/**************************************************************************/ /* rendering_device.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "rendering_device.h" #include "rendering_device.compat.inc" #include "rendering_device_binds.h" #include "core/config/project_settings.h" #include "core/io/dir_access.h" #define FORCE_SEPARATE_PRESENT_QUEUE 0 /**************************/ /**** HELPER FUNCTIONS ****/ /**************************/ static String _get_device_vendor_name(const RenderingContextDriver::Device &p_device) { switch (p_device.vendor) { case RenderingContextDriver::VENDOR_AMD: return "AMD"; case RenderingContextDriver::VENDOR_IMGTEC: return "ImgTec"; case RenderingContextDriver::VENDOR_APPLE: return "Apple"; case RenderingContextDriver::VENDOR_NVIDIA: return "NVIDIA"; case RenderingContextDriver::VENDOR_ARM: return "ARM"; case RenderingContextDriver::VENDOR_MICROSOFT: return "Microsoft"; case RenderingContextDriver::VENDOR_QUALCOMM: return "Qualcomm"; case RenderingContextDriver::VENDOR_INTEL: return "Intel"; default: return "Unknown"; } } static String _get_device_type_name(const RenderingContextDriver::Device &p_device) { switch (p_device.type) { case RenderingContextDriver::DEVICE_TYPE_INTEGRATED_GPU: return "Integrated"; case RenderingContextDriver::DEVICE_TYPE_DISCRETE_GPU: return "Discrete"; case RenderingContextDriver::DEVICE_TYPE_VIRTUAL_GPU: return "Virtual"; case RenderingContextDriver::DEVICE_TYPE_CPU: return "CPU"; case RenderingContextDriver::DEVICE_TYPE_OTHER: default: return "Other"; } } static uint32_t _get_device_type_score(const RenderingContextDriver::Device &p_device) { switch (p_device.type) { case RenderingContextDriver::DEVICE_TYPE_INTEGRATED_GPU: return 4; case RenderingContextDriver::DEVICE_TYPE_DISCRETE_GPU: return 5; case RenderingContextDriver::DEVICE_TYPE_VIRTUAL_GPU: return 3; case RenderingContextDriver::DEVICE_TYPE_CPU: return 2; case RenderingContextDriver::DEVICE_TYPE_OTHER: default: return 1; } } /**************************/ /**** RENDERING DEVICE ****/ /**************************/ // When true, the command graph will attempt to reorder the rendering commands submitted by the user based on the dependencies detected from // the commands automatically. This should improve rendering performance in most scenarios at the cost of some extra CPU overhead. // // This behavior can be disabled if it's suspected that the graph is not detecting dependencies correctly and more control over the order of // the commands is desired (e.g. debugging). #define RENDER_GRAPH_REORDER 1 // Synchronization barriers are issued between the graph's levels only with the necessary amount of detail to achieve the correct result. If // it's suspected that the graph is not doing this correctly, full barriers can be issued instead that will block all types of operations // between the synchronization levels. This setting will have a very negative impact on performance when enabled, so it's only intended for // debugging purposes. #define RENDER_GRAPH_FULL_BARRIERS 0 // The command graph can automatically issue secondary command buffers and record them on background threads when they reach an arbitrary // size threshold. This can be very beneficial towards reducing the time the main thread takes to record all the rendering commands. However, // this setting is not enabled by default as it's been shown to cause some strange issues with certain IHVs that have yet to be understood. #define SECONDARY_COMMAND_BUFFERS_PER_FRAME 0 RenderingDevice *RenderingDevice::singleton = nullptr; RenderingDevice *RenderingDevice::get_singleton() { return singleton; } RenderingDevice::ShaderCompileToSPIRVFunction RenderingDevice::compile_to_spirv_function = nullptr; RenderingDevice::ShaderCacheFunction RenderingDevice::cache_function = nullptr; RenderingDevice::ShaderSPIRVGetCacheKeyFunction RenderingDevice::get_spirv_cache_key_function = nullptr; /***************************/ /**** ID INFRASTRUCTURE ****/ /***************************/ void RenderingDevice::_add_dependency(RID p_id, RID p_depends_on) { if (!dependency_map.has(p_depends_on)) { dependency_map[p_depends_on] = HashSet(); } dependency_map[p_depends_on].insert(p_id); if (!reverse_dependency_map.has(p_id)) { reverse_dependency_map[p_id] = HashSet(); } reverse_dependency_map[p_id].insert(p_depends_on); } void RenderingDevice::_free_dependencies(RID p_id) { // Direct dependencies must be freed. HashMap>::Iterator E = dependency_map.find(p_id); if (E) { while (E->value.size()) { free(*E->value.begin()); } dependency_map.remove(E); } // Reverse dependencies must be unreferenced. E = reverse_dependency_map.find(p_id); if (E) { for (const RID &F : E->value) { HashMap>::Iterator G = dependency_map.find(F); ERR_CONTINUE(!G); ERR_CONTINUE(!G->value.has(p_id)); G->value.erase(p_id); } reverse_dependency_map.remove(E); } } void RenderingDevice::shader_set_compile_to_spirv_function(ShaderCompileToSPIRVFunction p_function) { compile_to_spirv_function = p_function; } void RenderingDevice::shader_set_spirv_cache_function(ShaderCacheFunction p_function) { cache_function = p_function; } void RenderingDevice::shader_set_get_cache_key_function(ShaderSPIRVGetCacheKeyFunction p_function) { get_spirv_cache_key_function = p_function; } Vector RenderingDevice::shader_compile_spirv_from_source(ShaderStage p_stage, const String &p_source_code, ShaderLanguage p_language, String *r_error, bool p_allow_cache) { if (p_allow_cache && cache_function) { Vector cache = cache_function(p_stage, p_source_code, p_language); if (cache.size()) { return cache; } } ERR_FAIL_NULL_V(compile_to_spirv_function, Vector()); return compile_to_spirv_function(p_stage, p_source_code, p_language, r_error, this); } String RenderingDevice::shader_get_spirv_cache_key() const { if (get_spirv_cache_key_function) { return get_spirv_cache_key_function(this); } return String(); } RID RenderingDevice::shader_create_from_spirv(const Vector &p_spirv, const String &p_shader_name) { Vector bytecode = shader_compile_binary_from_spirv(p_spirv, p_shader_name); ERR_FAIL_COND_V(bytecode.is_empty(), RID()); return shader_create_from_bytecode(bytecode); } /***************************/ /**** BUFFER MANAGEMENT ****/ /***************************/ RenderingDevice::Buffer *RenderingDevice::_get_buffer_from_owner(RID p_buffer) { Buffer *buffer = nullptr; if (vertex_buffer_owner.owns(p_buffer)) { buffer = vertex_buffer_owner.get_or_null(p_buffer); } else if (index_buffer_owner.owns(p_buffer)) { buffer = index_buffer_owner.get_or_null(p_buffer); } else if (uniform_buffer_owner.owns(p_buffer)) { buffer = uniform_buffer_owner.get_or_null(p_buffer); } else if (texture_buffer_owner.owns(p_buffer)) { DEV_ASSERT(false && "FIXME: Broken."); //buffer = texture_buffer_owner.get_or_null(p_buffer)->buffer; } else if (storage_buffer_owner.owns(p_buffer)) { buffer = storage_buffer_owner.get_or_null(p_buffer); } return buffer; } Error RenderingDevice::_insert_staging_block() { StagingBufferBlock block; block.driver_id = driver->buffer_create(staging_buffer_block_size, RDD::BUFFER_USAGE_TRANSFER_FROM_BIT, RDD::MEMORY_ALLOCATION_TYPE_CPU); ERR_FAIL_COND_V(!block.driver_id, ERR_CANT_CREATE); block.frame_used = 0; block.fill_amount = 0; staging_buffer_blocks.insert(staging_buffer_current, block); return OK; } Error RenderingDevice::_staging_buffer_allocate(uint32_t p_amount, uint32_t p_required_align, uint32_t &r_alloc_offset, uint32_t &r_alloc_size, StagingRequiredAction &r_required_action, bool p_can_segment) { // Determine a block to use. r_alloc_size = p_amount; r_required_action = STAGING_REQUIRED_ACTION_NONE; while (true) { r_alloc_offset = 0; // See if we can use current block. if (staging_buffer_blocks[staging_buffer_current].frame_used == frames_drawn) { // We used this block this frame, let's see if there is still room. uint32_t write_from = staging_buffer_blocks[staging_buffer_current].fill_amount; { uint32_t align_remainder = write_from % p_required_align; if (align_remainder != 0) { write_from += p_required_align - align_remainder; } } int32_t available_bytes = int32_t(staging_buffer_block_size) - int32_t(write_from); if ((int32_t)p_amount < available_bytes) { // All is good, we should be ok, all will fit. r_alloc_offset = write_from; } else if (p_can_segment && available_bytes >= (int32_t)p_required_align) { // Ok all won't fit but at least we can fit a chunkie. // All is good, update what needs to be written to. r_alloc_offset = write_from; r_alloc_size = available_bytes - (available_bytes % p_required_align); } else { // Can't fit it into this buffer. // Will need to try next buffer. staging_buffer_current = (staging_buffer_current + 1) % staging_buffer_blocks.size(); // Before doing anything, though, let's check that we didn't manage to fill all blocks. // Possible in a single frame. if (staging_buffer_blocks[staging_buffer_current].frame_used == frames_drawn) { // Guess we did.. ok, let's see if we can insert a new block. if ((uint64_t)staging_buffer_blocks.size() * staging_buffer_block_size < staging_buffer_max_size) { // We can, so we are safe. Error err = _insert_staging_block(); if (err) { return err; } // Claim for this frame. staging_buffer_blocks.write[staging_buffer_current].frame_used = frames_drawn; } else { // Ok, worst case scenario, all the staging buffers belong to this frame // and this frame is not even done. // If this is the main thread, it means the user is likely loading a lot of resources at once,. // Otherwise, the thread should just be blocked until the next frame (currently unimplemented). r_required_action = STAGING_REQUIRED_ACTION_FLUSH_AND_STALL_ALL; } } else { // Not from current frame, so continue and try again. continue; } } } else if (staging_buffer_blocks[staging_buffer_current].frame_used <= frames_drawn - frames.size()) { // This is an old block, which was already processed, let's reuse. staging_buffer_blocks.write[staging_buffer_current].frame_used = frames_drawn; staging_buffer_blocks.write[staging_buffer_current].fill_amount = 0; } else { // This block may still be in use, let's not touch it unless we have to, so.. can we create a new one? if ((uint64_t)staging_buffer_blocks.size() * staging_buffer_block_size < staging_buffer_max_size) { // We are still allowed to create a new block, so let's do that and insert it for current pos. Error err = _insert_staging_block(); if (err) { return err; } // Claim for this frame. staging_buffer_blocks.write[staging_buffer_current].frame_used = frames_drawn; } else { // Oops, we are out of room and we can't create more. // Let's flush older frames. // The logic here is that if a game is loading a lot of data from the main thread, it will need to be stalled anyway. // If loading from a separate thread, we can block that thread until next frame when more room is made (not currently implemented, though). r_required_action = STAGING_REQUIRED_ACTION_STALL_PREVIOUS; } } // All was good, break. break; } staging_buffer_used = true; return OK; } void RenderingDevice::_staging_buffer_execute_required_action(StagingRequiredAction p_required_action) { switch (p_required_action) { case STAGING_REQUIRED_ACTION_NONE: { // Do nothing. } break; case STAGING_REQUIRED_ACTION_FLUSH_AND_STALL_ALL: { _flush_and_stall_for_all_frames(); // Clear the whole staging buffer. for (int i = 0; i < staging_buffer_blocks.size(); i++) { staging_buffer_blocks.write[i].frame_used = 0; staging_buffer_blocks.write[i].fill_amount = 0; } // Claim for current frame. staging_buffer_blocks.write[staging_buffer_current].frame_used = frames_drawn; } break; case STAGING_REQUIRED_ACTION_STALL_PREVIOUS: { _stall_for_previous_frames(); for (int i = 0; i < staging_buffer_blocks.size(); i++) { // Clear all blocks but the ones from this frame. int block_idx = (i + staging_buffer_current) % staging_buffer_blocks.size(); if (staging_buffer_blocks[block_idx].frame_used == frames_drawn) { break; // Ok, we reached something from this frame, abort. } staging_buffer_blocks.write[block_idx].frame_used = 0; staging_buffer_blocks.write[block_idx].fill_amount = 0; } // Claim for current frame. staging_buffer_blocks.write[staging_buffer_current].frame_used = frames_drawn; } break; default: { DEV_ASSERT(false && "Unknown required action."); } break; } } Error RenderingDevice::_buffer_update(Buffer *p_buffer, RID p_buffer_id, size_t p_offset, const uint8_t *p_data, size_t p_data_size, bool p_use_draw_queue, uint32_t p_required_align) { // Submitting may get chunked for various reasons, so convert this to a task. size_t to_submit = p_data_size; size_t submit_from = 0; thread_local LocalVector command_buffer_copies_vector; command_buffer_copies_vector.clear(); while (to_submit > 0) { uint32_t block_write_offset; uint32_t block_write_amount; StagingRequiredAction required_action; Error err = _staging_buffer_allocate(MIN(to_submit, staging_buffer_block_size), p_required_align, block_write_offset, block_write_amount, required_action); if (err) { return err; } if (p_use_draw_queue && !command_buffer_copies_vector.is_empty() && required_action == STAGING_REQUIRED_ACTION_FLUSH_AND_STALL_ALL) { if (_buffer_make_mutable(p_buffer, p_buffer_id)) { // The buffer must be mutable to be used as a copy destination. draw_graph.add_synchronization(); } // If we're using the draw queue and the staging buffer requires flushing everything, we submit the command early and clear the current vector. draw_graph.add_buffer_update(p_buffer->driver_id, p_buffer->draw_tracker, command_buffer_copies_vector); command_buffer_copies_vector.clear(); } _staging_buffer_execute_required_action(required_action); // Map staging buffer (It's CPU and coherent). uint8_t *data_ptr = driver->buffer_map(staging_buffer_blocks[staging_buffer_current].driver_id); ERR_FAIL_NULL_V(data_ptr, ERR_CANT_CREATE); // Copy to staging buffer. memcpy(data_ptr + block_write_offset, p_data + submit_from, block_write_amount); // Unmap. driver->buffer_unmap(staging_buffer_blocks[staging_buffer_current].driver_id); // Insert a command to copy this. RDD::BufferCopyRegion region; region.src_offset = block_write_offset; region.dst_offset = submit_from + p_offset; region.size = block_write_amount; if (p_use_draw_queue) { RDG::RecordedBufferCopy buffer_copy; buffer_copy.source = staging_buffer_blocks[staging_buffer_current].driver_id; buffer_copy.region = region; command_buffer_copies_vector.push_back(buffer_copy); } else { driver->command_copy_buffer(frames[frame].setup_command_buffer, staging_buffer_blocks[staging_buffer_current].driver_id, p_buffer->driver_id, region); } staging_buffer_blocks.write[staging_buffer_current].fill_amount = block_write_offset + block_write_amount; to_submit -= block_write_amount; submit_from += block_write_amount; } if (p_use_draw_queue && !command_buffer_copies_vector.is_empty()) { if (_buffer_make_mutable(p_buffer, p_buffer_id)) { // The buffer must be mutable to be used as a copy destination. draw_graph.add_synchronization(); } draw_graph.add_buffer_update(p_buffer->driver_id, p_buffer->draw_tracker, command_buffer_copies_vector); } return OK; } Error RenderingDevice::buffer_copy(RID p_src_buffer, RID p_dst_buffer, uint32_t p_src_offset, uint32_t p_dst_offset, uint32_t p_size) { _THREAD_SAFE_METHOD_ ERR_FAIL_COND_V_MSG(draw_list, ERR_INVALID_PARAMETER, "Copying buffers is forbidden during creation of a draw list"); ERR_FAIL_COND_V_MSG(compute_list, ERR_INVALID_PARAMETER, "Copying buffers is forbidden during creation of a compute list"); Buffer *src_buffer = _get_buffer_from_owner(p_src_buffer); if (!src_buffer) { ERR_FAIL_V_MSG(ERR_INVALID_PARAMETER, "Source buffer argument is not a valid buffer of any type."); } Buffer *dst_buffer = _get_buffer_from_owner(p_dst_buffer); if (!dst_buffer) { ERR_FAIL_V_MSG(ERR_INVALID_PARAMETER, "Destination buffer argument is not a valid buffer of any type."); } // Validate the copy's dimensions for both buffers. ERR_FAIL_COND_V_MSG((p_size + p_src_offset) > src_buffer->size, ERR_INVALID_PARAMETER, "Size is larger than the source buffer."); ERR_FAIL_COND_V_MSG((p_size + p_dst_offset) > dst_buffer->size, ERR_INVALID_PARAMETER, "Size is larger than the destination buffer."); // Perform the copy. RDD::BufferCopyRegion region; region.src_offset = p_src_offset; region.dst_offset = p_dst_offset; region.size = p_size; if (_buffer_make_mutable(dst_buffer, p_dst_buffer)) { // The destination buffer must be mutable to be used as a copy destination. draw_graph.add_synchronization(); } draw_graph.add_buffer_copy(src_buffer->driver_id, src_buffer->draw_tracker, dst_buffer->driver_id, dst_buffer->draw_tracker, region); return OK; } Error RenderingDevice::buffer_update(RID p_buffer, uint32_t p_offset, uint32_t p_size, const void *p_data) { _THREAD_SAFE_METHOD_ ERR_FAIL_COND_V_MSG(draw_list, ERR_INVALID_PARAMETER, "Updating buffers is forbidden during creation of a draw list"); ERR_FAIL_COND_V_MSG(compute_list, ERR_INVALID_PARAMETER, "Updating buffers is forbidden during creation of a compute list"); Buffer *buffer = _get_buffer_from_owner(p_buffer); if (!buffer) { ERR_FAIL_V_MSG(ERR_INVALID_PARAMETER, "Buffer argument is not a valid buffer of any type."); } ERR_FAIL_COND_V_MSG(p_offset + p_size > buffer->size, ERR_INVALID_PARAMETER, "Attempted to write buffer (" + itos((p_offset + p_size) - buffer->size) + " bytes) past the end."); return _buffer_update(buffer, p_buffer, p_offset, (uint8_t *)p_data, p_size, true); } Error RenderingDevice::buffer_clear(RID p_buffer, uint32_t p_offset, uint32_t p_size) { _THREAD_SAFE_METHOD_ ERR_FAIL_COND_V_MSG((p_size % 4) != 0, ERR_INVALID_PARAMETER, "Size must be a multiple of four"); ERR_FAIL_COND_V_MSG(draw_list, ERR_INVALID_PARAMETER, "Updating buffers in is forbidden during creation of a draw list"); ERR_FAIL_COND_V_MSG(compute_list, ERR_INVALID_PARAMETER, "Updating buffers is forbidden during creation of a compute list"); Buffer *buffer = _get_buffer_from_owner(p_buffer); if (!buffer) { ERR_FAIL_V_MSG(ERR_INVALID_PARAMETER, "Buffer argument is not a valid buffer of any type."); } ERR_FAIL_COND_V_MSG(p_offset + p_size > buffer->size, ERR_INVALID_PARAMETER, "Attempted to write buffer (" + itos((p_offset + p_size) - buffer->size) + " bytes) past the end."); if (_buffer_make_mutable(buffer, p_buffer)) { // The destination buffer must be mutable to be used as a clear destination. draw_graph.add_synchronization(); } draw_graph.add_buffer_clear(buffer->driver_id, buffer->draw_tracker, p_offset, p_size); return OK; } Vector RenderingDevice::buffer_get_data(RID p_buffer, uint32_t p_offset, uint32_t p_size) { _THREAD_SAFE_METHOD_ Buffer *buffer = _get_buffer_from_owner(p_buffer); if (!buffer) { ERR_FAIL_V_MSG(Vector(), "Buffer is either invalid or this type of buffer can't be retrieved. Only Index and Vertex buffers allow retrieving."); } // Size of buffer to retrieve. if (!p_size) { p_size = buffer->size; } else { ERR_FAIL_COND_V_MSG(p_size + p_offset > buffer->size, Vector(), "Size is larger than the buffer."); } RDD::BufferID tmp_buffer = driver->buffer_create(buffer->size, RDD::BUFFER_USAGE_TRANSFER_TO_BIT, RDD::MEMORY_ALLOCATION_TYPE_CPU); ERR_FAIL_COND_V(!tmp_buffer, Vector()); RDD::BufferCopyRegion region; region.src_offset = p_offset; region.size = p_size; draw_graph.add_buffer_get_data(buffer->driver_id, buffer->draw_tracker, tmp_buffer, region); // Flush everything so memory can be safely mapped. _flush_and_stall_for_all_frames(); uint8_t *buffer_mem = driver->buffer_map(tmp_buffer); ERR_FAIL_NULL_V(buffer_mem, Vector()); Vector buffer_data; { buffer_data.resize(p_size); uint8_t *w = buffer_data.ptrw(); memcpy(w, buffer_mem, p_size); } driver->buffer_unmap(tmp_buffer); driver->buffer_free(tmp_buffer); return buffer_data; } RID RenderingDevice::storage_buffer_create(uint32_t p_size_bytes, const Vector &p_data, BitField p_usage) { _THREAD_SAFE_METHOD_ ERR_FAIL_COND_V(p_data.size() && (uint32_t)p_data.size() != p_size_bytes, RID()); Buffer buffer; buffer.size = p_size_bytes; buffer.usage = (RDD::BUFFER_USAGE_TRANSFER_FROM_BIT | RDD::BUFFER_USAGE_TRANSFER_TO_BIT | RDD::BUFFER_USAGE_STORAGE_BIT); if (p_usage.has_flag(STORAGE_BUFFER_USAGE_DISPATCH_INDIRECT)) { buffer.usage.set_flag(RDD::BUFFER_USAGE_INDIRECT_BIT); } buffer.driver_id = driver->buffer_create(buffer.size, buffer.usage, RDD::MEMORY_ALLOCATION_TYPE_GPU); ERR_FAIL_COND_V(!buffer.driver_id, RID()); // Storage buffers are assumed to be mutable. buffer.draw_tracker = RDG::resource_tracker_create(); buffer.draw_tracker->buffer_driver_id = buffer.driver_id; if (p_data.size()) { _buffer_update(&buffer, RID(), 0, p_data.ptr(), p_data.size()); } buffer_memory += buffer.size; RID id = storage_buffer_owner.make_rid(buffer); #ifdef DEV_ENABLED set_resource_name(id, "RID:" + itos(id.get_id())); #endif return id; } RID RenderingDevice::texture_buffer_create(uint32_t p_size_elements, DataFormat p_format, const Vector &p_data) { _THREAD_SAFE_METHOD_ uint32_t element_size = get_format_vertex_size(p_format); ERR_FAIL_COND_V_MSG(element_size == 0, RID(), "Format requested is not supported for texture buffers"); uint64_t size_bytes = uint64_t(element_size) * p_size_elements; ERR_FAIL_COND_V(p_data.size() && (uint32_t)p_data.size() != size_bytes, RID()); Buffer texture_buffer; texture_buffer.size = size_bytes; BitField usage = (RDD::BUFFER_USAGE_TRANSFER_FROM_BIT | RDD::BUFFER_USAGE_TRANSFER_TO_BIT | RDD::BUFFER_USAGE_TEXEL_BIT); texture_buffer.driver_id = driver->buffer_create(size_bytes, usage, RDD::MEMORY_ALLOCATION_TYPE_GPU); ERR_FAIL_COND_V(!texture_buffer.driver_id, RID()); // Texture buffers are assumed to be immutable unless they don't have initial data. if (p_data.is_empty()) { texture_buffer.draw_tracker = RDG::resource_tracker_create(); texture_buffer.draw_tracker->buffer_driver_id = texture_buffer.driver_id; } bool ok = driver->buffer_set_texel_format(texture_buffer.driver_id, p_format); if (!ok) { driver->buffer_free(texture_buffer.driver_id); ERR_FAIL_V(RID()); } if (p_data.size()) { _buffer_update(&texture_buffer, RID(), 0, p_data.ptr(), p_data.size()); } buffer_memory += size_bytes; RID id = texture_buffer_owner.make_rid(texture_buffer); #ifdef DEV_ENABLED set_resource_name(id, "RID:" + itos(id.get_id())); #endif return id; } /*****************/ /**** TEXTURE ****/ /*****************/ RID RenderingDevice::texture_create(const TextureFormat &p_format, const TextureView &p_view, const Vector> &p_data) { _THREAD_SAFE_METHOD_ // Some adjustments will happen. TextureFormat format = p_format; if (format.shareable_formats.size()) { ERR_FAIL_COND_V_MSG(!format.shareable_formats.has(format.format), RID(), "If supplied a list of shareable formats, the current format must be present in the list"); ERR_FAIL_COND_V_MSG(p_view.format_override != DATA_FORMAT_MAX && !format.shareable_formats.has(p_view.format_override), RID(), "If supplied a list of shareable formats, the current view format override must be present in the list"); } ERR_FAIL_INDEX_V(format.texture_type, RDD::TEXTURE_TYPE_MAX, RID()); ERR_FAIL_COND_V_MSG(format.width < 1, RID(), "Width must be equal or greater than 1 for all textures"); if (format.texture_type != TEXTURE_TYPE_1D && format.texture_type != TEXTURE_TYPE_1D_ARRAY) { ERR_FAIL_COND_V_MSG(format.height < 1, RID(), "Height must be equal or greater than 1 for 2D and 3D textures"); } if (format.texture_type == TEXTURE_TYPE_3D) { ERR_FAIL_COND_V_MSG(format.depth < 1, RID(), "Depth must be equal or greater than 1 for 3D textures"); } ERR_FAIL_COND_V(format.mipmaps < 1, RID()); if (format.texture_type == TEXTURE_TYPE_1D_ARRAY || format.texture_type == TEXTURE_TYPE_2D_ARRAY || format.texture_type == TEXTURE_TYPE_CUBE_ARRAY || format.texture_type == TEXTURE_TYPE_CUBE) { ERR_FAIL_COND_V_MSG(format.array_layers < 1, RID(), "Amount of layers must be equal or greater than 1 for arrays and cubemaps."); ERR_FAIL_COND_V_MSG((format.texture_type == TEXTURE_TYPE_CUBE_ARRAY || format.texture_type == TEXTURE_TYPE_CUBE) && (format.array_layers % 6) != 0, RID(), "Cubemap and cubemap array textures must provide a layer number that is multiple of 6"); } else { format.array_layers = 1; } ERR_FAIL_INDEX_V(format.samples, TEXTURE_SAMPLES_MAX, RID()); format.height = format.texture_type != TEXTURE_TYPE_1D && format.texture_type != TEXTURE_TYPE_1D_ARRAY ? format.height : 1; format.depth = format.texture_type == TEXTURE_TYPE_3D ? format.depth : 1; uint32_t required_mipmaps = get_image_required_mipmaps(format.width, format.height, format.depth); ERR_FAIL_COND_V_MSG(required_mipmaps < format.mipmaps, RID(), "Too many mipmaps requested for texture format and dimensions (" + itos(format.mipmaps) + "), maximum allowed: (" + itos(required_mipmaps) + ")."); uint32_t forced_usage_bits = 0; if (p_data.size()) { ERR_FAIL_COND_V_MSG(p_data.size() != (int)format.array_layers, RID(), "Default supplied data for image format is of invalid length (" + itos(p_data.size()) + "), should be (" + itos(format.array_layers) + ")."); for (uint32_t i = 0; i < format.array_layers; i++) { uint32_t required_size = get_image_format_required_size(format.format, format.width, format.height, format.depth, format.mipmaps); ERR_FAIL_COND_V_MSG((uint32_t)p_data[i].size() != required_size, RID(), "Data for slice index " + itos(i) + " (mapped to layer " + itos(i) + ") differs in size (supplied: " + itos(p_data[i].size()) + ") than what is required by the format (" + itos(required_size) + ")."); } if (!(format.usage_bits & TEXTURE_USAGE_CAN_UPDATE_BIT)) { forced_usage_bits = TEXTURE_USAGE_CAN_UPDATE_BIT; } } { // Validate that this image is supported for the intended use. bool cpu_readable = (format.usage_bits & RDD::TEXTURE_USAGE_CPU_READ_BIT); BitField supported_usage = driver->texture_get_usages_supported_by_format(format.format, cpu_readable); String format_text = "'" + String(FORMAT_NAMES[format.format]) + "'"; if ((format.usage_bits & TEXTURE_USAGE_SAMPLING_BIT) && !supported_usage.has_flag(TEXTURE_USAGE_SAMPLING_BIT)) { ERR_FAIL_V_MSG(RID(), "Format " + format_text + " does not support usage as sampling texture."); } if ((format.usage_bits & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT) && !supported_usage.has_flag(TEXTURE_USAGE_COLOR_ATTACHMENT_BIT)) { ERR_FAIL_V_MSG(RID(), "Format " + format_text + " does not support usage as color attachment."); } if ((format.usage_bits & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) && !supported_usage.has_flag(TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) { ERR_FAIL_V_MSG(RID(), "Format " + format_text + " does not support usage as depth-stencil attachment."); } if ((format.usage_bits & TEXTURE_USAGE_STORAGE_BIT) && !supported_usage.has_flag(TEXTURE_USAGE_STORAGE_BIT)) { ERR_FAIL_V_MSG(RID(), "Format " + format_text + " does not support usage as storage image."); } if ((format.usage_bits & TEXTURE_USAGE_STORAGE_ATOMIC_BIT) && !supported_usage.has_flag(TEXTURE_USAGE_STORAGE_ATOMIC_BIT)) { ERR_FAIL_V_MSG(RID(), "Format " + format_text + " does not support usage as atomic storage image."); } if ((format.usage_bits & TEXTURE_USAGE_VRS_ATTACHMENT_BIT) && !supported_usage.has_flag(TEXTURE_USAGE_VRS_ATTACHMENT_BIT)) { ERR_FAIL_V_MSG(RID(), "Format " + format_text + " does not support usage as VRS attachment."); } } // Transfer and validate view info. RDD::TextureView tv; if (p_view.format_override == DATA_FORMAT_MAX) { tv.format = format.format; } else { ERR_FAIL_INDEX_V(p_view.format_override, DATA_FORMAT_MAX, RID()); tv.format = p_view.format_override; } ERR_FAIL_INDEX_V(p_view.swizzle_r, TEXTURE_SWIZZLE_MAX, RID()); ERR_FAIL_INDEX_V(p_view.swizzle_g, TEXTURE_SWIZZLE_MAX, RID()); ERR_FAIL_INDEX_V(p_view.swizzle_b, TEXTURE_SWIZZLE_MAX, RID()); ERR_FAIL_INDEX_V(p_view.swizzle_a, TEXTURE_SWIZZLE_MAX, RID()); tv.swizzle_r = p_view.swizzle_r; tv.swizzle_g = p_view.swizzle_g; tv.swizzle_b = p_view.swizzle_b; tv.swizzle_a = p_view.swizzle_a; // Create. Texture texture; format.usage_bits |= forced_usage_bits; texture.driver_id = driver->texture_create(format, tv); ERR_FAIL_COND_V(!texture.driver_id, RID()); texture.type = format.texture_type; texture.format = format.format; texture.width = format.width; texture.height = format.height; texture.depth = format.depth; texture.layers = format.array_layers; texture.mipmaps = format.mipmaps; texture.base_mipmap = 0; texture.base_layer = 0; texture.is_resolve_buffer = format.is_resolve_buffer; texture.usage_flags = format.usage_bits & ~forced_usage_bits; texture.samples = format.samples; texture.allowed_shared_formats = format.shareable_formats; texture.has_initial_data = !p_data.is_empty(); if ((format.usage_bits & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) { texture.read_aspect_flags.set_flag(RDD::TEXTURE_ASPECT_DEPTH_BIT); texture.barrier_aspect_flags.set_flag(RDD::TEXTURE_ASPECT_DEPTH_BIT); if (format_has_stencil(format.format)) { texture.barrier_aspect_flags.set_flag(RDD::TEXTURE_ASPECT_STENCIL_BIT); } } else { texture.read_aspect_flags.set_flag(RDD::TEXTURE_ASPECT_COLOR_BIT); texture.barrier_aspect_flags.set_flag(RDD::TEXTURE_ASPECT_COLOR_BIT); } texture.bound = false; // Textures are only assumed to be immutable if they have initial data and none of the other bits that indicate write usage are enabled. bool texture_mutable_by_default = texture.usage_flags & (TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | TEXTURE_USAGE_STORAGE_BIT | TEXTURE_USAGE_STORAGE_ATOMIC_BIT | TEXTURE_USAGE_VRS_ATTACHMENT_BIT); if (p_data.is_empty() || texture_mutable_by_default) { _texture_make_mutable(&texture, RID()); } texture_memory += driver->texture_get_allocation_size(texture.driver_id); RID id = texture_owner.make_rid(texture); #ifdef DEV_ENABLED set_resource_name(id, "RID:" + itos(id.get_id())); #endif if (p_data.size()) { for (uint32_t i = 0; i < p_format.array_layers; i++) { _texture_update(id, i, p_data[i], true, false); } if (texture.draw_tracker != nullptr) { // Draw tracker can assume the texture will be in transfer destination. texture.draw_tracker->usage = RDG::RESOURCE_USAGE_TRANSFER_TO; } } return id; } RID RenderingDevice::texture_create_shared(const TextureView &p_view, RID p_with_texture) { _THREAD_SAFE_METHOD_ Texture *src_texture = texture_owner.get_or_null(p_with_texture); ERR_FAIL_NULL_V(src_texture, RID()); if (src_texture->owner.is_valid()) { // Ahh this is a share. The RenderingDeviceDriver needs the actual owner. p_with_texture = src_texture->owner; src_texture = texture_owner.get_or_null(src_texture->owner); ERR_FAIL_NULL_V(src_texture, RID()); // This is a bug. } // Create view. Texture texture = *src_texture; RDD::TextureView tv; if (p_view.format_override == DATA_FORMAT_MAX || p_view.format_override == texture.format) { tv.format = texture.format; } else { ERR_FAIL_INDEX_V(p_view.format_override, DATA_FORMAT_MAX, RID()); ERR_FAIL_COND_V_MSG(!texture.allowed_shared_formats.has(p_view.format_override), RID(), "Format override is not in the list of allowed shareable formats for original texture."); tv.format = p_view.format_override; } tv.swizzle_r = p_view.swizzle_r; tv.swizzle_g = p_view.swizzle_g; tv.swizzle_b = p_view.swizzle_b; tv.swizzle_a = p_view.swizzle_a; texture.driver_id = driver->texture_create_shared(texture.driver_id, tv); ERR_FAIL_COND_V(!texture.driver_id, RID()); texture.slice_trackers.clear(); if (texture.draw_tracker != nullptr) { texture.draw_tracker->reference_count++; } texture.owner = p_with_texture; RID id = texture_owner.make_rid(texture); #ifdef DEV_ENABLED set_resource_name(id, "RID:" + itos(id.get_id())); #endif _add_dependency(id, p_with_texture); return id; } RID RenderingDevice::texture_create_from_extension(TextureType p_type, DataFormat p_format, TextureSamples p_samples, BitField p_usage, uint64_t p_image, uint64_t p_width, uint64_t p_height, uint64_t p_depth, uint64_t p_layers) { _THREAD_SAFE_METHOD_ // This method creates a texture object using a VkImage created by an extension, module or other external source (OpenXR uses this). Texture texture; texture.type = p_type; texture.format = p_format; texture.samples = p_samples; texture.width = p_width; texture.height = p_height; texture.depth = p_depth; texture.layers = p_layers; texture.mipmaps = 1; texture.usage_flags = p_usage; texture.base_mipmap = 0; texture.base_layer = 0; texture.allowed_shared_formats.push_back(RD::DATA_FORMAT_R8G8B8A8_UNORM); texture.allowed_shared_formats.push_back(RD::DATA_FORMAT_R8G8B8A8_SRGB); if (p_usage.has_flag(TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) { texture.read_aspect_flags.set_flag(RDD::TEXTURE_ASPECT_DEPTH_BIT); texture.barrier_aspect_flags.set_flag(RDD::TEXTURE_ASPECT_DEPTH_BIT); /*if (format_has_stencil(p_format.format)) { texture.barrier_aspect_flags.set_flag(RDD::TEXTURE_ASPECT_STENCIL_BIT); }*/ } else { texture.read_aspect_flags.set_flag(RDD::TEXTURE_ASPECT_COLOR_BIT); texture.barrier_aspect_flags.set_flag(RDD::TEXTURE_ASPECT_COLOR_BIT); } texture.driver_id = driver->texture_create_from_extension(p_image, p_type, p_format, p_layers, (texture.usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)); ERR_FAIL_COND_V(!texture.driver_id, RID()); _texture_make_mutable(&texture, RID()); RID id = texture_owner.make_rid(texture); #ifdef DEV_ENABLED set_resource_name(id, "RID:" + itos(id.get_id())); #endif return id; } RID RenderingDevice::texture_create_shared_from_slice(const TextureView &p_view, RID p_with_texture, uint32_t p_layer, uint32_t p_mipmap, uint32_t p_mipmaps, TextureSliceType p_slice_type, uint32_t p_layers) { _THREAD_SAFE_METHOD_ Texture *src_texture = texture_owner.get_or_null(p_with_texture); ERR_FAIL_NULL_V(src_texture, RID()); if (src_texture->owner.is_valid()) { // // Ahh this is a share. The RenderingDeviceDriver needs the actual owner. p_with_texture = src_texture->owner; src_texture = texture_owner.get_or_null(src_texture->owner); ERR_FAIL_NULL_V(src_texture, RID()); // This is a bug. } ERR_FAIL_COND_V_MSG(p_slice_type == TEXTURE_SLICE_CUBEMAP && (src_texture->type != TEXTURE_TYPE_CUBE && src_texture->type != TEXTURE_TYPE_CUBE_ARRAY), RID(), "Can only create a cubemap slice from a cubemap or cubemap array mipmap"); ERR_FAIL_COND_V_MSG(p_slice_type == TEXTURE_SLICE_3D && src_texture->type != TEXTURE_TYPE_3D, RID(), "Can only create a 3D slice from a 3D texture"); ERR_FAIL_COND_V_MSG(p_slice_type == TEXTURE_SLICE_2D_ARRAY && (src_texture->type != TEXTURE_TYPE_2D_ARRAY), RID(), "Can only create an array slice from a 2D array mipmap"); // Create view. ERR_FAIL_UNSIGNED_INDEX_V(p_mipmap, src_texture->mipmaps, RID()); ERR_FAIL_COND_V(p_mipmap + p_mipmaps > src_texture->mipmaps, RID()); ERR_FAIL_UNSIGNED_INDEX_V(p_layer, src_texture->layers, RID()); int slice_layers = 1; if (p_layers != 0) { ERR_FAIL_COND_V_MSG(p_layers > 1 && p_slice_type != TEXTURE_SLICE_2D_ARRAY, RID(), "layer slicing only supported for 2D arrays"); ERR_FAIL_COND_V_MSG(p_layer + p_layers > src_texture->layers, RID(), "layer slice is out of bounds"); slice_layers = p_layers; } else if (p_slice_type == TEXTURE_SLICE_2D_ARRAY) { ERR_FAIL_COND_V_MSG(p_layer != 0, RID(), "layer must be 0 when obtaining a 2D array mipmap slice"); slice_layers = src_texture->layers; } else if (p_slice_type == TEXTURE_SLICE_CUBEMAP) { slice_layers = 6; } Texture texture = *src_texture; get_image_format_required_size(texture.format, texture.width, texture.height, texture.depth, p_mipmap + 1, &texture.width, &texture.height); texture.mipmaps = p_mipmaps; texture.layers = slice_layers; texture.base_mipmap = p_mipmap; texture.base_layer = p_layer; if (p_slice_type == TEXTURE_SLICE_2D) { texture.type = TEXTURE_TYPE_2D; } else if (p_slice_type == TEXTURE_SLICE_3D) { texture.type = TEXTURE_TYPE_3D; } RDD::TextureView tv; if (p_view.format_override == DATA_FORMAT_MAX || p_view.format_override == texture.format) { tv.format = texture.format; } else { ERR_FAIL_INDEX_V(p_view.format_override, DATA_FORMAT_MAX, RID()); ERR_FAIL_COND_V_MSG(!texture.allowed_shared_formats.has(p_view.format_override), RID(), "Format override is not in the list of allowed shareable formats for original texture."); tv.format = p_view.format_override; } tv.swizzle_r = p_view.swizzle_r; tv.swizzle_g = p_view.swizzle_g; tv.swizzle_b = p_view.swizzle_b; tv.swizzle_a = p_view.swizzle_a; if (p_slice_type == TEXTURE_SLICE_CUBEMAP) { ERR_FAIL_COND_V_MSG(p_layer >= src_texture->layers, RID(), "Specified layer is invalid for cubemap"); ERR_FAIL_COND_V_MSG((p_layer % 6) != 0, RID(), "Specified layer must be a multiple of 6."); } texture.driver_id = driver->texture_create_shared_from_slice(src_texture->driver_id, tv, p_slice_type, p_layer, slice_layers, p_mipmap, p_mipmaps); ERR_FAIL_COND_V(!texture.driver_id, RID()); const Rect2i slice_rect(p_mipmap, p_layer, p_mipmaps, slice_layers); texture.owner = p_with_texture; texture.slice_type = p_slice_type; texture.slice_rect = slice_rect; // If parent is mutable, make slice mutable by default. if (src_texture->draw_tracker != nullptr) { texture.draw_tracker = nullptr; _texture_make_mutable(&texture, RID()); } RID id = texture_owner.make_rid(texture); #ifdef DEV_ENABLED set_resource_name(id, "RID:" + itos(id.get_id())); #endif _add_dependency(id, p_with_texture); return id; } Error RenderingDevice::texture_update(RID p_texture, uint32_t p_layer, const Vector &p_data) { return _texture_update(p_texture, p_layer, p_data, false, true); } static _ALWAYS_INLINE_ void _copy_region(uint8_t const *__restrict p_src, uint8_t *__restrict p_dst, uint32_t p_src_x, uint32_t p_src_y, uint32_t p_src_w, uint32_t p_src_h, uint32_t p_src_full_w, uint32_t p_dst_pitch, uint32_t p_unit_size) { uint32_t src_offset = (p_src_y * p_src_full_w + p_src_x) * p_unit_size; uint32_t dst_offset = 0; for (uint32_t y = p_src_h; y > 0; y--) { uint8_t const *__restrict src = p_src + src_offset; uint8_t *__restrict dst = p_dst + dst_offset; for (uint32_t x = p_src_w * p_unit_size; x > 0; x--) { *dst = *src; src++; dst++; } src_offset += p_src_full_w * p_unit_size; dst_offset += p_dst_pitch; } } Error RenderingDevice::_texture_update(RID p_texture, uint32_t p_layer, const Vector &p_data, bool p_use_setup_queue, bool p_validate_can_update) { _THREAD_SAFE_METHOD_ ERR_FAIL_COND_V_MSG((draw_list || compute_list) && !p_use_setup_queue, ERR_INVALID_PARAMETER, "Updating textures is forbidden during creation of a draw or compute list"); Texture *texture = texture_owner.get_or_null(p_texture); ERR_FAIL_NULL_V(texture, ERR_INVALID_PARAMETER); if (texture->owner != RID()) { p_texture = texture->owner; texture = texture_owner.get_or_null(texture->owner); ERR_FAIL_NULL_V(texture, ERR_BUG); // This is a bug. } ERR_FAIL_COND_V_MSG(texture->bound, ERR_CANT_ACQUIRE_RESOURCE, "Texture can't be updated while a draw list that uses it as part of a framebuffer is being created. Ensure the draw list is finalized (and that the color/depth texture using it is not set to `RenderingDevice.FINAL_ACTION_CONTINUE`) to update this texture."); ERR_FAIL_COND_V_MSG(p_validate_can_update && !