/*************************************************************************/ /* physics_body_2d.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "physics_body_2d.h" #include "core/core_string_names.h" #include "core/engine.h" #include "core/list.h" #include "core/math/math_funcs.h" #include "core/method_bind_ext.gen.inc" #include "core/object.h" #include "core/rid.h" #include "scene/scene_string_names.h" void PhysicsBody2D::_notification(int p_what) { } void PhysicsBody2D::_set_layers(uint32_t p_mask) { set_collision_layer(p_mask); set_collision_mask(p_mask); } uint32_t PhysicsBody2D::_get_layers() const { return get_collision_layer(); } void PhysicsBody2D::_bind_methods() { ClassDB::bind_method(D_METHOD("_set_layers", "mask"), &PhysicsBody2D::_set_layers); ClassDB::bind_method(D_METHOD("_get_layers"), &PhysicsBody2D::_get_layers); ClassDB::bind_method(D_METHOD("get_collision_exceptions"), &PhysicsBody2D::get_collision_exceptions); ClassDB::bind_method(D_METHOD("add_collision_exception_with", "body"), &PhysicsBody2D::add_collision_exception_with); ClassDB::bind_method(D_METHOD("remove_collision_exception_with", "body"), &PhysicsBody2D::remove_collision_exception_with); ADD_PROPERTY(PropertyInfo(Variant::INT, "layers", PROPERTY_HINT_LAYERS_2D_PHYSICS, "", 0), "_set_layers", "_get_layers"); //for backwards compat } PhysicsBody2D::PhysicsBody2D(Physics2DServer::BodyMode p_mode) : CollisionObject2D(RID_PRIME(Physics2DServer::get_singleton()->body_create()), false) { Physics2DServer::get_singleton()->body_set_mode(get_rid(), p_mode); set_pickable(false); } Array PhysicsBody2D::get_collision_exceptions() { List exceptions; Physics2DServer::get_singleton()->body_get_collision_exceptions(get_rid(), &exceptions); Array ret; for (List::Element *E = exceptions.front(); E; E = E->next()) { RID body = E->get(); ObjectID instance_id = Physics2DServer::get_singleton()->body_get_object_instance_id(body); Object *obj = ObjectDB::get_instance(instance_id); PhysicsBody2D *physics_body = Object::cast_to(obj); ret.append(physics_body); } return ret; } void PhysicsBody2D::add_collision_exception_with(Node *p_node) { ERR_FAIL_NULL(p_node); PhysicsBody2D *physics_body = Object::cast_to(p_node); ERR_FAIL_COND_MSG(!physics_body, "Collision exception only works between two objects of PhysicsBody type."); Physics2DServer::get_singleton()->body_add_collision_exception(get_rid(), physics_body->get_rid()); } void PhysicsBody2D::remove_collision_exception_with(Node *p_node) { ERR_FAIL_NULL(p_node); PhysicsBody2D *physics_body = Object::cast_to(p_node); ERR_FAIL_COND_MSG(!physics_body, "Collision exception only works between two objects of PhysicsBody type."); Physics2DServer::get_singleton()->body_remove_collision_exception(get_rid(), physics_body->get_rid()); } void StaticBody2D::set_constant_linear_velocity(const Vector2 &p_vel) { constant_linear_velocity = p_vel; Physics2DServer::get_singleton()->body_set_state(get_rid(), Physics2DServer::BODY_STATE_LINEAR_VELOCITY, constant_linear_velocity); } void StaticBody2D::set_constant_angular_velocity(real_t p_vel) { constant_angular_velocity = p_vel; Physics2DServer::get_singleton()->body_set_state(get_rid(), Physics2DServer::BODY_STATE_ANGULAR_VELOCITY, constant_angular_velocity); } Vector2 StaticBody2D::get_constant_linear_velocity() const { return constant_linear_velocity; } real_t StaticBody2D::get_constant_angular_velocity() const { return constant_angular_velocity; } #ifndef DISABLE_DEPRECATED void StaticBody2D::set_friction(real_t p_friction) { if (p_friction == 1.0 && physics_material_override.is_null()) { // default value, don't create an override for that return; } WARN_DEPRECATED_MSG("The method set_friction has been deprecated and will be removed in the future, use physics material instead."); ERR_FAIL_COND_MSG(p_friction < 0 || p_friction > 1, "Friction must be between 0 and 1."); if (physics_material_override.is_null()) { physics_material_override.instance(); set_physics_material_override(physics_material_override); } physics_material_override->set_friction(p_friction); } real_t StaticBody2D::get_friction() const { WARN_DEPRECATED_MSG("The method get_friction has been deprecated and will be removed in the future, use physics material instead."); if (physics_material_override.is_null()) { return 1; } return physics_material_override->get_friction(); } void StaticBody2D::set_bounce(real_t p_bounce) { if (p_bounce == 0.0 && physics_material_override.is_null()) { // default value, don't create an override for that return; } WARN_DEPRECATED_MSG("The method set_bounce has been deprecated and will be removed in the future, use physics material instead."); ERR_FAIL_COND_MSG(p_bounce < 0 || p_bounce > 1, "Bounce must be between 0 and 1."); if (physics_material_override.is_null()) { physics_material_override.instance(); set_physics_material_override(physics_material_override); } physics_material_override->set_bounce(p_bounce); } real_t StaticBody2D::get_bounce() const { WARN_DEPRECATED_MSG("The method get_bounce has been deprecated and will be removed in the future, use physics material instead."); if (physics_material_override.is_null()) { return 0; } return physics_material_override->get_bounce(); } #endif // DISABLE_DEPRECATED void StaticBody2D::set_physics_material_override(const Ref &p_physics_material_override) { if (physics_material_override.is_valid()) { if (physics_material_override->is_connected(CoreStringNames::get_singleton()->changed, this, "_reload_physics_characteristics")) { physics_material_override->disconnect(CoreStringNames::get_singleton()->changed, this, "_reload_physics_characteristics"); } } physics_material_override = p_physics_material_override; if (physics_material_override.is_valid()) { physics_material_override->connect(CoreStringNames::get_singleton()->changed, this, "_reload_physics_characteristics"); } _reload_physics_characteristics(); } Ref StaticBody2D::get_physics_material_override() const { return physics_material_override; } void StaticBody2D::_bind_methods() { ClassDB::bind_method(D_METHOD("set_constant_linear_velocity", "vel"), &StaticBody2D::set_constant_linear_velocity); ClassDB::bind_method(D_METHOD("set_constant_angular_velocity", "vel"), &StaticBody2D::set_constant_angular_velocity); ClassDB::bind_method(D_METHOD("get_constant_linear_velocity"), &StaticBody2D::get_constant_linear_velocity); ClassDB::bind_method(D_METHOD("get_constant_angular_velocity"), &StaticBody2D::get_constant_angular_velocity); #ifndef DISABLE_DEPRECATED ClassDB::bind_method(D_METHOD("set_friction", "friction"), &StaticBody2D::set_friction); ClassDB::bind_method(D_METHOD("get_friction"), &StaticBody2D::get_friction); ClassDB::bind_method(D_METHOD("set_bounce", "bounce"), &StaticBody2D::set_bounce); ClassDB::bind_method(D_METHOD("get_bounce"), &StaticBody2D::get_bounce); #endif // DISABLE_DEPRECATED ClassDB::bind_method(D_METHOD("set_physics_material_override", "physics_material_override"), &StaticBody2D::set_physics_material_override); ClassDB::bind_method(D_METHOD("get_physics_material_override"), &StaticBody2D::get_physics_material_override); ClassDB::bind_method(D_METHOD("_reload_physics_characteristics"), &StaticBody2D::_reload_physics_characteristics); ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "constant_linear_velocity"), "set_constant_linear_velocity", "get_constant_linear_velocity"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "constant_angular_velocity"), "set_constant_angular_velocity", "get_constant_angular_velocity"); #ifndef