// © 2016 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html /* *************************************************************************** * Copyright (C) 2008-2015, International Business Machines Corporation * and others. All Rights Reserved. *************************************************************************** * file name: uspoof.cpp * encoding: UTF-8 * tab size: 8 (not used) * indentation:4 * * created on: 2008Feb13 * created by: Andy Heninger * * Unicode Spoof Detection */ #include "unicode/ubidi.h" #include "unicode/utypes.h" #include "unicode/normalizer2.h" #include "unicode/uspoof.h" #include "unicode/ustring.h" #include "unicode/utf16.h" #include "cmemory.h" #include "cstring.h" #include "mutex.h" #include "scriptset.h" #include "uassert.h" #include "ucln_in.h" #include "uspoof_impl.h" #include "umutex.h" #if !UCONFIG_NO_NORMALIZATION U_NAMESPACE_USE // // Static Objects used by the spoof impl, their thread safe initialization and their cleanup. // static UnicodeSet *gInclusionSet = nullptr; static UnicodeSet *gRecommendedSet = nullptr; static const Normalizer2 *gNfdNormalizer = nullptr; static UInitOnce gSpoofInitStaticsOnce {}; namespace { UBool U_CALLCONV uspoof_cleanup() { delete gInclusionSet; gInclusionSet = nullptr; delete gRecommendedSet; gRecommendedSet = nullptr; gNfdNormalizer = nullptr; gSpoofInitStaticsOnce.reset(); return true; } void U_CALLCONV initializeStatics(UErrorCode &status) { gInclusionSet = new UnicodeSet(); gRecommendedSet = new UnicodeSet(); if (gInclusionSet == nullptr || gRecommendedSet == nullptr) { status = U_MEMORY_ALLOCATION_ERROR; delete gInclusionSet; gInclusionSet = nullptr; delete gRecommendedSet; gRecommendedSet = nullptr; return; } gInclusionSet->applyIntPropertyValue(UCHAR_IDENTIFIER_TYPE, U_ID_TYPE_INCLUSION, status); gRecommendedSet->applyIntPropertyValue(UCHAR_IDENTIFIER_TYPE, U_ID_TYPE_RECOMMENDED, status); if (U_FAILURE(status)) { delete gInclusionSet; gInclusionSet = nullptr; delete gRecommendedSet; gRecommendedSet = nullptr; return; } gInclusionSet->freeze(); gRecommendedSet->freeze(); gNfdNormalizer = Normalizer2::getNFDInstance(status); ucln_i18n_registerCleanup(UCLN_I18N_SPOOF, uspoof_cleanup); } } // namespace U_CFUNC void uspoof_internalInitStatics(UErrorCode *status) { umtx_initOnce(gSpoofInitStaticsOnce, &initializeStatics, *status); } U_CAPI USpoofChecker * U_EXPORT2 uspoof_open(UErrorCode *status) { umtx_initOnce(gSpoofInitStaticsOnce, &initializeStatics, *status); if (U_FAILURE(*status)) { return nullptr; } SpoofImpl *si = new SpoofImpl(*status); if (si == nullptr) { *status = U_MEMORY_ALLOCATION_ERROR; return nullptr; } if (U_FAILURE(*status)) { delete si; return nullptr; } return si->asUSpoofChecker(); } U_CAPI USpoofChecker * U_EXPORT2 uspoof_openFromSerialized(const void *data, int32_t length, int32_t *pActualLength, UErrorCode *status) { if (U_FAILURE(*status)) { return nullptr; } if (data == nullptr) { *status = U_ILLEGAL_ARGUMENT_ERROR; return nullptr; } umtx_initOnce(gSpoofInitStaticsOnce, &initializeStatics, *status); if (U_FAILURE(*status)) { return nullptr; } SpoofData *sd = new SpoofData(data, length, *status); if (sd == nullptr) { *status = U_MEMORY_ALLOCATION_ERROR; return nullptr; } if (U_FAILURE(*status)) { delete sd; return nullptr; } SpoofImpl *si = new SpoofImpl(sd, *status); if (si == nullptr) { *status = U_MEMORY_ALLOCATION_ERROR; delete sd; // explicit delete as the destructor for si won't be called. return nullptr; } if (U_FAILURE(*status)) { delete si; // no