/*************************************************************************/ /* collision_solver_2d_sat.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2018 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2018 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "collision_solver_2d_sat.h" #include "geometry.h" struct _CollectorCallback2D { CollisionSolver2DSW::CallbackResult callback; void *userdata; bool swap; bool collided; Vector2 normal; Vector2 *sep_axis; _FORCE_INLINE_ void call(const Vector2 &p_point_A, const Vector2 &p_point_B) { //if (normal.dot(p_point_A) >= normal.dot(p_point_B)) // return; if (swap) callback(p_point_B, p_point_A, userdata); else callback(p_point_A, p_point_B, userdata); } }; typedef void (*GenerateContactsFunc)(const Vector2 *, int, const Vector2 *, int, _CollectorCallback2D *); _FORCE_INLINE_ static void _generate_contacts_point_point(const Vector2 *p_points_A, int p_point_count_A, const Vector2 *p_points_B, int p_point_count_B, _CollectorCallback2D *p_collector) { #ifdef DEBUG_ENABLED ERR_FAIL_COND(p_point_count_A != 1); ERR_FAIL_COND(p_point_count_B != 1); #endif p_collector->call(*p_points_A, *p_points_B); } _FORCE_INLINE_ static void _generate_contacts_point_edge(const Vector2 *p_points_A, int p_point_count_A, const Vector2 *p_points_B, int p_point_count_B, _CollectorCallback2D *p_collector) { #ifdef DEBUG_ENABLED ERR_FAIL_COND(p_point_count_A != 1); ERR_FAIL_COND(p_point_count_B != 2); #endif Vector2 closest_B = Geometry::get_closest_point_to_segment_uncapped_2d(*p_points_A, p_points_B); p_collector->call(*p_points_A, closest_B); } struct _generate_contacts_Pair { bool a; int idx; float d; _FORCE_INLINE_ bool operator<(const _generate_contacts_Pair &l) const { return d < l.d; } }; _FORCE_INLINE_ static void _generate_contacts_edge_edge(const Vector2 *p_points_A, int p_point_count_A, const Vector2 *p_points_B, int p_point_count_B, _CollectorCallback2D *p_collector) { #ifdef DEBUG_ENABLED ERR_FAIL_COND(p_point_count_A != 2); ERR_FAIL_COND(p_point_count_B != 2); // circle is actually a 4x3 matrix #endif #if 0 Vector2 rel_A=p_points_A[1]-p_points_A[0]; Vector2 rel_B=p_points_B[1]-p_points_B[0]; Vector2 t = p_collector->normal.tangent(); print_line("tangent: "+t); real_t dA[2]={t.dot(p_points_A[0]),t.dot(p_points_A[1])}; Vector2 pA[2]={p_points_A[0],p_points_A[1]}; if (dA[0]>dA[1]) { SWAP(dA[0],dA[1]); SWAP(pA[0],pA[1]); } float dB[2]={t.dot(p_points_B[0]),t.dot(p_points_B[1])}; Vector2 pB[2]={p_points_B[0],p_points_B[1]}; if (dB[0]>dB[1]) { SWAP(dB[0],dB[1]); SWAP(pB[0],pB[1]); } if (dA[0]dB[1]) { //A contains B for(int i=0;i<2;i++) { Vector2 b = p_points_B[i]; Vector2 a = n.plane_project(d,b); if (p_collector->normal.dot(a) > p_collector->normal.dot(b)-CMP_EPSILON) continue; p_collector->call(a,b); } } else { // B0,A1 containment Vector2 n_B = (p_points_B[1]-p_points_B[0]).normalized().tangent(); real_t d_B = n_B.dot(p_points_B[1]); // first, B on A { Vector2 b = p_points_B[0]; Vector2 a = n.plane_project(d,b); if (p_collector->normal.dot(a) < p_collector->normal.dot(b)-CMP_EPSILON) p_collector->call(a,b); } // second, A on B { Vector2 a = p_points_A[1]; Vector2 b = n_B.plane_project(d_B,a); if (p_collector->normal.dot(a) < p_collector->normal.dot(b)-CMP_EPSILON) p_collector->call(a,b); } } } else { Vector2 n = (p_points_B[1]-p_points_B[0]).normalized().tangent(); real_t d = n.dot(p_points_B[1]); if (dB[1]>dA[1]) { //B contains A for(int i=0;i<2;i++) { Vector2 a = p_points_A[i]; Vector2 b = n.plane_project(d,a); if (p_collector->normal.dot(a) > p_collector->normal.dot(b)-CMP_EPSILON) continue; p_collector->call(a,b); } } else { // A0,B1 containment Vector2 n_A = (p_points_A[1]-p_points_A[0]).normalized().tangent(); real_t d_A = n_A.dot(p_points_A[1]); // first A on B { Vector2 a = p_points_A[0]; Vector2 b = n.plane_project(d,a); if (p_collector->normal.dot(a) < p_collector->normal.dot(b)-CMP_EPSILON) p_collector->call(a,b); } //second, B on A { Vector2 b = p_points_B[1]; Vector2 a = n_A.plane_project(d_A,b); if (p_collector->normal.dot(a) < p_collector->normal.dot(b)-CMP_EPSILON) p_collector->call(a,b); } } } #endif #if 1 Vector2 n = p_collector->normal; Vector2 t = n.tangent(); real_t dA = n.dot(p_points_A[0]); real_t dB = n.dot(p_points_B[0]); _generate_contacts_Pair dvec[4]; dvec[0].d = t.dot(p_points_A[0]); dvec[0].a = true; dvec[0].idx = 0; dvec[1].d = t.dot(p_points_A[1]); dvec[1].a = true; dvec[1].idx = 1; dvec[2].d = t.dot(p_points_B[0]); dvec[2].a = false; dvec[2].idx = 0; dvec[3].d = t.dot(p_points_B[1]); dvec[3].a = false; dvec[3].idx = 1; SortArray<_generate_contacts_Pair> sa; sa.sort(dvec, 4); for (int i = 1; i <= 2; i++) { if (dvec[i].a) { Vector2 a = p_points_A[dvec[i].idx]; Vector2 b = n.plane_project(dB, a); if (n.dot(a) > n.dot(b) - CMP_EPSILON) continue; p_collector->call(a, b); } else { Vector2 b = p_points_B[dvec[i].idx]; Vector2 a = n.plane_project(dA, b); if (n.dot(a) > n.dot(b) - CMP_EPSILON) continue; p_collector->call(a, b); } } #elif 0 Vector2 axis = rel_A.normalized(); //make an axis Vector2 axis_B = rel_B.normalized(); if (axis.dot(axis_B) < 0) axis_B = -axis_B; axis = (axis + axis_B) * 0.5; Vector2 base_A = p_points_A[0] - axis * axis.dot(p_points_A[0]); Vector2 base_B = p_points_B[0] - axis * axis.dot(p_points_B[0]); //sort all 4 points in axis float dvec[4] = { axis.dot(p_points_A[0]), axis.dot(p_points_A[1]), axis.dot(p_points_B[0]), axis.dot(p_points_B[1]) }; //todo , find max/min and then use 2 central points SortArray sa; sa.sort(dvec, 4); //use the middle ones as contacts for (int i = 1; i <= 2; i++) { Vector2 a = base_A + axis * dvec[i]; Vector2 b = base_B + axis * dvec[i]; if (p_collector->normal.dot(a) > p_collector->normal.dot(b) - 0.01) { print_line("fail a: " + a); print_line("fail b: " + b); continue; } print_line("res a: " + a); print_line("res b: " + b); p_collector->call(a, b); } #endif } static void _generate_contacts_from_supports(const Vector2 *p_points_A, int p_point_count_A, const Vector2 *p_points_B, int p_point_count_B, _CollectorCallback2D *p_collector) { #ifdef DEBUG_ENABLED ERR_FAIL_COND(p_point_count_A < 1); ERR_FAIL_COND(p_point_count_B < 1); #endif static const GenerateContactsFunc generate_contacts_func_table[2][2] = { { _generate_contacts_point_point, _generate_contacts_point_edge, }, { 0, _generate_contacts_edge_edge, } }; int pointcount_B; int pointcount_A; const Vector2 *points_A; const Vector2 *points_B; if (p_point_count_A > p_point_count_B) { //swap p_collector->swap = !p_collector->swap; p_collector->normal = -p_collector->normal; pointcount_B = p_point_count_A; pointcount_A = p_point_count_B; points_A = p_points_B; points_B = p_points_A; } else { pointcount_B = p_point_count_B; pointcount_A = p_point_count_A; points_A = p_points_A; points_B = p_points_B; } int version_A = (pointcount_A > 3 ? 3 : pointcount_A) - 1; int version_B = (pointcount_B > 3 ? 3 : pointcount_B) - 1; GenerateContactsFunc contacts_func = generate_contacts_func_table[version_A][version_B]; ERR_FAIL_COND(!contacts_func); contacts_func(points_A, pointcount_A, points_B, pointcount_B, p_collector); } template class SeparatorAxisTest2D { const ShapeA *shape_A; const ShapeB *shape_B; const Matrix32 *transform_A; const Matrix32 *transform_B; real_t best_depth; Vector2 best_axis; int best_axis_count; int best_axis_index; Vector2 motion_A; Vector2 motion_B; real_t margin_A; real_t margin_B; _CollectorCallback2D *callback; public: _FORCE_INLINE_ bool test_previous_axis() { if (callback && callback->sep_axis && *callback->sep_axis != Vector2()) { return test_axis(*callback->sep_axis); } else { #ifdef DEBUG_ENABLED best_axis_count++; #endif } return true; } _FORCE_INLINE_ bool test_cast() { if (castA) { Vector2 na = motion_A.normalized(); if (!test_axis(na)) return false; if (!test_axis(na.tangent())) return false; } if (castB) { Vector2 nb = motion_B.normalized(); if (!test_axis(nb)) return false; if (!test_axis(nb.tangent())) return false; } return true; } _FORCE_INLINE_ bool test_axis(const Vector2 &p_axis) { Vector2 axis = p_axis; if (Math::abs(axis.x) < CMP_EPSILON && Math::abs(axis.y) < CMP_EPSILON) { // strange case, try an upwards separator axis = Vector2(0.0, 1.0); } real_t min_A, max_A, min_B, max_B; if (castA) shape_A->project_range_cast(motion_A, axis, *transform_A, min_A, max_A); else shape_A->project_range(axis, *transform_A, min_A, max_A); if (castB) shape_B->project_range_cast(motion_B, axis, *transform_B, min_B, max_B); else shape_B->project_range(axis, *transform_B, min_B, max_B); if (withMargin) { min_A -= margin_A; max_A += margin_A; min_B -= margin_B; max_B += margin_B; } min_B -= (max_A - min_A) * 0.5; max_B += (max_A - min_A) * 0.5; real_t dmin = min_B - (min_A + max_A) * 0.5; real_t dmax = max_B - (min_A + max_A) * 0.5; if (dmin > 0.0 || dmax < 0.0) { if (callback && callback->sep_axis) *callback->sep_axis = axis; #ifdef DEBUG_ENABLED best_axis_count++; #endif return false; // doesn't contain 0 } //use the smallest depth dmin = Math::abs(dmin); if (dmax < dmin) { if (dmax < best_depth) { best_depth = dmax; best_axis = axis; #ifdef DEBUG_ENABLED best_axis_index = best_axis_count; #endif } } else { if (dmin < best_depth) { best_depth = dmin; best_axis = -axis; // keep it as A axis #ifdef DEBUG_ENABLED best_axis_index = best_axis_count; #endif } } // print_line("test axis: "+p_axis+" depth: "+rtos(best_depth)); #ifdef DEBUG_ENABLED best_axis_count++; #endif return true; } _FORCE_INLINE_ void generate_contacts() { // nothing to do, don't generate if (best_axis == Vector2(0.0, 0.0)) return; callback->collided = true; if (!callback->callback) return; //only collide, no callback static const int max_supports = 2; Vector2 supports_A[max_supports]; int support_count_A; if (castA) { shape_A->get_supports_transformed_cast(motion_A, -best_axis, *transform_A, supports_A, support_count_A); } else { shape_A->get_supports(transform_A->basis_xform_inv(-best_axis).normalized(), supports_A, support_count_A); for (int i = 0; i < support_count_A; i++) { supports_A[i] = transform_A->xform(supports_A[i]); } } if (withMargin) { for (int i = 0; i < support_count_A; i++) { supports_A[i] += -best_axis * margin_A; } } Vector2 supports_B[max_supports]; int support_count_B; if (castB) { shape_B->get_supports_transformed_cast(motion_B, best_axis, *transform_B, supports_B, support_count_B); } else { shape_B->get_supports(transform_B->basis_xform_inv(best_axis).normalized(), supports_B, support_count_B); for (int i = 0; i < support_count_B; i++) { supports_B[i] = transform_B->xform(supports_B[i]); } } if (withMargin) { for (int i = 0; i < support_count_B; i++) { supports_B[i] += best_axis * margin_B; } } /* print_line("**************************"); printf("CBK: %p\n",callback->userdata); print_line("type A: "+itos(shape_A->get_type())); print_line("type B: "+itos(shape_B->get_type())); print_line("xform A: "+*transform_A); print_line("xform B: "+*transform_B); print_line("normal: "+best_axis); print_line("depth: "+rtos(best_depth)); print_line("index: "+itos(best_axis_index)); for(int i=0;inormal = best_axis; _generate_contacts_from_supports(supports_A, support_count_A, supports_B, support_count_B, callback); if (callback && callback->sep_axis && *callback->sep_axis != Vector2()) *callback->sep_axis = Vector2(); //invalidate previous axis (no test) //CollisionSolver2DSW::CallbackResult cbk=NULL; //cbk(Vector2(),Vector2(),NULL); } _FORCE_INLINE_ SeparatorAxisTest2D(const ShapeA *p_shape_A, const Matrix32 &p_transform_a, const ShapeB *p_shape_B, const Matrix32 &p_transform_b, _CollectorCallback2D *p_collector, const Vector2 &p_motion_A = Vector2(), const Vector2 &p_motion_B = Vector2(), real_t p_margin_A = 0, real_t p_margin_B = 0) { margin_A = p_margin_A; margin_B = p_margin_B; best_depth = 1e15; shape_A = p_shape_A; shape_B = p_shape_B; transform_A = &p_transform_a; transform_B = &p_transform_b; motion_A = p_motion_A; motion_B = p_motion_B; callback = p_collector; #ifdef DEBUG_ENABLED best_axis_count = 0; best_axis_index = -1; #endif } }; /****** SAT TESTS *******/ /****** SAT TESTS *******/ /****** SAT TESTS *******/ /****** SAT TESTS *******/ #define TEST_POINT(m_a, m_b) \ ((!separator.test_axis(((m_a) - (m_b)).normalized())) || \ (castA && !separator.test_axis(((m_a) + p_motion_a - (m_b)).normalized())) || \ (castB && !separator.test_axis(((m_a) - ((m_b) + p_motion_b)).normalized())) || \ (castA && castB && !separator.test_axis(((m_a) + p_motion_a - ((m_b) + p_motion_b)).normalized()))) typedef void (*CollisionFunc)(const Shape2DSW *, const Matrix32 &, const Shape2DSW *, const Matrix32 &, _CollectorCallback2D *p_collector, const Vector2 &, const Vector2 &, float, float); template static void _collision_segment_segment(const Shape2DSW *p_a, const Matrix32 &p_transform_a, const Shape2DSW *p_b, const Matrix32 &p_transform_b, _CollectorCallback2D *p_collector, const Vector2 &p_motion_a, const Vector2 &p_motion_b, float p_margin_A, float p_margin_B) { const SegmentShape2DSW *segment_A = static_cast(p_a); const SegmentShape2DSW *segment_B = static_cast(p_b); SeparatorAxisTest2D separator(segment_A, p_transform_a, segment_B, p_transform_b, p_collector, p_motion_a, p_motion_b, p_margin_A, p_margin_B); if (!separator.test_previous_axis()) return; //this collision is kind of pointless //if (!separator.test_previous_axis()) // return; if (!separator.test_cast()) return; if (!separator.test_axis(segment_A->get_xformed_normal(p_transform_a))) return; if (!separator.test_axis(segment_B->get_xformed_normal(p_transform_b))) return; if (withMargin) { //points grow to circles if (TEST_POINT(p_transform_a.xform(segment_A->get_a()), p_transform_b.xform(segment_B->get_a()))) return; if (TEST_POINT(p_transform_a.xform(segment_A->get_a()), p_transform_b.xform(segment_B->get_b()))) return; if (TEST_POINT(p_transform_a.xform(segment_A->get_b()), p_transform_b.xform(segment_B->get_a()))) return; if (TEST_POINT(p_transform_a.xform(segment_A->get_b()), p_transform_b.xform(segment_B->get_b()))) return; } separator.generate_contacts(); } template static void _collision_segment_circle(const Shape2DSW *p_a, const Matrix32 &p_transform_a, const Shape2DSW *p_b, const Matrix32 &p_transform_b, _CollectorCallback2D *p_collector, const Vector2 &p_motion_a, const Vector2 &p_motion_b, float p_margin_A, float p_margin_B) { const SegmentShape2DSW *segment_A = static_cast(p_a); const CircleShape2DSW *circle_B = static_cast(p_b); SeparatorAxisTest2D separator(segment_A, p_transform_a, circle_B, p_transform_b, p_collector, p_motion_a, p_motion_b, p_margin_A, p_margin_B); if (!separator.test_previous_axis()) return; if (!separator.test_cast()) return; //segment normal if (!separator.test_axis( (p_transform_a.xform(segment_A->get_b()) - p_transform_a.xform(segment_A->get_a())).normalized().tangent())) return; //endpoint a vs circle if (TEST_POINT(p_transform_a.xform(segment_A->get_a()), p_transform_b.get_origin())) return; //endpoint b vs circle if (TEST_POINT(p_transform_a.xform(segment_A->get_b()), p_transform_b.get_origin())) return; separator.generate_contacts(); } template static void _collision_segment_rectangle(const Shape2DSW *p_a, const Matrix32 &p_transform_a, const Shape2DSW *p_b, const Matrix32 &p_transform_b, _CollectorCallback2D *p_collector, const Vector2 &p_motion_a, const Vector2 &p_motion_b, float p_margin_A, float p_margin_B) { const SegmentShape2DSW *segment_A = static_cast(p_a); const RectangleShape2DSW *rectangle_B = static_cast(p_b); SeparatorAxisTest2D separator(segment_A, p_transform_a, rectangle_B, p_transform_b, p_collector, p_motion_a, p_motion_b, p_margin_A, p_margin_B); if (!separator.test_previous_axis()) return; if (!separator.test_cast()) return; if (!separator.test_axis(segment_A->get_xformed_normal(p_transform_a))) return; if (!separator.test_axis(p_transform_b.elements[0].normalized())) return; if (!separator.test_axis(p_transform_b.elements[1].normalized())) return; if (withMargin) { Matrix32 inv = p_transform_b.affine_inverse(); Vector2 a = p_transform_a.xform(segment_A->get_a()); Vector2 b = p_transform_a.xform(segment_A->get_b()); if (!separator.test_axis(rectangle_B->get_circle_axis(p_transform_b, inv, a))) return; if (!separator.test_axis(rectangle_B->get_circle_axis(p_transform_b, inv, b))) return; if (castA) { if (!separator.test_axis(rectangle_B->get_circle_axis(p_transform_b, inv, a + p_motion_a))) return; if (!separator.test_axis(rectangle_B->get_circle_axis(p_transform_b, inv, b + p_motion_a))) return; } if (castB) { if (!separator.test_axis(rectangle_B->get_circle_axis(p_transform_b, inv, a - p_motion_b))) return; if (!separator.test_axis(rectangle_B->get_circle_axis(p_transform_b, inv, b - p_motion_b))) return; } if (castA && castB) { if (!separator.test_axis(rectangle_B->get_circle_axis(p_transform_b, inv, a - p_motion_b + p_motion_a))) return; if (!separator.test_axis(rectangle_B->get_circle_axis(p_transform_b, inv, b - p_motion_b + p_motion_a))) return; } } separator.generate_contacts(); } template static void _collision_segment_capsule(const Shape2DSW *p_a, const Matrix32 &p_transform_a, const Shape2DSW *p_b, const Matrix32 &p_transform_b, _CollectorCallback2D *p_collector, const Vector2 &p_motion_a, const Vector2 &p_motion_b, float p_margin_A, float p_margin_B) { const SegmentShape2DSW *segment_A = static_cast(p_a); const CapsuleShape2DSW *capsule_B = static_cast(p_b); SeparatorAxisTest2D separator(segment_A, p_transform_a, capsule_B, p_transform_b, p_collector, p_motion_a, p_motion_b, p_margin_A, p_margin_B); if (!separator.test_previous_axis()) return; if (!separator.test_cast()) return; if (!separator.test_axis(segment_A->get_xformed_normal(p_transform_a))) return; if (!separator.test_axis(p_transform_b.elements[0].normalized())) return; if (TEST_POINT(p_transform_a.xform(segment_A->get_a()), (p_transform_b.get_origin() + p_transform_b.elements[1] * capsule_B->get_height() * 0.5))) return; if (TEST_POINT(p_transform_a.xform(segment_A->get_a()), (p_transform_b.get_origin() + p_transform_b.elements[1] * capsule_B->get_height() * -0.5))) return; if (TEST_POINT(p_transform_a.xform(segment_A->get_b()), (p_transform_b.get_origin() + p_transform_b.elements[1] * capsule_B->get_height() * 0.5))) return; if (TEST_POINT(p_transform_a.xform(segment_A->get_b()), (p_transform_b.get_origin() + p_transform_b.elements[1] * capsule_B->get_height() * -0.5))) return; separator.generate_contacts(); } template static void _collision_segment_convex_polygon(const Shape2DSW *p_a, const Matrix32 &p_transform_a, const Shape2DSW *p_b, const Matrix32 &p_transform_b, _CollectorCallback2D *p_collector, const Vector2 &p_motion_a, const Vector2 &p_motion_b, float p_margin_A, float p_margin_B) { const SegmentShape2DSW *segment_A = static_cast(p_a); const ConvexPolygonShape2DSW *convex_B = static_cast(p_b); SeparatorAxisTest2D separator(segment_A, p_transform_a, convex_B, p_transform_b, p_collector, p_motion_a, p_motion_b, p_margin_A, p_margin_B); if (!separator.test_previous_axis()) return; if (!separator.test_cast()) return; if (!separator.test_axis(segment_A->get_xformed_normal(p_transform_a))) return; for (int i = 0; i < convex_B->get_point_count(); i++) { if (!separator.test_axis(convex_B->get_xformed_segment_normal(p_transform_b, i))) return; if (withMargin) { if (TEST_POINT(p_transform_a.xform(segment_A->get_a()), p_transform_b.xform(convex_B->get_point(i)))) return; if (TEST_POINT(p_transform_a.xform(segment_A->get_b()), p_transform_b.xform(convex_B->get_point(i)))) return; } } separator.generate_contacts(); } ///////// template static void _collision_circle_circle(const Shape2DSW *p_a, const Matrix32 &p_transform_a, const Shape2DSW *p_b, const Matrix32 &p_transform_b, _CollectorCallback2D *p_collector, const Vector2 &p_motion_a, const Vector2 &p_motion_b, float p_margin_A, float p_margin_B) { const CircleShape2DSW *circle_A = static_cast(p_a); const CircleShape2DSW *circle_B = static_cast(p_b); SeparatorAxisTest2D separator(circle_A, p_transform_a, circle_B, p_transform_b, p_collector, p_motion_a, p_motion_b, p_margin_A, p_margin_B); if (!separator.test_previous_axis()) return; if (!separator.test_cast()) return; if (TEST_POINT(p_transform_a.get_origin(), p_transform_b.get_origin())) return; separator.generate_contacts(); } template