgb; out_ambient+=diff_accum.rgb; } #endif void main() { #ifdef RENDER_SHADOW_DUAL_PARABOLOID if (dp_clip>0.0) discard; #endif //lay out everything, whathever is unused is optimized away anyway highp vec3 vertex = vertex_interp; vec3 albedo = vec3(0.8,0.8,0.8); vec3 specular = vec3(0.2,0.2,0.2); vec3 emission = vec3(0.0,0.0,0.0); float roughness = 1.0; float rim = 0.0; float rim_tint = 0.0; float clearcoat=0.0; float clearcoat_gloss=0.0; float anisotropy = 1.0; vec2 anisotropy_flow = vec2(1.0,0.0); #if defined(ENABLE_AO) float ao=1.0; #endif float alpha = 1.0; #ifdef METERIAL_DOUBLESIDED float side=float(gl_FrontFacing)*2.0-1.0; #else float side=1.0; #endif #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) vec3 binormal = normalize(binormal_interp)*side; vec3 tangent = normalize(tangent_interp)*side; #else vec3 binormal = vec3(0.0); vec3 tangent = vec3(0.0); #endif vec3 normal = normalize(normal_interp)*side; #if defined(ENABLE_UV_INTERP) vec2 uv = uv_interp; #endif #if defined(ENABLE_UV2_INTERP) vec2 uv2 = uv2_interp; #endif #if defined(ENABLE_COLOR_INTERP) vec4 color = color_interp; #endif #if defined(ENABLE_NORMALMAP) vec3 normalmap = vec3(0.0); #endif float normaldepth=1.0; #if defined(ENABLE_DISCARD) bool discard_=false; #endif #if defined (ENABLE_SSS_MOTION) float sss_strength=0.0; #endif { FRAGMENT_SHADER_CODE } #if defined(ENABLE_NORMALMAP) normalmap.xy=normalmap.xy*2.0-1.0; normalmap.z=sqrt(1.0-dot(normalmap.xy,normalmap.xy)); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc. normal = normalize( mix(normal_interp,tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z,normaldepth) ) * side; #endif #if defined(LIGHT_USE_ANISOTROPY) if (anisotropy>0.01) { //rotation matrix mat3 rot = mat3( tangent, binormal, normal ); //make local to space tangent = normalize(rot * vec3(anisotropy_flow.x,anisotropy_flow.y,0.0)); binormal = normalize(rot * vec3(-anisotropy_flow.y,anisotropy_flow.x,0.0)); } #endif #if defined(ENABLE_DISCARD) if (discard_) { //easy to eliminate dead code discard; } #endif #ifdef ENABLE_CLIP_ALPHA if (albedo.a<0.99) { //used for doublepass and shadowmapping discard; } #endif /////////////////////// LIGHTING ////////////////////////////// //apply energy conservation vec3 specular_light = vec3(0.0,0.0,0.0); vec3 ambient_light; vec3 diffuse_light = vec3(0.0,0.0,0.0); vec3 eye_vec = -normalize( vertex_interp ); #ifndef RENDER_SHADOW float ndotv = clamp(dot(normal,eye_vec),0.0,1.0); vec2 brdf = texture(brdf_texture, vec2(roughness, ndotv)).xy; #endif #ifdef USE_RADIANCE_MAP if (no_ambient_light) { ambient_light=vec3(0.0,0.0,0.0); } else { { float lod = roughness * 5.0; { //read radiance from dual paraboloid vec3 ref_vec = reflect(-eye_vec,normal); //2.0 * ndotv * normal - view; // reflect(v, n); ref_vec=normalize((radiance_inverse_xform * vec4(ref_vec,0.0)).xyz); vec3 norm = normalize(ref_vec); float y_ofs=0.0; if (norm.z>=0.0) { norm.z+=1.0; y_ofs+=0.5; } else { norm.z=1.0 - norm.z; norm.y=-norm.y; } norm.xy/=norm.z; norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25+y_ofs); specular_light = textureLod(radiance_map, norm.xy, lod).xyz * brdf.x + brdf.y; } //no longer a cubemap //vec3 radiance = textureLod(radiance_cube, r, lod).xyz * ( brdf.x + brdf.y); } { /*vec3 ambient_dir=normalize((radiance_inverse_xform * vec4(normal,0.0)).xyz); vec3 env_ambient=textureLod(radiance_cube, ambient_dir, 5.0).xyz; ambient_light=mix(ambient_light_color.rgb,env_ambient,radiance_ambient_contribution);*/ ambient_light=vec3(0.0,0.0,0.0); } } #else if (no_ambient_light){ ambient_light=vec3(0.0,0.0,0.0); } else { ambient_light=ambient_light_color.rgb; } #endif #ifdef USE_LIGHT_DIRECTIONAL vec3 light_attenuation=vec3(1.0); #ifdef LIGHT_DIRECTIONAL_SHADOW if (gl_FragCoord.w > shadow_split_offsets.w) { vec3 pssm_coord; #ifdef LIGHT_USE_PSSM_BLEND float pssm_blend; vec3 