(texture->usage_flags & TEXTURE_USAGE_CAN_UPDATE_BIT), ERR_INVALID_PARAMETER, "Texture requires the `RenderingDevice.TEXTURE_USAGE_CAN_UPDATE_BIT` to be set to be updatable."); uint32_t layer_count = texture->layers; if (texture->type == TEXTURE_TYPE_CUBE || texture->type == TEXTURE_TYPE_CUBE_ARRAY) { layer_count *= 6; } ERR_FAIL_COND_V(p_layer >= layer_count, ERR_INVALID_PARAMETER); uint32_t width, height; uint32_t tight_mip_size = get_image_format_required_size(texture->format, texture->width, texture->height, texture->depth, texture->mipmaps, &width, &height); uint32_t required_size = tight_mip_size; uint32_t required_align = get_compressed_image_format_block_byte_size(texture->format); if (required_align == 1) { required_align = get_image_format_pixel_size(texture->format); } required_align = STEPIFY(required_align, driver->api_trait_get(RDD::API_TRAIT_TEXTURE_TRANSFER_ALIGNMENT)); ERR_FAIL_COND_V_MSG(required_size != (uint32_t)p_data.size(), ERR_INVALID_PARAMETER, "Required size for texture update (" + itos(required_size) + ") does not match data supplied size (" + itos(p_data.size()) + ")."); uint32_t region_size = texture_upload_region_size_px; const uint8_t *r = p_data.ptr(); thread_local LocalVector command_buffer_to_texture_copies_vector; command_buffer_to_texture_copies_vector.clear(); if (p_use_setup_queue && driver->api_trait_get(RDD::API_TRAIT_HONORS_PIPELINE_BARRIERS)) { // When using the setup queue directly, we transition the texture to the optimal layout. RDD::TextureBarrier tb; tb.texture = texture->driver_id; tb.dst_access = RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT; tb.prev_layout = RDD::TEXTURE_LAYOUT_UNDEFINED; tb.next_layout = RDD::TEXTURE_LAYOUT_TRANSFER_DST_OPTIMAL; tb.subresources.aspect = texture->barrier_aspect_flags; tb.subresources.mipmap_count = texture->mipmaps; tb.subresources.base_layer = p_layer; tb.subresources.layer_count = 1; driver->command_pipeline_barrier(frames[frame].setup_command_buffer, RDD::PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, RDD::PIPELINE_STAGE_TRANSFER_BIT, {}, {}, tb); } uint32_t mipmap_offset = 0; uint32_t logic_width = texture->width; uint32_t logic_height = texture->height; for (uint32_t mm_i = 0; mm_i < texture->mipmaps; mm_i++) { uint32_t depth = 0; uint32_t image_total = get_image_format_required_size(texture->format, texture->width, texture->height, texture->depth, mm_i + 1, &width, &height, &depth); const uint8_t *read_ptr_mipmap = r + mipmap_offset; tight_mip_size = image_total - mipmap_offset; for (uint32_t z = 0; z < depth; z++) { // For 3D textures, depth may be > 0. const uint8_t *read_ptr = read_ptr_mipmap + (tight_mip_size / depth) * z; for (uint32_t y = 0; y < height; y += region_size) { for (uint32_t x = 0; x < width; x += region_size) { uint32_t region_w = MIN(region_size, width - x); uint32_t region_h = MIN(region_size, height - y); uint32_t region_logic_w = MIN(region_size, logic_width - x); uint32_t region_logic_h = MIN(region_size, logic_height - y); uint32_t pixel_size = get_image_format_pixel_size(texture->format); uint32_t block_w = 0, block_h = 0; get_compressed_image_format_block_dimensions(texture->format, block_w, block_h); uint32_t region_pitch = (region_w * pixel_size * block_w) >> get_compressed_image_format_pixel_rshift(texture->format); uint32_t pitch_step = driver->api_trait_get(RDD::API_TRAIT_TEXTURE_DATA_ROW_PITCH_STEP); region_pitch = STEPIFY(region_pitch, pitch_step); uint32_t to_allocate = region_pitch * region_h; uint32_t alloc_offset = 0, alloc_size = 0; StagingRequiredAction required_action; Error err = _staging_buffer_allocate(to_allocate, required_align, alloc_offset, alloc_size, required_action, false); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); if (!p_use_setup_queue && !command_buffer_to_texture_copies_vector.is_empty() && required_action == STAGING_REQUIRED_ACTION_FLUSH_AND_STALL_ALL) { if (_texture_make_mutable(texture, p_texture)) { // The texture must be mutable to be used as a copy destination. draw_graph.add_synchronization(); } // If we're using the draw queue and the staging buffer requires flushing everything, we submit the command early and clear the current vector. draw_graph.add_texture_update(texture->driver_id, texture->draw_tracker, command_buffer_to_texture_copies_vector); command_buffer_to_texture_copies_vector.clear(); } _staging_buffer_execute_required_action(required_action); uint8_t *write_ptr; { // Map. uint8_t *data_ptr = driver->buffer_map(staging_buffer_blocks[staging_buffer_current].driver_id); ERR_FAIL_NULL_V(data_ptr, ERR_CANT_CREATE); write_ptr = data_ptr; write_ptr += alloc_offset; } ERR_FAIL_COND_V(region_w % block_w, ERR_BUG); ERR_FAIL_COND_V(region_h % block_h, ERR_BUG); if (block_w != 1 || block_h != 1) { // Compressed image (blocks). // Must copy a block region. uint32_t block_size = get_compressed_image_format_block_byte_size(texture->format); // Re-create current variables in blocky format. uint32_t xb = x / block_w; uint32_t yb = y / block_h; uint32_t wb = width / block_w; //uint32_t hb = height / block_h; uint32_t region_wb = region_w / block_w; uint32_t region_hb = region_h / block_h; _copy_region(read_ptr, write_ptr, xb, yb, region_wb, region_hb, wb, region_pitch, block_size); } else { // Regular image (pixels). // Must copy a pixel region. _copy_region(read_ptr, write_ptr, x, y, region_w, region_h, width, region_pitch, pixel_size); } { // Unmap. driver->buffer_unmap(staging_buffer_blocks[staging_buffer_current].driver_id); } RDD::BufferTextureCopyRegion copy_region; copy_region.buffer_offset = alloc_offset; copy_region.texture_subresources.aspect = texture->read_aspect_flags; copy_region.texture_subresources.mipmap = mm_i; copy_region.texture_subresources.base_layer = p_layer; copy_region.texture_subresources.layer_count = 1; copy_region.texture_offset = Vector3i(x, y, z); copy_region.texture_region_size = Vector3i(region_logic_w, region_logic_h, 1); if (p_use_setup_queue) { driver->command_copy_buffer_to_texture(frames[frame].setup_command_buffer, staging_buffer_blocks[staging_buffer_current].driver_id, texture->driver_id, RDD::TEXTURE_LAYOUT_TRANSFER_DST_OPTIMAL, copy_region); } else { RDG::RecordedBufferToTextureCopy buffer_to_texture_copy; buffer_to_texture_copy.from_buffer = staging_buffer_blocks[staging_buffer_current].driver_id; buffer_to_texture_copy.region = copy_region; command_buffer_to_texture_copies_vector.push_back(buffer_to_texture_copy); } staging_buffer_blocks.write[staging_buffer_current].fill_amount = alloc_offset + alloc_size; } } } mipmap_offset = image_total; logic_width = MAX(1u, logic_width >> 1); logic_height = MAX(1u, logic_height >> 1); } if (p_use_setup_queue && (texture->draw_tracker == nullptr) && driver->api_trait_get(RDD::API_TRAIT_HONORS_PIPELINE_BARRIERS)) { // If the texture does not have a tracker, it means it must be transitioned to the sampling state. RDD::TextureBarrier tb; tb.texture = texture->driver_id; tb.src_access = RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT; tb.prev_layout = RDD::TEXTURE_LAYOUT_TRANSFER_DST_OPTIMAL; tb.next_layout = RDD::TEXTURE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; tb.subresources.aspect = texture->barrier_aspect_flags; tb.subresources.mipmap_count = texture->mipmaps; tb.subresources.base_layer = p_layer; tb.subresources.layer_count = 1; driver->command_pipeline_barrier(frames[frame].setup_command_buffer, RDD::PIPELINE_STAGE_TRANSFER_BIT, RDD::PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, {}, {}, tb); } else if (!p_use_setup_queue && !command_buffer_to_texture_copies_vector.is_empty()) { if (_texture_make_mutable(texture, p_texture)) { // The texture must be mutable to be used as a copy destination. draw_graph.add_synchronization(); } draw_graph.add_texture_update(texture->driver_id, texture->draw_tracker, command_buffer_to_texture_copies_vector); } return OK; } Vector RenderingDevice::_texture_get_data(Texture *tex, uint32_t p_layer, bool p_2d) { uint32_t width, height, depth; uint32_t tight_mip_size = get_image_format_required_size(tex->format, tex->width, tex->height, p_2d ? 1 : tex->depth, tex->mipmaps, &width, &height, &depth); Vector image_data; image_data.resize(tight_mip_size); uint32_t blockw, blockh; get_compressed_image_format_block_dimensions(tex->format, blockw, blockh); uint32_t block_size = get_compressed_image_format_block_byte_size(tex->format); uint32_t pixel_size = get_image_format_pixel_size(tex->format); { uint8_t *w = image_data.ptrw(); uint32_t mipmap_offset = 0; for (uint32_t mm_i = 0; mm_i < tex->mipmaps; mm_i++) { uint32_t image_total = get_image_format_required_size(tex->format, tex->width, tex->height, p_2d ? 1 : tex->depth, mm_i + 1, &width, &height, &depth); uint8_t *write_ptr_mipmap = w + mipmap_offset; tight_mip_size = image_total - mipmap_offset; RDD::TextureSubresource subres; subres.aspect = RDD::TEXTURE_ASPECT_COLOR; subres.layer = p_layer; subres.mipmap = mm_i; RDD::TextureCopyableLayout layout; driver->texture_get_copyable_layout(tex->driver_id, subres, &layout); uint8_t *img_mem = driver->texture_map(tex->driver_id, subres); ERR_FAIL_NULL_V(img_mem, Vector()); for (uint32_t z = 0; z < depth; z++) { uint8_t *write_ptr = write_ptr_mipmap + z * tight_mip_size / depth; const uint8_t *slice_read_ptr = img_mem + z * layout.depth_pitch; if (block_size > 1) { // Compressed. uint32_t line_width = (block_size * (width / blockw)); for (uint32_t y = 0; y < height / blockh; y++) { const uint8_t *rptr = slice_read_ptr + y * layout.row_pitch; uint8_t *wptr = write_ptr + y * line_width; memcpy(wptr, rptr, line_width); } } else { // Uncompressed. for (uint32_t y = 0; y < height; y++) { const uint8_t *rptr = slice_read_ptr + y * layout.row_pitch; uint8_t *wptr = write_ptr + y * pixel_size * width; memcpy(wptr, rptr, (uint64_t)pixel_size * width); } } } driver->texture_unmap(tex->driver_id); mipmap_offset = image_total; } } return image_data; } Vector RenderingDevice::texture_get_data(RID p_texture, uint32_t p_layer) { _THREAD_SAFE_METHOD_ Texture *tex = texture_owner.get_or_null(p_texture); ERR_FAIL_NULL_V(tex, Vector()); ERR_FAIL_COND_V_MSG(tex->bound, Vector(), "Texture can't be retrieved while a draw list that uses it as part of a framebuffer is being created. Ensure the draw list is finalized (and that the color/depth texture using it is not set to `RenderingDevice.FINAL_ACTION_CONTINUE`) to retrieve this texture."); ERR_FAIL_COND_V_MSG(!(tex->usage_flags & TEXTURE_USAGE_CAN_COPY_FROM_BIT), Vector(), "Texture requires the `RenderingDevice.TEXTURE_USAGE_CAN_COPY_FROM_BIT` to be set to be retrieved."); uint32_t layer_count = tex->layers; if (tex->type == TEXTURE_TYPE_CUBE || tex->type == TEXTURE_TYPE_CUBE_ARRAY) { layer_count *= 6; } ERR_FAIL_COND_V(p_layer >= layer_count, Vector()); if ((tex->usage_flags & TEXTURE_USAGE_CPU_READ_BIT)) { // Does not need anything fancy, map and read. return _texture_get_data(tex, p_layer); } else { LocalVector mip_layouts; uint32_t work_mip_alignment = driver->api_trait_get(RDD::API_TRAIT_TEXTURE_TRANSFER_ALIGNMENT); uint32_t work_buffer_size = 0; mip_layouts.resize(tex->mipmaps); for (uint32_t i = 0; i < tex->mipmaps; i++) { RDD::TextureSubresource subres; subres.aspect = RDD::TEXTURE_ASPECT_COLOR; subres.layer = p_layer; subres.mipmap = i; driver->texture_get_copyable_layout(tex->driver_id, subres, &mip_layouts[i]); // Assuming layers are tightly packed. If this is not true on some driver, we must modify the copy algorithm. DEV_ASSERT(mip_layouts[i].layer_pitch == mip_layouts[i].size / layer_count); work_buffer_size = STEPIFY(work_buffer_size, work_mip_alignment) + mip_layouts[i].size; } RDD::BufferID tmp_buffer = driver->buffer_create(work_buffer_size, RDD::BUFFER_USAGE_TRANSFER_TO_BIT, RDD::MEMORY_ALLOCATION_TYPE_CPU); ERR_FAIL_COND_V(!tmp_buffer, Vector()); thread_local LocalVector command_buffer_texture_copy_regions_vector; command_buffer_texture_copy_regions_vector.clear(); uint32_t block_w = 0, block_h = 0; get_compressed_image_format_block_dimensions(tex->format, block_w, block_h); uint32_t w = tex->width; uint32_t h = tex->height; uint32_t d = tex->depth; for (uint32_t i = 0; i < tex->mipmaps; i++) { RDD::BufferTextureCopyRegion copy_region; copy_region.buffer_offset = mip_layouts[i].offset; copy_region.texture_subresources.aspect = tex->read_aspect_flags; copy_region.texture_subresources.mipmap = i; copy_region.texture_subresources.base_layer = p_layer; copy_region.texture_subresources.layer_count = 1; copy_region.texture_region_size.x = w; copy_region.texture_region_size.y = h; copy_region.texture_region_size.z = d; command_buffer_texture_copy_regions_vector.push_back(copy_region); w = MAX(block_w, w >> 1); h = MAX(block_h, h >> 1); d = MAX(1u, d >> 1); } if (_texture_make_mutable(tex, p_texture)) { // The texture must be mutable to be used as a copy source due to layout transitions. draw_graph.add_synchronization(); } draw_graph.add_texture_get_data(tex->driver_id, tex->draw_tracker, tmp_buffer, command_buffer_texture_copy_regions_vector); // Flush everything so memory can be safely mapped. _flush_and_stall_for_all_frames(); const uint8_t *read_ptr = driver->buffer_map(tmp_buffer); ERR_FAIL_NULL_V(read_ptr, Vector()); Vector buffer_data; uint32_t tight_buffer_size = get_image_format_required_size(tex->format, tex->width, tex->height, tex->depth, tex->mipmaps); buffer_data.resize(tight_buffer_size); uint8_t *write_ptr = buffer_data.ptrw(); w = tex->width; h = tex->height; d = tex->depth; for (uint32_t i = 0; i < tex->mipmaps; i++) { uint32_t width = 0, height = 0, depth = 0; uint32_t tight_mip_size = get_image_format_required_size(tex->format, w, h, d, 1, &width, &height, &depth); uint32_t tight_row_pitch = tight_mip_size / ((height / block_h) * depth); // Copy row-by-row to erase padding due to alignments. const uint8_t *rp = read_ptr; uint8_t *wp = write_ptr; for (uint32_t row = h * d / block_h; row != 0; row--) { memcpy(wp, rp, tight_row_pitch); rp += mip_layouts[i].row_pitch; wp += tight_row_pitch; } w = MAX(block_w, w >> 1); h = MAX(block_h, h >> 1); d = MAX(1u, d >> 1); read_ptr += mip_layouts[i].size; write_ptr += tight_mip_size; } driver->buffer_unmap(tmp_buffer); driver->buffer_free(tmp_buffer); return buffer_data; } } bool RenderingDevice::texture_is_shared(RID p_texture) { _THREAD_SAFE_METHOD_ Texture *tex = texture_owner.get_or_null(p_texture); ERR_FAIL_NULL_V(tex, false); return tex->owner.is_valid(); } bool RenderingDevice::texture_is_valid(RID p_texture) { return texture_owner.owns(p_texture); } RD::TextureFormat RenderingDevice::texture_get_format(RID p_texture) { _THREAD_SAFE_METHOD_ Texture *tex = texture_owner.get_or_null(p_texture); ERR_FAIL_NULL_V(tex, TextureFormat()); TextureFormat tf; tf.format = tex->format; tf.width = tex->width; tf.height = tex->height; tf.depth = tex->depth; tf.array_layers = tex->layers; tf.mipmaps = tex->mipmaps; tf.texture_type = tex->type; tf.samples = tex->samples; tf.usage_bits = tex->usage_flags; tf.shareable_formats = tex->allowed_shared_formats; tf.is_resolve_buffer = tex->is_resolve_buffer; return tf; } Size2i RenderingDevice::texture_size(RID p_texture) { _THREAD_SAFE_METHOD_ Texture *tex = texture_owner.get_or_null(p_texture); ERR_FAIL_NULL_V(tex, Size2i()); return Size2i(tex->width, tex->height); } #ifndef DISABLE_DEPRECATED uint64_t RenderingDevice::texture_get_native_handle(RID p_texture) { return get_driver_resource(DRIVER_RESOURCE_TEXTURE, p_texture); } #endif Error RenderingDevice::texture_copy(RID p_from_texture, RID p_to_texture, const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_size, uint32_t p_src_mipmap, uint32_t p_dst_mipmap, uint32_t p_src_layer, uint32_t p_dst_layer) { _THREAD_SAFE_METHOD_ Texture *src_tex = texture_owner.get_or_null(p_from_texture); ERR_FAIL_NULL_V(src_tex, ERR_INVALID_PARAMETER); ERR_FAIL_COND_V_MSG(src_tex->bound, ERR_INVALID_PARAMETER, "Source texture can't be copied while a draw list that uses it as part of a framebuffer is being created. Ensure the draw list is finalized (and that the color/depth texture using it is not set to `RenderingDevice.FINAL_ACTION_CONTINUE`) to copy this texture."); ERR_FAIL_COND_V_MSG(!(src_tex->usage_flags & TEXTURE_USAGE_CAN_COPY_FROM_BIT), ERR_INVALID_PARAMETER, "Source texture requires the `RenderingDevice.TEXTURE_USAGE_CAN_COPY_FROM_BIT` to be set to be retrieved."); uint32_t src_layer_count = src_tex->layers; uint32_t src_width, src_height, src_depth; get_image_format_required_size(src_tex->format, src_tex->width, src_tex->height, src_tex->depth, p_src_mipmap + 1, &src_width, &src_height, &src_depth); if (src_tex->type == TEXTURE_TYPE_CUBE || src_tex->type == TEXTURE_TYPE_CUBE_ARRAY) { src_layer_count *= 6; } ERR_FAIL_COND_V(p_from.x < 0 || p_from.x + p_size.x > src_width, ERR_INVALID_PARAMETER); ERR_FAIL_COND_V(p_from.y < 0 || p_from.y + p_size.y > src_height, ERR_INVALID_PARAMETER); ERR_FAIL_COND_V(p_from.z < 0 || p_from.z + p_size.z > src_depth, ERR_INVALID_PARAMETER); ERR_FAIL_COND_V(p_src_mipmap >= src_tex->mipmaps, ERR_INVALID_PARAMETER); ERR_FAIL_COND_V(p_src_layer >= src_layer_count, ERR_INVALID_PARAMETER); Texture *dst_tex = texture_owner.get_or_null(p_to_texture); ERR_FAIL_NULL_V(dst_tex, ERR_INVALID_PARAMETER); ERR_FAIL_COND_V_MSG(dst_tex->bound, ERR_INVALID_PARAMETER, "Destination texture can't be copied while a draw list that uses it as part of a framebuffer is being created. Ensure the draw list is finalized (and that the color/depth texture using it is not set to `RenderingDevice.FINAL_ACTION_CONTINUE`) to copy this texture."); ERR_FAIL_COND_V_MSG(!(dst_tex->usage_flags & TEXTURE_USAGE_CAN_COPY_TO_BIT), ERR_INVALID_PARAMETER, "Destination texture requires the `RenderingDevice.TEXTURE_USAGE_CAN_COPY_TO_BIT` to be set to be retrieved."); uint32_t dst_layer_count = dst_tex->layers; uint32_t dst_width, dst_height, dst_depth; get_image_format_required_size(dst_tex->format, dst_tex->width, dst_tex->height, dst_tex->depth, p_dst_mipmap + 1, &dst_width, &dst_height, &dst_depth); if (dst_tex->type == TEXTURE_TYPE_CUBE || dst_tex->type == TEXTURE_TYPE_CUBE_ARRAY) { dst_layer_count *= 6; } ERR_FAIL_COND_V(p_to.x < 0 || p_to.x + p_size.x > dst_width, ERR_INVALID_PARAMETER); ERR_FAIL_COND_V(p_to.y < 0 || p_to.y + p_size.y > dst_height, ERR_INVALID_PARAMETER); ERR_FAIL_COND_V(p_to.z < 0 || p_to.z + p_size.z > dst_depth, ERR_INVALID_PARAMETER); ERR_FAIL_COND_V(p_dst_mipmap >= dst_tex->mipmaps, ERR_INVALID_PARAMETER); ERR_FAIL_COND_V(p_dst_layer >= dst_layer_count, ERR_INVALID_PARAMETER); ERR_FAIL_COND_V_MSG(src_tex->read_aspect_flags != dst_tex->read_aspect_flags, ERR_INVALID_PARAMETER, "Source and destination texture must be of the same type (color or depth)."); RDD::TextureCopyRegion copy_region; copy_region.src_subresources.aspect = src_tex->read_aspect_flags; copy_region.src_subresources.mipmap = p_src_mipmap; copy_region.src_subresources.base_layer = p_src_layer; copy_region.src_subresources.layer_count = 1; copy_region.src_offset = p_from; copy_region.dst_subresources.aspect = dst_tex->read_aspect_flags; copy_region.dst_subresources.mipmap = p_dst_mipmap; copy_region.dst_subresources.base_layer = p_dst_layer; copy_region.dst_subresources.layer_count = 1; copy_region.dst_offset = p_to; copy_region.size = p_size; // The textures must be mutable to be used in the copy operation. bool src_made_mutable = _texture_make_mutable(src_tex, p_from_texture); bool dst_made_mutable = _texture_make_mutable(dst_tex, p_to_texture); if (src_made_mutable || dst_made_mutable) { draw_graph.add_synchronization(); } draw_graph.add_texture_copy(src_tex->driver_id, src_tex->draw_tracker, dst_tex->driver_id, dst_tex->draw_tracker, copy_region); return OK; } Error RenderingDevice::texture_resolve_multisample(RID p_from_texture, RID p_to_texture) { _THREAD_SAFE_METHOD_ Texture *src_tex = texture_owner.get_or_null(p_from_texture); ERR_FAIL_NULL_V(src_tex, ERR_INVALID_PARAMETER); ERR_FAIL_COND_V_MSG(src_tex->bound, ERR_INVALID_PARAMETER, "Source texture can't be copied while a draw list that uses it as part of a framebuffer is being created. Ensure the draw list is finalized (and that the color/depth texture using it is not set to `RenderingDevice.FINAL_ACTION_CONTINUE`) to copy this texture."); ERR_FAIL_COND_V_MSG(!(src_tex->usage_flags & TEXTURE_USAGE_CAN_COPY_FROM_BIT), ERR_INVALID_PARAMETER, "Source texture requires the `RenderingDevice.TEXTURE_USAGE_CAN_COPY_FROM_BIT` to be set to be retrieved."); ERR_FAIL_COND_V_MSG(src_tex->type != TEXTURE_TYPE_2D, ERR_INVALID_PARAMETER, "Source texture must be 2D (or a slice of a 3D/Cube texture)"); ERR_FAIL_COND_V_MSG(src_tex->samples == TEXTURE_SAMPLES_1, ERR_INVALID_PARAMETER, "Source texture must be multisampled."); Texture *dst_tex = texture_owner.get_or_null(p_to_texture); ERR_FAIL_NULL_V(dst_tex, ERR_INVALID_PARAMETER); ERR_FAIL_COND_V_MSG(dst_tex->bound, ERR_INVALID_PARAMETER, "Destination texture can't be copied while a draw list that uses it as part of a framebuffer is being created. Ensure the draw list is finalized (and that the color/depth texture using it is not set to `RenderingDevice.FINAL_ACTION_CONTINUE`) to copy this texture."); ERR_FAIL_COND_V_MSG(!