DISABLE_DEPRECATED ADD_PROPERTY(PropertyInfo(Variant::REAL, "friction", PROPERTY_HINT_RANGE, "0,1,0.01", 0), "set_friction", "get_friction"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "bounce", PROPERTY_HINT_RANGE, "0,1,0.01", 0), "set_bounce", "get_bounce"); #endif // DISABLE_DEPRECATED ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "physics_material_override", PROPERTY_HINT_RESOURCE_TYPE, "PhysicsMaterial"), "set_physics_material_override", "get_physics_material_override"); } StaticBody2D::StaticBody2D() : PhysicsBody2D(Physics2DServer::BODY_MODE_STATIC) { constant_angular_velocity = 0; } StaticBody2D::~StaticBody2D() { } void StaticBody2D::_reload_physics_characteristics() { if (physics_material_override.is_null()) { Physics2DServer::get_singleton()->body_set_param(get_rid(), Physics2DServer::BODY_PARAM_BOUNCE, 0); Physics2DServer::get_singleton()->body_set_param(get_rid(), Physics2DServer::BODY_PARAM_FRICTION, 1); } else { Physics2DServer::get_singleton()->body_set_param(get_rid(), Physics2DServer::BODY_PARAM_BOUNCE, physics_material_override->computed_bounce()); Physics2DServer::get_singleton()->body_set_param(get_rid(), Physics2DServer::BODY_PARAM_FRICTION, physics_material_override->computed_friction()); } } void RigidBody2D::_body_enter_tree(ObjectID p_id) { Object *obj = ObjectDB::get_instance(p_id); Node *node = Object::cast_to(obj); ERR_FAIL_COND(!node); ERR_FAIL_COND(!contact_monitor); Map::Element *E = contact_monitor->body_map.find(p_id); ERR_FAIL_COND(!E); ERR_FAIL_COND(E->get().in_scene); contact_monitor->locked = true; E->get().in_scene = true; emit_signal(SceneStringNames::get_singleton()->body_entered, node); for (int i = 0; i < E->get().shapes.size(); i++) { emit_signal(SceneStringNames::get_singleton()->body_shape_entered, E->get().rid, node, E->get().shapes[i].body_shape, E->get().shapes[i].local_shape); } contact_monitor->locked = false; } void RigidBody2D::_body_exit_tree(ObjectID p_id) { Object *obj = ObjectDB::get_instance(p_id); Node *node = Object::cast_to(obj); ERR_FAIL_COND(!node); ERR_FAIL_COND(!contact_monitor); Map::Element *E = contact_monitor->body_map.find(p_id); ERR_FAIL_COND(!E); ERR_FAIL_COND(!E->get().in_scene); E->get().in_scene = false; contact_monitor->locked = true; emit_signal(SceneStringNames::get_singleton()->body_exited, node); for (int i = 0; i < E->get().shapes.size(); i++) { emit_signal(SceneStringNames::get_singleton()->body_shape_exited, E->get().rid, node, E->get().shapes[i].body_shape, E->get().shapes[i].local_shape); } contact_monitor->locked = false; } void RigidBody2D::_body_inout(int p_status, const RID &p_body, ObjectID p_instance, int p_body_shape, int p_local_shape) { bool body_in = p_status == 1; ObjectID objid = p_instance; Object *obj = ObjectDB::get_instance(objid); Node *node = Object::cast_to(obj); ERR_FAIL_COND(!contact_monitor); Map::Element *E = contact_monitor->body_map.find(objid); ERR_FAIL_COND(!body_in && !E); if (body_in) { if (!E) { E = contact_monitor->body_map.insert(objid, BodyState()); E->get().rid = p_body; //E->get().rc=0; E->get().in_scene = node && node->is_inside_tree(); if (node) { node->connect(SceneStringNames::get_singleton()->tree_entered, this, SceneStringNames::get_singleton()->_body_enter_tree, make_binds(objid)); node->connect(SceneStringNames::get_singleton()->tree_exiting, this, SceneStringNames::get_singleton()->_body_exit_tree, make_binds(objid)); if (E->get().in_scene) { emit_signal(SceneStringNames::get_singleton()->body_entered, node); } } //E->get().rc++; } if (node) { E->get().shapes.insert(ShapePair(p_body_shape, p_local_shape)); } if (E->get().in_scene) { emit_signal(SceneStringNames::get_singleton()->body_shape_entered, p_body, node, p_body_shape, p_local_shape); } } else { //E->get().rc--; if (node) { E->get().shapes.erase(ShapePair(p_body_shape, p_local_shape)); } bool in_scene = E->get().in_scene; if (E->get().shapes.empty()) { if (node) { node->disconnect(SceneStringNames::get_singleton()->tree_entered, this, SceneStringNames::get_singleton()->_body_enter_tree); node->disconnect(SceneStringNames::get_singleton()->tree_exiting, this, SceneStringNames::get_singleton()->_body_exit_tree); if (in_scene) { emit_signal(SceneStringNames::get_singleton()->body_exited, node); } } contact_monitor->body_map.erase(E); } if (node && in_scene) { emit_signal(SceneStringNames::get_singleton()->body_shape_exited, p_body, node, p_body_shape, p_local_shape); } } } struct _RigidBody2DInOut { RID rid; ObjectID id; int shape; int local_shape; }; bool RigidBody2D::_test_motion(const Vector2 &p_motion, bool p_infinite_inertia, float p_margin, const Ref &p_result) { Physics2DServer::MotionResult *r = nullptr; Physics2DServer::MotionResult temp_result; if (p_result.is_valid()) { r = p_result->get_result_ptr(); } else { r = &temp_result; } bool colliding = Physics2DServer::get_singleton()->body_test_motion(get_rid(), get_global_transform(), p_motion, p_infinite_inertia, p_margin, r); if (colliding) { // Don't report collision when the whole motion is done. return (r->collision_safe_fraction < 1.0); } else { return false; } } void RigidBody2D::_direct_state_changed(Object *p_state) { state = Object::cast_to(p_state); ERR_FAIL_COND_MSG(!state, "Method '_direct_state_changed' must receive a valid Physics2DDirectBodyState object as argument"); set_block_transform_notify(true); // don't want notify (would feedback loop) if (mode != MODE_KINEMATIC) { set_global_transform(state->get_transform()); } linear_velocity = state->get_linear_velocity(); angular_velocity = state->get_angular_velocity(); if (sleeping != state->is_sleeping()) { sleeping = state->is_sleeping(); emit_signal(SceneStringNames::get_singleton()->sleeping_state_changed); } if (get_script_instance()) { get_script_instance()->call("_integrate_forces", state); } set_block_transform_notify(false); // want it back if (contact_monitor) { contact_monitor->locked = true; //untag all int rc = 0; for (Map::Element *E = contact_monitor->body_map.front(); E; E = E->next()) { for (int i = 0; i < E->get().shapes.size(); i++) { E->get().shapes[i].tagged = false; rc++; } } _RigidBody2DInOut *toadd = (_RigidBody2DInOut *)alloca(state->get_contact_count() * sizeof(_RigidBody2DInOut)); int toadd_count = 0; //state->get_contact_count(); RigidBody2D_RemoveAction *toremove = (RigidBody2D_RemoveAction *)alloca(rc * sizeof(RigidBody2D_RemoveAction)); int toremove_count = 0; //put the ones to add for (int i = 0; i < state->get_contact_count(); i++) { RID rid = state->get_contact_collider(i); ObjectID obj = state->get_contact_collider_id(i); int local_shape = state->get_contact_local_shape(i); int shape = state->get_contact_collider_shape(i); //bool found=false; Map::Element *E = contact_monitor->body_map.find(obj); if (!E) { toadd[toadd_count].rid = rid; toadd[toadd_count].local_shape = local_shape; toadd[toadd_count].id = obj; toadd[toadd_count].shape = shape; toadd_count++; continue; } ShapePair sp(shape, local_shape); int idx = E->get().shapes.find(sp); if (idx == -1) { toadd[toadd_count].rid = rid; toadd[toadd_count].local_shape = local_shape; toadd[toadd_count].id = obj; toadd[toadd_count].shape = shape; toadd_count++; continue; } E->get().shapes[idx].tagged = true; } //put the ones to remove for (Map::Element *E = contact_monitor->body_map.front(); E; E = E->next()) { for (int i = 0; i < E->get().shapes.size(); i++) { if (!E->get().shapes[i].tagged) { toremove[toremove_count].rid = E->get().rid; toremove[toremove_count].body_id = E->key(); toremove[toremove_count].pair = E->get().shapes[i]; toremove_count++; } } } //process remotions for (int i = 0; i < toremove_count; i++) { _body_inout(0, toremove[i].rid, toremove[i].body_id, toremove[i].pair.body_shape, toremove[i].pair.local_shape); } //process aditions for (int i = 0; i < toadd_count; i++) { _body_inout(1, toadd[i].rid, toadd[i].id, toadd[i].shape, toadd[i].local_shape); } contact_monitor->locked = false; } state = nullptr; } void RigidBody2D::set_mode(Mode p_mode) { mode = p_mode; switch (p_mode) { case MODE_RIGID: { Physics2DServer::get_singleton()->body_set_mode(get_rid(), Physics2DServer::BODY_MODE_RIGID); } break; case MODE_STATIC: { Physics2DServer::get_singleton()->body_set_mode(get_rid(), Physics2DServer::BODY_MODE_STATIC); } break; case MODE_KINEMATIC: { Physics2DServer::get_singleton()->body_set_mode(get_rid(), Physics2DServer::BODY_MODE_KINEMATIC); } break; case MODE_CHARACTER: { Physics2DServer::get_singleton()->body_set_mode(get_rid(), Physics2DServer::BODY_MODE_CHARACTER); } break; } } RigidBody2D::Mode RigidBody2D::get_mode() const { return mode; } void RigidBody2D::set_mass(real_t p_mass) { ERR_FAIL_COND(p_mass <= 0); mass = p_mass; _change_notify("mass"); _change_notify("weight"); Physics2DServer::get_singleton()->body_set_param(get_rid(), Physics2DServer::BODY_PARAM_MASS, mass); } real_t RigidBody2D::get_mass() const { return mass; } void RigidBody2D::set_inertia(real_t p_inertia) { ERR_FAIL_COND(p_inertia < 0); Physics2DServer::get_singleton()->body_set_param(get_rid(), Physics2DServer::BODY_PARAM_INERTIA, p_inertia); } real_t RigidBody2D::get_inertia() const { return Physics2DServer::get_singleton()->body_get_param(get_rid(), Physics2DServer::BODY_PARAM_INERTIA); } void RigidBody2D::set_weight(real_t p_weight) { set_mass(p_weight / (real_t(GLOBAL_DEF("physics/2d/default_gravity", 98)) / 10)); } real_t RigidBody2D::get_weight() const { return mass * (real_t(GLOBAL_DEF("physics/2d/default_gravity", 98)) / 10); } #ifndef DISABLE_DEPRECATED void RigidBody2D::set_friction(real_t p_friction) { if (p_friction == 1.0 && physics_material_override.is_null()) { // default value, don't create an override for that return; } WARN_DEPRECATED_MSG("The method set_friction has been deprecated and will be removed in the future, use physics material instead."); ERR_FAIL_COND_MSG(p_friction < 0 || p_friction > 1, "Friction must be between 0 and 1."); if (physics_material_override.is_null()) { physics_material_override.instance(); set_physics_material_override(physics_material_override); } physics_material_override->set_friction(p_friction); } real_t RigidBody2D::get_friction() const { WARN_DEPRECATED_MSG("The method get_friction has been deprecated and will be removed in the future, use physics material instead."); if (physics_material_override.is_null()) { return 1; } return physics_material_override->get_friction(); } void RigidBody2D::set_bounce(real_t p_bounce) { if (p_bounce == 0.0 && physics_material_override.is_null()) { // default value, don't create an override for that return; } WARN_DEPRECATED_MSG("The method set_bounce has been deprecated and will be removed in the future, use physics material instead."); ERR_FAIL_COND(p_bounce < 0 || p_bounce > 1); if (physics_material_override.is_null()) { physics_material_override.instance(); set_physics_material_override(physics_material_override); } physics_material_override->set_bounce(p_bounce); } real_t RigidBody2D::get_bounce() const { WARN_DEPRECATED_MSG("The method get_bounce has been deprecated and will be removed in the future, use physics material instead."); if (physics_material_override.is_null()) { return 0; } return physics_material_override->get_bounce(); } #endif // DISABLE_DEPRECATED void RigidBody2D::set_physics_material_override(const Ref &p_physics_material_override) { if (physics_material_override.is_valid()) { if (physics_material_override->is_connected(CoreStringNames::get_singleton()->changed, this, "_reload_physics_characteristics")) { physics_material_override->disconnect(CoreStringNames::get_singleton()->changed, this, "_reload_physics_characteristics"); } } physics_material_override = p_physics_material_override; if (physics_material_override.is_valid()) { physics_material_override->connect(CoreStringNames::get_singleton()->changed, this, "_reload_physics_characteristics"); } _reload_physics_characteristics(); } Ref RigidBody2D::get_physics_material_override() const { return physics_material_override; } void RigidBody2D::set_gravity_scale(real_t p_gravity_scale) { gravity_scale = p_gravity_scale; Physics2DServer::get_singleton()->body_set_param(get_rid(), Physics2DServer::BODY_PARAM_GRAVITY_SCALE, gravity_scale); } real_t RigidBody2D::get_gravity_scale() const { return gravity_scale; } void RigidBody2D::set_linear_damp(real_t p_linear_damp) { ERR_FAIL_COND(p_linear_damp < -1); linear_damp = p_linear_damp; Physics2DServer::get_singleton()->body_set_param(get_rid(), Physics2DServer::BODY_PARAM_LINEAR_DAMP, linear_damp); } real_t RigidBody2D::get_linear_damp() const { return linear_damp; } void RigidBody2D::set_angular_damp(real_t p_angular_damp) { ERR_FAIL_COND(p_angular_damp < -1); angular_damp = p_angular_damp; Physics2DServer::get_singleton()->body_set_param(get_rid(), Physics2DServer::BODY_PARAM_ANGULAR_DAMP, angular_damp); } real_t RigidBody2D::get_angular_damp() const { return angular_damp; } void RigidBody2D::set_axis_velocity(const Vector2 &p_axis) { Vector2 v = state ? state->get_linear_velocity() : linear_velocity; Vector2 axis = p_axis.normalized(); v -= axis * axis.dot(v); v += p_axis; if (state) { set_linear_velocity(v); } else { Physics2DServer::get_singleton()->body_set_axis_velocity(get_rid(), p_axis); linear_velocity = v; } } void RigidBody2D::set_linear_velocity(const Vector2 &p_velocity) { linear_velocity = p_velocity; if (state) { state->set_linear_velocity(linear_velocity); } else { Physics2DServer::get_singleton()->body_set_state(get_rid(), Physics2DServer::BODY_STATE_LINEAR_VELOCITY, linear_velocity); } } Vector2 RigidBody2D::get_linear_velocity() const { return linear_velocity; } void RigidBody2D::set_angular_velocity(real_t p_velocity) { angular_velocity = p_velocity; if (state) { state->set_angular_velocity(angular_velocity); } else { Physics2DServer::get_singleton()->body_set_state(get_rid(), Physics2DServer::BODY_STATE_ANGULAR_VELOCITY, angular_velocity); } } real_t RigidBody2D::get_angular_velocity() const { return angular_velocity; } void RigidBody2D::set_use_custom_integrator(bool p_enable) { if (custom_integrator == p_enable) { return; } custom_integrator = p_enable; Physics2DServer::get_singleton()->body_set_omit_force_integration(get_rid(), p_enable); } bool RigidBody2D::is_using_custom_integrator() { return custom_integrator; } void RigidBody2D::set_sleeping(bool p_sleeping) { sleeping = p_sleeping; Physics2DServer::get_singleton()->body_set_state(get_rid(), Physics2DServer::BODY_STATE_SLEEPING, sleeping); } void RigidBody2D::set_can_sleep(bool p_active) { can_sleep = p_active; Physics2DServer::get_singleton()->body_set_state(get_rid(), Physics2DServer::BODY_STATE_CAN_SLEEP, p_active); } bool RigidBody2D::is_able_to_sleep() const { return can_sleep; } bool RigidBody2D::is_sleeping() const { return sleeping; } void RigidBody2D::set_max_contacts_reported(int p_amount) { max_contacts_reported = p_amount; Physics2DServer::get_singleton()->body_set_max_contacts_reported(get_rid(), p_amount); } int RigidBody2D::get_max_contacts_reported() const { return max_contacts_reported; } void RigidBody2D::apply_central_impulse(const Vector2 &p_impulse) { Physics2DServer::get_singleton()->body_apply_central_impulse(get_rid(), p_impulse); } void RigidBody2D::apply_impulse(const Vector2 &p_offset, const Vector2 &p_impulse) { Physics2DServer::get_singleton()->body_apply_impulse(get_rid(), p_offset, p_impulse); } void RigidBody2D::apply_torque_impulse(float p_torque) { Physics2DServer::get_singleton()->body_apply_torque_impulse(get_rid(), p_torque); } void RigidBody2D::set_applied_force(const Vector2 &p_force) { Physics2DServer::get_singleton()->body_set_applied_force(get_rid(), p_force); }; Vector2 RigidBody2D::get_applied_force() const { return Physics2DServer::get_singleton()->body_get_applied_force(get_rid()); }; void RigidBody2D::set_applied_torque(const float p_torque) { Physics2DServer::get_singleton()->body_set_applied_torque(get_rid(), p_torque); }; float RigidBody2D::get_applied_torque() const { return Physics2DServer::get_singleton()->body_get_applied_torque(get_rid()); }; void RigidBody2D::add_central_force(const Vector2 &p_force) { Physics2DServer::get_singleton()->body_add_central_force(get_rid(), p_force); } void RigidBody2D::add_force(const Vector2 &p_offset, const Vector2 &p_force) { Physics2DServer::get_singleton()->body_add_force(get_rid(), p_offset, p_force); } void RigidBody2D::add_torque(const float p_torque) { Physics2DServer::get_singleton()->body_add_torque(get_rid(), p_torque); } void RigidBody2D::set_continuous_collision_detection_mode(CCDMode p_mode) { ccd_mode = p_mode; Physics2DServer::get_singleton()->body_set_continuous_collision_detection_mode(get_rid(), Physics2DServer::CCDMode(p_mode)); } RigidBody2D::CCDMode RigidBody2D::get_continuous_collision_detection_mode() const { return ccd_mode; } Array RigidBody2D::get_colliding_bodies() const { ERR_FAIL_COND_V(!contact_monitor, Array()); Array ret; ret.resize(contact_monitor->body_map.size()); int idx = 0; for (const Map::Element *E = contact_monitor->body_map.front(); E; E = E->next()) { Object *obj = ObjectDB::get_instance(E->key()); if (!obj) { ret.resize(ret.size() - 1); //ops } else { ret[idx++] = obj; } } return ret; } void RigidBody2D::set_contact_monitor(bool p_enabled) { if (p_enabled == is_contact_monitor_enabled()) { return; } if (!p_enabled) { ERR_FAIL_COND_MSG(contact_monitor->locked, "Can't disable contact monitoring during in/out callback. Use call_deferred(\"set_contact_monitor\", false) instead."); for (Map::Element *E = contact_monitor->body_map.front(); E; E = E->next()) { //clean up mess Object *obj = ObjectDB::get_instance(E->key()); Node *node = Object::cast_to(obj); if (node) { node->disconnect(SceneStringNames::get_singleton()->tree_entered, this, SceneStringNames::get_singleton()->_body_enter_tree); node->disconnect(SceneStringNames::get_singleton()->tree_exiting, this, SceneStringNames::get_singleton()->_body_exit_tree); } } memdelete(contact_monitor); contact_monitor = nullptr; } else { contact_monitor = memnew(ContactMonitor); contact_monitor->locked = false; } } bool RigidBody2D::is_contact_monitor_enabled() const { return contact_monitor != nullptr; } void RigidBody2D::_notification(int p_what) { #ifdef TOOLS_ENABLED if (p_what == NOTIFICATION_ENTER_TREE) { if (Engine::get_singleton()->is_editor_hint()) { set_notify_local_transform(true); //used for warnings and only in editor } } if (p_what == NOTIFICATION_LOCAL_TRANSFORM_CHANGED) { if (Engine::get_singleton()->is_editor_hint()) { update_configuration_warning(); } } #endif } String RigidBody2D::get_configuration_warning() const { Transform2D t = get_transform(); String warning = CollisionObject2D::get_configuration_warning(); if ((get_mode() == MODE_RIGID || get_mode() == MODE_CHARACTER) && (ABS(t.elements[0].length() - 1.0) > 0.05 || ABS(t.elements[1].length() - 1.0) > 0.05)) { if (warning != String()) { warning += "\n\n"; } warning += TTR("Size changes to RigidBody2D (in character or rigid modes) will be overridden by the physics engine when running.\nChange the size in children collision shapes instead."); } return warning; } void RigidBody2D::_bind_methods() { ClassDB::bind_method(D_METHOD("set_mode", "mode"), &RigidBody2D::set_mode); ClassDB::bind_method(D_METHOD("get_mode"), &RigidBody2D::get_mode); ClassDB::bind_method(D_METHOD("set_mass", "mass"), &RigidBody2D::set_mass); ClassDB::bind_method(D_METHOD("get_mass"), &RigidBody2D::get_mass); ClassDB::bind_method(D_METHOD("get_inertia"), &RigidBody2D::get_inertia); ClassDB::bind_method(D_METHOD("set_inertia", "inertia"), &RigidBody2D::set_inertia); ClassDB::bind_method(D_METHOD("set_weight", "weight"), &RigidBody2D::set_weight); ClassDB::bind_method(D_METHOD("get_weight"), &RigidBody2D::get_weight); #ifndef DISABLE_DEPRECATED ClassDB::bind_method(D_METHOD("set_friction", "friction"), &RigidBody2D::set_friction); ClassDB::bind_method(D_METHOD("get_friction"), &RigidBody2D::get_friction); ClassDB::bind_method(D_METHOD("set_bounce", "bounce"), &RigidBody2D::set_bounce); ClassDB::bind_method(D_METHOD("get_bounce"), &RigidBody2D::get_bounce); #endif // DISABLE_DEPRECATED ClassDB::bind_method(D_METHOD("set_physics_material_override", "physics_material_override"), &RigidBody2D::set_physics_material_override); ClassDB::bind_method(D_METHOD("get_physics_material_override"), &RigidBody2D::get_physics_material_override); ClassDB::bind_method(D_METHOD("_reload_physics_characteristics"), &RigidBody2D::_reload_physics_characteristics); ClassDB::bind_method(D_METHOD("set_gravity_scale", "gravity_scale"), &RigidBody2D::set_gravity_scale); ClassDB::bind_method(D_METHOD("get_gravity_scale"), &RigidBody2D::get_gravity_scale); ClassDB::bind_method(D_METHOD("set_linear_damp", "linear_damp"), &RigidBody2D::set_linear_damp); ClassDB::bind_method(D_METHOD("get_linear_damp"), &RigidBody2D::get_linear_damp); ClassDB::bind_method(D_METHOD("set_angular_damp", "angular_damp"), &RigidBody2D::set_angular_damp); ClassDB::bind_method(D_METHOD("get_angular_damp"), &RigidBody2D::get_angular_damp); ClassDB::bind_method(D_METHOD("set_linear_velocity", "linear_velocity"), &RigidBody2D::set_linear_velocity); ClassDB::bind_method(D_METHOD("get_linear_velocity"), &RigidBody2D::get_linear_velocity); ClassDB::bind_method(D_METHOD("set_angular_velocity", "angular_velocity"), &RigidBody2D::set_angular_velocity); ClassDB::bind_method(D_METHOD("get_angular_velocity"), &RigidBody2D::get_angular_velocity); ClassDB::bind_method(D_METHOD("set_max_contacts_reported", "amount"), &RigidBody2D::set_max_contacts_reported); ClassDB::bind_method(D_METHOD("get_max_contacts_reported"), &RigidBody2D::get_max_contacts_reported); ClassDB::bind_method(D_METHOD("set_use_custom_integrator", "enable"), &RigidBody2D::set_use_custom_integrator); ClassDB::bind_method(D_METHOD("is_using_custom_integrator"), &RigidBody2D::is_using_custom_integrator); ClassDB::bind_method(D_METHOD("set_contact_monitor", "enabled"), &RigidBody2D::set_contact_monitor); ClassDB::bind_method(D_METHOD("is_contact_monitor_enabled"), &RigidBody2D::is_contact_monitor_enabled); ClassDB::bind_method(D_METHOD("set_continuous_collision_detection_mode", "mode"), &RigidBody2D::set_continuous_collision_detection_mode); ClassDB::bind_method(D_METHOD("get_continuous_collision_detection_mode"), &RigidBody2D::get_continuous_collision_detection_mode); ClassDB::bind_