pssm_coord2; bool use_blend=true; vec3 light_pssm_split_inv = 1.0/shadow_split_offsets.xyz; float w_inv = 1.0/gl_FragCoord.w; #endif #ifdef LIGHT_USE_PSSM4 if (gl_FragCoord.w > shadow_split_offsets.y) { if (gl_FragCoord.w > shadow_split_offsets.x) { highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0)); pssm_coord=splane.xyz/splane.w; #if defined(LIGHT_USE_PSSM_BLEND) splane=(shadow_matrix2 * vec4(vertex,1.0)); pssm_coord2=splane.xyz/splane.w; pssm_blend=smoothstep(0.0,light_pssm_split_inv.x,w_inv); #endif } else { highp vec4 splane=(shadow_matrix2 * vec4(vertex,1.0)); pssm_coord=splane.xyz/splane.w; #if defined(LIGHT_USE_PSSM_BLEND) splane=(shadow_matrix3 * vec4(vertex,1.0)); pssm_coord2=splane.xyz/splane.w; pssm_blend=smoothstep(light_pssm_split_inv.x,light_pssm_split_inv.y,w_inv); #endif } } else { if (gl_FragCoord.w > shadow_split_offsets.z) { highp vec4 splane=(shadow_matrix3 * vec4(vertex,1.0)); pssm_coord=splane.xyz/splane.w; #if defined(LIGHT_USE_PSSM_BLEND) splane=(shadow_matrix4 * vec4(vertex,1.0)); pssm_coord2=splane.xyz/splane.w; pssm_blend=smoothstep(light_pssm_split_inv.y,light_pssm_split_inv.z,w_inv); #endif } else { highp vec4 splane=(shadow_matrix4 * vec4(vertex,1.0)); pssm_coord=splane.xyz/splane.w; #if defined(LIGHT_USE_PSSM_BLEND) use_blend=false; #endif } } #endif //LIGHT_USE_PSSM4 #ifdef LIGHT_USE_PSSM2 if (gl_FragCoord.w > shadow_split_offsets.x) { highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0)); pssm_coord=splane.xyz/splane.w; #if defined(LIGHT_USE_PSSM_BLEND) splane=(shadow_matrix2 * vec4(vertex,1.0)); pssm_coord2=splane.xyz/splane.w; pssm_blend=smoothstep(0.0,light_pssm_split_inv.x,w_inv); #endif } else { highp vec4 splane=(shadow_matrix2 * vec4(vertex,1.0)); pssm_coord=splane.xyz/splane.w; #if defined(LIGHT_USE_PSSM_BLEND) use_blend=false; #endif } #endif //LIGHT_USE_PSSM2 #if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2) { //regular orthogonal highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0)); pssm_coord=splane.xyz/splane.w; } #endif //one one sample light_attenuation=mix(shadow_color.rgb,vec3(1.0),sample_shadow(directional_shadow,directional_shadow_pixel_size,pssm_coord.xy,pssm_coord.z,light_clamp)); #if defined(LIGHT_USE_PSSM_BLEND) if (use_blend) { vec3 light_attenuation2=mix(shadow_color.rgb,vec3(1.0),sample_shadow(directional_shadow,directional_shadow_pixel_size,pssm_coord2.xy,pssm_coord2.z,light_clamp)); light_attenuation=mix(light_attenuation,light_attenuation2,pssm_blend); } #endif } #endif //LIGHT_DIRECTIONAL_SHADOW light_compute(normal,-light_direction_attenuation.xyz,eye_vec,binormal,tangent,light_color_energy.rgb*light_attenuation,albedo,specular,light_params.z,roughness,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light); #endif //#USE_LIGHT_DIRECTIONAL #ifdef USE_GI_PROBES gi_probes_compute(vertex,normal,roughness,specular,specular_light,ambient_light); #endif #ifdef USE_FORWARD_LIGHTING highp vec4 reflection_accum = vec4(0.0,0.0,0.0,0.0); highp vec4 ambient_accum = vec4(0.0,0.0,0.0,0.0); for(int i=0;i0.0) { specular_light+=reflection_accum.rgb/reflection_accum.a; } if (ambient_accum.a>0.0) { ambient_light+=ambient_accum.rgb/ambient_accum.a; } for(int i=0;i0.0) ? (max_ambient+ambient_occlusion_affect_light*max_diffuse)/total_ambient : 0.0; #endif //ENABLE_AO diffuse_buffer=vec4(emission+diffuse_light+ambient_light,ambient_scale); specular_buffer=vec4(specular_light,max(specular.r,max(specular.g,specular.b))); normal_mr_buffer=vec4(normalize(normal)*0.5+0.5,roughness); #if defined (ENABLE_SSS_MOTION) motion_ssr_buffer = uint(clamp(sqrt(sss_strength)*255.0,0.0,255))<<24; #endif #else #ifdef SHADELESS frag_color=vec4(albedo,alpha); #else frag_color=vec4(emission+ambient_light+diffuse_light+specular_light,alpha); #endif //SHADELESS #endif //USE_MULTIPLE_RENDER_TARGETS #endif //RENDER_SHADOW }