delete for sd, as the si destructor will delete it. return nullptr; } if (pActualLength != nullptr) { *pActualLength = sd->size(); } return si->asUSpoofChecker(); } U_CAPI USpoofChecker * U_EXPORT2 uspoof_clone(const USpoofChecker *sc, UErrorCode *status) { const SpoofImpl *src = SpoofImpl::validateThis(sc, *status); if (src == nullptr) { return nullptr; } SpoofImpl *result = new SpoofImpl(*src, *status); // copy constructor if (result == nullptr) { *status = U_MEMORY_ALLOCATION_ERROR; return nullptr; } if (U_FAILURE(*status)) { delete result; result = nullptr; } return result->asUSpoofChecker(); } U_CAPI void U_EXPORT2 uspoof_close(USpoofChecker *sc) { UErrorCode status = U_ZERO_ERROR; SpoofImpl *This = SpoofImpl::validateThis(sc, status); delete This; } U_CAPI void U_EXPORT2 uspoof_setChecks(USpoofChecker *sc, int32_t checks, UErrorCode *status) { SpoofImpl *This = SpoofImpl::validateThis(sc, *status); if (This == nullptr) { return; } // Verify that the requested checks are all ones (bits) that // are acceptable, known values. if (checks & ~(USPOOF_ALL_CHECKS | USPOOF_AUX_INFO)) { *status = U_ILLEGAL_ARGUMENT_ERROR; return; } This->fChecks = checks; } U_CAPI int32_t U_EXPORT2 uspoof_getChecks(const USpoofChecker *sc, UErrorCode *status) { const SpoofImpl *This = SpoofImpl::validateThis(sc, *status); if (This == nullptr) { return 0; } return This->fChecks; } U_CAPI void U_EXPORT2 uspoof_setRestrictionLevel(USpoofChecker *sc, URestrictionLevel restrictionLevel) { UErrorCode status = U_ZERO_ERROR; SpoofImpl *This = SpoofImpl::validateThis(sc, status); if (This != nullptr) { This->fRestrictionLevel = restrictionLevel; This->fChecks |= USPOOF_RESTRICTION_LEVEL; } } U_CAPI URestrictionLevel U_EXPORT2 uspoof_getRestrictionLevel(const USpoofChecker *sc) { UErrorCode status = U_ZERO_ERROR; const SpoofImpl *This = SpoofImpl::validateThis(sc, status); if (This == nullptr) { return USPOOF_UNRESTRICTIVE; } return This->fRestrictionLevel; } U_CAPI void U_EXPORT2 uspoof_setAllowedLocales(USpoofChecker *sc, const char *localesList, UErrorCode *status) { SpoofImpl *This = SpoofImpl::validateThis(sc, *status); if (This == nullptr) { return; } This->setAllowedLocales(localesList, *status); } U_CAPI const char * U_EXPORT2 uspoof_getAllowedLocales(USpoofChecker *sc, UErrorCode *status) { SpoofImpl *This = SpoofImpl::validateThis(sc, *status); if (This == nullptr) { return nullptr; } return This->getAllowedLocales(*status); } U_CAPI const USet * U_EXPORT2 uspoof_getAllowedChars(const USpoofChecker *sc, UErrorCode *status) { const UnicodeSet *result = uspoof_getAllowedUnicodeSet(sc, status); return result->toUSet(); } U_CAPI const UnicodeSet * U_EXPORT2 uspoof_getAllowedUnicodeSet(const USpoofChecker *sc, UErrorCode *status) { const SpoofImpl *This = SpoofImpl::validateThis(sc, *status); if (This == nullptr) { return nullptr; } return This->fAllowedCharsSet; } U_CAPI void U_EXPORT2 uspoof_setAllowedChars(USpoofChecker *sc, const USet *chars, UErrorCode *status) { const UnicodeSet *set = UnicodeSet::fromUSet(chars); uspoof_setAllowedUnicodeSet(sc, set, status); } U_CAPI void U_EXPORT2 uspoof_setAllowedUnicodeSet(USpoofChecker *sc, const UnicodeSet *chars, UErrorCode *status) { SpoofImpl *This = SpoofImpl::validateThis(sc, *status); if (This == nullptr) { return; } if (chars->isBogus()) { *status = U_ILLEGAL_ARGUMENT_ERROR; return; } UnicodeSet *clonedSet = chars->clone(); if (clonedSet == nullptr || clonedSet->isBogus()) { *status = U_MEMORY_ALLOCATION_ERROR; return; } clonedSet->freeze(); delete