/* * * This library is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Copyright (C) 2015 Intel Corporation * */ #ifndef __ALSA_TOPOLOGY_H #define __ALSA_TOPOLOGY_H #include <stdint.h> #ifdef __cplusplus extern "C" { #endif /** * \defgroup topology Topology Interface * \{ */ /*! \page topology ALSA Topology Interface * * The topology interface allows developers to define DSP topologies in a text * file format and to convert the text topology to a binary topology * representation that can be understood by the kernel. The topology core * currently recognises the following object types :- * * * Controls (mixer, enumerated and byte) including TLV data. * * PCMs (Front End DAI & DAI link) * * DAPM widgets * * DAPM graph elements. * * Physical DAI & DAI links * * Private data for each object type. * * Manifest (containing count of each object type) * * <h3>Topology File Format</h3> * * The topology text format uses the standard ALSA configuration file format to * describe each topology object type. This allows topology objects to include * other topology objects as part of their definition. i.e. a TLV data object * can be shared amongst many control objects that use the same TLV data. * * * <h4>Controls</h4> * Topology audio controls can belong to three different types :- * * Mixer control * * Enumerated control * * Byte control * * Each control type can contain TLV data, private data, operations and also * belong to widget objects.<br> * * <h5>Control Operations</h5> * Driver Kcontrol callback info(), get() and put() operations are mapped with * the CTL ops section in topology configuration files. The ctl ops section can * assign operations using the standard names (listed below) for the standard * kcontrol types or use ID numbers (>256) to map to bespoke driver controls.<br> * * <pre> * * ops."ctl" { * info "volsw" * get "257" * put "257" * } * * </pre> * * This mapping shows info() using the standard "volsw" info callback whilst * the get() and put() are mapped to bespoke driver callbacks. <br> * * The Standard operations names for control get(), put() and info calls * are :- * * volsw * * volsw_sx * * volsw_xr_sx * * enum * * bytes * * enum_value * * range * * strobe * * <h5>Control Access</h5> * Controls access can be specified using the "access" section. If no "access" * section is defined then default RW access flags are set for normal and TLV * controls. * * <pre> * access [ * read * write * tlv_command * ] * </pre> * * The standard access flags are as follows :- * * read * * write * * read_write * * volatile * * timestamp * * tlv_read * * tlv_write * * tlv_read_write * * tlv_command * * inactive * * lock * * owner * * tlv_callback * * user * * <h5>Control TLV Data</h5> * Controls can also use TLV data to represent dB information. This can be done * by defining a TLV section and using the TLV section within the control. * The TLV data for DBScale types are defined as follows :- * * <pre> * scale { * min "-9000" * step "300" * mute "1" * } * </pre> * * Where the meanings and values for min, step and mute are exactly the same * as defined in driver code. * * <h5>Control Channel Mapping</h5> * Controls can also specify which channels they are mapped with. This is useful * for userspace as it allows applications to determine the correct control * channel for Left and Right etc. Channel maps are defined as follows :- * * <pre> * channel."name" { * reg "0" * shift "0" * } * </pre> * * The channel map reg is the register offset for the control, shift is the * bit shift within the register for the channel and the section name is the * channel name and can be one of the following :- * * <pre> * * mono # mono stream * * fl # front left * * fr # front right * * rl # rear left * * rr # rear right * * fc # front center * * lfe # LFE * * sl # side left * * sr # side right * * rc # rear center * * flc # front left center * * frc # front right center * * rlc # rear left center * * rrc # rear right center * * flw # front left wide * * frw # front right wide * * flh # front left high * * fch # front center high * * frh # front right high * * tc # top center * * tfl # top front left * * tfr # top front right * * tfc # top front center * * trl # top rear left * * trr # top rear right * * trc # top rear center * * tflc # top front left center * * tfrc # top front right center * * tsl # top side left * * tsr # top side right * * llfe # left LFE * * rlfe # right LFE * * bc # bottom center * * blc # bottom left center * * brc # bottom right center * </pre> * * <h5>Control Private Data</h5> * Controls can also have private data. This can be done by defining a private * data section and including the section within the control. The private data * section is defined as follows :- * * <pre> * SectionData."pdata for EQU1" { * file "/path/to/file" * bytes "0x12,0x34,0x56,0x78" * shorts "0x1122,0x3344,0x5566,0x7788" * words "0xaabbccdd,0x11223344,0x66aa77bb,0xefef1234" * tuples "section id of the vendor tuples" * }; * </pre> * The file, bytes, shorts, words and tuples keywords are all mutually * exclusive as the private data should only be taken from one source. * The private data can either be read from a separate file or defined in * the topology file using the bytes, shorts, words or tuples keywords. * The keyword tuples is to define vendor specific tuples. Please refer to * section Vendor Tokens and Vendor tuples. * * <h5>How to define an element with private data</h5> * An element can refer to a single data section or multiple data * sections. * * <h6>To refer to a single data section:</h6> * <pre> * Sectionxxx."element name" { * ... * data "name of data section" # optional private data * } * </pre> * * <h6>To refer to multiple data sections:</h6> * <pre> * Sectionxxx."element name" { * ... * data [ # optional private data * "name of 1st data section" * "name of 2nd data section" * ... * ] * } * </pre> * And data of these sections will be merged in the same order as they are * in the list, as the element's private data for kernel. * * </pre> * * <h6>Vendor Tokens</h6> * A vendor token list is defined as a new section. Each token element is * a pair of string ID and integer value. And both the ID and value are * vendor-specific. * * <pre> * SectionVendorTokens."id of the vendor tokens" { * comment "optional comments" * VENDOR_TOKEN_ID1 "1" * VENDOR_TOKEN_ID2 "2" * VENDOR_TOKEN_ID3 "3" * ... * } * </pre> * * <h6>Vendor Tuples</h6> * Vendor tuples are defined as a new section. It contains a reference to * a vendor token list and several tuple arrays. * All arrays share a vendor token list, defined by the tokens keyword. * Each tuple array is for a specific type, defined by the string following * the tuples keyword. Supported types are: string, uuid, bool, byte, * short and word. * * <pre> * SectionVendorTuples."id of the vendor tuples" { * tokens "id of the vendor tokens" * * tuples."string" { * VENDOR_TOKEN_ID1 "character string" * ... * } * * tuples."uuid" { # 16 characters separated by commas * VENDOR_TOKEN_ID2 "0x01,0x02,...,0x0f" * ... * } * * tuples."bool" { * VENDOR_TOKEN_ID3 "true/false" * ... * } * * tuples."byte" { * VENDOR_TOKEN_ID4 "0x11" * VENDOR_TOKEN_ID5 "0x22" * ... * } * * tuples."short" { * VENDOR_TOKEN_ID6 "0x1122" * VENDOR_TOKEN_ID7 "0x3344" * ... * } * * tuples."word" { * VENDOR_TOKEN_ID8 "0x11223344" * VENDOR_TOKEN_ID9 "0x55667788" * ... * } * } * </pre> * To define multiple vendor tuples of same type, please append some * characters after the type string ("string", "uuid", "bool", "byte", "short" * or "word"), to avoid ID duplication in the SectionVendorTuples.