method(D_METHOD("set_axis_velocity", "axis_velocity"), &RigidBody2D::set_axis_velocity); ClassDB::bind_method(D_METHOD("apply_central_impulse", "impulse"), &RigidBody2D::apply_central_impulse); ClassDB::bind_method(D_METHOD("apply_impulse", "offset", "impulse"), &RigidBody2D::apply_impulse); ClassDB::bind_method(D_METHOD("apply_torque_impulse", "torque"), &RigidBody2D::apply_torque_impulse); ClassDB::bind_method(D_METHOD("set_applied_force", "force"), &RigidBody2D::set_applied_force); ClassDB::bind_method(D_METHOD("get_applied_force"), &RigidBody2D::get_applied_force); ClassDB::bind_method(D_METHOD("set_applied_torque", "torque"), &RigidBody2D::set_applied_torque); ClassDB::bind_method(D_METHOD("get_applied_torque"), &RigidBody2D::get_applied_torque); ClassDB::bind_method(D_METHOD("add_central_force", "force"), &RigidBody2D::add_central_force); ClassDB::bind_method(D_METHOD("add_force", "offset", "force"), &RigidBody2D::add_force); ClassDB::bind_method(D_METHOD("add_torque", "torque"), &RigidBody2D::add_torque); ClassDB::bind_method(D_METHOD("set_sleeping", "sleeping"), &RigidBody2D::set_sleeping); ClassDB::bind_method(D_METHOD("is_sleeping"), &RigidBody2D::is_sleeping); ClassDB::bind_method(D_METHOD("set_can_sleep", "able_to_sleep"), &RigidBody2D::set_can_sleep); ClassDB::bind_method(D_METHOD("is_able_to_sleep"), &RigidBody2D::is_able_to_sleep); ClassDB::bind_method(D_METHOD("test_motion", "motion", "infinite_inertia", "margin", "result"), &RigidBody2D::_test_motion, DEFVAL(true), DEFVAL(0.08), DEFVAL(Variant())); ClassDB::bind_method(D_METHOD("_direct_state_changed"), &RigidBody2D::_direct_state_changed); ClassDB::bind_method(D_METHOD("_body_enter_tree"), &RigidBody2D::_body_enter_tree); ClassDB::bind_method(D_METHOD("_body_exit_tree"), &RigidBody2D::_body_exit_tree); ClassDB::bind_method(D_METHOD("get_colliding_bodies"), &RigidBody2D::get_colliding_bodies); BIND_VMETHOD(MethodInfo("_integrate_forces", PropertyInfo(Variant::OBJECT, "state", PROPERTY_HINT_RESOURCE_TYPE, "Physics2DDirectBodyState"))); ADD_PROPERTY(PropertyInfo(Variant::INT, "mode", PROPERTY_HINT_ENUM, "Rigid,Static,Character,Kinematic"), "set_mode", "get_mode"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "mass", PROPERTY_HINT_EXP_RANGE, "0.01,65535,0.01,or_greater"), "set_mass", "get_mass"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "inertia", PROPERTY_HINT_EXP_RANGE, "0.01,65535,0.01,or_greater", 0), "set_inertia", "get_inertia"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "weight", PROPERTY_HINT_EXP_RANGE, "0.01,65535,0.01,or_greater", PROPERTY_USAGE_EDITOR), "set_weight", "get_weight"); #ifndef DISABLE_DEPRECATED ADD_PROPERTY(PropertyInfo(Variant::REAL, "friction", PROPERTY_HINT_RANGE, "0,1,0.01", 0), "set_friction", "get_friction"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "bounce", PROPERTY_HINT_RANGE, "0,1,0.01", 0), "set_bounce", "get_bounce"); #endif // DISABLE_DEPRECATED ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "physics_material_override", PROPERTY_HINT_RESOURCE_TYPE, "PhysicsMaterial"), "set_physics_material_override", "get_physics_material_override"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "gravity_scale", PROPERTY_HINT_RANGE, "-128,128,0.01"), "set_gravity_scale", "get_gravity_scale"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "custom_integrator"), "set_use_custom_integrator", "is_using_custom_integrator"); ADD_PROPERTY(PropertyInfo(Variant::INT, "continuous_cd", PROPERTY_HINT_ENUM, "Disabled,Cast Ray,Cast Shape"), "set_continuous_collision_detection_mode", "get_continuous_collision_detection_mode"); ADD_PROPERTY(PropertyInfo(Variant::INT, "contacts_reported", PROPERTY_HINT_RANGE, "0,64,1,or_greater"), "set_max_contacts_reported", "get_max_contacts_reported"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "contact_monitor"), "set_contact_monitor", "is_contact_monitor_enabled"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "sleeping"), "set_sleeping", "is_sleeping"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "can_sleep"), "set_can_sleep", "is_able_to_sleep"); ADD_GROUP("Linear", "linear_"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "linear_velocity"), "set_linear_velocity", "get_linear_velocity"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "linear_damp", PROPERTY_HINT_RANGE, "-1,100,0.001,or_greater"), "set_linear_damp", "get_linear_damp"); ADD_GROUP("Angular", "angular_"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "angular_velocity"), "set_angular_velocity", "get_angular_velocity"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "angular_damp", PROPERTY_HINT_RANGE, "-1,100,0.001,or_greater"), "set_angular_damp", "get_angular_damp"); ADD_GROUP("Applied Forces", "applied_"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "applied_force"), "set_applied_force", "get_applied_force"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "applied_torque"), "set_applied_torque", "get_applied_torque"); ADD_SIGNAL(MethodInfo("body_shape_entered", PropertyInfo(Variant::_RID, "body_rid"), PropertyInfo(Variant::OBJECT, "body", PROPERTY_HINT_RESOURCE_TYPE, "Node"), PropertyInfo(Variant::INT, "body_shape_index"), PropertyInfo(Variant::INT, "local_shape_index"))); ADD_SIGNAL(MethodInfo("body_shape_exited", PropertyInfo(Variant::_RID, "body_rid"), PropertyInfo(Variant::OBJECT, "body", PROPERTY_HINT_RESOURCE_TYPE, "Node"), PropertyInfo(Variant::INT, "body_shape_index"), PropertyInfo(Variant::INT, "local_shape_index"))); ADD_SIGNAL(MethodInfo("body_entered", PropertyInfo(Variant::OBJECT, "body", PROPERTY_HINT_RESOURCE_TYPE, "Node"))); ADD_SIGNAL(MethodInfo("body_exited", PropertyInfo(Variant::OBJECT, "body", PROPERTY_HINT_RESOURCE_TYPE, "Node"))); ADD_SIGNAL(MethodInfo("sleeping_state_changed")); BIND_ENUM_CONSTANT(MODE_RIGID); BIND_ENUM_CONSTANT(MODE_STATIC); BIND_ENUM_CONSTANT(MODE_CHARACTER); BIND_ENUM_CONSTANT(MODE_KINEMATIC); BIND_ENUM_CONSTANT(CCD_MODE_DISABLED); BIND_ENUM_CONSTANT(CCD_MODE_CAST_RAY); BIND_ENUM_CONSTANT(CCD_MODE_CAST_SHAPE); } RigidBody2D::RigidBody2D() : PhysicsBody2D(Physics2DServer::BODY_MODE_RIGID) { mode = MODE_RIGID; mass = 1; gravity_scale = 1; linear_damp = -1; angular_damp = -1; max_contacts_reported = 0; state = nullptr; angular_velocity = 0; sleeping = false; ccd_mode = CCD_MODE_DISABLED; custom_integrator = false; contact_monitor = nullptr; can_sleep = true; Physics2DServer::get_singleton()->body_set_force_integration_callback(get_rid(), this, "_direct_state_changed"); } RigidBody2D::~RigidBody2D() { if (contact_monitor) { memdelete(contact_monitor); } } void RigidBody2D::_reload_physics_characteristics() { if (physics_material_override.is_null()) { Physics2DServer::get_singleton()->body_set_param(get_rid(), Physics2DServer::BODY_PARAM_BOUNCE, 0); Physics2DServer::get_singleton()->body_set_param(get_rid(), Physics2DServer::BODY_PARAM_FRICTION, 1); } else { Physics2DServer::get_singleton()->body_set_param(get_rid(), Physics2DServer::BODY_PARAM_BOUNCE, physics_material_override->computed_bounce()); Physics2DServer::get_singleton()->body_set_param(get_rid(), Physics2DServer::BODY_PARAM_FRICTION, physics_material_override->computed_friction()); } } ////////////////////////// Ref KinematicBody2D::_move(const Vector2 &p_motion, bool p_infinite_inertia, bool p_exclude_raycast_shapes, bool p_test_only) { Collision col; if (move_and_collide(p_motion, p_infinite_inertia, col, p_exclude_raycast_shapes, p_test_only)) { // Create a new instance when the