static void _collision_circle_rectangle(const Shape2DSW *p_a, const Matrix32 &p_transform_a, const Shape2DSW *p_b, const Matrix32 &p_transform_b, _CollectorCallback2D *p_collector, const Vector2 &p_motion_a, const Vector2 &p_motion_b, float p_margin_A, float p_margin_B) { const CircleShape2DSW *circle_A = static_cast(p_a); const RectangleShape2DSW *rectangle_B = static_cast(p_b); SeparatorAxisTest2D separator(circle_A, p_transform_a, rectangle_B, p_transform_b, p_collector, p_motion_a, p_motion_b, p_margin_A, p_margin_B); if (!separator.test_previous_axis()) return; if (!separator.test_cast()) return; const Vector2 &sphere = p_transform_a.elements[2]; const Vector2 *axis = &p_transform_b.elements[0]; // const Vector2& half_extents = rectangle_B->get_half_extents(); if (!separator.test_axis(axis[0].normalized())) return; if (!separator.test_axis(axis[1].normalized())) return; Matrix32 binv = p_transform_b.affine_inverse(); { if (!separator.test_axis(rectangle_B->get_circle_axis(p_transform_b, binv, sphere))) return; } if (castA) { Vector2 sphereofs = sphere + p_motion_a; if (!separator.test_axis(rectangle_B->get_circle_axis(p_transform_b, binv, sphereofs))) return; } if (castB) { Vector2 sphereofs = sphere - p_motion_b; if (!separator.test_axis(rectangle_B->get_circle_axis(p_transform_b, binv, sphereofs))) return; } if (castA && castB) { Vector2 sphereofs = sphere - p_motion_b + p_motion_a; if (!separator.test_axis(rectangle_B->get_circle_axis(p_transform_b, binv, sphereofs))) return; } separator.generate_contacts(); } template static void _collision_circle_capsule(const Shape2DSW *p_a, const Matrix32 &p_transform_a, const Shape2DSW *p_b, const Matrix32 &p_transform_b, _CollectorCallback2D *p_collector, const Vector2 &p_motion_a, const Vector2 &p_motion_b, float p_margin_A, float p_margin_B) { const CircleShape2DSW *circle_A = static_cast(p_a); const CapsuleShape2DSW *capsule_B = static_cast(p_b); SeparatorAxisTest2D separator(circle_A, p_transform_a, capsule_B, p_transform_b, p_collector, p_motion_a, p_motion_b, p_margin_A, p_margin_B); if (!separator.test_previous_axis()) return; if (!separator.test_cast()) return; //capsule axis if (!separator.test_axis(p_transform_b.elements[0].normalized())) return; //capsule endpoints if (TEST_POINT(p_transform_a.get_origin(), (p_transform_b.get_origin() + p_transform_b.elements[1] * capsule_B->get_height() * 0.5))) return; if (TEST_POINT(p_transform_a.get_origin(), (p_transform_b.get_origin() + p_transform_b.elements[1] * capsule_B->get_height() * -0.5))) return; separator.generate_contacts(); } template static void _collision_circle_convex_polygon(const Shape2DSW *p_a, const Matrix32 &p_transform_a, const Shape2DSW *p_b, const Matrix32 &p_transform_b, _CollectorCallback2D *p_collector, const Vector2 &p_motion_a, const Vector2 &p_motion_b, float p_margin_A, float p_margin_B) { const CircleShape2DSW *circle_A = static_cast(p_a); const ConvexPolygonShape2DSW *convex_B = static_cast(p_b); SeparatorAxisTest2D separator(circle_A, p_transform_a, convex_B, p_transform_b, p_collector, p_motion_a, p_motion_b, p_margin_A, p_margin_B); if (!separator.test_previous_axis()) return; if (!separator.test_cast()) return; //poly faces and poly points vs circle for (int i = 0; i < convex_B->get_point_count(); i++) { if (TEST_POINT(p_transform_a.get_origin(), p_transform_b.xform(convex_B->get_point(i)))) return; if (!separator.test_axis(convex_B->get_xformed_segment_normal(p_transform_b, i))) return; } separator.generate_contacts(); } ///////// template static void _collision_rectangle_rectangle(const Shape2DSW *p_a, const Matrix32 &p_transform_a, const Shape2DSW *p_b, const Matrix32 &p_transform_b, _CollectorCallback2D *p_collector, const Vector2 &p_motion_a, const Vector2 &p_motion_b, float p_margin_A, float p_margin_B) { const RectangleShape2DSW *rectangle_A = static_cast(p_a); const RectangleShape2DSW *rectangle_B = static_cast(p_b); SeparatorAxisTest2D separator(rectangle_A, p_transform_a, rectangle_B, p_transform_b, p_collector, p_motion_a, p_motion_b, p_margin_A, p_margin_B); if (!separator.test_previous_axis()) return; if (!separator.test_cast()) return; //box faces A if (!separator.test_axis(p_transform_a.elements[0].normalized())) return; if (!separator.test_axis(p_transform_a.elements[1].normalized())) return; //box faces B if (!separator.test_axis(p_transform_b.elements[0].normalized())) return; if (!separator.test_axis(p_transform_b.elements[1].normalized())) return; if (withMargin) { Matrix32 invA = p_transform_a.affine_inverse(); Matrix32 invB = p_transform_b.affine_inverse(); if (!separator.test_axis(rectangle_A->get_box_axis(p_transform_a, invA, rectangle_B, p_transform_b, invB))) return; if (castA || castB) { Matrix32 aofs = p_transform_a; aofs.elements[2] += p_motion_a; Matrix32 bofs = p_transform_b; bofs.elements[2] += p_motion_b; Matrix32 aofsinv = aofs.affine_inverse(); Matrix32 bofsinv = bofs.affine_inverse(); if (castA) { if (!separator.test_axis(rectangle_A->get_box_axis(aofs, aofsinv, rectangle_B, p_transform_b, invB))) return; } if (castB) { if (!separator.test_axis(rectangle_A->get_box_axis(p_transform_a, invA, rectangle_B, bofs, bofsinv))) return; } if (castA && castB) { if (!separator.test_axis(rectangle_A->get_box_axis(aofs, aofsinv, rectangle_B, bofs, bofsinv))) return; } } } separator.generate_contacts(); } template static void _collision_rectangle_capsule(const Shape2DSW *p_a, const Matrix32 &p_transform_a, const Shape2DSW *p_b, const Matrix32 &p_transform_b, _CollectorCallback2D *p_collector, const Vector2 &p_motion_a, const Vector2 &p_motion_b, float p_margin_A, float p_margin_B) { const RectangleShape2DSW *rectangle_A = static_cast(p_a); const CapsuleShape2DSW *capsule_B = static_cast(p_b); SeparatorAxisTest2D separator(rectangle_A, p_transform_a, capsule_B, p_transform_b, p_collector, p_motion_a, p_motion_b, p_margin_A, p_margin_B); if (!separator.test_previous_axis()) return; if (!separator.test_cast()) return; //box faces if (!separator.test_axis(p_transform_a.elements[0].normalized())) return; if (!separator.test_axis(p_transform_a.elements[1].normalized())) return; //capsule axis if (!separator.test_axis(p_transform_b.elements[0].normalized())) return; //box endpoints to capsule circles Matrix32 boxinv = p_transform_a.affine_inverse(); for (int i = 0; i < 2; i++) { { Vector2 capsule_endpoint = p_transform_b.get_origin() + p_transform_b.elements[1] * capsule_B->get_height() * (i == 0 ? 0.5 : -0.5); if (!separator.test_axis(rectangle_A->get_circle_axis(p_transform_a, boxinv, capsule_endpoint))) return; } if (castA) { Vector2 capsule_endpoint = p_transform_b.get_origin() + p_transform_b.elements[1] * capsule_B->get_height() * (i == 0 ? 0.5 : -0.5); capsule_endpoint -= p_motion_a; if (!separator.test_axis(rectangle_A->get_circle_axis(p_transform_a, boxinv, capsule_endpoint))) return; } if (castB) { Vector2 capsule_endpoint = p_transform_b.get_origin() + p_transform_b.elements[1] * capsule_B->get_height() * (i == 0 ? 0.5 : -0.5); capsule_endpoint += p_motion_b; if (!separator.test_axis(rectangle_A->get_circle_axis(p_transform_a, boxinv, capsule_endpoint))) return; } if (castA && castB) { Vector2 capsule_endpoint = p_transform_b.get_origin() + p_transform_b.elements[1] * capsule_B->get_height() * (i == 0 ? 0.5 : -0.5); capsule_endpoint -= p_motion_a; capsule_endpoint += p_motion_b; if (!separator.test_axis(rectangle_A->get_circle_axis(p_transform_a, boxinv, capsule_endpoint))) return; } } separator.generate_contacts(); } template static void _collision_rectangle_convex_polygon(const Shape2DSW *p_a, const Matrix32 &p_transform_a, const Shape2DSW *p_b, const Matrix32 &p_transform_b, _CollectorCallback2D *p_collector, const Vector2 &p_motion_a, const Vector2 &p_motion_b, float p_margin_A, float p_margin_B) { const RectangleShape2DSW *rectangle_A = static_cast(p_a); const ConvexPolygonShape2DSW *convex_B = static_cast(p_b); SeparatorAxisTest2D separator(rectangle_A, p_transform_a, convex_B, p_transform_b, p_collector, p_motion_a, p_motion_b, p_margin_A, p_margin_B); if (!separator.test_previous_axis()) return; if (!separator.test_cast()) return; //box faces if (!separator.test_axis(p_transform_a.elements[0].normalized())) return; if (!separator.test_axis(p_transform_a.elements[1].normalized())) return; //convex faces Matrix32 boxinv; if (withMargin) { boxinv = p_transform_a.affine_inverse(); } for (int i = 0; i < convex_B->get_point_count(); i++) { if (!separator.test_axis(convex_B->get_xformed_segment_normal(p_transform_b, i))) return; if (withMargin) { //all points vs all points need to be tested if margin exist if (!separator.test_axis(rectangle_A->get_circle_axis(p_transform_a, boxinv, p_transform_b.xform(convex_B->get_point(i))))) return; if (castA) { if (!separator.test_axis(rectangle_A->get_circle_axis(p_transform_a, boxinv, p_transform_b.xform(convex_B->get_point(i)) - p_motion_a))) return; } if (castB) { if (!separator.test_axis(rectangle_A->get_circle_axis(p_transform_a, boxinv, p_transform_b.xform(convex_B->get_point(i)) + p_motion_b))) return; } if (castA && castB) { if (!separator.test_axis(rectangle_A->get_circle_axis(p_transform_a, boxinv, p_transform_b.xform(convex_B->get_point(i)) + p_motion_b - p_motion_a))) return; } } } separator.generate_contacts(); } ///////// template static void _collision_capsule_capsule(const Shape2DSW *p_a, const Matrix32 &p_transform_a, const Shape2DSW *p_b, const Matrix32 &p_transform_b, _CollectorCallback2D *p_collector, const Vector2 &p_motion_a, const Vector2 &p_motion_b, float p_margin_A, float p_margin_B) { const CapsuleShape2DSW *capsule_A = static_cast(p_a); const CapsuleShape2DSW *capsule_B = static_cast(p_b); SeparatorAxisTest2D separator(capsule_A, p_transform_a, capsule_B, p_transform_b, p_collector, p_motion_a, p_motion_b, p_margin_A, p_margin_B); if (!separator.test_previous_axis()) return; if (!separator.test_cast()) return; //capsule axis if (!separator.test_axis(p_transform_b.elements[0].normalized())) return; if (!separator.test_axis(p_transform_a.elements[0].normalized())) return; //capsule endpoints for (int i = 0; i < 2; i++) { Vector2 capsule_endpoint_A = p_transform_a.get_origin() + p_transform_a.elements[1] * capsule_A->get_height() * (i == 0 ? 