/*************************************************************************/ /* bsp_tree.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "bsp_tree.h" #include "error_macros.h" #include "print_string.h" void BSP_Tree::from_aabb(const AABB &p_aabb) { planes.clear(); for (int i = 0; i < 3; i++) { Vector3 n; n[i] = 1; planes.push_back(Plane(n, p_aabb.position[i] + p_aabb.size[i])); planes.push_back(Plane(-n, -p_aabb.position[i])); } nodes.clear(); for (int i = 0; i < 6; i++) { Node n; n.plane = i; n.under = (i == 0) ? UNDER_LEAF : i - 1; n.over = OVER_LEAF; nodes.push_back(n); } aabb = p_aabb; error_radius = 0; } Vector BSP_Tree::get_nodes() const { return nodes; } Vector BSP_Tree::get_planes() const { return planes; } AABB BSP_Tree::get_aabb() const { return aabb; } int BSP_Tree::_get_points_inside(int p_node, const Vector3 *p_points, int *p_indices, const Vector3 &p_center, const Vector3 &p_half_extents, int p_indices_count) const { const Node *node = &nodes[p_node]; const Plane &p = planes[node->plane]; Vector3 min( (p.normal.x > 0) ? -p_half_extents.x : p_half_extents.x, (p.normal.y > 0) ? -p_half_extents.y : p_half_extents.y, (p.normal.z > 0) ? -p_half_extents.z : p_half_extents.z); Vector3 max = -min; max += p_center; min += p_center; real_t dist_min = p.distance_to(min); real_t dist_max = p.distance_to(max); if ((dist_min * dist_max) < CMP_EPSILON) { //intersection, test point by point int under_count = 0; //sort points, so the are under first, over last for (int i = 0; i < p_indices_count; i++) { int index = p_indices[i]; if (p.is_point_over(p_points[index])) { // kind of slow (but cache friendly), should try something else, // but this is a corner case most of the time for (int j = index; j < p_indices_count - 1; j++) p_indices[j] = p_indices[j + 1]; p_indices[p_indices_count - 1] = index; } else { under_count++; } } int total = 0; if (under_count > 0) { if (node->under == UNDER_LEAF) { total += under_count; } else { total += _get_points_inside(node->under, p_points, p_indices, p_center, p_half_extents, under_count); } } if (under_count != p_indices_count) { if (node->over == OVER_LEAF) { //total+=0 //if they are over an OVER_LEAF, they are outside the model } else { total += _get_points_inside(node->over, p_points, &p_indices[under_count], p_center, p_half_extents, p_indices_count - under_count); } } return total; } else if (dist_min > 0) { //all points over plane if (node->over == OVER_LEAF) { return 0; // all these points are not visible } return _get_points_inside(node->over, p_points, p_indices, p_center, p_half_extents, p_indices_count); } else if (dist_min <= 0) { //all points behind plane if (node->under == UNDER_LEAF) { return p_indices_count; // all these points are visible } return _get_points_inside(node->under, p_points, p_indices, p_center, p_half_extents, p_indices_count); } return 0; } int BSP_Tree::get_points_inside(const Vector3 *p_points, int p_point_count) const { if (nodes.size() == 0) return 0; #if 1 //this version is easier to debug, and and MUCH faster in real world cases int pass_count = 0; const Node *nodesptr = &nodes[0]; const Plane *planesptr = &planes[0]; int plane_count = planes.size(); int node_count = nodes.size(); if (node_count == 0) // no nodes! return 0; for (int i = 0; i < p_point_count; i++) { const Vector3 &point = p_points[i]; if (!aabb.has_point(point)) { continue; } int idx = node_count - 1; bool pass = false; while (true) { if (idx == OVER_LEAF) { pass = false; break; } else if (idx == UNDER_LEAF) { pass = true; break; } uint16_t plane = nodesptr[idx].plane; #ifdef DEBUG_ENABLED ERR_FAIL_INDEX_V(plane, plane_count, false); #endif idx = planesptr[nodesptr[idx].plane].is_point_over(point) ? nodes[idx].over : nodes[idx].under; #ifdef DEBUG_ENABLED ERR_FAIL_COND_V(idx < MAX_NODES && idx >= node_count, false); #endif } if (pass) pass_count++; } return pass_count; #else //this version scales better but it's slower for real world cases int *indices = (int *)alloca(p_point_count * sizeof(int)); AABB bounds; for (int i = 0; i < p_point_count; i++) { indices[i] = i; if (i == 0) bounds.pos = p_points[i]; else bounds.expand_to(p_points[i]); } Vector3 half_extents = bounds.size / 2.0; return _get_points_inside(nodes.size() + 1, p_points, indices, bounds.pos + half_extents, half_extents, p_point_count); #endif } bool BSP_Tree::point_is_inside(const Vector3 &p_point) const { if (!aabb.has_point(p_point)) { return false; } int node_count = nodes.size(); if (node_count == 0) // no nodes! return false; const Node *nodesptr = &nodes[0]; const Plane *planesptr = &planes[0]; int plane_count = planes.size(); int idx = node_count - 1; int steps = 0; while (true) { if (idx == OVER_LEAF) { return false; } if (idx == UNDER_LEAF) { return true; } uint16_t plane = nodesptr[idx].plane; #ifdef DEBUG_ENABLED ERR_FAIL_INDEX_V(plane, plane_count, false); #endif bool over = planesptr[nodesptr[idx].plane].is_point_over(p_point); idx = over ? nodes[idx].over : nodes[idx].under; #ifdef DEBUG_ENABLED ERR_FAIL_COND_V(idx < MAX_NODES && idx >= node_count, false); #endif steps++; } return false; } static int _bsp_find_best_half_plane(const Face3 *p_faces, const Vector &p_indices, real_t p_tolerance) { int ic = p_indices.size(); const int *indices = p_indices.ptr(); int best_plane = -1; real_t best_plane_cost = 1e20; // Loop to find the polygon that best divides the set. for (int i = 0; i < ic; i++) { const Face3 &f = p_faces[indices[i]]; Plane p = f.get_plane(); int num_over = 0, num_under = 0, num_spanning = 0; for (int j = 0; j < ic; j++) { if (i == j) continue; const Face3 &g = p_faces[indices[j]]; int over = 0, under = 0; for (int k = 0; k < 3; k++) { real_t d = p.distance_to(g.vertex[j]); if (Math::abs(d) > p_tolerance) { if (d > 0) over++; else under++; } } if (over && under) num_spanning++; else if (over) num_over++; else num_under++; } //real_t split_cost = num_spanning / (real_t) face_count; real_t relation = Math::abs(num_over - num_under) / (real_t)ic; // being honest, i never found a way to add split cost to the mix in a meaninguful way // in this engine, also, will likely be ignored anyway real_t plane_cost = /*split_cost +*/ relation; //printf("plane %i, %i over, %i under, %i spanning, cost is %g\n",i,num_over,num_under,num_spanning,plane_cost); if (plane_cost < best_plane_cost) { best_plane = i; best_plane_cost = plane_cost; } } return best_plane; } static int _bsp_create_node(const Face3 *p_faces, const Vector &p_indices, Vector &p_planes, Vector &p_nodes, real_t p_tolerance) { ERR_FAIL_COND_V(p_nodes.size() == BSP_Tree::MAX_NODES, -1); // should not reach here ERR_FAIL_COND_V(p_indices.size() == 0, -1) int ic = p_indices.size(); const int *indices = p_indices.ptr(); int divisor_idx = _bsp_find_best_half_plane(p_faces, p_indices, p_tolerance); // returned error ERR_FAIL_COND_V(divisor_idx < 0, -1); Vector faces_over; Vector faces_under; Plane divisor_plane = p_faces[indices[divisor_idx]].get_plane(); for (int i = 0; i < ic; i++) { if (i == divisor_idx) continue; const Face3 &f = p_faces[indices[i]]; /* if (f.get_plane().is_almost_like(divisor_plane)) continue; */ int over_count = 0; int under_count = 0; for (int j = 0; j < 3; j++) { real_t d = divisor_plane.distance_to(f.vertex[j]); if (Math::abs(d) > p_tolerance) { if (d > 0) over_count++; else under_count++; } } if (over_count) faces_over.push_back(indices[i]); if (under_count) faces_under.push_back(indices[i]); } uint16_t over_idx = BSP_Tree::OVER_LEAF, under_idx = BSP_Tree::UNDER_LEAF; if (faces_over.size() > 0) { //have facess above? int idx = _bsp_create_node(p_faces, faces_over, p_planes, p_nodes, p_tolerance); if (idx >= 0) over_idx = idx; } if (faces_under.size() > 0) { //have facess above? int idx = _bsp_create_node(p_faces, faces_under, p_planes, p_nodes, p_tolerance); if (idx >= 0) under_idx = idx; } /* Create the node */ // find existing divisor plane int divisor_plane_idx = -1; for (int i = 0; i < p_planes.size(); i++) { if (p_planes[i].is_almost_like(divisor_plane)) { divisor_plane_idx = i; break; } } if (divisor_plane_idx == -1) { ERR_FAIL_COND_V(p_planes.size() == BSP_Tree::MAX_PLANES, -1); divisor_plane_idx = p_planes.size(); p_planes.push_back(divisor_plane); } BSP_Tree::Node node; node.plane = divisor_plane_idx; node.under = under_idx; node.over = over_idx; p_nodes.push_back(node); return p_nodes.size() - 1; } BSP_Tree::operator Variant() const { Dictionary d; d["error_radius"] = error_radius; Vector plane_values; plane_values.resize(planes.size() * 4); for (int i = 0; i < planes.size(); i++) { plane_values[i * 4 + 0] = planes[i].normal.x; plane_values[i * 4 + 1] = planes[i].normal.y; plane_values[i * 4 + 2] = planes[i].normal.z; plane_values[i * 4 + 3] = planes[i].d; } d["planes"] = plane_values; PoolVector dst_nodes; dst_nodes.resize(nodes.size() * 3); for (int i = 0; i < nodes.size(); i++) { dst_nodes.set(i * 3 + 0, nodes[i].over); dst_nodes.set(i * 3 + 1, nodes[i].under); dst_nodes.set(i * 3 + 2, nodes[i].plane); } d["nodes"] = dst_nodes; d["aabb"] = aabb; return Variant(d); } BSP_Tree::BSP_Tree() { } BSP_Tree::BSP_Tree(const Variant &p_variant) { Dictionary d = p_variant; ERR_FAIL_COND(!d.has("nodes")); ERR_FAIL_COND(!d.has("planes")); ERR_FAIL_COND(!d.has("aabb")); ERR_FAIL_COND(!d.has("error_radius")); PoolVector src_nodes = d["nodes"]; ERR_FAIL_COND(src_nodes.size() % 3); if (d["planes"].get_type() == Variant::POOL_REAL_ARRAY) { PoolVector src_planes = d["planes"]; int plane_count = src_planes.size(); ERR_FAIL_COND(plane_count % 4); planes.resize(plane_count / 4); if (plane_count) { PoolVector::Read r = src_planes.read(); for (int i = 0; i < plane_count / 4; i++) { planes[i].normal.x = r[i * 4 + 0]; planes[i].normal.y = r[i * 4 + 1]; planes[i].normal.z = r[i * 4 + 2]; planes[i].d = r[i * 4 + 3]; } } } else { planes = d["planes"]; } error_radius = d["error"]; aabb = d["aabb"]; //int node_count = src_nodes.size(); nodes.resize(src_nodes.size() / 3); PoolVector::Read r = src_nodes.read(); for (int i = 0; i < nodes.size(); i++) { nodes[i].over = r[i * 3 + 0]; nodes[i].under = r[i * 3 + 1]; nodes[i].plane = r[i * 3 + 2]; } } BSP_Tree::BSP_Tree(const PoolVector &p_faces, real_t p_error_radius) { // compute aabb int face_count = p_faces.size(); PoolVector::Read faces_r = p_faces.read(); const Face3 *facesptr = faces_r.ptr(); bool first = true; Vector indices; for (int i = 0; i < face_count; i++) { const Face3 &f = facesptr[i]; if (f.is_degenerate()) continue; for (int j = 0; j < 3; j++) { if (first) { aabb.position = f.vertex[0]; first = false; } else { aabb.expand_to(f.vertex[j]); } } indices.push_back(i); } ERR_FAIL_COND(aabb.has_no_area()); int top = _bsp_create_node(faces_r.ptr(), indices, planes, nodes, aabb.get_longest_axis_size() * 0.0001); if (top < 0) { nodes.clear(); planes.clear(); ERR_FAIL_COND(top < 0); } error_radius = p_error_radius; } BSP_Tree::BSP_Tree(const Vector &p_nodes, const Vector &p_planes, const AABB &p_aabb, real_t p_error_radius) : nodes(p_nodes), planes(p_planes), aabb(p_aabb), error_radius(p_error_radius) { } BSP_Tree::~BSP_Tree() { }