<br> * The parser will check the first few characters in ID to get the tuple type. * Here is an example: * <pre> * SectionVendorTuples."id of the vendor tuples" { * ... * tuples."word.module0" { * VENDOR_TOKEN_PARAM_ID1 "0x00112233" * VENDOR_TOKEN_PARAM_ID2 "0x44556677" * ... * } * * tuples."word.module2" { * VENDOR_TOKEN_PARAM_ID1 "0x11223344" * VENDOR_TOKEN_PARAM_ID2 "0x55667788" * ... * } * ... * } * * </pre> * * <h5>Mixer Controls</h5> * A mixer control is defined as a new section that can include channel mapping, * TLV data, callback operations and private data. The mixer section also * includes a few other config options that are shown here :- * * <pre> * SectionControlMixer."mixer name" { * comment "optional comments" * * index "1" # Index number * * channel."name" { # Channel maps * .... * } * * ops."ctl" { # Ops callback functions * .... * } * * max "32" # Max control value * invert "0" # Whether control values are inverted * * tlv "tld_data" # optional TLV data * * data "pdata for mixer1" # optional private data * } * </pre> * * The section name is used to define the mixer name. The index number can be * used to identify topology objects groups. This allows driver operations on * objects with index number N and can be used to add/remove pipelines of * objects whilst other objects are unaffected. * * <h5>Byte Controls</h5> * A byte control is defined as a new section that can include channel mapping, * TLV data, callback operations and private data. The bytes section also * includes a few other config options that are shown here :- * * <pre> * SectionControlBytes."name" { * comment "optional comments" * * index "1" # Index number * * channel."name" { # Channel maps * .... * } * * ops."ctl" { # Ops callback functions * .... * } * * base "0" # Register base * num_regs "16" # Number of registers * mask "0xff" # Mask * max "255" # Maximum value * * tlv "tld_data" # optional TLV data * * data "pdata for mixer1" # optional private data * } * </pre> * * <h5>Enumerated Controls</h5> * A enumerated control is defined as a new section (like mixer and byte) that * can include channel mapping, callback operations, private data and * text strings to represent the enumerated control options.<br> * * The text strings for the enumerated controls are defined in a separate * section as follows :- * * <pre> * SectionText."name" { * * Values [ * "value1" * "value2" "value3" * ] * } * </pre> * * All the enumerated text values are listed in the values list.<br> * The enumerated control is similar to the other controls and defined as * follows :- * * <pre> * SectionControlMixer."name" { * comment "optional comments" * * index "1" # Index number * * texts "EQU1" # Enumerated text items * * channel."name" { # Channel maps * .... * } * * ops."ctl" { # Ops callback functions * .... * } * * data "pdata for mixer1" # optional private data * } * </pre> * * <h4>DAPM Graph</h4> * DAPM graphs can easily be defined using the topology file. The format is * very similar to the DAPM graph kernel format. :- * * <pre> * SectionGraph."dsp" { * index "1" # Index number * * lines [ * "sink1, control, source1" * "sink2, , source2" * ] * } * </pre> * * The lines in the graph are defined as a variable size list of sinks, * controls and sources. The control name is optional as some graph lines have * no associated controls. The section name can be used to differentiate the * graph with other graphs, it's not used by the kernel atm. * * <h4>DAPM Widgets</h4> * DAPM widgets are similar to controls in that they can include many other * objects. Widgets can contain private data, mixer controls and enum controls. * * The following widget types are supported and match the driver types :- * * * input * * output * * mux * * mixer * * pga * * out_drv * * adc * * dac * * switch * * pre * * post * * aif_in * * aif_out * * dai_in * * dai_out * * dai_link * * Widgets are defined as follows :- * * <pre> * SectionWidget."name" { * * index "1" # Index number * * type "aif_in" # Widget type - detailed above * stream_name "name" # Stream name * * no_pm "true" # No PM control bit. * reg "20" # PM bit register offset * shift "0" # PM bit register shift * invert "1 # PM bit is inverted * subseq "8" # subsequence number * * event_type "1" # DAPM widget event type * event_flags "1" # DAPM widget event flags * * mixer "name" # Optional Mixer Control * enum "name" # Optional