This->fAllowedCharsSet; This->fAllowedCharsSet = clonedSet; This->fChecks |= USPOOF_CHAR_LIMIT; } U_CAPI int32_t U_EXPORT2 uspoof_check(const USpoofChecker *sc, const char16_t *id, int32_t length, int32_t *position, UErrorCode *status) { // Backwards compatibility: if (position != nullptr) { *position = 0; } // Delegate to uspoof_check2 return uspoof_check2(sc, id, length, nullptr, status); } U_CAPI int32_t U_EXPORT2 uspoof_check2(const USpoofChecker *sc, const char16_t* id, int32_t length, USpoofCheckResult* checkResult, UErrorCode *status) { const SpoofImpl *This = SpoofImpl::validateThis(sc, *status); if (This == nullptr) { return 0; } if (length < -1) { *status = U_ILLEGAL_ARGUMENT_ERROR; return 0; } UnicodeString idStr((length == -1), id, length); // Aliasing constructor. int32_t result = uspoof_check2UnicodeString(sc, idStr, checkResult, status); return result; } U_CAPI int32_t U_EXPORT2 uspoof_checkUTF8(const USpoofChecker *sc, const char *id, int32_t length, int32_t *position, UErrorCode *status) { // Backwards compatibility: if (position != nullptr) { *position = 0; } // Delegate to uspoof_check2 return uspoof_check2UTF8(sc, id, length, nullptr, status); } U_CAPI int32_t U_EXPORT2 uspoof_check2UTF8(const USpoofChecker *sc, const char *id, int32_t length, USpoofCheckResult* checkResult, UErrorCode *status) { if (U_FAILURE(*status)) { return 0; } UnicodeString idStr = UnicodeString::fromUTF8(StringPiece(id, length>=0 ? length : static_cast(uprv_strlen(id)))); int32_t result = uspoof_check2UnicodeString(sc, idStr, checkResult, status); return result; } U_CAPI int32_t U_EXPORT2 uspoof_areConfusable(const USpoofChecker *sc, const char16_t *id1, int32_t length1, const char16_t *id2, int32_t length2, UErrorCode *status) { SpoofImpl::validateThis(sc, *status); if (U_FAILURE(*status)) { return 0; } if (length1 < -1 || length2 < -1) { *status = U_ILLEGAL_ARGUMENT_ERROR; return 0; } UnicodeString id1Str((length1==-1), id1, length1); // Aliasing constructor UnicodeString id2Str((length2==-1), id2, length2); // Aliasing constructor return uspoof_areConfusableUnicodeString(sc, id1Str, id2Str, status); } U_CAPI int32_t U_EXPORT2 uspoof_areConfusableUTF8(const USpoofChecker *sc, const char *id1, int32_t length1, const char *id2, int32_t length2, UErrorCode *status) { SpoofImpl::validateThis(sc, *status); if (U_FAILURE(*status)) { return 0; } if (length1 < -1 || length2 < -1) { *status = U_ILLEGAL_ARGUMENT_ERROR; return 0; } UnicodeString id1Str = UnicodeString::fromUTF8(StringPiece(id1, length1>=0? length1 : static_cast(uprv_strlen(id1)))); UnicodeString id2Str = UnicodeString::fromUTF8(StringPiece(id2, length2>=0? length2 : static_cast(uprv_strlen(id2)))); int32_t results = uspoof_areConfusableUnicodeString(sc, id1Str, id2Str, status); return results; } U_CAPI int32_t U_EXPORT2 uspoof_areConfusableUnicodeString(const USpoofChecker *sc, const icu::UnicodeString &id1, const icu::UnicodeString &id2, UErrorCode *status) { const SpoofImpl *This = SpoofImpl::validateThis(sc, *status); if (U_FAILURE(*status)) { return 0; } // // See section 4 of UAX 39 for the algorithm for checking whether two strings are confusable, // and for definitions of the types (single, whole, mixed-script) of confusables. // We only care about a few of the check flags. Ignore the others. // If no tests relevant to this function have been specified, return an error. // TODO: is this really the right thing to do? It's probably an error on the caller's part, // but logically we would just