cached reference is invalid or still in use in script. if (motion_cache.is_null() || motion_cache->reference_get_count() > 1) { motion_cache.instance(); motion_cache->owner = this; } motion_cache->collision = col; return motion_cache; } return Ref(); } bool KinematicBody2D::separate_raycast_shapes(bool p_infinite_inertia, Collision &r_collision) { Physics2DServer::SeparationResult sep_res[8]; //max 8 rays Transform2D gt = get_global_transform(); Vector2 recover; int hits = Physics2DServer::get_singleton()->body_test_ray_separation(get_rid(), gt, p_infinite_inertia, recover, sep_res, 8, margin); int deepest = -1; float deepest_depth; for (int i = 0; i < hits; i++) { if (deepest == -1 || sep_res[i].collision_depth > deepest_depth) { deepest = i; deepest_depth = sep_res[i].collision_depth; } } gt.elements[2] += recover; set_global_transform(gt); if (deepest != -1) { r_collision.collider = sep_res[deepest].collider_id; r_collision.collider_rid = sep_res[deepest].collider; r_collision.collider_metadata = sep_res[deepest].collider_metadata; r_collision.collider_shape = sep_res[deepest].collider_shape; r_collision.collider_vel = sep_res[deepest].collider_velocity; r_collision.collision = sep_res[deepest].collision_point; r_collision.normal = sep_res[deepest].collision_normal; r_collision.local_shape = sep_res[deepest].collision_local_shape; r_collision.travel = recover; r_collision.remainder = Vector2(); return true; } else { return false; } } bool KinematicBody2D::move_and_collide(const Vector2 &p_motion, bool p_infinite_inertia, Collision &r_collision, bool p_exclude_raycast_shapes, bool p_test_only, bool p_cancel_sliding, const Set &p_exclude) { if (sync_to_physics) { ERR_PRINT("Functions move_and_slide and move_and_collide do not work together with 'sync to physics' option. Please read the documentation."); } Transform2D gt = get_global_transform(); Physics2DServer::MotionResult result; bool colliding = Physics2DServer::get_singleton()->body_test_motion(get_rid(), gt, p_motion, p_infinite_inertia, margin, &result, p_exclude_raycast_shapes, p_exclude); // Restore direction of motion to be along original motion, // in order to avoid sliding due to recovery, // but only if collision depth is low enough to avoid tunneling. if (p_cancel_sliding) { real_t motion_length = p_motion.length(); real_t precision = 0.001; if (colliding) { // Can't just use margin as a threshold because collision depth is calculated on unsafe motion, // so even in normal resting cases the depth can be a bit more than the margin. precision += motion_length * (result.collision_unsafe_fraction - result.collision_safe_fraction); if (result.collision_depth > (real_t)margin + precision) { p_cancel_sliding = false; } } if (p_cancel_sliding) { // When motion is null, recovery is the resulting motion. Vector2 motion_normal; if (motion_length > CMP_EPSILON) { motion_normal = p_motion / motion_length; } // Check depth of recovery. real_t projected_length = result.motion.dot(motion_normal); Vector2 recovery = result.motion - motion_normal * projected_length; real_t recovery_length = recovery.length(); // Fixes cases where canceling slide causes the motion to go too deep into the ground, // because we're only taking rest information into account and not general recovery. if (recovery_length < (real_t)margin + precision) { // Apply adjustment to motion. result.motion = motion_normal * projected_length; result.remainder = p_motion - result.motion; } } } if (colliding) { r_collision.collider_metadata = result.collider_metadata; r_collision.collider_shape = result.collider_shape; r_collision.collider_vel = result.collider_velocity; r_collision.collision = result.collision_point; r_collision.normal = result.collision_normal; r_collision.collider = result.collider_id; r_collision.collider_rid = result.collider; r_collision.travel = result.motion; r_collision.remainder = result.remainder; r_collision.local_shape = result.collision_local_shape; } if (!p_test_only) { gt.elements[2] += result.motion; set_global_transform(gt); } return colliding; } //so, if you pass 45 as limit, avoid numerical precision errors when angle is 45. #define FLOOR_ANGLE_THRESHOLD 0.01 Vector2 KinematicBody2D::_move_and_slide_internal(const Vector2 &p_linear_velocity, const Vector2 &p_snap, const Vector2 &p_up_direction, bool p_stop_on_slope, int p_max_slides, float p_floor_max_angle, bool p_infinite_inertia) { Vector2 body_velocity = p_linear_velocity; Vector2 body_velocity_normal = body_velocity.normalized(); Vector2 up_direction = p_up_direction.normalized(); bool was_on_floor = on_floor; // Hack in order to work with calling from _process as well as from _physics_process; calling from thread is risky float delta = Engine::get_singleton()->is_in_physics_frame() ? get_physics_process_delta_time() : get_process_delta_time(); Vector2 current_floor_velocity = floor_velocity; if (on_floor && on_floor_body.is_valid()) { //this approach makes sure there is less delay between the actual body velocity and the one we saved Physics2DDirectBodyState *bs = Physics2DServer::get_singleton()->body_get_direct_state(on_floor_body); if (bs) { Transform2D gt = get_global_transform(); Vector2 local_position = gt.elements[2] - bs->get_transform().elements[2]; current_floor_velocity = bs->get_velocity_at_local_position(local_position); } else { // Body is removed or destroyed, invalidate floor. current_floor_velocity = Vector2(); on_floor_body = RID(); } } colliders.clear(); on_floor = false; on_ceiling = false; on_wall = false; floor_normal = Vector2(); floor_velocity = Vector2(); if (current_floor_velocity != Vector2() && on_floor_body.is_valid()) { Collision floor_collision; Set exclude; exclude.insert(on_floor_body); if (move_and_collide(current_floor_velocity * delta, p_infinite_inertia, floor_collision, true, false, false, exclude)) { colliders.push_back(floor_collision); _set_collision_direction(floor_collision, up_direction, p_floor_max_angle); } } on_floor_body = RID(); Vector2 motion = body_velocity * delta; // No sliding on first attempt to keep floor motion stable when possible, // when stop on slope is enabled. bool sliding_enabled = !p_stop_on_slope; for (int iteration = 0; iteration < p_max_slides; ++iteration) { Collision collision; bool found_collision = false; for (int i = 0; i < 2; ++i) { bool collided; if (i == 0) { //collide collided = move_and_collide(motion, p_infinite_inertia, collision, true, false, !sliding_enabled); if (!collided) { motion = Vector2(); //clear because no collision happened and motion completed } } else { //separate raycasts (if any) collided = separate_raycast_shapes(p_infinite_inertia, collision); if (collided) { collision.remainder = motion; //keep collision.travel = Vector2(); } } if (collided) { found_collision = true; colliders.push_back(collision); _set_collision_direction(collision, up_direction, p_floor_max_angle); if (on_floor && p_stop_on_slope) { if ((body_velocity_normal + up_direction).length() < 0.01) { Transform2D gt = get_global_transform(); if (collision.travel.length() > margin) { gt.elements[2] -= collision.travel.slide(up_direction); } else { gt.elements[2] -= collision.travel; } set_global_transform(gt); return Vector2(); } } if (sliding_enabled || !on_floor) { motion = collision.remainder.slide(collision.normal); body_velocity = body_velocity.slide(collision.normal); } else { motion = collision.remainder; } } sliding_enabled = true; } if (!found_collision || motion == Vector2()) { break; } } if (was_on_floor && p_snap != Vector2() && !on_floor) { // Apply snap. Collision col; Transform2D gt = get_global_transform(); if (move_and_collide(p_snap, p_infinite_inertia, col, false, true, false)) { bool apply = true; if (up_direction != Vector2()) { if (Math::acos(col.normal.dot(up_direction)) <= p_floor_max_angle + FLOOR_ANGLE_THRESHOLD) { on_floor = true; floor_normal = col.normal; on_floor_body = col.collider_rid; floor_velocity = col.collider_vel; if (p_stop_on_slope) { // move and collide may stray the object a bit because of pre un-stucking, // so only ensure that motion happens on floor direction in this case. if (col.travel.length() > margin) { col.travel = up_direction * up_direction.dot(col.travel); } else { col.travel = Vector2(); } } } else { apply = false; } } if (apply) { gt.elements[2] += col.travel; set_global_transform(gt); } } } if (moving_platform_apply_velocity_on_leave != PLATFORM_VEL_ON_LEAVE_NEVER) { // Add last platform velocity when just left a moving platform. if (!on_floor) { if (moving_platform_apply_velocity_on_leave == PLATFORM_VEL_ON_LEAVE_UPWARD_ONLY && current_floor_velocity.dot(up_direction) < 0) { current_floor_velocity = current_floor_velocity.slide(up_direction); } return body_velocity + current_floor_velocity; } } return body_velocity; } Vector2 KinematicBody2D::move_and_slide(const Vector2 &p_linear_velocity, const Vector2 &p_up_direction, bool p_stop_on_slope, int p_max_slides, float p_floor_max_angle, bool p_infinite_inertia) { return _move_and_slide_internal(p_linear_velocity, Vector2(), p_up_direction, p_stop_on_slope, p_max_slides, p_floor_max_angle, p_infinite_inertia); } Vector2 KinematicBody2D::move_and_slide_with_snap(const Vector2 &p_linear_velocity, const Vector2 &p_snap, const Vector2 &p_up_direction, bool p_stop_on_slope, int p_max_slides, float p_floor_max_angle, bool p_infinite_inertia) { return _move_and_slide_internal(p_linear_velocity, p_snap, p_up_direction, p_stop_on_slope, p_max_slides, p_floor_max_angle, p_infinite_inertia); } void KinematicBody2D::_set_collision_direction(const Collision &p_collision, const Vector2 &p_up_direction, float p_floor_max_angle) { if (p_up_direction == Vector2()) { //all is a wall on_wall = true; } else { if (Math::acos(p_collision.normal.dot(p_up_direction)) <= p_floor_max_angle + FLOOR_ANGLE_THRESHOLD) { //floor on_floor = true; floor_normal = p_collision.normal; on_floor_body = p_collision.collider_rid; floor_velocity = p_collision.collider_vel; } else if (Math::acos(p_collision.normal.dot(-p_up_direction)) <= p_floor_max_angle + FLOOR_ANGLE_THRESHOLD) { //ceiling on_ceiling = true; } else { on_wall = true; } } } bool KinematicBody2D::is_on_floor() const { return on_floor; } bool KinematicBody2D::is_on_wall() const { return on_wall; } bool KinematicBody2D::is_on_ceiling() const { return on_ceiling; } Vector2 KinematicBody2D::get_floor_normal() const { return floor_normal; } real_t KinematicBody2D::get_floor_angle(const Vector2 &p_up_direction) const { ERR_FAIL_COND_V(p_up_direction == Vector2(), 0); return Math::acos(floor_normal.dot(p_up_direction)); } Vector2 KinematicBody2D::get_floor_velocity() const { return floor_velocity; } void KinematicBody2D::set_moving_platform_apply_velocity_on_leave(MovingPlatformApplyVelocityOnLeave p_on_leave_apply_velocity) { moving_platform_apply_velocity_on_leave = p_on_leave_apply_velocity; } KinematicBody2D::MovingPlatformApplyVelocityOnLeave KinematicBody2D::get_moving_platform_apply_velocity_on_leave() const { return moving_platform_apply_velocity_on_leave; } bool KinematicBody2D::test_move(const Transform2D &p_from, const Vector2 &p_motion, bool p_infinite_inertia) { ERR_FAIL_COND_V(!is_inside_tree(), false); Physics2DServer::MotionResult result; bool colliding = Physics2DServer::get_singleton()->body_test_motion(get_rid(), p_from, p_motion, p_infinite_inertia, margin, &result); if (colliding) { // Don't report collision when the whole motion is done. return (result.collision_safe_fraction < 1.0); } else { return false; } } void KinematicBody2D::set_safe_margin(float p_margin) { margin = p_margin; } float KinematicBody2D::get_safe_margin() const { return margin; } int KinematicBody2D::get_slide_count() const { return colliders.size(); } KinematicBody2D::Collision KinematicBody2D::get_slide_collision(int p_bounce) const { ERR_FAIL_INDEX_V(p_bounce, colliders.size(), Collision()); return colliders[p_bounce]; } Ref KinematicBody2D::_get_slide_collision(int p_bounce) { ERR_FAIL_INDEX_V(p_bounce, colliders.size(), Ref()); if (p_bounce >= slide_colliders.size()) { slide_colliders.resize(p_bounce + 1); } // Create a new instance when the cached reference is invalid or still in use in script. if (slide_colliders[p_bounce].is_null() || slide_colliders[p_bounce]->reference_get_count() > 1) { slide_colliders.write[p_bounce].instance(); slide_colliders.write[p_bounce]->owner = this; } slide_colliders.write[p_bounce]->collision = colliders[p_bounce]; return slide_colliders[p_bounce]; } Ref KinematicBody2D::_get_last_slide_collision() { if (colliders.size() == 0) { return Ref(); } return _get_slide_collision(colliders.size() - 1); } void KinematicBody2D::set_sync_to_physics(bool p_enable) { if (sync_to_physics == p_enable) { return; } sync_to_physics = p_enable; if (Engine::get_singleton()->is_editor_hint()) { return; } if (p_enable) { Physics2DServer::get_singleton()->body_set_force_integration_callback(get_rid(), this, "_direct_state_changed"); set_only_update_transform_changes(true); set_notify_local_transform(true); } else { Physics2DServer::get_singleton()->body_set_force_integration_callback(get_rid(), nullptr, ""); set_only_update_transform_changes(false); set_notify_local_transform(false); } } bool KinematicBody2D::is_sync_to_physics_enabled() const { return sync_to_physics; } void KinematicBody2D::_direct_state_changed(Object *p_state) { if (!sync_to_physics) { return; } Physics2DDirectBodyState *state = Object::cast_to(p_state); ERR_FAIL_COND_MSG(!state, "Method '_direct_state_changed' must receive a valid Physics2DDirectBodyState object as argument"); last_valid_transform = state->get_transform(); set_notify_local_transform(false); set_global_transform(last_valid_transform); set_notify_local_transform(true); } void KinematicBody2D::_notification(int p_what) { if (p_what == NOTIFICATION_ENTER_TREE) { last_valid_transform = get_global_transform(); // Reset move_and_slide() data. on_floor = false; on_floor_body = RID(); on_ceiling = false; on_wall = false; colliders.clear(); floor_velocity = Vector2(); } if (p_what == NOTIFICATION_LOCAL_TRANSFORM_CHANGED) { //used by sync to physics, send the new transform to the physics Transform2D new_transform = get_global_transform(); Physics2DServer::get_singleton()->body_set_state(get_rid(), Physics2DServer::BODY_STATE_TRANSFORM, new_transform); //but then revert changes set_notify_local_transform(false); set_global_transform(last_valid_transform); set_notify_local_transform(true); } } void KinematicBody2D::_bind_methods() { ClassDB::bind_method(D_METHOD("move_and_collide", "rel_vec", "infinite_inertia", "exclude_raycast_shapes", "test_only"), &KinematicBody2D::_move, DEFVAL(true), DEFVAL(true), DEFVAL(false)); ClassDB::bind_method(D_METHOD("move_and_slide", "linear_velocity", "up_direction", "stop_on_slope", "max_slides", "floor_max_angle", "infinite_inertia"), &KinematicBody2D::move_and_slide, DEFVAL(Vector2(0, 