Enum Control * * data "name" # optional private data * } * </pre> * * The section name is the widget name. The mixer and enum fields are mutually * exclusive and used to include controls into the widget. The index and data * fields are the same for widgets as they are for controls whilst the other * fields map on very closely to the driver widget fields. * * <h5>Widget Private Data</h5> * Widget can have private data. For the format of the private data, please * refer to section Control Private Data. * * <h4>PCM Capabilities</h4> * Topology can also define the PCM capabilities of front end or physical DAIs. * Capabilities can be defined with the following section :- * * <pre> * SectionPCMCapabilities."name" { * * formats "S24_LE,S16_LE" # Supported formats * rate_min "48000" # Max supported sample rate * rate_max "48000" # Min supported sample rate * channels_min "2" # Min number of channels * channels_max "2" # max number of channels * } * </pre> * The supported formats use the same naming convention as the driver macros. * The PCM capabilities name can be referred to and included by PCM and * physical DAI sections. * * <h4>PCM Configurations</h4> * PCM runtime configurations can be defined for playback and capture stream * directions with the following section :- * * <pre> * SectionPCMConfig."name" { * * config."playback" { # playback config * format "S16_LE" # playback format * rate "48000" # playback sample rate * channels "2" # playback channels * tdm_slot "0xf" # playback TDM slot * } * * config."capture" { # capture config * format "S16_LE" # capture format * rate "48000" # capture sample rate * channels "2" # capture channels * tdm_slot "0xf" # capture TDM slot * } * } * </pre> * * The supported formats use the same naming convention as the driver macros. * The PCM configuration name can be referred to and included by PCM and * physical link sections. * * <h4>PCM (Front-end DAI & DAI link) </h4> * PCM sections define the supported capabilities and configurations for * supported playback and capture streams, names and flags for front end * DAI & DAI links. Topology kernel driver will use a PCM object to create * a pair of FE DAI & DAI links. * * <pre> * SectionPCM."name" { * * index "1" # Index number * * id "0" # used for binding to the PCM * * dai."name of front-end DAI" { * id "0" # used for binding to the front-end DAI * } * * pcm."playback" { * capabilities "capabilities1" # capabilities for playback * * configs [ # supported configs for playback * "config1" * "config2" * ] * } * * pcm."capture" { * capabilities "capabilities2" # capabilities for capture * * configs [ # supported configs for capture * "config1" * "config2" * "config3" * ] * } * * # Optional boolean flags * symmetric_rates "true" * symmetric_channels "true" * symmetric_sample_bits "false" * * data "name" # optional private data * } * </pre> * * <h4>Physical DAI Link Configurations</h4> * The runtime configurations of a physical DAI link can be defined by * SectionLink. <br> Backend DAI links belong to physical links, and can * be configured by either SectionLink or SectionBE, with same syntax. * But SectionBE is deprecated atm since the internal processing is * actually same. * * <pre> * SectionLink."name" { * * index "1" # Index number * * id "0" # used for binding to the link * * stream_name "name" # used for binding to the link * * hw_configs [ # runtime supported HW configurations, optional * "config1" * "config2" * ... * ] * * default_hw_conf_id "1" #default HW config ID for init * * # Optional boolean flags * symmetric_rates "true" * symmetric_channels "false" * symmetric_sample_bits "true" * * data "name" # optional private data * } * </pre> * * A physical link can refer to multiple runtime supported hardware * configurations, which is defined by SectionHWConfig. * * <pre> * SectionHWConfig."name" { * * id "1" # used for binding to the config * format "I2S" # physical audio format. * bclk "master" # Platform is master of bit clock * fsync "slave" # Platform is slave of fsync * } * </pre> * * <h4>Physical DAI</h4> * A physical DAI (e.g. backend DAI for DPCM) is defined as a new section * that can include a unique ID, playback and capture stream capabilities, * optional flags, and private data. <br> * Its PCM stream capablities are same as those for PCM objects, * please refer to section 'PCM Capabilities'. * * <pre> * SectionDAI."name" { * * index "1" # Index number * * id "0" # used for binding to the Backend DAI * * pcm."playback" { * capabilities "capabilities1" # capabilities for playback * } * * pcm."capture" { * capabilities "capabilities2" # capabilities for capture * } * * symmetric_rates "true" # optional flags * symmetric_channels "true" * symmetric_sample_bits "false" * * data "name" # optional private data * } * </pre> * * <h4>Manifest Private Data</h4> * Manfiest may have private data. Users need to define a manifest section * and add the references to 1 or multiple data sections. Please refer to * section 'How to define an element with private data'. <br> * And the text conf file can have at most 1 manifest section. <br><br> * * Manifest section is defined as follows :- * * <pre> * SectionManifest"name" { * * data "name" # optional private data * } * </pre> * * <h4>Include other files</h4> * Users may include other files in a text conf file via alsaconf syntax * <path/to/configuration-file>. This allows users to define common info * in separate files (e.g. vendor tokens, tuples) and share them for * different platforms, thus save the total size of config files. <br> * Users can also specifiy additional configuraiton directories relative * to "/usr/share/alsa/" to search the included files, via alsaconf syntax * <searchfdir:/relative-path/to/usr/share/alsa>. <br><br> * * For example, file A and file B are two text conf files for platform X, * they will be installed to /usr/share/alsa/topology/platformx. If we * need file A to include file B, in file A we can add: <br> * * <searchdir:topology/platformx> <br> * <name-of-file-B> <br><br> * * ALSA conf will search and open an included file in the following order * of priority: * 1. directly open the file by its name; * 2. search for the file name in "/usr/share/alsa"; * 3. search for the file name in user specified subdirectories under * "/usr/share/alsa". * * The order of the included files need not to be same as their * dependencies, since the topology library will load them all before * parsing their dependencies. <br> * * The configuration directories defined by a file will only be used to search * the files included by this file. */ /** Maximum number of channels supported in one control */ #define SND_TPLG_MAX_CHAN 8 /** Topology context */ typedef struct snd_tplg snd_tplg_t; /** Topology object types */ enum snd_tplg_type { SND_TPLG_TYPE_TLV = 0, /*!< TLV Data */ SND_TPLG_TYPE_MIXER, /*!< Mixer control*/ SND_TPLG_TYPE_ENUM, /*!< Enumerated control */ SND_TPLG_TYPE_TEXT, /*!< Text data */ SND_TPLG_TYPE_DATA, /*!< Private data */ SND_TPLG_TYPE_BYTES, /*!< Byte control */ SND_TPLG_TYPE_STREAM_CONFIG, /*!< PCM Stream configuration */ SND_TPLG_TYPE_STREAM_CAPS, /*!< PCM Stream capabilities */ SND_TPLG_TYPE_PCM, /*!< PCM stream device */ SND_TPLG_TYPE_DAPM_WIDGET, /*!< DAPM widget */ SND_TPLG_TYPE_DAPM_GRAPH, /*!< DAPM graph elements */ SND_TPLG_TYPE_BE, /*!< BE DAI link */ SND_TPLG_TYPE_CC, /*!< Hostless codec <-> codec link */ SND_TPLG_TYPE_MANIFEST, /*!< Topology manifest */ SND_TPLG_TYPE_TOKEN, /*!< Vendor tokens */ SND_TPLG_TYPE_TUPLE, /*!< Vendor tuples */ SND_TPLG_TYPE_LINK, /*!< Physical DAI link */ SND_TPLG_TYPE_HW_CONFIG, /*!< Link HW config */ SND_TPLG_TYPE_DAI, /*!