return 0 (no error). if ((This->fChecks & USPOOF_CONFUSABLE) == 0) { *status = U_INVALID_STATE_ERROR; return 0; } // Compute the skeletons and check for confusability. UnicodeString id1Skeleton; uspoof_getSkeletonUnicodeString(sc, 0 /* deprecated */, id1, id1Skeleton, status); UnicodeString id2Skeleton; uspoof_getSkeletonUnicodeString(sc, 0 /* deprecated */, id2, id2Skeleton, status); if (U_FAILURE(*status)) { return 0; } if (id1Skeleton != id2Skeleton) { return 0; } // If we get here, the strings are confusable. Now we just need to set the flags for the appropriate classes // of confusables according to UTS 39 section 4. // Start by computing the resolved script sets of id1 and id2. ScriptSet id1RSS; This->getResolvedScriptSet(id1, id1RSS, *status); ScriptSet id2RSS; This->getResolvedScriptSet(id2, id2RSS, *status); // Turn on all applicable flags int32_t result = 0; if (id1RSS.intersects(id2RSS)) { result |= USPOOF_SINGLE_SCRIPT_CONFUSABLE; } else { result |= USPOOF_MIXED_SCRIPT_CONFUSABLE; if (!id1RSS.isEmpty() && !id2RSS.isEmpty()) { result |= USPOOF_WHOLE_SCRIPT_CONFUSABLE; } } // Turn off flags that the user doesn't want if ((This->fChecks & USPOOF_SINGLE_SCRIPT_CONFUSABLE) == 0) { result &= ~USPOOF_SINGLE_SCRIPT_CONFUSABLE; } if ((This->fChecks & USPOOF_MIXED_SCRIPT_CONFUSABLE) == 0) { result &= ~USPOOF_MIXED_SCRIPT_CONFUSABLE; } if ((This->fChecks & USPOOF_WHOLE_SCRIPT_CONFUSABLE) == 0) { result &= ~USPOOF_WHOLE_SCRIPT_CONFUSABLE; } return result; } U_CAPI uint32_t U_EXPORT2 uspoof_areBidiConfusable(const USpoofChecker *sc, UBiDiDirection direction, const char16_t *id1, int32_t length1, const char16_t *id2, int32_t length2, UErrorCode *status) { UnicodeString id1Str((length1 == -1), id1, length1); // Aliasing constructor UnicodeString id2Str((length2 == -1), id2, length2); // Aliasing constructor if (id1Str.isBogus() || id2Str.isBogus()) { *status = U_ILLEGAL_ARGUMENT_ERROR; return 0; } return uspoof_areBidiConfusableUnicodeString(sc, direction, id1Str, id2Str, status); } U_CAPI uint32_t U_EXPORT2 uspoof_areBidiConfusableUTF8(const USpoofChecker *sc, UBiDiDirection direction, const char *id1, int32_t length1, const char *id2, int32_t length2, UErrorCode *status) { if (length1 < -1 || length2 < -1) { *status = U_ILLEGAL_ARGUMENT_ERROR; return 0; } UnicodeString id1Str = UnicodeString::fromUTF8( StringPiece(id1, length1 >= 0 ? length1 : static_cast(uprv_strlen(id1)))); UnicodeString id2Str = UnicodeString::fromUTF8( StringPiece(id2, length2 >= 0 ? length2 : static_cast(uprv_strlen(id2)))); return uspoof_areBidiConfusableUnicodeString(sc, direction, id1Str, id2Str, status); } U_CAPI uint32_t U_EXPORT2 uspoof_areBidiConfusableUnicodeString(const USpoofChecker *sc, UBiDiDirection direction, const icu::UnicodeString &id1, const icu::UnicodeString &id2, UErrorCode *status) { const SpoofImpl *This = SpoofImpl::validateThis(sc, *status); if (U_FAILURE(*status)) { return 0; } // // See section 4 of UTS 39 for the algorithm for checking whether two strings are confusable, // and for definitions of the types (single, whole, mixed-script) of confusables. // We only care about a few of the check flags. Ignore the others. // If no tests relevant to this function have been specified, return an error. // TODO: is this really the right thing to do? It's probably an error on the caller's part, // but logically we would just return 0 (no error). if ((This->fChecks & USPOOF_CONFUSABLE) == 0) { *status = U_INVALID_STATE_ERROR; return 0; } // Compute the skeletons and check for