0.5 : -0.5); for (int j = 0; j < 2; j++) { Vector2 capsule_endpoint_B = p_transform_b.get_origin() + p_transform_b.elements[1] * capsule_B->get_height() * (j == 0 ? 0.5 : -0.5); if (TEST_POINT(capsule_endpoint_A, capsule_endpoint_B)) return; } } separator.generate_contacts(); } template static void _collision_capsule_convex_polygon(const Shape2DSW *p_a, const Matrix32 &p_transform_a, const Shape2DSW *p_b, const Matrix32 &p_transform_b, _CollectorCallback2D *p_collector, const Vector2 &p_motion_a, const Vector2 &p_motion_b, float p_margin_A, float p_margin_B) { const CapsuleShape2DSW *capsule_A = static_cast(p_a); const ConvexPolygonShape2DSW *convex_B = static_cast(p_b); SeparatorAxisTest2D separator(capsule_A, p_transform_a, convex_B, p_transform_b, p_collector, p_motion_a, p_motion_b, p_margin_A, p_margin_B); if (!separator.test_previous_axis()) return; if (!separator.test_cast()) return; //capsule axis if (!separator.test_axis(p_transform_a.elements[0].normalized())) return; //poly vs capsule for (int i = 0; i < convex_B->get_point_count(); i++) { Vector2 cpoint = p_transform_b.xform(convex_B->get_point(i)); for (int j = 0; j < 2; j++) { Vector2 capsule_endpoint_A = p_transform_a.get_origin() + p_transform_a.elements[1] * capsule_A->get_height() * (j == 0 ? 0.5 : -0.5); if (TEST_POINT(capsule_endpoint_A, cpoint)) return; } if (!separator.test_axis(convex_B->get_xformed_segment_normal(p_transform_b, i))) return; } separator.generate_contacts(); } ///////// template static void _collision_convex_polygon_convex_polygon(const Shape2DSW *p_a, const Matrix32 &p_transform_a, const Shape2DSW *p_b, const Matrix32 &p_transform_b, _CollectorCallback2D *p_collector, const Vector2 &p_motion_a, const Vector2 &p_motion_b, float p_margin_A, float p_margin_B) { const ConvexPolygonShape2DSW *convex_A = static_cast(p_a); const ConvexPolygonShape2DSW *convex_B = static_cast(p_b); SeparatorAxisTest2D separator(convex_A, p_transform_a, convex_B, p_transform_b, p_collector, p_motion_a, p_motion_b, p_margin_A, p_margin_B); if (!separator.test_previous_axis()) return; if (!separator.test_cast()) return; for (int i = 0; i < convex_A->get_point_count(); i++) { if (!separator.test_axis(convex_A->get_xformed_segment_normal(p_transform_a, i))) return; } for (int i = 0; i < convex_B->get_point_count(); i++) { if (!separator.test_axis(convex_B->get_xformed_segment_normal(p_transform_b, i))) return; } if (withMargin) { for (int i = 0; i < convex_A->get_point_count(); i++) { for (int j = 0; j < convex_B->get_point_count(); j++) { if (TEST_POINT(p_transform_a.xform(convex_A->get_point(i)), p_transform_b.xform(convex_B->get_point(j)))) return; } } } separator.generate_contacts(); } //////// bool sat_2d_calculate_penetration(const Shape2DSW *p_shape_A, const Matrix32 &p_transform_A, const Vector2 &p_motion_A, const Shape2DSW *p_shape_B, const Matrix32 &p_transform_B, const Vector2 &p_motion_B, CollisionSolver2DSW::CallbackResult p_result_callback, void *p_userdata, bool p_swap, Vector2 *sep_axis, float p_margin_A, float p_margin_B) { Physics2DServer::ShapeType type_A = p_shape_A->get_type(); ERR_FAIL_COND_V(type_A == Physics2DServer::SHAPE_LINE, false); //ERR_FAIL_COND_V(type_A==Physics2DServer::SHAPE_RAY,false); ERR_FAIL_COND_V(p_shape_A->is_concave(), false); Physics2DServer::ShapeType type_B = p_shape_B->get_type(); ERR_FAIL_COND_V(type_B == Physics2DServer::SHAPE_LINE, false); //ERR_FAIL_COND_V(type_B==Physics2DServer::SHAPE_RAY,false); ERR_FAIL_COND_V(p_shape_B->is_concave(), false); static const CollisionFunc collision_table[5][5] = { { _collision_segment_segment, _collision_segment_circle, _collision_segment_rectangle, _collision_segment_capsule, _collision_segment_convex_polygon }, { 0, _collision_circle_circle, _collision_circle_rectangle, _collision_circle_capsule, _collision_circle_convex_polygon }, { 0, 0, _collision_rectangle_rectangle, _collision_rectangle_capsule, _collision_rectangle_convex_polygon }, { 0, 0, 0, _collision_capsule_capsule, _collision_capsule_convex_polygon }, { 0, 0, 0, 0, _collision_convex_polygon_convex_polygon } }; static const CollisionFunc collision_table_castA[5][5] = { { _collision_segment_segment, _collision_segment_circle, _collision_segment_rectangle, _collision_segment_capsule, _collision_segment_convex_polygon }, { 0, _collision_circle_circle, _collision_circle_rectangle, _collision_circle_capsule, _collision_circle_convex_polygon }, { 0, 0, _collision_rectangle_rectangle, _collision_rectangle_capsule, _collision_rectangle_convex_polygon }, { 0, 0, 0, _collision_capsule_capsule, _collision_capsule_convex_polygon }, { 0, 0, 0, 0, _collision_convex_polygon_convex_polygon } }; static const CollisionFunc collision_table_castB[5][5] = { { _collision_segment_segment, _collision_segment_circle, _collision_segment_rectangle, _collision_segment_capsule, _collision_segment_convex_polygon }, { 