< Physical DAI */ }; /** * \brief Create a new topology parser instance. * \return New topology parser instance */ snd_tplg_t *snd_tplg_new(void); /** * \brief Free a topology parser instance. * \param tplg Topology parser instance */ void snd_tplg_free(snd_tplg_t *tplg); /** * \brief Parse and build topology text file into binary file. * \param tplg Topology instance. * \param infile Topology text input file to be parsed * \param outfile Binary topology output file. * \return Zero on success, otherwise a negative error code */ int snd_tplg_build_file(snd_tplg_t *tplg, const char *infile, const char *outfile); /** * \brief Enable verbose reporting of binary file output * \param tplg Topology Instance * \param verbose Enable verbose output level if non zero */ void snd_tplg_verbose(snd_tplg_t *tplg, int verbose); /** \struct snd_tplg_tlv_template * \brief Template type for all TLV objects. */ struct snd_tplg_tlv_template { int type; /*!< TLV type SNDRV_CTL_TLVT_ */ }; /** \struct snd_tplg_tlv_dbscale_template * \brief Template type for TLV Scale objects. */ struct snd_tplg_tlv_dbscale_template { struct snd_tplg_tlv_template hdr; /*!< TLV type header */ int min; /*!< dB minimum value in 0.1dB */ int step; /*!< dB step size in 0.1dB */ int mute; /*!< is min dB value mute ? */ }; /** \struct snd_tplg_channel_template * \brief Template type for single channel mapping. */ struct snd_tplg_channel_elem { int size; /*!< size in bytes of this structure */ int reg; /*!< channel control register */ int shift; /*!< channel shift for control bits */ int id; /*!< ID maps to Left, Right, LFE etc */ }; /** \struct snd_tplg_channel_map_template * \brief Template type for channel mapping. */ struct snd_tplg_channel_map_template { int num_channels; /*!< number of channel mappings */ struct snd_tplg_channel_elem channel[SND_TPLG_MAX_CHAN]; /*!< mapping */ }; /** \struct snd_tplg_pdata_template * \brief Template type for private data objects. */ struct snd_tplg_pdata_template { unsigned int length; /*!< data length */ const void *data; /*!< data */ }; /** \struct snd_tplg_io_ops_template * \brief Template type for object operations mapping. */ struct snd_tplg_io_ops_template { int get; /*!< get callback ID */ int put; /*!< put callback ID */ int info; /*!< info callback ID */ }; /** \struct snd_tplg_ctl_template * \brief Template type for control objects. */ struct snd_tplg_ctl_template { int type; /*!< Control type */ const char *name; /*!< Control name */ int access; /*!< Control access */ struct snd_tplg_io_ops_template ops; /*!< operations */ struct snd_tplg_tlv_template *tlv; /*!< non NULL means we have TLV data */ }; /** \struct snd_tplg_mixer_template * \brief Template type for mixer control objects. */ struct snd_tplg_mixer_template { struct snd_tplg_ctl_template hdr; /*!< control type header */ struct snd_tplg_channel_map_template *map; /*!< channel map */ int min; /*!< min value for mixer */ int max; /*!< max value for mixer */ int platform_max; /*!< max value for platform control */ int invert; /*!< whether controls bits are inverted */ struct snd_soc_tplg_private *priv; /*!< control private data */ }; /** \struct snd_tplg_enum_template * \brief Template type for enumerated control objects. */ struct snd_tplg_enum_template { struct snd_tplg_ctl_template hdr; /*!< control type header */ struct snd_tplg_channel_map_template *map; /*!< channel map */ int items; /*!< number of enumerated items in control */ int mask; /*!< register mask size */ const char **texts; /*!< control text items */ const int **values; /*!< control value items */ struct snd_soc_tplg_private *priv; /*!< control private data */ }; /** \struct snd_tplg_bytes_template * \brief Template type for TLV Scale objects. */ struct snd_tplg_bytes_template { struct snd_tplg_ctl_template hdr; /*!< control type header */ int max; /*!< max byte control value */ int mask; /*!< byte control mask */ int base; /*!< base register */ int num_regs; /*!< number of registers */ struct snd_tplg_io_ops_template ext_ops; /*!< ops mapping */ struct snd_soc_tplg_private *priv; /*!< control private data */ }; /** \struct snd_tplg_graph_elem * \brief Template type for single DAPM graph element. */ struct snd_tplg_graph_elem { const char *src; /*!< source widget name */ const char *ctl; /*!< control name or NULL if no control */ const char *sink; /*!