confusability. UnicodeString id1Skeleton; uspoof_getBidiSkeletonUnicodeString(sc, direction, id1, id1Skeleton, status); UnicodeString id2Skeleton; uspoof_getBidiSkeletonUnicodeString(sc, direction, id2, id2Skeleton, status); if (U_FAILURE(*status)) { return 0; } if (id1Skeleton != id2Skeleton) { return 0; } // If we get here, the strings are confusable. Now we just need to set the flags for the appropriate // classes of confusables according to UTS 39 section 4. Start by computing the resolved script sets // of id1 and id2. ScriptSet id1RSS; This->getResolvedScriptSet(id1, id1RSS, *status); ScriptSet id2RSS; This->getResolvedScriptSet(id2, id2RSS, *status); // Turn on all applicable flags uint32_t result = 0; if (id1RSS.intersects(id2RSS)) { result |= USPOOF_SINGLE_SCRIPT_CONFUSABLE; } else { result |= USPOOF_MIXED_SCRIPT_CONFUSABLE; if (!id1RSS.isEmpty() && !id2RSS.isEmpty()) { result |= USPOOF_WHOLE_SCRIPT_CONFUSABLE; } } // Turn off flags that the user doesn't want return result & This->fChecks; } U_CAPI int32_t U_EXPORT2 uspoof_checkUnicodeString(const USpoofChecker *sc, const icu::UnicodeString &id, int32_t *position, UErrorCode *status) { // Backwards compatibility: if (position != nullptr) { *position = 0; } // Delegate to uspoof_check2 return uspoof_check2UnicodeString(sc, id, nullptr, status); } namespace { int32_t checkImpl(const SpoofImpl* This, const UnicodeString& id, CheckResult* checkResult, UErrorCode* status) { U_ASSERT(This != nullptr); U_ASSERT(checkResult != nullptr); checkResult->clear(); int32_t result = 0; if (0 != (This->fChecks & USPOOF_RESTRICTION_LEVEL)) { URestrictionLevel idRestrictionLevel = This->getRestrictionLevel(id, *status); if (idRestrictionLevel > This->fRestrictionLevel) { result |= USPOOF_RESTRICTION_LEVEL; } checkResult->fRestrictionLevel = idRestrictionLevel; } if (0 != (This->fChecks & USPOOF_MIXED_NUMBERS)) { UnicodeSet numerics; This->getNumerics(id, numerics, *status); if (numerics.size() > 1) { result |= USPOOF_MIXED_NUMBERS; } checkResult->fNumerics = numerics; // UnicodeSet::operator= } if (0 != (This->fChecks & USPOOF_HIDDEN_OVERLAY)) { int32_t index = This->findHiddenOverlay(id, *status); if (index != -1) { result |= USPOOF_HIDDEN_OVERLAY; } } if (0 != (This->fChecks & USPOOF_CHAR_LIMIT)) { int32_t i; UChar32 c; int32_t length = id.length(); for (i=0; ifAllowedCharsSet->contains(c)) { result |= USPOOF_CHAR_LIMIT; break; } } } if (0 != (This->fChecks & USPOOF_INVISIBLE)) { // This check needs to be done on NFD input UnicodeString nfdText; gNfdNormalizer->normalize(id, nfdText, *status); int32_t nfdLength = nfdText.length(); // scan for more than one occurrence of the same non-spacing mark // in a sequence of non-spacing marks. int32_t i; UChar32 c; UChar32 firstNonspacingMark = 0; UBool haveMultipleMarks = false; UnicodeSet marksSeenSoFar; // Set of combining marks in a single combining sequence. for (i=0; ifChecks = result; return checkResult->toCombinedBitmask(This->fChecks); } } // namespace U_CAPI int32_t U_EXPORT2 uspoof_check2UnicodeString(const USpoofChecker *sc, const icu::UnicodeString &id, USpoofCheckResult* checkResult, UErrorCode *status) { const SpoofImpl *This = SpoofImpl::validateThis(sc, *status); if (This == nullptr) { return false; } if (checkResult != nullptr) { CheckResult* ThisCheckResult = CheckResult::validateThis(checkResult, *status); if (ThisCheckResult == nullptr) { return false; } return checkImpl(This, id, ThisCheckResult, status); } else { // Stack-allocate the checkResult since this method doesn't return it CheckResult stackCheckResult; return checkImpl(This, id, &stackCheckResult, status); } } U_CAPI int32_t U_EXPORT2 uspoof_getSkeleton(const USpoofChecker *sc, uint32_t type, const char16_t *id, int32_t length, char16_t *dest, int32_t destCapacity, UErrorCode *status) { SpoofImpl::validateThis(sc, *status); if (U_FAILURE(*status)) { return 0; } if (length<-1 || destCapacity<0 || (destCapacity==0 && dest!