0)), DEFVAL(false), DEFVAL(4), DEFVAL(Math::deg2rad((float)45)), DEFVAL(true)); ClassDB::bind_method(D_METHOD("move_and_slide_with_snap", "linear_velocity", "snap", "up_direction", "stop_on_slope", "max_slides", "floor_max_angle", "infinite_inertia"), &KinematicBody2D::move_and_slide_with_snap, DEFVAL(Vector2(0, 0)), DEFVAL(false), DEFVAL(4), DEFVAL(Math::deg2rad((float)45)), DEFVAL(true)); ClassDB::bind_method(D_METHOD("test_move", "from", "rel_vec", "infinite_inertia"), &KinematicBody2D::test_move, DEFVAL(true)); ClassDB::bind_method(D_METHOD("is_on_floor"), &KinematicBody2D::is_on_floor); ClassDB::bind_method(D_METHOD("is_on_ceiling"), &KinematicBody2D::is_on_ceiling); ClassDB::bind_method(D_METHOD("is_on_wall"), &KinematicBody2D::is_on_wall); ClassDB::bind_method(D_METHOD("get_floor_normal"), &KinematicBody2D::get_floor_normal); ClassDB::bind_method(D_METHOD("get_floor_angle", "up_direction"), &KinematicBody2D::get_floor_angle, DEFVAL(Vector2(0.0, -1.0))); ClassDB::bind_method(D_METHOD("get_floor_velocity"), &KinematicBody2D::get_floor_velocity); ClassDB::bind_method(D_METHOD("set_safe_margin", "pixels"), &KinematicBody2D::set_safe_margin); ClassDB::bind_method(D_METHOD("get_safe_margin"), &KinematicBody2D::get_safe_margin); ClassDB::bind_method(D_METHOD("set_moving_platform_apply_velocity_on_leave", "on_leave_apply_velocity"), &KinematicBody2D::set_moving_platform_apply_velocity_on_leave); ClassDB::bind_method(D_METHOD("get_moving_platform_apply_velocity_on_leave"), &KinematicBody2D::get_moving_platform_apply_velocity_on_leave); ClassDB::bind_method(D_METHOD("get_slide_count"), &KinematicBody2D::get_slide_count); ClassDB::bind_method(D_METHOD("get_slide_collision", "slide_idx"), &KinematicBody2D::_get_slide_collision); ClassDB::bind_method(D_METHOD("get_last_slide_collision"), &KinematicBody2D::_get_last_slide_collision); ClassDB::bind_method(D_METHOD("set_sync_to_physics", "enable"), &KinematicBody2D::set_sync_to_physics); ClassDB::bind_method(D_METHOD("is_sync_to_physics_enabled"), &KinematicBody2D::is_sync_to_physics_enabled); ClassDB::bind_method(D_METHOD("_direct_state_changed"), &KinematicBody2D::_direct_state_changed); ADD_PROPERTY(PropertyInfo(Variant::REAL, "collision/safe_margin", PROPERTY_HINT_RANGE, "0.001,256,0.001"), "set_safe_margin", "get_safe_margin"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "motion/sync_to_physics"), "set_sync_to_physics", "is_sync_to_physics_enabled"); ADD_GROUP("Moving Platform", "moving_platform"); ADD_PROPERTY(PropertyInfo(Variant::INT, "moving_platform_apply_velocity_on_leave", PROPERTY_HINT_ENUM, "Always,Upward Only,Never", PROPERTY_USAGE_DEFAULT), "set_moving_platform_apply_velocity_on_leave", "get_moving_platform_apply_velocity_on_leave"); BIND_ENUM_CONSTANT(PLATFORM_VEL_ON_LEAVE_ALWAYS); BIND_ENUM_CONSTANT(PLATFORM_VEL_ON_LEAVE_UPWARD_ONLY); BIND_ENUM_CONSTANT(PLATFORM_VEL_ON_LEAVE_NEVER); } KinematicBody2D::KinematicBody2D() : PhysicsBody2D(Physics2DServer::BODY_MODE_KINEMATIC) { margin = 0.08; on_floor = false; on_ceiling = false; on_wall = false; sync_to_physics = false; } KinematicBody2D::~KinematicBody2D() { if (motion_cache.is_valid()) { motion_cache->owner = nullptr; } for (int i = 0; i < slide_colliders.size(); i++) { if (slide_colliders[i].is_valid()) { slide_colliders.write[i]->owner = nullptr; } } } //////////////////////// Vector2 KinematicCollision2D::get_position() const { return collision.collision; } Vector2 KinematicCollision2D::get_normal() const { return collision.normal; } Vector2 KinematicCollision2D::get_travel() const { return collision.travel; } Vector2 KinematicCollision2D::get_remainder() const { return collision.remainder; } real_t KinematicCollision2D::get_angle(const Vector2 &p_up_direction) const { ERR_FAIL_COND_V(p_up_direction == Vector2(), 0); return collision.get_angle(p_up_direction); } Object *KinematicCollision2D::get_local_shape() const { if (!owner) { return nullptr; } uint32_t ownerid = owner->shape_find_owner(collision.local_shape); return owner->shape_owner_get_owner(ownerid); } Object *KinematicCollision2D::get_collider() const { if (collision.collider) { return ObjectDB::get_instance(collision.collider); } return nullptr; } ObjectID KinematicCollision2D::get_collider_id() const { return collision.collider; } RID KinematicCollision2D::get_collider_rid() const { return collision.collider_rid; } Object *KinematicCollision2D::get_collider_shape() const { Object *collider = get_collider(); if (collider) { CollisionObject2D *obj2d = Object::cast_to(collider); if (obj2d) { uint32_t ownerid = obj2d->shape_find_owner(collision.collider_shape); return obj2d->shape_owner_get_owner(ownerid); } } return nullptr; } int KinematicCollision2D::get_collider_shape_index() const { return collision.collider_shape; } Vector2 KinematicCollision2D::get_collider_velocity() const { return collision.collider_vel; } Variant KinematicCollision2D::get_collider_metadata() const { return Variant(); } void KinematicCollision2D::_bind_methods() { ClassDB::bind_method(D_METHOD("get_position"), &KinematicCollision2D::get_position); ClassDB::bind_method(D_METHOD("get_normal"), &KinematicCollision2D::get_normal); ClassDB::bind_method(D_METHOD("get_travel"), &KinematicCollision2D::get_travel); ClassDB::bind_method(D_METHOD("get_remainder"), &KinematicCollision2D::get_remainder); ClassDB::bind_method(D_METHOD("get_angle", "up_direction"), &KinematicCollision2D::get_angle, DEFVAL(Vector2(0.0, -1.0))); ClassDB::bind_method(D_METHOD("get_local_shape"), &KinematicCollision2D::get_local_shape); ClassDB::bind_method(D_METHOD("get_collider"), &KinematicCollision2D::get_collider); ClassDB::bind_method(D_METHOD("get_collider_id"), &KinematicCollision2D::get_collider_id); ClassDB::bind_method(D_METHOD("get_collider_rid"), &KinematicCollision2D::get_collider_rid); ClassDB::bind_method(D_METHOD("get_collider_shape"), &KinematicCollision2D::get_collider_shape); ClassDB::bind_method(D_METHOD("get_collider_shape_index"), &KinematicCollision2D::get_collider_shape_index); ClassDB::bind_method(D_METHOD("get_collider_velocity"), &KinematicCollision2D::get_collider_velocity); ClassDB::bind_method(D_METHOD("get_collider_metadata"), &KinematicCollision2D::get_collider_metadata); ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "position"), "", "get_position"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "normal"), "", "get_normal"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "travel"), "", "get_travel"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "remainder"), "", "get_remainder"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "local_shape"), "", "get_local_shape"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "collider"), "", "get_collider"); ADD_PROPERTY(PropertyInfo(Variant::INT, "collider_id"), "", "get_collider_id"); ADD_PROPERTY(PropertyInfo(Variant::_RID, "collider_rid"), "", "get_collider_rid"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "collider_shape"), "", "get_collider_shape"); ADD_PROPERTY(PropertyInfo(Variant::INT, "collider_shape_index"), "", "get_collider_shape_index"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "collider_velocity"), "", "get_collider_velocity"); ADD_PROPERTY(PropertyInfo(Variant::NIL, "collider_metadata", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NIL_IS_VARIANT), "", "get_collider_metadata"); } KinematicCollision2D::KinematicCollision2D() { collision.collider = 0; collision.collider_shape = 0; collision.local_shape = 0; owner = nullptr; }