< sink widget name */ }; /** \struct snd_tplg_graph_template * \brief Template type for array of DAPM graph elements. */ struct snd_tplg_graph_template { int count; /*!< Number of graph elements */ struct snd_tplg_graph_elem elem[0]; /*!< graph elements */ }; /** \struct snd_tplg_widget_template * \brief Template type for DAPM widget objects. */ struct snd_tplg_widget_template { int id; /*!< SND_SOC_DAPM_CTL */ const char *name; /*!< widget name */ const char *sname; /*!< stream name (certain widgets only) */ int reg; /*!< negative reg = no direct dapm */ int shift; /*!< bits to shift */ int mask; /*!< non-shifted mask */ int subseq; /*!< sort within widget type */ unsigned int invert; /*!< invert the power bit */ unsigned int ignore_suspend; /*!< kept enabled over suspend */ unsigned short event_flags; /*!< PM event sequence flags */ unsigned short event_type; /*!< PM event sequence type */ struct snd_soc_tplg_private *priv; /*!< widget private data */ int num_ctls; /*!< Number of controls used by widget */ struct snd_tplg_ctl_template *ctl[0]; /*!< array of widget controls */ }; /** \struct snd_tplg_stream_template * \brief Stream configurations. */ struct snd_tplg_stream_template { const char *name; /*!< name of the stream config */ int format; /*!< SNDRV_PCM_FMTBIT_* */ int rate; /*!< SNDRV_PCM_RATE_* */ int period_bytes; /*!< size of period in bytes */ int buffer_bytes; /*!< size of buffer in bytes. */ int channels; /*!< number of channels */ }; /** \struct snd_tplg_stream_caps_template * \brief Stream Capabilities. */ struct snd_tplg_stream_caps_template { const char *name; /*!< name of the stream caps */ uint64_t formats; /*!< supported formats SNDRV_PCM_FMTBIT_* */ unsigned int rates; /*!< supported rates SNDRV_PCM_RATE_* */ unsigned int rate_min; /*!< min rate */ unsigned int rate_max; /*!< max rate */ unsigned int channels_min; /*!< min channels */ unsigned int channels_max; /*!< max channels */ unsigned int periods_min; /*!< min number of periods */ unsigned int periods_max; /*!< max number of periods */ unsigned int period_size_min; /*!< min period size bytes */ unsigned int period_size_max; /*!< max period size bytes */ unsigned int buffer_size_min; /*!< min buffer size bytes */ unsigned int buffer_size_max; /*!< max buffer size bytes */ unsigned int sig_bits; /*!< number of bits of content */ }; /** \struct snd_tplg_pcm_template * \brief Template type for PCM (FE DAI & DAI links). */ struct snd_tplg_pcm_template { const char *pcm_name; /*!< PCM stream name */ const char *dai_name; /*!< DAI name */ unsigned int pcm_id; /*!< unique ID - used to match */ unsigned int dai_id; /*!< unique ID - used to match */ unsigned int playback; /*!< supports playback mode */ unsigned int capture; /*!< supports capture mode */ unsigned int compress; /*!< 1 = compressed; 0 = PCM */ struct snd_tplg_stream_caps_template *caps[2]; /*!< playback & capture for DAI */ unsigned int flag_mask; /*!< bitmask of flags to configure */ unsigned int flags; /*!< flag value SND_SOC_TPLG_LNK_FLGBIT_* */ struct snd_soc_tplg_private *priv; /*!< private data */ int num_streams; /*!< number of supported configs */ struct snd_tplg_stream_template stream[0]; /*!< supported configs */ }; /** \struct snd_tplg_hw_config_template * \brief Template type to describe a physical link runtime supported * hardware config, i.e. hardware audio formats. */ struct snd_tplg_hw_config_template { int id; /* unique ID - - used to match */ unsigned int fmt; /* SND_SOC_DAI_FORMAT_ format value */ unsigned char clock_gated; /* 1 if clock can be gated to save power */ unsigned char invert_bclk; /* 1 for inverted BCLK, 0 for normal */ unsigned char invert_fsync; /* 1 for inverted frame clock, 0 for normal */ unsigned char bclk_master; /* 1 for master of BCLK, 0 for slave */ unsigned char fsync_master; /* 1 for master of FSYNC, 0 for slave */ unsigned char mclk_direction; /* 0 for input, 1 for output */ unsigned short reserved; /* for 32bit alignment */ unsigned int mclk_rate; /* MCLK or SYSCLK freqency in Hz */ unsigned int bclk_rate; /* BCLK freqency in Hz */ unsigned int fsync_rate; /* frame clock in Hz */ unsigned int tdm_slots; /* number of TDM slots in use */ unsigned int tdm_slot_width; /* width in bits for each slot */ unsigned int tx_slots; /* bit mask for active Tx slots */ unsigned int rx_slots; /* bit mask for active Rx slots */ unsigned int tx_channels; /* number of Tx channels */ unsigned int *tx_chanmap; /* array of slot number */ unsigned int rx_channels; /* number of Rx channels */ unsigned int *rx_chanmap; /* array of slot number */ }; /** \struct snd_tplg_dai_template * \brief Template type for physical DAI. * It can be used to configure backend DAIs for DPCM. */ struct snd_tplg_dai_template { const char *dai_name; /*!< DAI name */ unsigned int dai_id; /*!< unique ID - used to match */ unsigned int playback; /*!< supports playback mode */ unsigned int capture; /*!< supports capture mode */ struct snd_tplg_stream_caps_template *caps[2]; /*!< playback & capture for DAI */ unsigned int flag_mask; /*!< bitmask of flags to configure */ unsigned int flags; /*!< SND_SOC_TPLG_DAI_FLGBIT_* */ struct snd_soc_tplg_private *priv; /*!< private data */ }; /** \struct snd_tplg_link_template * \brief Template type for physical DAI Links. */ struct snd_tplg_link_template { const char *name; /*!< link name, used to match */ int id; /*!< unique ID - used to match with existing physical links */ const char *stream_name; /*!< link stream name, used to match */ int num_streams; /*!< number of configs */ struct snd_tplg_stream_template *stream; /*!< supported configs */ struct snd_tplg_hw_config_template *hw_config; /*!< supported HW configs */ int num_hw_configs; /* number of hw configs */ int default_hw_config_id; /* default hw config ID for init */ unsigned int flag_mask; /* bitmask of flags to configure */ unsigned int flags; /* SND_SOC_TPLG_LNK_FLGBIT_* flag value */ struct snd_soc_tplg_private *priv; /*!< private data */ }; /** \struct snd_tplg_obj_template * \brief Generic Template Object */ typedef struct snd_tplg_obj_template { enum snd_tplg_type type; /*!< template object type */ int index; /*!< group index for object */ int version; /*!< optional vendor specific version details */ int vendor_type; /*!< optional vendor specific type info */ union { struct snd_tplg_widget_template *widget; /*!< DAPM widget */ struct snd_tplg_mixer_template *mixer; /*!< Mixer control */ struct snd_tplg_bytes_template *bytes_ctl; /*!< Bytes control */ struct snd_tplg_enum_template *enum_ctl; /*!< Enum control */ struct snd_tplg_graph_template *graph; /*!< Graph elements */ struct snd_tplg_pcm_template *pcm; /*!< PCM elements */ struct snd_tplg_link_template *link; /*!< physical DAI Links */ struct snd_tplg_dai_template *dai; /*!< Physical DAI */ }; } snd_tplg_obj_template_t; /** * \brief Register topology template object. * \param tplg Topology instance. * \param t Template object. * \return Zero on success, otherwise a negative error code */ int snd_tplg_add_object(snd_tplg_t *tplg, snd_tplg_obj_template_t *t); /** * \brief Build all registered topology data into binary file. * \param tplg Topology instance. * \param outfile Binary topology output file. * \return Zero on success, otherwise a negative error code */ int snd_tplg_build(snd_tplg_t *tplg, const char *outfile); /** * \brief Attach private data to topology manifest. * \param tplg Topology instance. * \param data Private data. * \param len Length of data in bytes. * \return Zero on success, otherwise a negative error code */ int snd_tplg_set_manifest_data(snd_tplg_t *tplg, const void *data, int len); /** * \brief Set an optional vendor specific version number. * \param tplg Topology instance. * \param version Vendor specific version number. * \return Zero on success, otherwise a negative error code */ int snd_tplg_set_version(snd_tplg_t *tplg, unsigned int version); /* \} */ #ifdef __cplusplus } #endif #endif /* __ALSA_TOPOLOGY_H */