=nullptr)) { *status = U_ILLEGAL_ARGUMENT_ERROR; return 0; } UnicodeString idStr((length==-1), id, length); // Aliasing constructor UnicodeString destStr; uspoof_getSkeletonUnicodeString(sc, type, idStr, destStr, status); destStr.extract(dest, destCapacity, *status); return destStr.length(); } U_CAPI int32_t U_EXPORT2 uspoof_getBidiSkeleton(const USpoofChecker *sc, UBiDiDirection direction, const UChar *id, int32_t length, UChar *dest, int32_t destCapacity, UErrorCode *status) { UnicodeString idStr((length == -1), id, length); // Aliasing constructor if (idStr.isBogus()) { *status = U_ILLEGAL_ARGUMENT_ERROR; return 0; } UnicodeString destStr; uspoof_getBidiSkeletonUnicodeString(sc, direction, idStr, destStr, status); return destStr.extract(dest, destCapacity, *status); } U_I18N_API UnicodeString &U_EXPORT2 uspoof_getBidiSkeletonUnicodeString(const USpoofChecker *sc, UBiDiDirection direction, const UnicodeString &id, UnicodeString &dest, UErrorCode *status) { dest.remove(); if (direction != UBIDI_LTR && direction != UBIDI_RTL) { *status = U_ILLEGAL_ARGUMENT_ERROR; return dest; } UBiDi *bidi = ubidi_open(); ubidi_setPara(bidi, id.getBuffer(), id.length(), direction, /*embeddingLevels*/ nullptr, status); if (U_FAILURE(*status)) { ubidi_close(bidi); return dest; } UnicodeString reordered; int32_t const size = ubidi_getProcessedLength(bidi); UChar* const reorderedBuffer = reordered.getBuffer(size); if (reorderedBuffer == nullptr) { *status = U_MEMORY_ALLOCATION_ERROR; ubidi_close(bidi); return dest; } ubidi_writeReordered(bidi, reorderedBuffer, size, UBIDI_KEEP_BASE_COMBINING | UBIDI_DO_MIRRORING, status); reordered.releaseBuffer(size); ubidi_close(bidi); if (U_FAILURE(*status)) { return dest; } // The type parameter is deprecated since ICU 58; any number may be passed. constexpr uint32_t deprecatedType = 58; return uspoof_getSkeletonUnicodeString(sc, deprecatedType, reordered, dest, status); } U_I18N_API UnicodeString & U_EXPORT2 uspoof_getSkeletonUnicodeString(const USpoofChecker *sc, uint32_t /*type*/, const UnicodeString &id, UnicodeString &dest, UErrorCode *status) { const SpoofImpl *This = SpoofImpl::validateThis(sc, *status); if (U_FAILURE(*status)) { return dest; } UnicodeString nfdId; gNfdNormalizer->normalize(id, nfdId, *status); // Apply the skeleton mapping to the NFD normalized input string // Accumulate the skeleton, possibly unnormalized, in a UnicodeString. int32_t inputIndex = 0; UnicodeString skelStr; int32_t normalizedLen = nfdId.length(); for (inputIndex=0; inputIndex < normalizedLen; ) { UChar32 c = nfdId.char32At(inputIndex); inputIndex += U16_LENGTH(c); if (!u_hasBinaryProperty(c, UCHAR_DEFAULT_IGNORABLE_CODE_POINT)) { This->fSpoofData->confusableLookup(c, skelStr); } } gNfdNormalizer->normalize(skelStr, dest, *status); return dest; } U_CAPI int32_t U_EXPORT2 uspoof_getSkeletonUTF8(const USpoofChecker *sc, uint32_t type, const char *id, int32_t length, char *dest, int32_t destCapacity, UErrorCode *status) { SpoofImpl::validateThis(sc, *status); if (U_FAILURE(*status)) { return 0; } if (length<-1 || destCapacity<0 || (destCapacity==0 && dest!