(dst_tex->usage_flags & TEXTURE_USAGE_CAN_COPY_TO_BIT), ERR_INVALID_PARAMETER, "Destination texture requires the `RenderingDevice.TEXTURE_USAGE_CAN_COPY_TO_BIT` to be set to be retrieved."); ERR_FAIL_COND_V_MSG(dst_tex->type != TEXTURE_TYPE_2D, ERR_INVALID_PARAMETER, "Destination texture must be 2D (or a slice of a 3D/Cube texture)."); ERR_FAIL_COND_V_MSG(dst_tex->samples != TEXTURE_SAMPLES_1, ERR_INVALID_PARAMETER, "Destination texture must not be multisampled."); ERR_FAIL_COND_V_MSG(src_tex->format != dst_tex->format, ERR_INVALID_PARAMETER, "Source and Destination textures must be the same format."); ERR_FAIL_COND_V_MSG(src_tex->width != dst_tex->width && src_tex->height != dst_tex->height && src_tex->depth != dst_tex->depth, ERR_INVALID_PARAMETER, "Source and Destination textures must have the same dimensions."); ERR_FAIL_COND_V_MSG(src_tex->read_aspect_flags != dst_tex->read_aspect_flags, ERR_INVALID_PARAMETER, "Source and destination texture must be of the same type (color or depth)."); // The textures must be mutable to be used in the resolve operation. bool src_made_mutable = _texture_make_mutable(src_tex, p_from_texture); bool dst_made_mutable = _texture_make_mutable(dst_tex, p_to_texture); if (src_made_mutable || dst_made_mutable) { draw_graph.add_synchronization(); } draw_graph.add_texture_resolve(src_tex->driver_id, src_tex->draw_tracker, dst_tex->driver_id, dst_tex->draw_tracker, src_tex->base_layer, src_tex->base_mipmap, dst_tex->base_layer, dst_tex->base_mipmap); return OK; } Error RenderingDevice::texture_clear(RID p_texture, const Color &p_color, uint32_t p_base_mipmap, uint32_t p_mipmaps, uint32_t p_base_layer, uint32_t p_layers) { _THREAD_SAFE_METHOD_ Texture *src_tex = texture_owner.get_or_null(p_texture); ERR_FAIL_NULL_V(src_tex, ERR_INVALID_PARAMETER); ERR_FAIL_COND_V_MSG(src_tex->bound, ERR_INVALID_PARAMETER, "Source texture can't be cleared while a draw list that uses it as part of a framebuffer is being created. Ensure the draw list is finalized (and that the color/depth texture using it is not set to `RenderingDevice.FINAL_ACTION_CONTINUE`) to clear this texture."); ERR_FAIL_COND_V(p_layers == 0, ERR_INVALID_PARAMETER); ERR_FAIL_COND_V(p_mipmaps == 0, ERR_INVALID_PARAMETER); ERR_FAIL_COND_V_MSG(!(src_tex->usage_flags & TEXTURE_USAGE_CAN_COPY_TO_BIT), ERR_INVALID_PARAMETER, "Source texture requires the `RenderingDevice.TEXTURE_USAGE_CAN_COPY_TO_BIT` to be set to be cleared."); uint32_t src_layer_count = src_tex->layers; if (src_tex->type == TEXTURE_TYPE_CUBE || src_tex->type == TEXTURE_TYPE_CUBE_ARRAY) { src_layer_count *= 6; } ERR_FAIL_COND_V(p_base_mipmap + p_mipmaps > src_tex->mipmaps, ERR_INVALID_PARAMETER); ERR_FAIL_COND_V(p_base_layer + p_layers > src_layer_count, ERR_INVALID_PARAMETER); RDD::TextureSubresourceRange range; range.aspect = src_tex->read_aspect_flags; range.base_mipmap = src_tex->base_mipmap + p_base_mipmap; range.mipmap_count = p_mipmaps; range.base_layer = src_tex->base_layer + p_base_layer; range.layer_count = p_layers; if (_texture_make_mutable(src_tex, p_texture)) { // The texture must be mutable to be used as a clear destination. draw_graph.add_synchronization(); } draw_graph.add_texture_clear(src_tex->driver_id, src_tex->draw_tracker, p_color, range); return OK; } bool RenderingDevice::texture_is_format_supported_for_usage(DataFormat p_format, BitField p_usage) const { ERR_FAIL_INDEX_V(p_format, DATA_FORMAT_MAX, false); _THREAD_SAFE_METHOD_ bool cpu_readable = (p_usage & RDD::TEXTURE_USAGE_CPU_READ_BIT); BitField supported = driver->texture_get_usages_supported_by_format(p_format, cpu_readable); bool any_unsupported = (((int64_t)supported) | ((int64_t)p_usage)) != ((int64_t)supported); return !any_unsupported; } /*********************/ /**** FRAMEBUFFER ****/ /*********************/ static RDD::AttachmentLoadOp initial_action_to_load_op(RenderingDevice::InitialAction p_action) { switch (p_action) { case RenderingDevice::INITIAL_ACTION_LOAD: return RDD::ATTACHMENT_LOAD_OP_LOAD; case RenderingDevice::INITIAL_ACTION_CLEAR: return RDD::ATTACHMENT_LOAD_OP_CLEAR; case RenderingDevice::INITIAL_ACTION_DISCARD: return RDD::ATTACHMENT_LOAD_OP_DONT_CARE; default: ERR_FAIL_V_MSG(RDD::ATTACHMENT_LOAD_OP_DONT_CARE, "Invalid initial action value (" + itos(p_action) + ")"); } } static RDD::AttachmentStoreOp final_action_to_store_op(RenderingDevice::FinalAction p_action) { switch (p_action) { case RenderingDevice::FINAL_ACTION_STORE: return RDD::ATTACHMENT_STORE_OP_STORE; case RenderingDevice::FINAL_ACTION_DISCARD: return RDD::ATTACHMENT_STORE_OP_DONT_CARE; default: ERR_FAIL_V_MSG(RDD::ATTACHMENT_STORE_OP_DONT_CARE, "Invalid final action value (" + itos(p_action) + ")"); } } RDD::RenderPassID RenderingDevice::_render_pass_create(const Vector &p_attachments, const Vector &p_passes, InitialAction p_initial_action, FinalAction p_final_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, uint32_t p_view_count, Vector *r_samples) { // NOTE: // Before the refactor to RenderingDevice-RenderingDeviceDriver, there was commented out code to // specify dependencies to external subpasses. Since it had been unused for a long timel it wasn't ported // to the new architecture. LocalVector attachment_last_pass; attachment_last_pass.resize(p_attachments.size()); if (p_view_count > 1) { const RDD::MultiviewCapabilities &capabilities = driver->get_multiview_capabilities(); // This only works with multiview! ERR_FAIL_COND_V_MSG(!capabilities.is_supported, RDD::RenderPassID(), "Multiview not supported"); // Make sure we limit this to the number of views we support. ERR_FAIL_COND_V_MSG(p_view_count > capabilities.max_view_count, RDD::RenderPassID(), "Hardware does not support requested number of views for Multiview render pass"); } LocalVector attachments; LocalVector attachment_remap; for (int i = 0; i < p_attachments.size(); i++) { if (p_attachments[i].usage_flags == AttachmentFormat::UNUSED_ATTACHMENT) { attachment_remap.push_back(RDD::AttachmentReference::UNUSED); continue; } ERR_FAIL_INDEX_V(p_attachments[i].format, DATA_FORMAT_MAX, RDD::RenderPassID()); ERR_FAIL_INDEX_V(p_attachments[i].samples, TEXTURE_SAMPLES_MAX, RDD::RenderPassID()); ERR_FAIL_COND_V_MSG(!(p_attachments[i].usage_flags & (TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | TEXTURE_USAGE_INPUT_ATTACHMENT_BIT | TEXTURE_USAGE_VRS_ATTACHMENT_BIT)), RDD::RenderPassID(), "Texture format for index (" + itos(i) + ") requires an attachment (color, depth-stencil, input or VRS) bit set."); RDD::Attachment description; description.format = p_attachments[i].format; description.samples = p_attachments[i].samples; // We can setup a framebuffer where we write to our VRS texture to set it up. // We make the assumption here that if our texture is actually used as our VRS attachment. // It is used as such for each subpass. This is fairly certain seeing the restrictions on subpasses. bool is_vrs = (p_attachments[i].usage_flags & TEXTURE_USAGE_VRS_ATTACHMENT_BIT) && i == p_passes[0].vrs_attachment; if (is_vrs) { description.load_op = RDD::ATTACHMENT_LOAD_OP_LOAD; description.store_op = RDD::ATTACHMENT_STORE_OP_DONT_CARE; description.stencil_load_op = RDD::ATTACHMENT_LOAD_OP_LOAD; description.stencil_store_op = RDD::ATTACHMENT_STORE_OP_DONT_CARE; description.initial_layout = RDD::TEXTURE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; description.final_layout = RDD::TEXTURE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; } else { if (p_attachments[i].usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT) { description.load_op = initial_action_to_load_op(p_initial_action); description.store_op = final_action_to_store_op(p_final_action); description.stencil_load_op = RDD::ATTACHMENT_LOAD_OP_DONT_CARE; description.stencil_store_op = RDD::ATTACHMENT_STORE_OP_DONT_CARE; description.initial_layout = RDD::TEXTURE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; description.final_layout = RDD::TEXTURE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; } else if (p_attachments[i].usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) { description.load_op = initial_action_to_load_op(p_initial_depth_action); description.store_op = final_action_to_store_op(p_final_depth_action); description.stencil_load_op = initial_action_to_load_op(p_initial_depth_action); description.stencil_store_op = final_action_to_store_op(p_final_depth_action); description.initial_layout = RDD::TEXTURE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; description.final_layout = RDD::TEXTURE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; } else { description.load_op = RDD::ATTACHMENT_LOAD_OP_DONT_CARE; description.store_op = RDD::ATTACHMENT_STORE_OP_DONT_CARE; description.stencil_load_op = RDD::ATTACHMENT_LOAD_OP_DONT_CARE; description.stencil_store_op = RDD::ATTACHMENT_STORE_OP_DONT_CARE; description.initial_layout = RDD::TEXTURE_LAYOUT_UNDEFINED; description.final_layout = RDD::TEXTURE_LAYOUT_UNDEFINED; } } attachment_last_pass[i] = -1; attachment_remap.push_back(attachments.size()); attachments.push_back(description); } LocalVector subpasses; subpasses.resize(p_passes.size()); LocalVector subpass_dependencies; for (int i = 0; i < p_passes.size(); i++) { const FramebufferPass *pass = &p_passes[i]; RDD::Subpass &subpass = subpasses[i]; TextureSamples texture_samples = TEXTURE_SAMPLES_1; bool is_multisample_first = true; for (int j = 0; j < pass->color_attachments.size(); j++) { int32_t attachment = pass->color_attachments[j]; RDD::AttachmentReference reference; if (attachment == ATTACHMENT_UNUSED) { reference.attachment = RDD::AttachmentReference::UNUSED; reference.layout = RDD::TEXTURE_LAYOUT_UNDEFINED; } else { ERR_FAIL_INDEX_V_MSG(attachment, p_attachments.size(), RDD::RenderPassID(), "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), color attachment (" + itos(j) + ")."); ERR_FAIL_COND_V_MSG(!(p_attachments[attachment].usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT), RDD::RenderPassID(), "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), it's marked as depth, but it's not usable as color attachment."); ERR_FAIL_COND_V_MSG(attachment_last_pass[attachment] == i, RDD::RenderPassID(), "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), it already was used for something else before in this pass."); if (is_multisample_first) { texture_samples = p_attachments[attachment].samples; is_multisample_first = false; } else { ERR_FAIL_COND_V_MSG(texture_samples != p_attachments[attachment].samples, RDD::RenderPassID(), "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), if an attachment is marked as multisample, all of them should be multisample and use the same number of samples."); } reference.attachment = attachment_remap[attachment]; reference.layout = RDD::TEXTURE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; attachment_last_pass[attachment] = i; } reference.aspect = RDD::TEXTURE_ASPECT_COLOR_BIT; subpass.color_references.push_back(reference); } for (int j = 0; j < pass->input_attachments.size(); j++) { int32_t attachment = pass->input_attachments[j]; RDD::AttachmentReference reference; if (attachment == ATTACHMENT_UNUSED) { reference.attachment = RDD::AttachmentReference::UNUSED; reference.layout = RDD::TEXTURE_LAYOUT_UNDEFINED; } else { ERR_FAIL_INDEX_V_MSG(attachment, p_attachments.size(), RDD::RenderPassID(), "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), input attachment (" + itos(j) + ")."); ERR_FAIL_COND_V_MSG(!(p_attachments[attachment].usage_flags & TEXTURE_USAGE_INPUT_ATTACHMENT_BIT), RDD::RenderPassID(), "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), it isn't marked as an input texture."); ERR_FAIL_COND_V_MSG(attachment_last_pass[attachment] == i, RDD::RenderPassID(), "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), it already was used for something else before in this pass."); reference.attachment = attachment_remap[attachment]; reference.layout = RDD::TEXTURE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; attachment_last_pass[attachment] = i; } reference.aspect = RDD::TEXTURE_ASPECT_COLOR_BIT; subpass.input_references.push_back(reference); } if (pass->resolve_attachments.size() > 0) { ERR_FAIL_COND_V_MSG(pass->resolve_attachments.size() != pass->color_attachments.size(), RDD::RenderPassID(), "The amount of resolve attachments (" + itos(pass->resolve_attachments.size()) + ") must match the number of color attachments (" + itos(pass->color_attachments.size()) + ")."); ERR_FAIL_COND_V_MSG(texture_samples == TEXTURE_SAMPLES_1, RDD::RenderPassID(), "Resolve attachments specified, but color attachments are not multisample."); } for (int j = 0; j < pass->resolve_attachments.size(); j++) { int32_t attachment = pass->resolve_attachments[j]; RDD::AttachmentReference reference; if (attachment == ATTACHMENT_UNUSED) { reference.attachment = RDD::AttachmentReference::UNUSED; reference.layout = RDD::TEXTURE_LAYOUT_UNDEFINED; } else { ERR_FAIL_INDEX_V_MSG(attachment, p_attachments.size(), RDD::RenderPassID(), "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), resolve attachment (" + itos(j) + ")."); ERR_FAIL_COND_V_MSG(pass->color_attachments[j] == ATTACHMENT_UNUSED, RDD::RenderPassID(), "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), resolve attachment (" + itos(j) + "), the respective color attachment is marked as unused."); ERR_FAIL_COND_V_MSG(!(p_attachments[attachment].usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT), RDD::RenderPassID(), "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), resolve attachment, it isn't marked as a color texture."); ERR_FAIL_COND_V_MSG(attachment_last_pass[attachment] == i, RDD::RenderPassID(), "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), it already was used for something else before in this pass."); bool multisample = p_attachments[attachment].samples > TEXTURE_SAMPLES_1; ERR_FAIL_COND_V_MSG(multisample, RDD::RenderPassID(), "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), resolve attachments can't be multisample."); reference.attachment = attachment_remap[attachment]; reference.layout = RDD::TEXTURE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; // RDD::TEXTURE_LAYOUT_SHADER_READ_ONLY_OPTIMAL attachment_last_pass[attachment] = i; } reference.aspect = RDD::TEXTURE_ASPECT_COLOR_BIT; subpass.resolve_references.push_back(reference); } if (pass->depth_attachment != ATTACHMENT_UNUSED) { int32_t attachment = pass->depth_attachment; ERR_FAIL_INDEX_V_MSG(attachment, p_attachments.size(), RDD::RenderPassID(), "Invalid framebuffer depth format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), depth attachment."); ERR_FAIL_COND_V_MSG(!(p_attachments[attachment].usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT), RDD::RenderPassID(), "Invalid framebuffer depth format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), it's marked as depth, but it's not a depth attachment."); ERR_FAIL_COND_V_MSG(attachment_last_pass[attachment] == i, RDD::RenderPassID(), "Invalid framebuffer depth format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), it already was used for something else before in this pass."); subpass.depth_stencil_reference.attachment = attachment_remap[attachment]; subpass.depth_stencil_reference.layout = RDD::TEXTURE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; attachment_last_pass[attachment] = i; if (is_multisample_first) { texture_samples = p_attachments[attachment].samples; is_multisample_first = false; } else { ERR_FAIL_COND_V_MSG(texture_samples != p_attachments[attachment].samples, RDD::RenderPassID(), "Invalid framebuffer depth format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), if an attachment is marked as multisample, all of them should be multisample and use the same number of samples including the depth."); } } else { subpass.depth_stencil_reference.attachment = RDD::AttachmentReference::UNUSED; subpass.depth_stencil_reference.layout = RDD::TEXTURE_LAYOUT_UNDEFINED; } if (pass->vrs_attachment != ATTACHMENT_UNUSED) { int32_t attachment = pass->vrs_attachment; ERR_FAIL_INDEX_V_MSG(attachment, p_attachments.size(), RDD::RenderPassID(), "Invalid framebuffer VRS format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), VRS attachment."); ERR_FAIL_COND_V_MSG(!(p_attachments[attachment].usage_flags & TEXTURE_USAGE_VRS_ATTACHMENT_BIT), RDD::RenderPassID(), "Invalid framebuffer VRS format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), it's marked as VRS, but it's not a VRS attachment."); ERR_FAIL_COND_V_MSG(attachment_last_pass[attachment] == i, RDD::RenderPassID(), "Invalid framebuffer VRS attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), it already was used for something else before in this pass."); subpass.vrs_reference.attachment = attachment_remap[attachment]; subpass.vrs_reference.layout = RDD::TEXTURE_LAYOUT_VRS_ATTACHMENT_OPTIMAL; attachment_last_pass[attachment] = i; } for (int j = 0; j < pass->preserve_attachments.size(); j++) { int32_t attachment = pass->preserve_attachments[j]; ERR_FAIL_COND_V_MSG(attachment == ATTACHMENT_UNUSED, RDD::RenderPassID(), "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), preserve attachment (" + itos(j) + "). Preserve attachments can't be unused."); ERR_FAIL_INDEX_V_MSG(attachment, p_attachments.size(), RDD::RenderPassID(), "Invalid framebuffer format attachment(" + itos(attachment) + "), in pass (" + itos(i) + "), preserve attachment (" + itos(j) + ")."); if (attachment_last_pass[attachment] != i) { // Preserve can still be used to keep depth or color from being discarded after use. attachment_last_pass[attachment] = i; subpasses[i].preserve_attachments.push_back(attachment); } } if (r_samples) { r_samples->push_back(texture_samples); } if (i > 0) { RDD::SubpassDependency dependency; dependency.src_subpass = i - 1; dependency.dst_subpass = i; dependency.src_stages = (RDD::PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | RDD::PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | RDD::PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT); dependency.dst_stages = (RDD::PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | RDD::PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | RDD::PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | RDD::PIPELINE_STAGE_FRAGMENT_SHADER_BIT); dependency.src_access = (RDD::BARRIER_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | RDD::BARRIER_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT); dependency.dst_access = (RDD::BARRIER_ACCESS_COLOR_ATTACHMENT_READ_BIT | RDD::BARRIER_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | RDD::BARRIER_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | RDD::BARRIER_ACCESS_INPUT_ATTACHMENT_READ_BIT); subpass_dependencies.push_back(dependency); } } RDD::RenderPassID render_pass = driver->render_pass_create(attachments, subpasses, subpass_dependencies, p_view_count); ERR_FAIL_COND_V(!render_pass, RDD::RenderPassID()); return render_pass; } RenderingDevice::FramebufferFormatID RenderingDevice::framebuffer_format_create(const Vector &p_format, uint32_t p_view_count) { FramebufferPass pass; for (int i = 0; i < p_format.size(); i++) { if (p_format[i].usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) { pass.depth_attachment = i; } else { pass.color_attachments.push_back(i); } } Vector passes; passes.push_back(pass); return framebuffer_format_create_multipass(p_format, passes, p_view_count); } RenderingDevice::FramebufferFormatID RenderingDevice::framebuffer_format_create_multipass(const Vector &p_attachments, const Vector &p_passes, uint32_t p_view_count) { _THREAD_SAFE_METHOD_ FramebufferFormatKey key; key.attachments = p_attachments; key.passes = p_passes; key.view_count = p_view_count; const RBMap::Element *E = framebuffer_format_cache.find(key); if (E) { // Exists, return. return E->get(); } Vector samples; RDD::RenderPassID render_pass = _render_pass_create(p_attachments, p_passes, INITIAL_ACTION_CLEAR, FINAL_ACTION_STORE, INITIAL_ACTION_CLEAR, FINAL_ACTION_STORE, p_view_count, &samples); // Actions don't matter for this use case. if (!render_pass) { // Was likely invalid. return INVALID_ID; } FramebufferFormatID id = FramebufferFormatID(framebuffer_format_cache.size()) | (FramebufferFormatID(ID_TYPE_FRAMEBUFFER_FORMAT) << FramebufferFormatID(ID_BASE_SHIFT)); E = framebuffer_format_cache.insert(key, id); FramebufferFormat fb_format; fb_format.E = E; fb_format.render_pass = render_pass; fb_format.pass_samples = samples; fb_format.view_count = p_view_count; framebuffer_formats[id] = fb_format; return id; } RenderingDevice::FramebufferFormatID RenderingDevice::framebuffer_format_create_empty(TextureSamples p_samples) { FramebufferFormatKey key; key.passes.push_back(FramebufferPass()); const RBMap::Element *E = framebuffer_format_cache.find(key); if (E) { // Exists, return. return E->get(); } LocalVector subpass; subpass.resize(1); RDD::RenderPassID render_pass = driver->render_pass_create({}, subpass, {}, 1); ERR_FAIL_COND_V(!render_pass, FramebufferFormatID()); FramebufferFormatID id = FramebufferFormatID(framebuffer_format_cache.size()) | (FramebufferFormatID(ID_TYPE_FRAMEBUFFER_FORMAT) << FramebufferFormatID(ID_BASE_SHIFT)); E = framebuffer_format_cache.insert(key, id); FramebufferFormat fb_format; fb_format.E = E; fb_format.render_pass = render_pass; fb_format.pass_samples.push_back(p_samples); framebuffer_formats[id] = fb_format; return id; } RenderingDevice::TextureSamples RenderingDevice::framebuffer_format_get_texture_samples(FramebufferFormatID p_format, uint32_t p_pass) { HashMap::Iterator E = framebuffer_formats.find(p_format); ERR_FAIL_COND_V(!E, TEXTURE_SAMPLES_1); ERR_FAIL_COND_V(p_pass >= uint32_t(E->value.pass_samples.size()), TEXTURE_SAMPLES_1); return E->value.pass_samples[p_pass]; } RID RenderingDevice::framebuffer_create_empty(const Size2i &p_size, TextureSamples p_samples, FramebufferFormatID p_format_check) { _THREAD_SAFE_METHOD_ Framebuffer framebuffer; framebuffer.format_id = framebuffer_format_create_empty(p_samples); ERR_FAIL_COND_V(p_format_check != INVALID_FORMAT_ID && framebuffer.format_id != p_format_check, RID()); framebuffer.size = p_size; framebuffer.view_count = 1; RID id = framebuffer_owner.make_rid(framebuffer); #ifdef DEV_ENABLED set_resource_name(id, "RID:" + itos(id.get_id())); #endif return id; } RID RenderingDevice::framebuffer_create(const Vector &p_texture_attachments, FramebufferFormatID p_format_check, uint32_t p_view_count) { _THREAD_SAFE_METHOD_ FramebufferPass pass; for (int i = 0; i < p_texture_attachments.size(); i++) { Texture *texture = texture_owner.get_or_null(p_texture_attachments[i]); ERR_FAIL_COND_V_MSG(texture && texture->layers != p_view_count, RID(), "Layers of our texture doesn't match view count for this framebuffer"); if (texture && texture->usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) { pass.depth_attachment = i; } else if (texture && texture->usage_flags & TEXTURE_USAGE_VRS_ATTACHMENT_BIT) { pass.vrs_attachment = i; } else { if (texture && texture->is_resolve_buffer) { pass.resolve_attachments.push_back(i); } else { pass.color_attachments.push_back(texture ? i : ATTACHMENT_UNUSED); } } } Vector passes; passes.push_back(pass); return framebuffer_create_multipass(p_texture_attachments, passes, p_format_check, p_view_count); } RID RenderingDevice::framebuffer_create_multipass(const Vector &p_texture_attachments, const Vector &p_passes, FramebufferFormatID p_format_check, uint32_t p_view_count) { _THREAD_SAFE_METHOD_ Vector attachments; attachments.resize(p_texture_attachments.size()); Size2i size; bool size_set = false; for (int i = 0; i < p_texture_attachments.size(); i++) { AttachmentFormat af; Texture *texture = texture_owner.get_or_null(p_texture_attachments[i]); if (!texture) { af.usage_flags = AttachmentFormat::UNUSED_ATTACHMENT; } else { ERR_FAIL_COND_V_MSG(texture->layers != p_view_count, RID(), "Layers of our texture doesn't match view count for this framebuffer"); if (!size_set) { size.width = texture->width; size.height = texture->height; size_set = true; } else if (texture->usage_flags & TEXTURE_USAGE_VRS_ATTACHMENT_BIT) { // If this is not the first attachment we assume this is used as the VRS attachment. // In this case this texture will be 1/16th the size of the color attachment. // So we skip the size check. } else { ERR_FAIL_COND_V_MSG((uint32_t)size.width != texture->width || (uint32_t)size.height != texture->height, RID(), "All textures in a framebuffer should be the same size."); } af.format = texture->format; af.samples = texture->samples; af.usage_flags = texture->usage_flags; } attachments.write[i] = af; } ERR_FAIL_COND_V_MSG(!size_set, RID(), "All attachments unused."); FramebufferFormatID format_id = framebuffer_format_create_multipass(attachments, p_passes, p_view_count); if (format_id == INVALID_ID) { return RID(); } ERR_FAIL_COND_V_MSG(p_format_check != INVALID_ID && format_id != p_format_check, RID(), "The format used to check this framebuffer differs from the intended framebuffer format."); Framebuffer framebuffer; framebuffer.format_id = format_id; framebuffer.texture_ids = p_texture_attachments; framebuffer.size = size; framebuffer.view_count = p_view_count; RID id = framebuffer_owner.make_rid(framebuffer); #ifdef DEV_ENABLED set_resource_name(id, "RID:" + itos(id.get_id())); #endif for (int i = 0; i < p_texture_attachments.size(); i++) { if (p_texture_attachments[i].is_valid()) { _add_dependency(id, p_texture_attachments[i]); } } return id; } RenderingDevice::FramebufferFormatID RenderingDevice::framebuffer_get_format(RID p_framebuffer) { _THREAD_SAFE_METHOD_ Framebuffer *framebuffer = framebuffer_owner.get_or_null(p_framebuffer); ERR_FAIL_NULL_V(framebuffer, INVALID_ID); return framebuffer->format_id; } bool RenderingDevice::framebuffer_is_valid(RID p_framebuffer) const { _THREAD_SAFE_METHOD_ return framebuffer_owner.owns(p_framebuffer); } void RenderingDevice::framebuffer_set_invalidation_callback(RID p_framebuffer, InvalidationCallback p_callback, void *p_userdata) { _THREAD_SAFE_METHOD_ Framebuffer *framebuffer = framebuffer_owner.get_or_null(p_framebuffer); ERR_FAIL_NULL(framebuffer); framebuffer->invalidated_callback = p_callback; framebuffer->invalidated_callback_userdata = p_userdata; } /*****************/ /**** SAMPLER ****/ /*****************/ RID RenderingDevice::sampler_create(const SamplerState &p_state) { _THREAD_SAFE_METHOD_ ERR_FAIL_INDEX_V(p_state.repeat_u, SAMPLER_REPEAT_MODE_MAX, RID()); ERR_FAIL_INDEX_V(p_state.repeat_v, SAMPLER_REPEAT_MODE_MAX, RID()); ERR_FAIL_INDEX_V(p_state.repeat_w, SAMPLER_REPEAT_MODE_MAX, RID()); ERR_FAIL_INDEX_V(p_state.compare_op, COMPARE_OP_MAX, RID()); ERR_FAIL_INDEX_V(p_state.border_color, SAMPLER_BORDER_COLOR_MAX, RID()); RDD::SamplerID sampler = driver->sampler_create(p_state); ERR_FAIL_COND_V(!sampler, RID()); RID id = sampler_owner.make_rid(sampler); #ifdef DEV_ENABLED set_resource_name(id, "RID:" + itos(id.get_id())); #endif return id; } bool RenderingDevice::sampler_is_format_supported_for_filter(DataFormat p_format, SamplerFilter p_sampler_filter) const { ERR_FAIL_INDEX_V(p_format, DATA_FORMAT_MAX, false); _THREAD_SAFE_METHOD_ return driver->sampler_is_format_supported_for_filter(p_format, p_sampler_filter); } /***********************/ /**** VERTEX BUFFER ****/ /***********************/ RID RenderingDevice::vertex_buffer_create(uint32_t p_size_bytes, const Vector &p_data, bool p_use_as_storage) { _THREAD_SAFE_METHOD_ ERR_FAIL_COND_V(p_data.size() && (uint32_t)p_data.size() != p_size_bytes, RID()); Buffer buffer; buffer.size = p_size_bytes; buffer.usage = RDD::BUFFER_USAGE_TRANSFER_FROM_BIT | RDD::BUFFER_USAGE_TRANSFER_TO_BIT | RDD::BUFFER_USAGE_VERTEX_BIT; if (p_use_as_storage) { buffer.usage.set_flag(RDD::BUFFER_USAGE_STORAGE_BIT); } buffer.driver_id = driver->buffer_create(buffer.size, buffer.usage, RDD::MEMORY_ALLOCATION_TYPE_GPU); ERR_FAIL_COND_V(!buffer.driver_id, RID()); // Vertex buffers are assumed to be immutable unless they don't have initial data or they've been marked for storage explicitly. if (p_data.is_empty() || p_use_as_storage) { buffer.draw_tracker = RDG::resource_tracker_create(); buffer.draw_tracker->buffer_driver_id = buffer.driver_id; } if (p_data.size()) { _buffer_update(&buffer, RID(), 0, p_data.ptr(), p_data.size()); } buffer_memory += buffer.size; RID id = vertex_buffer_owner.make_rid(buffer); #ifdef DEV_ENABLED set_resource_name(id, "RID:" + itos(id.get_id())); #endif return id; } // Internally reference counted, this ID is warranted to be unique for the same description, but needs to be freed as many times as it was allocated. RenderingDevice::VertexFormatID RenderingDevice::vertex_format_create(const Vector &p_vertex_descriptions) { _THREAD_SAFE_METHOD_ VertexDescriptionKey key; key.vertex_formats = p_vertex_descriptions; VertexFormatID *idptr = vertex_format_cache.getptr(key); if (idptr) { return *idptr; } HashSet used_locations; for (int i = 0; i < p_vertex_descriptions.size(); i++) { ERR_CONTINUE(p_vertex_descriptions[i].format >= DATA_FORMAT_MAX); ERR_FAIL_COND_V(used_locations.has(p_vertex_descriptions[i].location), INVALID_ID); ERR_FAIL_COND_V_MSG(get_format_vertex_size(p_vertex_descriptions[i].format) == 0, INVALID_ID, "Data format for attachment (" + itos(i) + "), '" + FORMAT_NAMES[p_vertex_descriptions[i].format] + "', is not valid for a vertex array."); used_locations.insert(p_vertex_descriptions[i].location); } RDD::VertexFormatID driver_id = driver->vertex_format_create(p_vertex_descriptions); ERR_FAIL_COND_V(!driver_id, 0); VertexFormatID id = (vertex_format_cache.size() | ((int64_t)ID_TYPE_VERTEX_FORMAT << ID_BASE_SHIFT)); vertex_format_cache[key] = id; vertex_formats[id].vertex_formats = p_vertex_descriptions; vertex_formats[id].driver_id = driver_id; return id; } RID RenderingDevice::vertex_array_create(uint32_t p_vertex_count, VertexFormatID p_vertex_format, const Vector &p_src_buffers, const Vector &p_offsets) { _THREAD_SAFE_METHOD_ ERR_FAIL_COND_V(!vertex_formats.has(p_vertex_format), RID()); const VertexDescriptionCache &vd = vertex_formats[p_vertex_format]; ERR_FAIL_COND_V(vd.vertex_formats.size() != p_src_buffers.size(), RID()); for (int i = 0; i < p_src_buffers.size(); i++) { ERR_FAIL_COND_V(!vertex_buffer_owner.owns(p_src_buffers[i]), RID()); } VertexArray vertex_array; if (p_offsets.is_empty()) { vertex_array.offsets.resize_zeroed(p_src_buffers.size()); } else { ERR_FAIL_COND_V(p_offsets.size() != p_src_buffers.size(), RID()); vertex_array.offsets = p_offsets; } vertex_array.vertex_count = p_vertex_count; vertex_array.description = p_vertex_format; vertex_array.max_instances_allowed = 0xFFFFFFFF; // By default as many as you want. for (int i = 0; i < p_src_buffers.size(); i++) { Buffer *buffer = vertex_buffer_owner.get_or_null(p_src_buffers[i]); // Validate with buffer. { const VertexAttribute &atf = vd.vertex_formats[i]; uint32_t element_size = get_format_vertex_size(atf.format); ERR_FAIL_COND_V(element_size == 0, RID()); // Should never happens since this was prevalidated. if (atf.frequency == VERTEX_FREQUENCY_VERTEX) { // Validate size for regular drawing. uint64_t total_size = uint64_t(atf.stride) * (p_vertex_count - 1) + atf.offset + element_size; ERR_FAIL_COND_V_MSG(total_size > buffer->size, RID(), "Attachment (" + itos(i) + ") will read past the end of the buffer."); } else { // Validate size for instances drawing. uint64_t available = buffer->size - atf.offset; ERR_FAIL_COND_V_MSG(available < element_size, RID(), "Attachment (" + itos(i) + ") uses instancing, but it's just too small."); uint32_t instances_allowed = available / atf.stride; vertex_array.max_instances_allowed = MIN(instances_allowed, vertex_array.max_instances_allowed); } } vertex_array.buffers.push_back(buffer->driver_id); if (buffer->draw_tracker != nullptr) { vertex_array.draw_trackers.push_back(buffer->draw_tracker); } else { vertex_array.untracked_buffers.insert(p_src_buffers[i]); } } RID id = vertex_array_owner.make_rid(vertex_array); for (int i = 0; i < p_src_buffers.size(); i++) { _add_dependency(id, p_src_buffers[i]); } return id; } RID RenderingDevice::index_buffer_create(uint32_t p_index_count, IndexBufferFormat p_format, const Vector &p_data, bool p_use_restart_indices) { _THREAD_SAFE_METHOD_ ERR_FAIL_COND_V(p_index_count == 0, RID()); IndexBuffer index_buffer; index_buffer.format = p_format; index_buffer.supports_restart_indices = p_use_restart_indices; index_buffer.index_count = p_index_count; uint32_t size_bytes = p_index_count * ((p_format == INDEX_BUFFER_FORMAT_UINT16) ? 2 : 4); #ifdef DEBUG_ENABLED if (p_data.size()) { index_buffer.max_index = 0; ERR_FAIL_COND_V_MSG((uint32_t)p_data.size() != size_bytes, RID(), "Default index buffer initializer array size (" + itos(p_data.size()) + ") does not match format required size (" + itos(size_bytes) + ")."); const uint8_t *r = p_data.ptr(); if (p_format == INDEX_BUFFER_FORMAT_UINT16) { const uint16_t *index16 = (const uint16_t *)r; for (uint32_t i = 0; i < p_index_count; i++) { if (p_use_restart_indices && index16[i] == 0xFFFF) { continue; // Restart index, ignore. } index_buffer.max_index = MAX(index16[i], index_buffer.max_index); } } else { const uint32_t *index32 = (const uint32_t *)r; for (uint32_t i = 0; i < p_index_count; i++) { if (p_use_restart_indices && index32[i] == 0xFFFFFFFF) { continue; // Restart index, ignore. } index_buffer.max_index = MAX(index32[i], index_buffer.max_index); } } } else { index_buffer.max_index = 0xFFFFFFFF; } #else index_buffer.max_index = 0xFFFFFFFF; #endif index_buffer.size = size_bytes; index_buffer.usage = (RDD::BUFFER_USAGE_TRANSFER_FROM_BIT | RDD::BUFFER_USAGE_TRANSFER_TO_BIT | RDD::BUFFER_USAGE_INDEX_BIT); index_buffer.driver_id = driver->buffer_create(index_buffer.size, index_buffer.usage, RDD::MEMORY_ALLOCATION_TYPE_GPU); ERR_FAIL_COND_V(!index_buffer.driver_id, RID()); // Index buffers are assumed to be immutable unless they don't have initial data. if (p_data.is_empty()) { index_buffer.draw_tracker = RDG::resource_tracker_create(); index_buffer.draw_tracker->buffer_driver_id = index_buffer.driver_id; } if (p_data.size()) { _buffer_update(&index_buffer, RID(), 0, p_data.ptr(), p_data.size()); } buffer_memory += index_buffer.size; RID id = index_buffer_owner.make_rid(index_buffer); #ifdef DEV_ENABLED set_resource_name(id, "RID:" + itos(id.get_id())); #endif return id; } RID RenderingDevice::index_array_create(RID p_index_buffer, uint32_t p_index_offset, uint32_t p_index_count) { _THREAD_SAFE_METHOD_ ERR_FAIL_COND_V(!index_buffer_owner.owns(p_index_buffer), RID()); IndexBuffer *index_buffer = index_buffer_owner.get_or_null(p_index_buffer); ERR_FAIL_COND_V(p_index_count == 0, RID()); ERR_FAIL_COND_V(p_index_offset + p_index_count > index_buffer->index_count, RID()); IndexArray index_array; index_array.max_index = index_buffer->max_index; index_array.driver_id = index_buffer->driver_id; index_array.draw_tracker = index_buffer->draw_tracker; index_array.offset = p_index_offset; index_array.indices = p_index_count; index_array.format = index_buffer->format; index_array.supports_restart_indices = index_buffer->supports_restart_indices; RID id = index_array_owner.make_rid(index_array); _add_dependency(id, p_index_buffer); return id; } /****************/ /**** SHADER ****/ /****************/ static const char *SHADER_UNIFORM_NAMES[RenderingDevice::UNIFORM_TYPE_MAX] = { "Sampler", "CombinedSampler", "Texture", "Image", "TextureBuffer", "SamplerTextureBuffer", "ImageBuffer", "UniformBuffer", "StorageBuffer", "InputAttachment" }; String RenderingDevice::_shader_uniform_debug(RID p_shader, int p_set) { String ret; const Shader *shader = shader_owner.get_or_null(p_shader); ERR_FAIL_NULL_V(shader, String()); for (int i = 0; i < shader->uniform_sets.size(); i++) { if (p_set >= 0 && i != p_set) { continue; } for (int j = 0; j < shader->uniform_sets[i].size(); j++) { const ShaderUniform &ui = shader->uniform_sets[i][j]; if (!ret.is_empty()) { ret += "\n"; } ret += "Set: " + itos(i) + " Binding: " + itos(ui.binding) + " Type: " + SHADER_UNIFORM_NAMES[ui.type] + " Writable: " + (ui.writable ? "Y" : "N") + " Length: " + itos(ui.length); } } return ret; } String RenderingDevice::shader_get_binary_cache_key() const { return driver->shader_get_binary_cache_key(); } Vector RenderingDevice::shader_compile_binary_from_spirv(const Vector &p_spirv, const String &p_shader_name) { return driver->shader_compile_binary_from_spirv(p_spirv, p_shader_name); } RID RenderingDevice::shader_create_from_bytecode(const Vector &p_shader_binary, RID p_placeholder) { _THREAD_SAFE_METHOD_ ShaderDescription shader_desc; String name; RDD::ShaderID shader_id = driver->shader_create_from_bytecode(p_shader_binary, shader_desc, name); ERR_FAIL_COND_V(!shader_id, RID()); // All good, let's create modules. RID id; if (p_placeholder.is_null()) { id = shader_owner.make_rid(); } else { id = p_placeholder; } Shader *shader = shader_owner.get_or_null(id); ERR_FAIL_NULL_V(shader, RID()); *((ShaderDescription *)shader) = shader_desc; // ShaderDescription bundle. shader->name = name; shader->driver_id = shader_id; shader->layout_hash = driver->shader_get_layout_hash(shader_id); for (int i = 0; i < shader->uniform_sets.size(); i++) { uint32_t format = 0; // No format, default. if (shader->uniform_sets[i].size()) { // Sort and hash. shader->uniform_sets.write[i].sort(); UniformSetFormat usformat; usformat.uniforms = shader->uniform_sets[i]; RBMap::Element *E = uniform_set_format_cache.find(usformat); if (E) { format = E->get(); } else { format = uniform_set_format_cache.size() + 1; uniform_set_format_cache.insert(usformat, format); } } shader->set_formats.push_back(format); } for (ShaderStage stage : shader_desc.stages) { switch (stage) { case SHADER_STAGE_VERTEX: shader->stage_bits.set_flag(RDD::PIPELINE_STAGE_VERTEX_SHADER_BIT); break; case SHADER_STAGE_FRAGMENT: shader->stage_bits.set_flag(RDD::PIPELINE_STAGE_FRAGMENT_SHADER_BIT); break; case SHADER_STAGE_TESSELATION_CONTROL: shader->stage_bits.set_flag(RDD::PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT); break; case SHADER_STAGE_TESSELATION_EVALUATION: shader->stage_bits.set_flag(RDD::PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT); break; case SHADER_STAGE_COMPUTE: shader->stage_bits.set_flag(RDD::PIPELINE_STAGE_COMPUTE_SHADER_BIT); break; default: DEV_ASSERT(false && "Unknown shader stage."); break; } } #ifdef DEV_ENABLED set_resource_name(id, "RID:" + itos(id.get_id())); #endif return id; } RID RenderingDevice::shader_create_placeholder() { Shader shader; return shader_owner.make_rid(shader); } uint64_t RenderingDevice::shader_get_vertex_input_attribute_mask(RID p_shader) { _THREAD_SAFE_METHOD_ const Shader *shader = shader_owner.get_or_null(p_shader); ERR_FAIL_NULL_V(shader, 0); return shader->vertex_input_mask; } /******************/ /**** UNIFORMS ****/ /******************/ RID RenderingDevice::uniform_buffer_create(uint32_t p_size_bytes, const Vector &p_data) { _THREAD_SAFE_METHOD_ ERR_FAIL_COND_V(p_data.size() && (uint32_t)p_data.size() != p_size_bytes, RID()); Buffer buffer; buffer.size = p_size_bytes; buffer.usage = (RDD::BUFFER_USAGE_TRANSFER_TO_BIT | RDD::BUFFER_USAGE_UNIFORM_BIT); buffer.driver_id = driver->buffer_create(buffer.size, buffer.usage, RDD::MEMORY_ALLOCATION_TYPE_GPU); ERR_FAIL_COND_V(!buffer.driver_id, RID()); // Uniform buffers are assumed to be immutable unless they don't have initial data. if (p_data.is_empty()) { buffer.draw_tracker = RDG::resource_tracker_create(); buffer.draw_tracker->buffer_driver_id = buffer.driver_id; } if (p_data.size()) { _buffer_update(&buffer, RID(), 0, p_data.ptr(), p_data.size()); } buffer_memory += buffer.size; RID id = uniform_buffer_owner.make_rid(buffer); #ifdef DEV_ENABLED set_resource_name(id, "RID:" + itos(id.get_id())); #endif return id; } RID RenderingDevice::uniform_set_create(const Vector &p_uniforms, RID p_shader, uint32_t p_shader_set) { _THREAD_SAFE_METHOD_ ERR_FAIL_COND_V(p_uniforms.is_empty(), RID()); Shader *shader = shader_owner.get_or_null(p_shader); ERR_FAIL_NULL_V(shader, RID()); ERR_FAIL_COND_V_MSG(p_shader_set >= (uint32_t)shader->uniform_sets.size() || shader->uniform_sets[p_shader_set].is_empty(), RID(), "Desired set (" + itos(p_shader_set) + ") not used by shader."); // See that all sets in shader are satisfied. const Vector &set = shader->uniform_sets[p_shader_set]; uint32_t uniform_count = p_uniforms.size(); const Uniform *uniforms = p_uniforms.ptr(); uint32_t set_uniform_count = set.size(); const ShaderUniform *set_uniforms = set.ptr(); LocalVector driver_uniforms; driver_uniforms.resize(set_uniform_count); // Used for verification to make sure a uniform set does not use a framebuffer bound texture. LocalVector attachable_textures; Vector draw_trackers; Vector draw_trackers_usage; HashMap untracked_usage; for (uint32_t i = 0; i < set_uniform_count; i++) { const ShaderUniform &set_uniform = set_uniforms[i]; int uniform_idx = -1; for (int j = 0; j < (int)uniform_count; j++) { if (uniforms[j].binding == set_uniform.binding) { uniform_idx = j; } } ERR_FAIL_COND_V_MSG(uniform_idx == -1, RID(), "All the shader bindings for the given set must be covered by the uniforms provided. Binding (" + itos(set_uniform.binding) + "), set (" + itos(p_shader_set) + ") was not provided."); const Uniform &uniform = uniforms[uniform_idx]; ERR_FAIL_COND_V_MSG(uniform.uniform_type != set_uniform.type, RID(), "Mismatch uniform type for binding (" + itos(set_uniform.binding) + "), set (" + itos(p_shader_set) + "). Expected '" + SHADER_UNIFORM_NAMES[set_uniform.type] + "', supplied: '" + SHADER_UNIFORM_NAMES[uniform.uniform_type] + "'."); RDD::BoundUniform &driver_uniform = driver_uniforms[i]; driver_uniform.type = uniform.uniform_type; driver_uniform.binding = uniform.binding; switch (uniform.uniform_type) { case UNIFORM_TYPE_SAMPLER: { if (uniform.get_id_count() != (uint32_t)set_uniform.length) { if (set_uniform.length > 1) { ERR_FAIL_V_MSG(RID(), "Sampler (binding: " + itos(uniform.binding) + ") is an array of (" + itos(set_uniform.length) + ") sampler elements, so it should be provided equal number of sampler IDs to satisfy it (IDs provided: " + itos(uniform.get_id_count()) + ")."); } else { ERR_FAIL_V_MSG(RID(), "Sampler (binding: " + itos(uniform.binding) + ") should provide one ID referencing a sampler (IDs provided: " + itos(uniform.get_id_count()) + ")."); } } for (uint32_t j = 0; j < uniform.get_id_count(); j++) { RDD::SamplerID *sampler_driver_id = sampler_owner.get_or_null(uniform.get_id(j)); ERR_FAIL_NULL_V_MSG(sampler_driver_id, RID(), "Sampler (binding: " + itos(uniform.binding) + ", index " + itos(j) + ") is not a valid sampler."); driver_uniform.ids.push_back(*sampler_driver_id); } } break; case UNIFORM_TYPE_SAMPLER_WITH_TEXTURE: { if (uniform.get_id_count() != (uint32_t)set_uniform.length * 2) { if (set_uniform.length > 1) { ERR_FAIL_V_MSG(RID(), "SamplerTexture (binding: " + itos(uniform.binding) + ") is an array of (" + itos(set_uniform.length) + ") sampler&texture elements, so it should provided twice the amount of IDs (sampler,texture pairs) to satisfy it (IDs provided: " + itos(uniform.get_id_count()) + ")."); } else { ERR_FAIL_V_MSG(RID(), "SamplerTexture (binding: " + itos(uniform.binding) + ") should provide two IDs referencing a sampler and then a texture (IDs provided: " + itos(uniform.get_id_count()) + ")."); } } for (uint32_t j = 0; j < uniform.get_id_count(); j += 2) { RDD::SamplerID *sampler_driver_id = sampler_owner.get_or_null(uniform.get_id(j + 0)); ERR_FAIL_NULL_V_MSG(sampler_driver_id, RID(), "SamplerBuffer (binding: " + itos(uniform.binding) + ", index " + itos(j + 1) + ") is not a valid sampler."); RID texture_id = uniform.get_id(j + 1); Texture *texture = texture_owner.get_or_null(texture_id); ERR_FAIL_NULL_V_MSG(texture, RID(), "Texture (binding: " + itos(uniform.binding) + ", index " + itos(j) + ") is not a valid texture."); ERR_FAIL_COND_V_MSG(!(texture->usage_flags & TEXTURE_USAGE_SAMPLING_BIT), RID(), "Texture (binding: " + itos(uniform.binding) + ", index " + itos(j) + ") needs the TEXTURE_USAGE_SAMPLING_BIT usage flag set in order to be used as uniform."); if ((texture->usage_flags & (TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | TEXTURE_USAGE_INPUT_ATTACHMENT_BIT))) { UniformSet::AttachableTexture attachable_texture; attachable_texture.bind = set_uniform.binding; attachable_texture.texture = texture->owner.is_valid() ? texture->owner : uniform.get_id(j + 1); attachable_textures.push_back(attachable_texture); } if (texture->draw_tracker != nullptr) { draw_trackers.push_back(texture->draw_tracker); draw_trackers_usage.push_back(RDG::RESOURCE_USAGE_TEXTURE_SAMPLE); } else { untracked_usage[texture_id] = RDG::RESOURCE_USAGE_TEXTURE_SAMPLE; } DEV_ASSERT(!texture->owner.is_valid() || texture_owner.get_or_null(texture->owner)); driver_uniform.ids.push_back(*sampler_driver_id); driver_uniform.ids.push_back(texture->driver_id); } } break; case UNIFORM_TYPE_TEXTURE: { if (uniform.get_id_count() != (uint32_t)set_uniform.length) { if (set_uniform.length > 1) { ERR_FAIL_V_MSG(RID(), "Texture (binding: " + itos(uniform.binding) + ") is an array of (" + itos(set_uniform.length) + ") textures, so it should be provided equal number of texture IDs to satisfy it (IDs provided: " + itos(uniform.get_id_count()) + ")."); } else { ERR_FAIL_V_MSG(RID(), "Texture (binding: " + itos(uniform.binding) + ") should provide one ID referencing a texture (IDs provided: " + itos(uniform.get_id_count()) + ")."); } } for (uint32_t j = 0; j < uniform.get_id_count(); j++) { RID texture_id = uniform.get_id(j); Texture *texture = texture_owner.get_or_null(texture_id); ERR_FAIL_NULL_V_MSG(texture, RID(), "Texture (binding: " + itos(uniform.binding) + ", index " + itos(j) + ") is not a valid texture."); ERR_FAIL_COND_V_MSG(!(texture->usage_flags & TEXTURE_USAGE_SAMPLING_BIT), RID(), "Texture (binding: " + itos(uniform.binding) + ", index " + itos(j) + ") needs the TEXTURE_USAGE_SAMPLING_BIT usage flag set in order to be used as uniform."); if ((texture->usage_flags & (TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | TEXTURE_USAGE_INPUT_ATTACHMENT_BIT))) { UniformSet::AttachableTexture attachable_texture; attachable_texture.bind = set_uniform.binding; attachable_texture.texture = texture->owner.is_valid() ? texture->owner : uniform.get_id(j); attachable_textures.push_back(attachable_texture); } if (texture->draw_tracker != nullptr) { draw_trackers.push_back(texture->draw_tracker); draw_trackers_usage.push_back(RDG::RESOURCE_USAGE_TEXTURE_SAMPLE); } else { untracked_usage[texture_id] = RDG::RESOURCE_USAGE_TEXTURE_SAMPLE; } DEV_ASSERT(!texture->owner.is_valid() || texture_owner.get_or_null(texture->owner)); driver_uniform.ids.push_back(texture->driver_id); } } break; case UNIFORM_TYPE_IMAGE: { if (uniform.get_id_count() != (uint32_t)set_uniform.length) { if (set_uniform.length > 1) { ERR_FAIL_V_MSG(RID(), "Image (binding: " + itos(uniform.binding) + ") is an array of (" + itos(set_uniform.length) + ") textures, so it should be provided equal number of texture IDs to satisfy it (IDs provided: " + itos(uniform.get_id_count()) + ")."); } else { ERR_FAIL_V_MSG(RID(), "Image (binding: " + itos(uniform.binding) + ") should provide one ID referencing a texture (IDs provided: " + itos(uniform.get_id_count()) + ")."); } } for (uint32_t j = 0; j < uniform.get_id_count(); j++) { RID texture_id = uniform.get_id(j); Texture *texture = texture_owner.get_or_null(texture_id); ERR_FAIL_NULL_V_MSG(texture, RID(), "Image (binding: " + itos(uniform.binding) + ", index " + itos(j) + ") is not a valid texture."); ERR_FAIL_COND_V_MSG(!(texture->usage_flags & TEXTURE_USAGE_STORAGE_BIT), RID(), "Image (binding: " + itos(uniform.binding) + ", index " + itos(j) + ") needs the TEXTURE_USAGE_STORAGE_BIT usage flag set in order to be used as uniform."); if (_texture_make_mutable(texture, texture_id)) { // The texture must be mutable as a layout transition will be required. draw_graph.add_synchronization(); } if (texture->draw_tracker != nullptr) { draw_trackers.push_back(texture->draw_tracker); if (set_uniform.writable) { draw_trackers_usage.push_back(RDG::RESOURCE_USAGE_STORAGE_IMAGE_READ_WRITE); } else { draw_trackers_usage.push_back(RDG::RESOURCE_USAGE_STORAGE_IMAGE_READ); } } DEV_ASSERT(!texture->owner.is_valid() || texture_owner.get_or_null(texture->owner)); driver_uniform.ids.push_back(texture->driver_id); } } break; case UNIFORM_TYPE_TEXTURE_BUFFER: { if (uniform.get_id_count() != (uint32_t)set_uniform.length) { if (set_uniform.length > 1) { ERR_FAIL_V_MSG(RID(), "Buffer (binding: " + itos(uniform.binding) + ") is an array of (" + itos(set_uniform.length) + ") texture buffer elements, so it should be provided equal number of texture buffer IDs to satisfy it (IDs provided: " + itos(uniform.get_id_count()) + ")."); } else { ERR_FAIL_V_MSG(RID(), "Buffer (binding: " + itos(uniform.binding) + ") should provide one ID referencing a texture buffer (IDs provided: " + itos(uniform.get_id_count()) + ")."); } } for (uint32_t j = 0; j < uniform.get_id_count(); j++) { RID buffer_id = uniform.get_id(j); Buffer *buffer = texture_buffer_owner.get_or_null(buffer_id); ERR_FAIL_NULL_V_MSG(buffer, RID(), "Texture Buffer (binding: " + itos(uniform.binding) + ", index " + itos(j) + ") is not a valid texture buffer."); if (set_uniform.writable && _buffer_make_mutable(buffer, buffer_id)) { // The buffer must be mutable if it's used for writing. draw_graph.add_synchronization(); } if (buffer->draw_tracker != nullptr) { draw_trackers.push_back(buffer->draw_tracker); if (set_uniform.writable) { draw_trackers_usage.push_back(RDG::RESOURCE_USAGE_TEXTURE_BUFFER_READ_WRITE); } else { draw_trackers_usage.push_back(RDG::RESOURCE_USAGE_TEXTURE_BUFFER_READ); } } else { untracked_usage[buffer_id] = RDG::RESOURCE_USAGE_TEXTURE_BUFFER_READ; } driver_uniform.ids.push_back(buffer->driver_id); } } break; case UNIFORM_TYPE_SAMPLER_WITH_TEXTURE_BUFFER: { if (uniform.get_id_count() != (uint32_t)set_uniform.length * 2) { if (set_uniform.length > 1) { ERR_FAIL_V_MSG(RID(), "SamplerBuffer (binding: " + itos(uniform.binding) + ") is an array of (" + itos(set_uniform.length) + ") sampler buffer elements, so it should provided twice the amount of IDs (sampler,buffer pairs) to satisfy it (IDs provided: " + itos(uniform.get_id_count()) + ")."); } else { ERR_FAIL_V_MSG(RID(), "SamplerBuffer (binding: " + itos(uniform.binding) + ") should provide two IDs referencing a sampler and then a texture buffer (IDs provided: " + itos(uniform.get_id_count()) + ")."); } } for (uint32_t j = 0; j < uniform.get_id_count(); j += 2) { RDD::SamplerID *sampler_driver_id = sampler_owner.get_or_null(uniform.get_id(j + 0)); ERR_FAIL_NULL_V_MSG(sampler_driver_id, RID(), "SamplerBuffer (binding: " + itos(uniform.binding) + ", index " + itos(j + 1) + ") is not a valid sampler."); RID buffer_id = uniform.get_id(j + 1); Buffer *buffer = texture_buffer_owner.get_or_null(buffer_id); ERR_FAIL_NULL_V_MSG(buffer, RID(), "SamplerBuffer (binding: " + itos(uniform.binding) + ", index " + itos(j + 1) + ") is not a valid texture buffer."); if (buffer->draw_tracker != nullptr) { draw_trackers.push_back(buffer->draw_tracker); draw_trackers_usage.push_back(RDG::RESOURCE_USAGE_TEXTURE_BUFFER_READ); } else { untracked_usage[buffer_id] = RDG::RESOURCE_USAGE_TEXTURE_BUFFER_READ; } driver_uniform.ids.push_back(*sampler_driver_id); driver_uniform.ids.push_back(buffer->driver_id); } } break; case UNIFORM_TYPE_IMAGE_BUFFER: { // Todo. } break; case UNIFORM_TYPE_UNIFORM_BUFFER: { ERR_FAIL_COND_V_MSG(uniform.get_id_count() != 1, RID(), "Uniform buffer supplied (binding: " + itos(uniform.binding) + ") must provide one ID (" + itos(uniform.get_id_count()) + " provided)."); RID buffer_id = uniform.get_id(0); Buffer *buffer = uniform_buffer_owner.get_or_null(buffer_id); ERR_FAIL_NULL_V_MSG(buffer, RID(), "Uniform buffer supplied (binding: " + itos(uniform.binding) + ") is invalid."); ERR_FAIL_COND_V_MSG(buffer->size < (uint32_t)set_uniform.length, RID(), "Uniform buffer supplied (binding: " + itos(uniform.binding) + ") size (" + itos(buffer->size) + " is smaller than size of shader uniform: (" + itos(set_uniform.length) + ")."); if (buffer->draw_tracker != nullptr) { draw_trackers.push_back(buffer->draw_tracker); draw_trackers_usage.push_back(RDG::RESOURCE_USAGE_UNIFORM_BUFFER_READ); } else { untracked_usage[buffer_id] = RDG::RESOURCE_USAGE_UNIFORM_BUFFER_READ; } driver_uniform.ids.push_back(buffer->driver_id); } break; case UNIFORM_TYPE_STORAGE_BUFFER: { ERR_FAIL_COND_V_MSG(uniform.get_id_count() != 1, RID(), "Storage buffer supplied (binding: " + itos(uniform.binding) + ") must provide one ID (" + itos(uniform.get_id_count()) + " provided)."); Buffer *buffer = nullptr; RID buffer_id = uniform.get_id(0); if (storage_buffer_owner.owns(buffer_id)) { buffer = storage_buffer_owner.get_or_null(buffer_id); } else if (vertex_buffer_owner.owns(buffer_id)) { buffer = vertex_buffer_owner.get_or_null(buffer_id); ERR_FAIL_COND_V_MSG(!(buffer->usage.has_flag(RDD::BUFFER_USAGE_STORAGE_BIT)), RID(), "Vertex buffer supplied (binding: " + itos(uniform.binding) + ") was not created with storage flag."); } ERR_FAIL_NULL_V_MSG(buffer, RID(), "Storage buffer supplied (binding: " + itos(uniform.binding) + ") is invalid."); // If 0, then it's sized on link time. ERR_FAIL_COND_V_MSG(set_uniform.length > 0 && buffer->size != (uint32_t)set_uniform.length, RID(), "Storage buffer supplied (binding: " + itos(uniform.binding) + ") size (" + itos(buffer->size) + " does not match size of shader uniform: (" + itos(set_uniform.length) + ")."); if (set_uniform.writable && _buffer_make_mutable(buffer, buffer_id)) { // The buffer must be mutable if it's used for writing. draw_graph.add_synchronization(); } if (buffer->draw_tracker != nullptr) { draw_trackers.push_back(buffer->draw_tracker); if (set_uniform.writable) { draw_trackers_usage.push_back(RDG::RESOURCE_USAGE_STORAGE_BUFFER_READ_WRITE); } else { draw_trackers_usage.push_back(RDG::RESOURCE_USAGE_STORAGE_BUFFER_READ); } } else { untracked_usage[buffer_id] = RDG::RESOURCE_USAGE_STORAGE_BUFFER_READ; } driver_uniform.ids.push_back(buffer->driver_id); } break; case UNIFORM_TYPE_INPUT_ATTACHMENT: { ERR_FAIL_COND_V_MSG(shader->is_compute, RID(), "InputAttachment (binding: " + itos(uniform.binding) + ") supplied for compute shader (this is not allowed)."); if (uniform.get_id_count() != (uint32_t)set_uniform.length) { if (set_uniform.length > 1) { ERR_FAIL_V_MSG(RID(), "InputAttachment (binding: " + itos(uniform.binding) + ") is an array of (" + itos(set_uniform.length) + ") textures, so it should be provided equal number of texture IDs to satisfy it (IDs provided: " + itos(uniform.get_id_count()) + ")."); } else { ERR_FAIL_V_MSG(RID(), "InputAttachment (binding: " + itos(uniform.binding) + ") should provide one ID referencing a texture (IDs provided: " + itos(uniform.get_id_count()) + ")."); } } for (uint32_t j = 0; j < uniform.get_id_count(); j++) { RID texture_id = uniform.get_id(j); Texture *texture = texture_owner.get_or_null(texture_id); ERR_FAIL_NULL_V_MSG(texture, RID(), "InputAttachment (binding: " + itos(uniform.binding) + ", index " + itos(j) + ") is not a valid texture."); ERR_FAIL_COND_V_MSG(!(texture->usage_flags & TEXTURE_USAGE_SAMPLING_BIT), RID(), "InputAttachment (binding: " + itos(uniform.binding) + ", index " + itos(j) + ") needs the TEXTURE_USAGE_SAMPLING_BIT usage flag set in order to be used as uniform."); DEV_ASSERT(!texture->owner.is_valid() || texture_owner.get_or_null(texture->owner)); driver_uniform.ids.push_back(texture->driver_id); } } break; default: { } } } RDD::UniformSetID driver_uniform_set = driver->uniform_set_create(driver_uniforms, shader->driver_id, p_shader_set); ERR_FAIL_COND_V(!driver_uniform_set, RID()); UniformSet uniform_set; uniform_set.driver_id = driver_uniform_set; uniform_set.format = shader->set_formats[p_shader_set]; uniform_set.attachable_textures = attachable_textures; uniform_set.draw_trackers = draw_trackers; uniform_set.draw_trackers_usage = draw_trackers_usage; uniform_set.untracked_usage = untracked_usage; uniform_set.shader_set = p_shader_set; uniform_set.shader_id = p_shader; RID id = uniform_set_owner.make_rid(uniform_set); #ifdef DEV_ENABLED set_resource_name(id, "RID:" + itos(id.get_id())); #endif // Add dependencies. _add_dependency(id, p_shader); for (uint32_t i = 0; i < uniform_count; i++) { const Uniform &uniform = uniforms[i]; int id_count = uniform.get_id_count(); for (int j = 0; j < id_count; j++) { _add_dependency(id, uniform.get_id(j)); } } return id; } bool RenderingDevice::uniform_set_is_valid(RID p_uniform_set) { return uniform_set_owner.owns(p_uniform_set); } void RenderingDevice::uniform_set_set_invalidation_callback(RID p_uniform_set, InvalidationCallback p_callback, void *p_userdata) { UniformSet *us = uniform_set_owner.get_or_null(p_uniform_set); ERR_FAIL_NULL(us); us->invalidated_callback = p_callback; us->invalidated_callback_userdata = p_userdata; } /*******************/ /**** PIPELINES ****/ /*******************/ RID RenderingDevice::render_pipeline_create(RID p_shader, FramebufferFormatID p_framebuffer_format, VertexFormatID p_vertex_format, RenderPrimitive p_render_primitive, const PipelineRasterizationState &p_rasterization_state, const PipelineMultisampleState &p_multisample_state, const PipelineDepthStencilState &p_depth_stencil_state, const PipelineColorBlendState &p_blend_state, BitField p_dynamic_state_flags, uint32_t p_for_render_pass, const Vector &p_specialization_constants) { _THREAD_SAFE_METHOD_ // Needs a shader. Shader *shader = shader_owner.get_or_null(p_shader); ERR_FAIL_NULL_V(shader, RID()); ERR_FAIL_COND_V_MSG(shader->is_compute, RID(), "Compute shaders can't be used in render pipelines"); if (p_framebuffer_format == INVALID_ID) { // If nothing provided, use an empty one (no attachments). p_framebuffer_format = framebuffer_format_create(Vector()); } ERR_FAIL_COND_V(!framebuffer_formats.has(p_framebuffer_format), RID()); const FramebufferFormat &fb_format = framebuffer_formats[p_framebuffer_format]; // Validate shader vs. framebuffer. { ERR_FAIL_COND_V_MSG(p_for_render_pass >= uint32_t(fb_format.E->key().passes.size()), RID(), "Render pass requested for pipeline creation (" + itos(p_for_render_pass) + ") is out of bounds"); const FramebufferPass &pass = fb_format.E->key().passes[p_for_render_pass]; uint32_t output_mask = 0; for (int i = 0; i < pass.color_attachments.size(); i++) { if (pass.color_attachments[i] != ATTACHMENT_UNUSED) { output_mask |= 1 << i; } } ERR_FAIL_COND_V_MSG(shader->fragment_output_mask != output_mask, RID(), "Mismatch fragment shader output mask (" + itos(shader->fragment_output_mask) + ") and framebuffer color output mask (" + itos(output_mask) + ") when binding both in render pipeline."); } RDD::VertexFormatID driver_vertex_format; if (p_vertex_format != INVALID_ID) { // Uses vertices, else it does not. ERR_FAIL_COND_V(!vertex_formats.has(p_vertex_format), RID()); const VertexDescriptionCache &vd = vertex_formats[p_vertex_format]; driver_vertex_format = vertex_formats[p_vertex_format].driver_id; // Validate with inputs. for (uint32_t i = 0; i < 64; i++) { if (!