// Copyright 2009-2021 Intel Corporation // SPDX-License-Identifier: Apache-2.0 #pragma once #include "buffer.h" #include "default.h" #include "geometry.h" namespace embree { /*! represents an array of points */ struct Points : public Geometry { /*! type of this geometry */ static const Geometry::GTypeMask geom_type = Geometry::MTY_POINTS; public: /*! line segments construction */ Points(Device* device, Geometry::GType gtype); public: void setMask(unsigned mask); void setNumTimeSteps(unsigned int numTimeSteps); void setVertexAttributeCount(unsigned int N); void setBuffer(RTCBufferType type, unsigned int slot, RTCFormat format, const Ref& buffer, size_t offset, size_t stride, unsigned int num); void* getBuffer(RTCBufferType type, unsigned int slot); void updateBuffer(RTCBufferType type, unsigned int slot); void commit(); bool verify(); void setMaxRadiusScale(float s); void addElementsToCount (GeometryCounts & counts) const; public: /*! returns the number of vertices */ __forceinline size_t numVertices() const { return vertices[0].size(); } /*! returns i'th vertex of the first time step */ __forceinline Vec3ff vertex(size_t i) const { return vertices0[i]; } /*! returns i'th vertex of the first time step */ __forceinline const char* vertexPtr(size_t i) const { return vertices0.getPtr(i); } /*! returns i'th normal of the first time step */ __forceinline Vec3fa normal(size_t i) const { return normals0[i]; } /*! returns i'th radius of the first time step */ __forceinline float radius(size_t i) const { return vertices0[i].w; } /*! returns i'th vertex of itime'th timestep */ __forceinline Vec3ff vertex(size_t i, size_t itime) const { return vertices[itime][i]; } /*! returns i'th vertex of for specified time */ __forceinline Vec3ff vertex(size_t i, float time) const { float ftime; const size_t itime = timeSegment(time, ftime); const float t0 = 1.0f - ftime; const float t1 = ftime; Vec3ff v0 = vertex(i, itime+0); Vec3ff v1 = vertex(i, itime+1); return madd(Vec3ff(t0),v0,t1*v1); } /*! returns i'th vertex of for specified time */ __forceinline Vec3ff vertex_safe(size_t i, float time) const { if (hasMotionBlur()) return vertex(i,time); else return vertex(i); } /*! returns i'th vertex of itime'th timestep */ __forceinline const char* vertexPtr(size_t i, size_t itime) const { return vertices[itime].getPtr(i); } /*! returns i'th normal of itime'th timestep */ __forceinline Vec3fa normal(size_t i, size_t itime) const { return normals[itime][i]; } /*! returns i'th normal of for specified time */ __forceinline Vec3fa normal(size_t i, float time) const { float ftime; const size_t itime = timeSegment(time, ftime); const float t0 = 1.0f - ftime; const float t1 = ftime; Vec3fa n0 = normal(i, itime+0); Vec3fa n1 = normal(i, itime+1); return madd(Vec3fa(t0),n0,t1*n1); } /*! returns i'th normal of for specified time */ __forceinline Vec3fa normal_safe(size_t i, float time) const { if (hasMotionBlur()) return normal(i,time); else return normal(i); } /*! returns i'th radius of itime'th timestep */ __forceinline float radius(size_t i, size_t itime) const { return vertices[itime][i].w; } /*! returns i'th radius of for specified time */ __forceinline float radius(size_t i, float time) const { float ftime; const size_t itime = timeSegment(time, ftime); const float t0 = 1.0f - ftime; const float t1 = ftime; float r0 = radius(i, itime+0); float r1 = radius(i, itime+1); return madd(t0,r0,t1*r1); } /*! returns i'th radius of for specified time */ __forceinline float radius_safe(size_t i, float time) const { if (hasMotionBlur()) return radius(i,time); else return radius(i); } /*! calculates bounding box of i'th line segment */ __forceinline BBox3fa bounds(const Vec3ff& v0) const { return enlarge(BBox3fa(v0), maxRadiusScale*Vec3fa(v0.w)); } /*! calculates bounding box of i'th line segment */ __forceinline BBox3fa bounds(size_t i) const { const Vec3ff v0 = vertex(i); return bounds(v0); } /*! calculates bounding box of i'th line segment for the itime'th time step */ __forceinline BBox3fa bounds(size_t i, size_t itime) const { const Vec3ff v0 = vertex(i, itime); return bounds(v0); } /*! calculates bounding box of i'th line segment */ __forceinline BBox3fa bounds(const LinearSpace3fa& space, size_t i) const { const Vec3ff v0 = vertex(i); const Vec3ff w0(xfmVector(space, (Vec3fa)v0), v0.w); return bounds(w0); } /*! calculates bounding box of i'th line segment for the itime'th time step */ __forceinline BBox3fa bounds(const LinearSpace3fa& space, size_t i, size_t itime) const { const Vec3ff v0 = vertex(i, itime); const Vec3ff w0(xfmVector(space, (Vec3fa)v0), v0.w); return bounds(w0); } /*! check if the i'th primitive is valid at the itime'th timestep */ __forceinline bool valid(size_t i, size_t itime) const { return valid(i, make_range(itime, itime)); } /*! check if the i'th primitive is valid between the specified time range */ __forceinline bool valid(size_t i, const range& itime_range) const { const unsigned int index = (unsigned int)i; if (index >= numVertices()) return false; for (size_t itime = itime_range.begin(); itime <= itime_range.end(); itime++) { const Vec3ff v0 = vertex(index + 0, itime); if (unlikely(!isvalid4(v0))) return false; if (v0.w < 0.0f) return false; } return true; } /*! calculates the linear bounds of the i'th primitive at the itimeGlobal'th time segment */ __forceinline LBBox3fa linearBounds(size_t i, size_t itime) const { return LBBox3fa(bounds(i, itime + 0), bounds(i, itime + 1)); } /*! calculates the build bounds of the i'th primitive, if it's valid */ __forceinline bool buildBounds(size_t i, BBox3fa* bbox) const { if (!valid(i, 0)) return false; *bbox = bounds(i); return true; } /*! calculates the build bounds of the i'th primitive at the itime'th time segment, if it's valid */ __forceinline bool buildBounds(size_t i, size_t itime, BBox3fa& bbox) const { if (!valid(i, itime + 0) || !valid(i, itime + 1)) return false; bbox = bounds(i, itime); // use bounds of first time step in builder return true; } /*! calculates the linear bounds of the i'th primitive for the specified time range */ __forceinline LBBox3fa linearBounds(size_t primID, const BBox1f& dt) const { return LBBox3fa([&](size_t itime) { return bounds(primID, itime); }, dt, time_range, fnumTimeSegments); } /*! calculates the linear bounds of the i'th primitive for the specified time range */ __forceinline LBBox3fa linearBounds(const LinearSpace3fa& space, size_t primID, const BBox1f& dt) const { return LBBox3fa([&](size_t itime) { return bounds(space, primID, itime); }, dt, time_range, fnumTimeSegments); } /*! calculates the linear bounds of the i'th primitive for the specified time range */ __forceinline bool linearBounds(size_t i, const BBox1f& time_range, LBBox3fa& bbox) const { if (!valid(i, timeSegmentRange(time_range))) return false; bbox = linearBounds(i, time_range); return true; } /*! get fast access to first vertex buffer */ __forceinline float * getCompactVertexArray () const { return (float*) vertices0.getPtr(); } __forceinline float projectedPrimitiveArea(const size_t i) const { const float R = radius(i); return 1 + 2*M_PI*R*R; } public: BufferView vertices0; //!< fast access to first vertex buffer BufferView normals0; //!< fast access to first normal buffer Device::vector> vertices = device; //!< vertex array for each timestep Device::vector> normals = device; //!< normal array for each timestep Device::vector> vertexAttribs = device; //!< user buffers float maxRadiusScale = 1.0; //!< maximal min-width scaling of curve radii }; namespace isa { struct PointsISA : public Points { PointsISA(Device* device, Geometry::GType gtype) : Points(device, gtype) {} Vec3fa computeDirection(unsigned int primID) const { return Vec3fa(1, 0, 0); } Vec3fa computeDirection(unsigned int primID, size_t time) const { return Vec3fa(1, 0, 0); } PrimInfo createPrimRefArray(PrimRef* prims, const range& r, size_t k, unsigned int geomID) const { PrimInfo pinfo(empty); for (size_t j = r.begin(); j < r.end(); j++) { BBox3fa bounds = empty; if (!buildBounds(j, &bounds)) continue; const PrimRef prim(bounds, geomID, unsigned(j)); pinfo.add_center2(prim); prims[k++] = prim; } return pinfo; } PrimInfo createPrimRefArrayMB(mvector& prims, size_t itime, const range& r, size_t k, unsigned int geomID) const { PrimInfo pinfo(empty); for (size_t j = r.begin(); j < r.end(); j++) { BBox3fa bounds = empty; if (!buildBounds(j, itime, bounds)) continue; const PrimRef prim(bounds, geomID, unsigned(j)); pinfo.add_center2(prim); prims[k++] = prim; } return pinfo; } PrimInfo createPrimRefArrayMB(PrimRef* prims, const BBox1f& time_range, const range& r, size_t k, unsigned int geomID) const { PrimInfo pinfo(empty); const BBox1f t0t1 = BBox1f::intersect(getTimeRange(), time_range); if (t0t1.empty()) return pinfo; for (size_t j = r.begin(); j < r.end(); j++) { LBBox3fa lbounds = empty; if (!linearBounds(j, t0t1, lbounds)) continue; const PrimRef prim(lbounds.bounds(), geomID, unsigned(j)); pinfo.add_center2(prim); prims[k++] = prim; } return pinfo; } PrimInfoMB createPrimRefMBArray(mvector& prims, const BBox1f& t0t1, const range& r, size_t k, unsigned int geomID) const { PrimInfoMB pinfo(empty); for (size_t j = r.begin(); j < r.end(); j++) { if (!valid(j, timeSegmentRange(t0t1))) continue; const PrimRefMB prim(linearBounds(j, t0t1), this->numTimeSegments(), this->time_range, this->numTimeSegments(), geomID, unsigned(j)); pinfo.add_primref(prim); prims[k++] = prim; } return pinfo; } BBox3fa vbounds(size_t i) const { return bounds(i); } BBox3fa vbounds(const LinearSpace3fa& space, size_t i) const { return bounds(space, i); } LBBox3fa vlinearBounds(size_t primID, const BBox1f& time_range) const { return linearBounds(primID, time_range); } LBBox3fa vlinearBounds(const LinearSpace3fa& space, size_t primID, const BBox1f& time_range) const { return linearBounds(space, primID, time_range); } }; } // namespace isa DECLARE_ISA_FUNCTION(Points*, createPoints, Device* COMMA Geometry::GType); } // namespace embree