0, _collision_circle_circle, _collision_circle_rectangle, _collision_circle_capsule, _collision_circle_convex_polygon }, { 0, 0, _collision_rectangle_rectangle, _collision_rectangle_capsule, _collision_rectangle_convex_polygon }, { 0, 0, 0, _collision_capsule_capsule, _collision_capsule_convex_polygon }, { 0, 0, 0, 0, _collision_convex_polygon_convex_polygon } }; static const CollisionFunc collision_table_castA_castB[5][5] = { { _collision_segment_segment, _collision_segment_circle, _collision_segment_rectangle, _collision_segment_capsule, _collision_segment_convex_polygon }, { 0, _collision_circle_circle, _collision_circle_rectangle, _collision_circle_capsule, _collision_circle_convex_polygon }, { 0, 0, _collision_rectangle_rectangle, _collision_rectangle_capsule, _collision_rectangle_convex_polygon }, { 0, 0, 0, _collision_capsule_capsule, _collision_capsule_convex_polygon }, { 0, 0, 0, 0, _collision_convex_polygon_convex_polygon } }; static const CollisionFunc collision_table_margin[5][5] = { { _collision_segment_segment, _collision_segment_circle, _collision_segment_rectangle, _collision_segment_capsule, _collision_segment_convex_polygon }, { 0, _collision_circle_circle, _collision_circle_rectangle, _collision_circle_capsule, _collision_circle_convex_polygon }, { 0, 0, _collision_rectangle_rectangle, _collision_rectangle_capsule, _collision_rectangle_convex_polygon }, { 0, 0, 0, _collision_capsule_capsule, _collision_capsule_convex_polygon }, { 0, 0, 0, 0, _collision_convex_polygon_convex_polygon } }; static const CollisionFunc collision_table_castA_margin[5][5] = { { _collision_segment_segment, _collision_segment_circle, _collision_segment_rectangle, _collision_segment_capsule, _collision_segment_convex_polygon }, { 0, _collision_circle_circle, _collision_circle_rectangle, _collision_circle_capsule, _collision_circle_convex_polygon }, { 0, 0, _collision_rectangle_rectangle, _collision_rectangle_capsule, _collision_rectangle_convex_polygon }, { 0, 0, 0, _collision_capsule_capsule, _collision_capsule_convex_polygon }, { 0, 0, 0, 0, _collision_convex_polygon_convex_polygon } }; static const CollisionFunc collision_table_castB_margin[5][5] = { { _collision_segment_segment, _collision_segment_circle, _collision_segment_rectangle, _collision_segment_capsule, _collision_segment_convex_polygon }, { 0, _collision_circle_circle, _collision_circle_rectangle, _collision_circle_capsule, _collision_circle_convex_polygon }, { 0, 0, _collision_rectangle_rectangle, _collision_rectangle_capsule, _collision_rectangle_convex_polygon }, { 0, 0, 0, _collision_capsule_capsule, _collision_capsule_convex_polygon }, { 0, 0, 0, 0, _collision_convex_polygon_convex_polygon } }; static const CollisionFunc collision_table_castA_castB_margin[5][5] = { { _collision_segment_segment, _collision_segment_circle, _collision_segment_rectangle, _collision_segment_capsule, _collision_segment_convex_polygon }, { 0, _collision_circle_circle, _collision_circle_rectangle, _collision_circle_capsule, _collision_circle_convex_polygon }, { 0, 0, _collision_rectangle_rectangle, _collision_rectangle_capsule, _collision_rectangle_convex_polygon }, { 0, 0, 0, _collision_capsule_capsule, _collision_capsule_convex_polygon }, { 0, 0, 0, 0, _collision_convex_polygon_convex_polygon } }; _CollectorCallback2D callback; callback.callback = p_result_callback; callback.swap = p_swap; callback.userdata = p_userdata; callback.collided = false; callback.sep_axis = sep_axis; const Shape2DSW *A = p_shape_A; const Shape2DSW *B = p_shape_B; const Matrix32 *transform_A = &p_transform_A; const Matrix32 *transform_B = &p_transform_B; const Vector2 *motion_A = &p_motion_A; const Vector2 *motion_B = &p_motion_B; real_t margin_A = p_margin_A, margin_B = p_margin_B; if (type_A > type_B) { SWAP(A, B); SWAP(transform_A, transform_B); SWAP(type_A, type_B); SWAP(motion_A, motion_B); SWAP(margin_A, margin_B); callback.swap = !callback.swap; } CollisionFunc collision_func; if (p_margin_A || p_margin_B) { if (*motion_A == Vector2() && *motion_B == Vector2()) { collision_func = collision_table_margin[type_A - 2][type_B - 2]; } else if (*motion_A != Vector2() && *motion_B == Vector2()) { collision_func = collision_table_castA_margin[type_A - 2][type_B - 2]; } else if (*motion_A == Vector2() && *motion_B != Vector2()) { collision_func = collision_table_castB_margin[type_A - 2][type_B - 2]; } else { collision_func = collision_table_castA_castB_margin[type_A - 2][type_B - 2]; } } else { if (*motion_A == Vector2() && *motion_B == Vector2()) { collision_func = collision_table[type_A - 2][type_B - 2]; } else if (*motion_A != Vector2() && *motion_B == Vector2()) { collision_func = collision_table_castA[type_A - 2][type_B - 2]; } else if (*motion_A == Vector2() && *motion_B != Vector2()) { collision_func = collision_table_castB[type_A - 2][type_B - 2]; } else { collision_func = collision_table_castA_castB[type_A - 2][type_B - 2]; } } ERR_FAIL_COND_V(!collision_func, false); collision_func(A, *transform_A, B, *transform_B, &callback, *motion_A, *motion_B, margin_A, margin_B); return callback.collided; }