(shader->vertex_input_mask & ((uint64_t)1) << i)) { continue; } bool found = false; for (int j = 0; j < vd.vertex_formats.size(); j++) { if (vd.vertex_formats[j].location == i) { found = true; } } ERR_FAIL_COND_V_MSG(!found, RID(), "Shader vertex input location (" + itos(i) + ") not provided in vertex input description for pipeline creation."); } } else { ERR_FAIL_COND_V_MSG(shader->vertex_input_mask != 0, RID(), "Shader contains vertex inputs, but no vertex input description was provided for pipeline creation."); } ERR_FAIL_INDEX_V(p_render_primitive, RENDER_PRIMITIVE_MAX, RID()); ERR_FAIL_INDEX_V(p_rasterization_state.cull_mode, 3, RID()); if (p_multisample_state.sample_mask.size()) { // Use sample mask. ERR_FAIL_COND_V((int)TEXTURE_SAMPLES_COUNT[p_multisample_state.sample_count] != p_multisample_state.sample_mask.size(), RID()); } ERR_FAIL_INDEX_V(p_depth_stencil_state.depth_compare_operator, COMPARE_OP_MAX, RID()); ERR_FAIL_INDEX_V(p_depth_stencil_state.front_op.fail, STENCIL_OP_MAX, RID()); ERR_FAIL_INDEX_V(p_depth_stencil_state.front_op.pass, STENCIL_OP_MAX, RID()); ERR_FAIL_INDEX_V(p_depth_stencil_state.front_op.depth_fail, STENCIL_OP_MAX, RID()); ERR_FAIL_INDEX_V(p_depth_stencil_state.front_op.compare, COMPARE_OP_MAX, RID()); ERR_FAIL_INDEX_V(p_depth_stencil_state.back_op.fail, STENCIL_OP_MAX, RID()); ERR_FAIL_INDEX_V(p_depth_stencil_state.back_op.pass, STENCIL_OP_MAX, RID()); ERR_FAIL_INDEX_V(p_depth_stencil_state.back_op.depth_fail, STENCIL_OP_MAX, RID()); ERR_FAIL_INDEX_V(p_depth_stencil_state.back_op.compare, COMPARE_OP_MAX, RID()); ERR_FAIL_INDEX_V(p_blend_state.logic_op, LOGIC_OP_MAX, RID()); const FramebufferPass &pass = fb_format.E->key().passes[p_for_render_pass]; ERR_FAIL_COND_V(p_blend_state.attachments.size() < pass.color_attachments.size(), RID()); for (int i = 0; i < pass.color_attachments.size(); i++) { if (pass.color_attachments[i] != ATTACHMENT_UNUSED) { ERR_FAIL_INDEX_V(p_blend_state.attachments[i].src_color_blend_factor, BLEND_FACTOR_MAX, RID()); ERR_FAIL_INDEX_V(p_blend_state.attachments[i].dst_color_blend_factor, BLEND_FACTOR_MAX, RID()); ERR_FAIL_INDEX_V(p_blend_state.attachments[i].color_blend_op, BLEND_OP_MAX, RID()); ERR_FAIL_INDEX_V(p_blend_state.attachments[i].src_alpha_blend_factor, BLEND_FACTOR_MAX, RID()); ERR_FAIL_INDEX_V(p_blend_state.attachments[i].dst_alpha_blend_factor, BLEND_FACTOR_MAX, RID()); ERR_FAIL_INDEX_V(p_blend_state.attachments[i].alpha_blend_op, BLEND_OP_MAX, RID()); } } for (int i = 0; i < shader->specialization_constants.size(); i++) { const ShaderSpecializationConstant &sc = shader->specialization_constants[i]; for (int j = 0; j < p_specialization_constants.size(); j++) { const PipelineSpecializationConstant &psc = p_specialization_constants[j]; if (psc.constant_id == sc.constant_id) { ERR_FAIL_COND_V_MSG(psc.type != sc.type, RID(), "Specialization constant provided for id (" + itos(sc.constant_id) + ") is of the wrong type."); break; } } } RenderPipeline pipeline; pipeline.driver_id = driver->render_pipeline_create( shader->driver_id, driver_vertex_format, p_render_primitive, p_rasterization_state, p_multisample_state, p_depth_stencil_state, p_blend_state, pass.color_attachments, p_dynamic_state_flags, fb_format.render_pass, p_for_render_pass, p_specialization_constants); ERR_FAIL_COND_V(!pipeline.driver_id, RID()); if (pipeline_cache_enabled) { _update_pipeline_cache(); } pipeline.shader = p_shader; pipeline.shader_driver_id = shader->driver_id; pipeline.shader_layout_hash = shader->layout_hash; pipeline.set_formats = shader->set_formats; pipeline.push_constant_size = shader->push_constant_size; pipeline.stage_bits = shader->stage_bits; #ifdef DEBUG_ENABLED pipeline.validation.dynamic_state = p_dynamic_state_flags; pipeline.validation.framebuffer_format = p_framebuffer_format; pipeline.validation.render_pass = p_for_render_pass; pipeline.validation.vertex_format = p_vertex_format; pipeline.validation.uses_restart_indices = p_render_primitive == RENDER_PRIMITIVE_TRIANGLE_STRIPS_WITH_RESTART_INDEX; static const uint32_t primitive_divisor[RENDER_PRIMITIVE_MAX] = { 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1 }; pipeline.validation.primitive_divisor = primitive_divisor[p_render_primitive]; static const uint32_t primitive_minimum[RENDER_PRIMITIVE_MAX] = { 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 1, }; pipeline.validation.primitive_minimum = primitive_minimum[p_render_primitive]; #endif // Create ID to associate with this pipeline. RID id = render_pipeline_owner.make_rid(pipeline); #ifdef DEV_ENABLED set_resource_name(id, "RID:" + itos(id.get_id())); #endif // Now add all the dependencies. _add_dependency(id, p_shader); return id; } bool RenderingDevice::render_pipeline_is_valid(RID p_pipeline) { _THREAD_SAFE_METHOD_ return render_pipeline_owner.owns(p_pipeline); } RID RenderingDevice::compute_pipeline_create(RID p_shader, const Vector &p_specialization_constants) { _THREAD_SAFE_METHOD_ // Needs a shader. Shader *shader = shader_owner.get_or_null(p_shader); ERR_FAIL_NULL_V(shader, RID()); ERR_FAIL_COND_V_MSG(!shader->is_compute, RID(), "Non-compute shaders can't be used in compute pipelines"); for (int i = 0; i < shader->specialization_constants.size(); i++) { const ShaderSpecializationConstant &sc = shader->specialization_constants[i]; for (int j = 0; j < p_specialization_constants.size(); j++) { const PipelineSpecializationConstant &psc = p_specialization_constants[j]; if (psc.constant_id == sc.constant_id) { ERR_FAIL_COND_V_MSG(psc.type != sc.type, RID(), "Specialization constant provided for id (" + itos(sc.constant_id) + ") is of the wrong type."); break; } } } ComputePipeline pipeline; pipeline.driver_id = driver->compute_pipeline_create(shader->driver_id, p_specialization_constants); ERR_FAIL_COND_V(!pipeline.driver_id, RID()); if (pipeline_cache_enabled) { _update_pipeline_cache(); } pipeline.shader = p_shader; pipeline.shader_driver_id = shader->driver_id; pipeline.shader_layout_hash = shader->layout_hash; pipeline.set_formats = shader->set_formats; pipeline.push_constant_size = shader->push_constant_size; pipeline.local_group_size[0] = shader->compute_local_size[0]; pipeline.local_group_size[1] = shader->compute_local_size[1]; pipeline.local_group_size[2] = shader->compute_local_size[2]; // Create ID to associate with this pipeline. RID id = compute_pipeline_owner.make_rid(pipeline); #ifdef DEV_ENABLED set_resource_name(id, "RID:" + itos(id.get_id())); #endif // Now add all the dependencies. _add_dependency(id, p_shader); return id; } bool RenderingDevice::compute_pipeline_is_valid(RID p_pipeline) { return compute_pipeline_owner.owns(p_pipeline); } /****************/ /**** SCREEN ****/ /****************/ uint32_t RenderingDevice::_get_swap_chain_desired_count() const { return MAX(2U, uint32_t(GLOBAL_GET("rendering/rendering_device/vsync/swapchain_image_count"))); } Error RenderingDevice::screen_create(DisplayServer::WindowID p_screen) { _THREAD_SAFE_METHOD_ RenderingContextDriver::SurfaceID surface = context->surface_get_from_window(p_screen); ERR_FAIL_COND_V_MSG(surface == 0, ERR_CANT_CREATE, "A surface was not created for the screen."); HashMap::ConstIterator it = screen_swap_chains.find(p_screen); ERR_FAIL_COND_V_MSG(it != screen_swap_chains.end(), ERR_CANT_CREATE, "A swap chain was already created for the screen."); RDD::SwapChainID swap_chain = driver->swap_chain_create(surface); ERR_FAIL_COND_V_MSG(swap_chain.id == 0, ERR_CANT_CREATE, "Unable to create swap chain."); Error err = driver->swap_chain_resize(main_queue, swap_chain, _get_swap_chain_desired_count()); ERR_FAIL_COND_V_MSG(err != OK, ERR_CANT_CREATE, "Unable to resize the new swap chain."); screen_swap_chains[p_screen] = swap_chain; return OK; } Error RenderingDevice::screen_prepare_for_drawing(DisplayServer::WindowID p_screen) { _THREAD_SAFE_METHOD_ HashMap::ConstIterator it = screen_swap_chains.find(p_screen); ERR_FAIL_COND_V_MSG(it == screen_swap_chains.end(), ERR_CANT_CREATE, "A swap chain was not created for the screen."); // Erase the framebuffer corresponding to this screen from the map in case any of the operations fail. screen_framebuffers.erase(p_screen); // If this frame has already queued this swap chain for presentation, we present it and remove it from the pending list. uint32_t to_present_index = 0; while (to_present_index < frames[frame].swap_chains_to_present.size()) { if (frames[frame].swap_chains_to_present[to_present_index] == it->value) { driver->command_queue_execute_and_present(present_queue, {}, {}, {}, {}, it->value); frames[frame].swap_chains_to_present.remove_at(to_present_index); } else { to_present_index++; } } bool resize_required = false; RDD::FramebufferID framebuffer = driver->swap_chain_acquire_framebuffer(main_queue, it->value, resize_required); if (resize_required) { // Flush everything so nothing can be using the swap chain before resizing it. _flush_and_stall_for_all_frames(); Error err = driver->swap_chain_resize(main_queue, it->value, _get_swap_chain_desired_count()); if (err != OK) { // Resize is allowed to fail silently because the window can be minimized. return err; } framebuffer = driver->swap_chain_acquire_framebuffer(main_queue, it->value, resize_required); } ERR_FAIL_COND_V_MSG(framebuffer.id == 0, FAILED, "Unable to acquire framebuffer."); // Store the framebuffer that will be used next to draw to this screen. screen_framebuffers[p_screen] = framebuffer; frames[frame].swap_chains_to_present.push_back(it->value); return OK; } int RenderingDevice::screen_get_width(DisplayServer::WindowID p_screen) const { _THREAD_SAFE_METHOD_ RenderingContextDriver::SurfaceID surface = context->surface_get_from_window(p_screen); ERR_FAIL_COND_V_MSG(surface == 0, 0, "A surface was not created for the screen."); return context->surface_get_width(surface); } int RenderingDevice::screen_get_height(DisplayServer::WindowID p_screen) const { _THREAD_SAFE_METHOD_ RenderingContextDriver::SurfaceID surface = context->surface_get_from_window(p_screen); ERR_FAIL_COND_V_MSG(surface == 0, 0, "A surface was not created for the screen."); return context->surface_get_height(surface); } RenderingDevice::FramebufferFormatID RenderingDevice::screen_get_framebuffer_format(DisplayServer::WindowID p_screen) const { _THREAD_SAFE_METHOD_ HashMap::ConstIterator it = screen_swap_chains.find(p_screen); ERR_FAIL_COND_V_MSG(it == screen_swap_chains.end(), FAILED, "Screen was never prepared."); DataFormat format = driver->swap_chain_get_format(it->value); ERR_FAIL_COND_V(format == DATA_FORMAT_MAX, INVALID_ID); AttachmentFormat attachment; attachment.format = format; attachment.samples = TEXTURE_SAMPLES_1; attachment.usage_flags = TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; Vector screen_attachment; screen_attachment.push_back(attachment); return const_cast(this)->framebuffer_format_create(screen_attachment); } Error RenderingDevice::screen_free(DisplayServer::WindowID p_screen) { _THREAD_SAFE_METHOD_ HashMap::ConstIterator it = screen_swap_chains.find(p_screen); ERR_FAIL_COND_V_MSG(it == screen_swap_chains.end(), FAILED, "Screen was never created."); // Flush everything so nothing can be using the swap chain before erasing it. _flush_and_stall_for_all_frames(); const DisplayServer::WindowID screen = it->key; const RDD::SwapChainID swap_chain = it->value; driver->swap_chain_free(swap_chain); screen_framebuffers.erase(screen); screen_swap_chains.erase(screen); return OK; } /*******************/ /**** DRAW LIST ****/ /*******************/ RenderingDevice::DrawListID RenderingDevice::draw_list_begin_for_screen(DisplayServer::WindowID p_screen, const Color &p_clear_color) { _THREAD_SAFE_METHOD_ ERR_FAIL_COND_V_MSG(draw_list != nullptr, INVALID_ID, "Only one draw list can be active at the same time."); ERR_FAIL_COND_V_MSG(compute_list != nullptr, INVALID_ID, "Only one draw/compute list can be active at the same time."); RenderingContextDriver::SurfaceID surface = context->surface_get_from_window(p_screen); HashMap::ConstIterator sc_it = screen_swap_chains.find(p_screen); HashMap::ConstIterator fb_it = screen_framebuffers.find(p_screen); ERR_FAIL_COND_V_MSG(surface == 0, 0, "A surface was not created for the screen."); ERR_FAIL_COND_V_MSG(sc_it == screen_swap_chains.end(), INVALID_ID, "Screen was never prepared."); ERR_FAIL_COND_V_MSG(fb_it == screen_framebuffers.end(), INVALID_ID, "Framebuffer was never prepared."); Rect2i viewport = Rect2i(0, 0, context->surface_get_width(surface), context->surface_get_height(surface)); _draw_list_allocate(viewport, 0); #ifdef DEBUG_ENABLED draw_list_framebuffer_format = screen_get_framebuffer_format(p_screen); #endif draw_list_subpass_count = 1; RDD::RenderPassClearValue clear_value; clear_value.color = p_clear_color; RDD::RenderPassID render_pass = driver->swap_chain_get_render_pass(sc_it->value); draw_graph.add_draw_list_begin(render_pass, fb_it->value, viewport, clear_value, true, false); _draw_list_set_viewport(viewport); _draw_list_set_scissor(viewport); return int64_t(ID_TYPE_DRAW_LIST) << ID_BASE_SHIFT; } Error RenderingDevice::_draw_list_setup_framebuffer(Framebuffer *p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, RDD::FramebufferID *r_framebuffer, RDD::RenderPassID *r_render_pass, uint32_t *r_subpass_count) { Framebuffer::VersionKey vk; vk.initial_color_action = p_initial_color_action; vk.final_color_action = p_final_color_action; vk.initial_depth_action = p_initial_depth_action; vk.final_depth_action = p_final_depth_action; vk.view_count = p_framebuffer->view_count; if (!p_framebuffer->framebuffers.has(vk)) { // Need to create this version. Framebuffer::Version version; version.render_pass = _render_pass_create(framebuffer_formats[p_framebuffer->format_id].E->key().attachments, framebuffer_formats[p_framebuffer->format_id].E->key().passes, p_initial_color_action, p_final_color_action, p_initial_depth_action, p_final_depth_action, p_framebuffer->view_count); LocalVector attachments; for (int i = 0; i < p_framebuffer->texture_ids.size(); i++) { Texture *texture = texture_owner.get_or_null(p_framebuffer->texture_ids[i]); if (texture) { attachments.push_back(texture->driver_id); if (!(texture->usage_flags & TEXTURE_USAGE_VRS_ATTACHMENT_BIT)) { // VRS attachment will be a different size. ERR_FAIL_COND_V(texture->width != p_framebuffer->size.width, ERR_BUG); ERR_FAIL_COND_V(texture->height != p_framebuffer->size.height, ERR_BUG); } } } version.framebuffer = driver->framebuffer_create(version.render_pass, attachments, p_framebuffer->size.width, p_framebuffer->size.height); ERR_FAIL_COND_V(!version.framebuffer, ERR_CANT_CREATE); version.subpass_count = framebuffer_formats[p_framebuffer->format_id].E->key().passes.size(); p_framebuffer->framebuffers.insert(vk, version); } const Framebuffer::Version &version = p_framebuffer->framebuffers[vk]; *r_framebuffer = version.framebuffer; *r_render_pass = version.render_pass; *r_subpass_count = version.subpass_count; return OK; } Error RenderingDevice::_draw_list_render_pass_begin(Framebuffer *p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector &p_clear_colors, float p_clear_depth, uint32_t p_clear_stencil, Point2i p_viewport_offset, Point2i p_viewport_size, RDD::FramebufferID p_framebuffer_driver_id, RDD::RenderPassID p_render_pass) { LocalVector clear_values; LocalVector resource_trackers; LocalVector resource_usages; bool uses_color = false; bool uses_depth = false; clear_values.resize(p_framebuffer->texture_ids.size()); int clear_values_count = 0; { int color_index = 0; for (int i = 0; i < p_framebuffer->texture_ids.size(); i++) { RDD::RenderPassClearValue clear_value; Texture *texture = texture_owner.get_or_null(p_framebuffer->texture_ids[i]); if (!texture) { color_index++; continue; } if (texture->usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT) { if (color_index < p_clear_colors.size()) { ERR_FAIL_INDEX_V(color_index, p_clear_colors.size(), ERR_BUG); // A bug. clear_value.color = p_clear_colors[color_index]; color_index++; } resource_trackers.push_back(texture->draw_tracker); resource_usages.push_back(RDG::RESOURCE_USAGE_ATTACHMENT_COLOR_READ_WRITE); uses_color = true; } else if (texture->usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) { clear_value.depth = p_clear_depth; clear_value.stencil = p_clear_stencil; resource_trackers.push_back(texture->draw_tracker); resource_usages.push_back(RDG::RESOURCE_USAGE_ATTACHMENT_DEPTH_STENCIL_READ_WRITE); uses_depth = true; } clear_values[clear_values_count++] = clear_value; } } draw_graph.add_draw_list_begin(p_render_pass, p_framebuffer_driver_id, Rect2i(p_viewport_offset, p_viewport_size), clear_values, uses_color, uses_depth); draw_graph.add_draw_list_usages(resource_trackers, resource_usages); // Mark textures as bound. draw_list_bound_textures.clear(); for (int i = 0; i < p_framebuffer->texture_ids.size(); i++) { Texture *texture = texture_owner.get_or_null(p_framebuffer->texture_ids[i]); if (!texture) { continue; } texture->bound = true; draw_list_bound_textures.push_back(p_framebuffer->texture_ids[i]); } return OK; } void RenderingDevice::_draw_list_set_viewport(Rect2i p_rect) { draw_graph.add_draw_list_set_viewport(p_rect); } void RenderingDevice::_draw_list_set_scissor(Rect2i p_rect) { draw_graph.add_draw_list_set_scissor(p_rect); } void RenderingDevice::_draw_list_insert_clear_region(DrawList *p_draw_list, Framebuffer *p_framebuffer, Point2i p_viewport_offset, Point2i p_viewport_size, bool p_clear_color, const Vector &p_clear_colors, bool p_clear_depth, float p_depth, uint32_t p_stencil) { LocalVector clear_attachments; int color_index = 0; int texture_index = 0; for (int i = 0; i < p_framebuffer->texture_ids.size(); i++) { Texture *texture = texture_owner.get_or_null(p_framebuffer->texture_ids[i]); if (!texture) { texture_index++; continue; } RDD::AttachmentClear clear_at; if (p_clear_color && (texture->usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT)) { Color clear_color = p_clear_colors[texture_index++]; clear_at.value.color = clear_color; clear_at.color_attachment = color_index++; clear_at.aspect = RDD::TEXTURE_ASPECT_COLOR_BIT; } else if (p_clear_depth && (texture->usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) { clear_at.value.depth = p_depth; clear_at.value.stencil = p_stencil; clear_at.color_attachment = 0; clear_at.aspect = RDD::TEXTURE_ASPECT_DEPTH_BIT; if (format_has_stencil(texture->format)) { clear_at.aspect.set_flag(RDD::TEXTURE_ASPECT_STENCIL_BIT); } } else { ERR_CONTINUE(true); } clear_attachments.push_back(clear_at); } Rect2i rect = Rect2i(p_viewport_offset, p_viewport_size); draw_graph.add_draw_list_clear_attachments(clear_attachments, rect); } RenderingDevice::DrawListID RenderingDevice::draw_list_begin(RID p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector &p_clear_color_values, float p_clear_depth, uint32_t p_clear_stencil, const Rect2 &p_region) { _THREAD_SAFE_METHOD_ ERR_FAIL_COND_V_MSG(draw_list != nullptr, INVALID_ID, "Only one draw list can be active at the same time."); Framebuffer *framebuffer = framebuffer_owner.get_or_null(p_framebuffer); ERR_FAIL_NULL_V(framebuffer, INVALID_ID); Point2i viewport_offset; Point2i viewport_size = framebuffer->size; if (p_region != Rect2() && p_region != Rect2(Vector2(), viewport_size)) { // Check custom region. Rect2i viewport(viewport_offset, viewport_size); Rect2i regioni = p_region; if (!((regioni.position.x >= viewport.position.x) && (regioni.position.y >= viewport.position.y) && ((regioni.position.x + regioni.size.x) <= (viewport.position.x + viewport.size.x)) && ((regioni.position.y + regioni.size.y) <= (viewport.position.y + viewport.size.y)))) { ERR_FAIL_V_MSG(INVALID_ID, "When supplying a custom region, it must be contained within the framebuffer rectangle"); } viewport_offset = regioni.position; viewport_size = regioni.size; } if (p_initial_color_action == INITIAL_ACTION_CLEAR) { // Check clear values. int color_count = 0; for (int i = 0; i < framebuffer->texture_ids.size(); i++) { Texture *texture = texture_owner.get_or_null(framebuffer->texture_ids[i]); // We only check for our VRS usage bit if this is not the first texture id. // If it is the first we're likely populating our VRS texture. // Bit dirty but... if (!texture || (!(texture->usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) && !