=nullptr)) { *status = U_ILLEGAL_ARGUMENT_ERROR; return 0; } UnicodeString srcStr = UnicodeString::fromUTF8( StringPiece(id, length >= 0 ? length : static_cast(uprv_strlen(id)))); UnicodeString destStr; uspoof_getSkeletonUnicodeString(sc, type, srcStr, destStr, status); if (U_FAILURE(*status)) { return 0; } int32_t lengthInUTF8 = 0; u_strToUTF8(dest, destCapacity, &lengthInUTF8, destStr.getBuffer(), destStr.length(), status); return lengthInUTF8; } U_CAPI int32_t U_EXPORT2 uspoof_getBidiSkeletonUTF8(const USpoofChecker *sc, UBiDiDirection direction, const char *id, int32_t length, char *dest, int32_t destCapacity, UErrorCode *status) { if (length < -1) { *status = U_ILLEGAL_ARGUMENT_ERROR; return 0; } UnicodeString srcStr = UnicodeString::fromUTF8( StringPiece(id, length >= 0 ? length : static_cast(uprv_strlen(id)))); UnicodeString destStr; uspoof_getBidiSkeletonUnicodeString(sc, direction, srcStr, destStr, status); if (U_FAILURE(*status)) { return 0; } int32_t lengthInUTF8 = 0; u_strToUTF8(dest, destCapacity, &lengthInUTF8, destStr.getBuffer(), destStr.length(), status); return lengthInUTF8; } U_CAPI int32_t U_EXPORT2 uspoof_serialize(USpoofChecker *sc,void *buf, int32_t capacity, UErrorCode *status) { SpoofImpl *This = SpoofImpl::validateThis(sc, *status); if (This == nullptr) { U_ASSERT(U_FAILURE(*status)); return 0; } return This->fSpoofData->serialize(buf, capacity, *status); } U_CAPI const USet * U_EXPORT2 uspoof_getInclusionSet(UErrorCode *status) { umtx_initOnce(gSpoofInitStaticsOnce, &initializeStatics, *status); return gInclusionSet->toUSet(); } U_CAPI const USet * U_EXPORT2 uspoof_getRecommendedSet(UErrorCode *status) { umtx_initOnce(gSpoofInitStaticsOnce, &initializeStatics, *status); return gRecommendedSet->toUSet(); } U_I18N_API const UnicodeSet * U_EXPORT2 uspoof_getInclusionUnicodeSet(UErrorCode *status) { umtx_initOnce(gSpoofInitStaticsOnce, &initializeStatics, *status); return gInclusionSet; } U_I18N_API const UnicodeSet * U_EXPORT2 uspoof_getRecommendedUnicodeSet(UErrorCode *status) { umtx_initOnce(gSpoofInitStaticsOnce, &initializeStatics, *status); return gRecommendedSet; } //------------------ // CheckResult APIs //------------------ U_CAPI USpoofCheckResult* U_EXPORT2 uspoof_openCheckResult(UErrorCode *status) { CheckResult* checkResult = new CheckResult(); if (checkResult == nullptr) { *status = U_MEMORY_ALLOCATION_ERROR; return nullptr; } return checkResult->asUSpoofCheckResult(); } U_CAPI void U_EXPORT2 uspoof_closeCheckResult(USpoofCheckResult* checkResult) { UErrorCode status = U_ZERO_ERROR; CheckResult* This = CheckResult::validateThis(checkResult, status); delete This; } U_CAPI int32_t U_EXPORT2 uspoof_getCheckResultChecks(const USpoofCheckResult *checkResult, UErrorCode *status) { const CheckResult* This = CheckResult::validateThis(checkResult, *status); if (U_FAILURE(*status)) { return 0; } return This->fChecks; } U_CAPI URestrictionLevel U_EXPORT2 uspoof_getCheckResultRestrictionLevel(const USpoofCheckResult *checkResult, UErrorCode *status) { const CheckResult* This = CheckResult::validateThis(checkResult, *status); if (U_FAILURE(*status)) { return USPOOF_UNRESTRICTIVE; } return This->fRestrictionLevel; } U_CAPI const USet* U_EXPORT2 uspoof_getCheckResultNumerics(const USpoofCheckResult *checkResult, UErrorCode *status) { const CheckResult* This = CheckResult::validateThis(checkResult, *status); if (U_FAILURE(*status)) { return nullptr; } return This->fNumerics.toUSet(); } #endif // !UCONFIG_NO_NORMALIZATION