(i != 0 && texture->usage_flags & TEXTURE_USAGE_VRS_ATTACHMENT_BIT))) { if (!texture || !texture->is_resolve_buffer) { color_count++; } } } ERR_FAIL_COND_V_MSG(p_clear_color_values.size() != color_count, INVALID_ID, "Clear color values supplied (" + itos(p_clear_color_values.size()) + ") differ from the amount required for framebuffer color attachments (" + itos(color_count) + ")."); } RDD::FramebufferID fb_driver_id; RDD::RenderPassID render_pass; Error err = _draw_list_setup_framebuffer(framebuffer, p_initial_color_action, p_final_color_action, p_initial_depth_action, p_final_depth_action, &fb_driver_id, &render_pass, &draw_list_subpass_count); ERR_FAIL_COND_V(err != OK, INVALID_ID); err = _draw_list_render_pass_begin(framebuffer, p_initial_color_action, p_final_color_action, p_initial_depth_action, p_final_depth_action, p_clear_color_values, p_clear_depth, p_clear_stencil, viewport_offset, viewport_size, fb_driver_id, render_pass); if (err != OK) { return INVALID_ID; } draw_list_render_pass = render_pass; draw_list_vkframebuffer = fb_driver_id; _draw_list_allocate(Rect2i(viewport_offset, viewport_size), 0); #ifdef DEBUG_ENABLED draw_list_framebuffer_format = framebuffer->format_id; #endif draw_list_current_subpass = 0; _draw_list_set_viewport(Rect2i(viewport_offset, viewport_size)); _draw_list_set_scissor(Rect2i(viewport_offset, viewport_size)); return int64_t(ID_TYPE_DRAW_LIST) << ID_BASE_SHIFT; } #ifndef DISABLE_DEPRECATED Error RenderingDevice::draw_list_begin_split(RID p_framebuffer, uint32_t p_splits, DrawListID *r_split_ids, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector &p_clear_color_values, float p_clear_depth, uint32_t p_clear_stencil, const Rect2 &p_region, const Vector &p_storage_textures) { ERR_FAIL_V_MSG(ERR_UNAVAILABLE, "Deprecated. Split draw lists are used automatically by RenderingDevice."); } #endif RenderingDevice::DrawList *RenderingDevice::_get_draw_list_ptr(DrawListID p_id) { if (p_id < 0) { return nullptr; } if (!draw_list) { return nullptr; } else if (p_id == (int64_t(ID_TYPE_DRAW_LIST) << ID_BASE_SHIFT)) { return draw_list; } else { return nullptr; } } void RenderingDevice::draw_list_set_blend_constants(DrawListID p_list, const Color &p_color) { DrawList *dl = _get_draw_list_ptr(p_list); ERR_FAIL_NULL(dl); #ifdef DEBUG_ENABLED ERR_FAIL_COND_MSG(!dl->validation.active, "Submitted Draw Lists can no longer be modified."); #endif draw_graph.add_draw_list_set_blend_constants(p_color); } void RenderingDevice::draw_list_bind_render_pipeline(DrawListID p_list, RID p_render_pipeline) { DrawList *dl = _get_draw_list_ptr(p_list); ERR_FAIL_NULL(dl); #ifdef DEBUG_ENABLED ERR_FAIL_COND_MSG(!dl->validation.active, "Submitted Draw Lists can no longer be modified."); #endif const RenderPipeline *pipeline = render_pipeline_owner.get_or_null(p_render_pipeline); ERR_FAIL_NULL(pipeline); #ifdef DEBUG_ENABLED ERR_FAIL_COND(pipeline->validation.framebuffer_format != draw_list_framebuffer_format && pipeline->validation.render_pass != draw_list_current_subpass); #endif if (p_render_pipeline == dl->state.pipeline) { return; // Redundant state, return. } dl->state.pipeline = p_render_pipeline; draw_graph.add_draw_list_bind_pipeline(pipeline->driver_id, pipeline->stage_bits); if (dl->state.pipeline_shader != pipeline->shader) { // Shader changed, so descriptor sets may become incompatible. uint32_t pcount = pipeline->set_formats.size(); // Formats count in this pipeline. dl->state.set_count = MAX(dl->state.set_count, pcount); const uint32_t *pformats = pipeline->set_formats.ptr(); // Pipeline set formats. uint32_t first_invalid_set = UINT32_MAX; // All valid by default. switch (driver->api_trait_get(RDD::API_TRAIT_SHADER_CHANGE_INVALIDATION)) { case RDD::SHADER_CHANGE_INVALIDATION_ALL_BOUND_UNIFORM_SETS: { first_invalid_set = 0; } break; case RDD::SHADER_CHANGE_INVALIDATION_INCOMPATIBLE_SETS_PLUS_CASCADE: { for (uint32_t i = 0; i < pcount; i++) { if (dl->state.sets[i].pipeline_expected_format != pformats[i]) { first_invalid_set = i; break; } } } break; case RDD::SHADER_CHANGE_INVALIDATION_ALL_OR_NONE_ACCORDING_TO_LAYOUT_HASH: { if (dl->state.pipeline_shader_layout_hash != pipeline->shader_layout_hash) { first_invalid_set = 0; } } break; } for (uint32_t i = 0; i < pcount; i++) { dl->state.sets[i].bound = dl->state.sets[i].bound && i < first_invalid_set; dl->state.sets[i].pipeline_expected_format = pformats[i]; } for (uint32_t i = pcount; i < dl->state.set_count; i++) { // Unbind the ones above (not used) if exist. dl->state.sets[i].bound = false; } dl->state.set_count = pcount; // Update set count. if (pipeline->push_constant_size) { #ifdef DEBUG_ENABLED dl->validation.pipeline_push_constant_supplied = false; #endif } dl->state.pipeline_shader = pipeline->shader; dl->state.pipeline_shader_driver_id = pipeline->shader_driver_id; dl->state.pipeline_shader_layout_hash = pipeline->shader_layout_hash; } #ifdef DEBUG_ENABLED // Update render pass pipeline info. dl->validation.pipeline_active = true; dl->validation.pipeline_dynamic_state = pipeline->validation.dynamic_state; dl->validation.pipeline_vertex_format = pipeline->validation.vertex_format; dl->validation.pipeline_uses_restart_indices = pipeline->validation.uses_restart_indices; dl->validation.pipeline_primitive_divisor = pipeline->validation.primitive_divisor; dl->validation.pipeline_primitive_minimum = pipeline->validation.primitive_minimum; dl->validation.pipeline_push_constant_size = pipeline->push_constant_size; #endif } void RenderingDevice::draw_list_bind_uniform_set(DrawListID p_list, RID p_uniform_set, uint32_t p_index) { #ifdef DEBUG_ENABLED ERR_FAIL_COND_MSG(p_index >= driver->limit_get(LIMIT_MAX_BOUND_UNIFORM_SETS) || p_index >= MAX_UNIFORM_SETS, "Attempting to bind a descriptor set (" + itos(p_index) + ") greater than what the hardware supports (" + itos(driver->limit_get(LIMIT_MAX_BOUND_UNIFORM_SETS)) + ")."); #endif DrawList *dl = _get_draw_list_ptr(p_list); ERR_FAIL_NULL(dl); #ifdef DEBUG_ENABLED ERR_FAIL_COND_MSG(!dl->validation.active, "Submitted Draw Lists can no longer be modified."); #endif const UniformSet *uniform_set = uniform_set_owner.get_or_null(p_uniform_set); ERR_FAIL_NULL(uniform_set); if (p_index > dl->state.set_count) { dl->state.set_count = p_index; } dl->state.sets[p_index].uniform_set_driver_id = uniform_set->driver_id; // Update set pointer. dl->state.sets[p_index].bound = false; // Needs rebind. dl->state.sets[p_index].uniform_set_format = uniform_set->format; dl->state.sets[p_index].uniform_set = p_uniform_set; #ifdef DEBUG_ENABLED { // Validate that textures bound are not attached as framebuffer bindings. uint32_t attachable_count = uniform_set->attachable_textures.size(); const UniformSet::AttachableTexture *attachable_ptr = uniform_set->attachable_textures.ptr(); uint32_t bound_count = draw_list_bound_textures.size(); const RID *bound_ptr = draw_list_bound_textures.ptr(); for (uint32_t i = 0; i < attachable_count; i++) { for (uint32_t j = 0; j < bound_count; j++) { ERR_FAIL_COND_MSG(attachable_ptr[i].texture == bound_ptr[j], "Attempted to use the same texture in framebuffer attachment and a uniform (set: " + itos(p_index) + ", binding: " + itos(attachable_ptr[i].bind) + "), this is not allowed."); } } } #endif } void RenderingDevice::draw_list_bind_vertex_array(DrawListID p_list, RID p_vertex_array) { DrawList *dl = _get_draw_list_ptr(p_list); ERR_FAIL_NULL(dl); #ifdef DEBUG_ENABLED ERR_FAIL_COND_MSG(!dl->validation.active, "Submitted Draw Lists can no longer be modified."); #endif const VertexArray *vertex_array = vertex_array_owner.get_or_null(p_vertex_array); ERR_FAIL_NULL(vertex_array); if (dl->state.vertex_array == p_vertex_array) { return; // Already set. } dl->state.vertex_array = p_vertex_array; #ifdef DEBUG_ENABLED dl->validation.vertex_format = vertex_array->description; dl->validation.vertex_max_instances_allowed = vertex_array->max_instances_allowed; #endif dl->validation.vertex_array_size = vertex_array->vertex_count; draw_graph.add_draw_list_bind_vertex_buffers(vertex_array->buffers, vertex_array->offsets); for (int i = 0; i < vertex_array->draw_trackers.size(); i++) { draw_graph.add_draw_list_usage(vertex_array->draw_trackers[i], RDG::RESOURCE_USAGE_VERTEX_BUFFER_READ); } } void RenderingDevice::draw_list_bind_index_array(DrawListID p_list, RID p_index_array) { DrawList *dl = _get_draw_list_ptr(p_list); ERR_FAIL_NULL(dl); #ifdef DEBUG_ENABLED ERR_FAIL_COND_MSG(!dl->validation.active, "Submitted Draw Lists can no longer be modified."); #endif const IndexArray *index_array = index_array_owner.get_or_null(p_index_array); ERR_FAIL_NULL(index_array); if (dl->state.index_array == p_index_array) { return; // Already set. } dl->state.index_array = p_index_array; #ifdef DEBUG_ENABLED dl->validation.index_array_max_index = index_array->max_index; #endif dl->validation.index_array_count = index_array->indices; const uint64_t offset_bytes = index_array->offset * (index_array->format == INDEX_BUFFER_FORMAT_UINT16 ? sizeof(uint16_t) : sizeof(uint32_t)); draw_graph.add_draw_list_bind_index_buffer(index_array->driver_id, index_array->format, offset_bytes); if (index_array->draw_tracker != nullptr) { draw_graph.add_draw_list_usage(index_array->draw_tracker, RDG::RESOURCE_USAGE_INDEX_BUFFER_READ); } } void RenderingDevice::draw_list_set_line_width(DrawListID p_list, float p_width) { DrawList *dl = _get_draw_list_ptr(p_list); ERR_FAIL_NULL(dl); #ifdef DEBUG_ENABLED ERR_FAIL_COND_MSG(!dl->validation.active, "Submitted Draw Lists can no longer be modified."); #endif draw_graph.add_draw_list_set_line_width(p_width); } void RenderingDevice::draw_list_set_push_constant(DrawListID p_list, const void *p_data, uint32_t p_data_size) { DrawList *dl = _get_draw_list_ptr(p_list); ERR_FAIL_NULL(dl); #ifdef DEBUG_ENABLED ERR_FAIL_COND_MSG(!dl->validation.active, "Submitted Draw Lists can no longer be modified."); #endif #ifdef DEBUG_ENABLED ERR_FAIL_COND_MSG(p_data_size != dl->validation.pipeline_push_constant_size, "This render pipeline requires (" + itos(dl->validation.pipeline_push_constant_size) + ") bytes of push constant data, supplied: (" + itos(p_data_size) + ")"); #endif draw_graph.add_draw_list_set_push_constant(dl->state.pipeline_shader_driver_id, p_data, p_data_size); #ifdef DEBUG_ENABLED dl->validation.pipeline_push_constant_supplied = true; #endif } void RenderingDevice::draw_list_draw(DrawListID p_list, bool p_use_indices, uint32_t p_instances, uint32_t p_procedural_vertices) { DrawList *dl = _get_draw_list_ptr(p_list); ERR_FAIL_NULL(dl); #ifdef DEBUG_ENABLED ERR_FAIL_COND_MSG(!dl->validation.active, "Submitted Draw Lists can no longer be modified."); #endif #ifdef DEBUG_ENABLED ERR_FAIL_COND_MSG(!dl->validation.pipeline_active, "No render pipeline was set before attempting to draw."); if (dl->validation.pipeline_vertex_format != INVALID_ID) { // Pipeline uses vertices, validate format. ERR_FAIL_COND_MSG(dl->validation.vertex_format == INVALID_ID, "No vertex array was bound, and render pipeline expects vertices."); // Make sure format is right. ERR_FAIL_COND_MSG(dl->validation.pipeline_vertex_format != dl->validation.vertex_format, "The vertex format used to create the pipeline does not match the vertex format bound."); // Make sure number of instances is valid. ERR_FAIL_COND_MSG(p_instances > dl->validation.vertex_max_instances_allowed, "Number of instances requested (" + itos(p_instances) + " is larger than the maximum number supported by the bound vertex array (" + itos(dl->validation.vertex_max_instances_allowed) + ")."); } if (dl->validation.pipeline_push_constant_size > 0) { // Using push constants, check that they were supplied. ERR_FAIL_COND_MSG(!dl->validation.pipeline_push_constant_supplied, "The shader in this pipeline requires a push constant to be set before drawing, but it's not present."); } #endif #ifdef DEBUG_ENABLED for (uint32_t i = 0; i < dl->state.set_count; i++) { if (dl->state.sets[i].pipeline_expected_format == 0) { // Nothing expected by this pipeline. continue; } if (dl->state.sets[i].pipeline_expected_format != dl->state.sets[i].uniform_set_format) { if (dl->state.sets[i].uniform_set_format == 0) { ERR_FAIL_MSG("Uniforms were never supplied for set (" + itos(i) + ") at the time of drawing, which are required by the pipeline."); } else if (uniform_set_owner.owns(dl->state.sets[i].uniform_set)) { UniformSet *us = uniform_set_owner.get_or_null(dl->state.sets[i].uniform_set); ERR_FAIL_MSG("Uniforms supplied for set (" + itos(i) + "):\n" + _shader_uniform_debug(us->shader_id, us->shader_set) + "\nare not the same format as required by the pipeline shader. Pipeline shader requires the following bindings:\n" + _shader_uniform_debug(dl->state.pipeline_shader)); } else { ERR_FAIL_MSG("Uniforms supplied for set (" + itos(i) + ", which was just freed) are not the same format as required by the pipeline shader. Pipeline shader requires the following bindings:\n" + _shader_uniform_debug(dl->state.pipeline_shader)); } } } #endif // Prepare descriptor sets if the API doesn't use pipeline barriers. if (!driver->api_trait_get(RDD::API_TRAIT_HONORS_PIPELINE_BARRIERS)) { for (uint32_t i = 0; i < dl->state.set_count; i++) { if (dl->state.sets[i].pipeline_expected_format == 0) { // Nothing expected by this pipeline. continue; } draw_graph.add_draw_list_uniform_set_prepare_for_use(dl->state.pipeline_shader_driver_id, dl->state.sets[i].uniform_set_driver_id, i); } } // Bind descriptor sets. for (uint32_t i = 0; i < dl->state.set_count; i++) { if (dl->state.sets[i].pipeline_expected_format == 0) { continue; // Nothing expected by this pipeline. } if (!dl->state.sets[i].bound) { // All good, see if this requires re-binding. draw_graph.add_draw_list_bind_uniform_set(dl->state.pipeline_shader_driver_id, dl->state.sets[i].uniform_set_driver_id, i); UniformSet *uniform_set = uniform_set_owner.get_or_null(dl->state.sets[i].uniform_set); draw_graph.add_draw_list_usages(uniform_set->draw_trackers, uniform_set->draw_trackers_usage); dl->state.sets[i].bound = true; } } if (p_use_indices) { #ifdef DEBUG_ENABLED ERR_FAIL_COND_MSG(p_procedural_vertices > 0, "Procedural vertices can't be used together with indices."); ERR_FAIL_COND_MSG(!dl->validation.index_array_count, "Draw command requested indices, but no index buffer was set."); ERR_FAIL_COND_MSG(dl->validation.pipeline_uses_restart_indices != dl->validation.index_buffer_uses_restart_indices, "The usage of restart indices in index buffer does not match the render primitive in the pipeline."); #endif uint32_t to_draw = dl->validation.index_array_count; #ifdef DEBUG_ENABLED ERR_FAIL_COND_MSG(to_draw < dl->validation.pipeline_primitive_minimum, "Too few indices (" + itos(to_draw) + ") for the render primitive set in the render pipeline (" + itos(dl->validation.pipeline_primitive_minimum) + ")."); ERR_FAIL_COND_MSG((to_draw % dl->validation.pipeline_primitive_divisor) != 0, "Index amount (" + itos(to_draw) + ") must be a multiple of the amount of indices required by the render primitive (" + itos(dl->validation.pipeline_primitive_divisor) + ")."); #endif draw_graph.add_draw_list_draw_indexed(to_draw, p_instances, 0); } else { uint32_t to_draw; if (p_procedural_vertices > 0) { #ifdef DEBUG_ENABLED ERR_FAIL_COND_MSG(dl->validation.pipeline_vertex_format != INVALID_ID, "Procedural vertices requested, but pipeline expects a vertex array."); #endif to_draw = p_procedural_vertices; } else { #ifdef DEBUG_ENABLED ERR_FAIL_COND_MSG(dl->validation.pipeline_vertex_format == INVALID_ID, "Draw command lacks indices, but pipeline format does not use vertices."); #endif to_draw = dl->validation.vertex_array_size; } #ifdef DEBUG_ENABLED ERR_FAIL_COND_MSG(to_draw < dl->validation.pipeline_primitive_minimum, "Too few vertices (" + itos(to_draw) + ") for the render primitive set in the render pipeline (" + itos(dl->validation.pipeline_primitive_minimum) + ")."); ERR_FAIL_COND_MSG((to_draw % dl->validation.pipeline_primitive_divisor) != 0, "Vertex amount (" + itos(to_draw) + ") must be a multiple of the amount of vertices required by the render primitive (" + itos(dl->validation.pipeline_primitive_divisor) + ")."); #endif draw_graph.add_draw_list_draw(to_draw, p_instances); } dl->state.draw_count++; } void RenderingDevice::draw_list_enable_scissor(DrawListID p_list, const Rect2 &p_rect) { DrawList *dl = _get_draw_list_ptr(p_list); ERR_FAIL_NULL(dl); #ifdef DEBUG_ENABLED ERR_FAIL_COND_MSG(!dl->validation.active, "Submitted Draw Lists can no longer be modified."); #endif Rect2i rect = p_rect; rect.position += dl->viewport.position; rect = dl->viewport.intersection(rect); if (rect.get_area() == 0) { return; } _draw_list_set_scissor(rect); } void RenderingDevice::draw_list_disable_scissor(DrawListID p_list) { DrawList *dl = _get_draw_list_ptr(p_list); ERR_FAIL_NULL(dl); #ifdef DEBUG_ENABLED ERR_FAIL_COND_MSG(!dl->validation.active, "Submitted Draw Lists can no longer be modified."); #endif _draw_list_set_scissor(dl->viewport); } uint32_t RenderingDevice::draw_list_get_current_pass() { return draw_list_current_subpass; } RenderingDevice::DrawListID RenderingDevice::draw_list_switch_to_next_pass() { _THREAD_SAFE_METHOD_ ERR_FAIL_NULL_V(draw_list, INVALID_ID); ERR_FAIL_COND_V(draw_list_current_subpass >= draw_list_subpass_count - 1, INVALID_FORMAT_ID); draw_list_current_subpass++; Rect2i viewport; _draw_list_free(&viewport); draw_graph.add_draw_list_next_subpass(RDD::COMMAND_BUFFER_TYPE_PRIMARY); _draw_list_allocate(viewport, draw_list_current_subpass); return int64_t(ID_TYPE_DRAW_LIST) << ID_BASE_SHIFT; } #ifndef DISABLE_DEPRECATED Error RenderingDevice::draw_list_switch_to_next_pass_split(uint32_t p_splits, DrawListID *r_split_ids) { ERR_FAIL_V_MSG(ERR_UNAVAILABLE, "Deprecated. Split draw lists are used automatically by RenderingDevice."); } #endif Error RenderingDevice::_draw_list_allocate(const Rect2i &p_viewport, uint32_t p_subpass) { // Lock while draw_list is active. _THREAD_SAFE_LOCK_ draw_list = memnew(DrawList); draw_list->viewport = p_viewport; return OK; } void RenderingDevice::_draw_list_free(Rect2i *r_last_viewport) { if (r_last_viewport) { *r_last_viewport = draw_list->viewport; } // Just end the list. memdelete(draw_list); draw_list = nullptr; // Draw_list is no longer active. _THREAD_SAFE_UNLOCK_ } void RenderingDevice::draw_list_end() { _THREAD_SAFE_METHOD_ ERR_FAIL_NULL_MSG(draw_list, "Immediate draw list is already inactive."); draw_graph.add_draw_list_end(); _draw_list_free(); for (int i = 0; i < draw_list_bound_textures.size(); i++) { Texture *texture = texture_owner.get_or_null(draw_list_bound_textures[i]); ERR_CONTINUE(!texture); // Wtf. if (texture->usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT) { texture->bound = false; } if (texture->usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) { texture->bound = false; } } draw_list_bound_textures.clear(); } /***********************/ /**** COMPUTE LISTS ****/ /***********************/ RenderingDevice::ComputeListID RenderingDevice::compute_list_begin() { _THREAD_SAFE_METHOD_ ERR_FAIL_COND_V_MSG(compute_list != nullptr, INVALID_ID, "Only one draw/compute list can be active at the same time."); // Lock while compute_list is active. _THREAD_SAFE_LOCK_ compute_list = memnew(ComputeList); draw_graph.add_compute_list_begin(); return ID_TYPE_COMPUTE_LIST; } void RenderingDevice::compute_list_bind_compute_pipeline(ComputeListID p_list, RID p_compute_pipeline) { // Must be called within a compute list, the class mutex is locked during that time ERR_FAIL_COND(p_list != ID_TYPE_COMPUTE_LIST); ERR_FAIL_NULL(compute_list); ComputeList *cl = compute_list; const ComputePipeline *pipeline = compute_pipeline_owner.get_or_null(p_compute_pipeline); ERR_FAIL_NULL(pipeline); if (p_compute_pipeline == cl->state.pipeline) { return; // Redundant state, return. } cl->state.pipeline = p_compute_pipeline; draw_graph.add_compute_list_bind_pipeline(pipeline->driver_id); if (cl->state.pipeline_shader != pipeline->shader) { // Shader changed, so descriptor sets may become incompatible. uint32_t pcount = pipeline->set_formats.size(); // Formats count in this pipeline. cl->state.set_count = MAX(cl->state.set_count, pcount); const uint32_t *pformats = pipeline->set_formats.ptr(); // Pipeline set formats. uint32_t first_invalid_set = UINT32_MAX; // All valid by default. switch (driver->api_trait_get(RDD::API_TRAIT_SHADER_CHANGE_INVALIDATION)) { case RDD::SHADER_CHANGE_INVALIDATION_ALL_BOUND_UNIFORM_SETS: { first_invalid_set = 0; } break; case RDD::SHADER_CHANGE_INVALIDATION_INCOMPATIBLE_SETS_PLUS_CASCADE: { for (uint32_t i = 0; i < pcount; i++) { if (cl->state.sets[i].pipeline_expected_format != pformats[i]) { first_invalid_set = i; break; } } } break; case RDD::SHADER_CHANGE_INVALIDATION_ALL_OR_NONE_ACCORDING_TO_LAYOUT_HASH: { if (cl->state.pipeline_shader_layout_hash != pipeline->shader_layout_hash) { first_invalid_set = 0; } } break; } for (uint32_t i = 0; i < pcount; i++) { cl->state.sets[i].bound = cl->state.sets[i].bound && i < first_invalid_set; cl->state.sets[i].pipeline_expected_format = pformats[i]; } for (uint32_t i = pcount; i < cl->state.set_count; i++) { // Unbind the ones above (not used) if exist. cl->state.sets[i].bound = false; } cl->state.set_count = pcount; // Update set count. if (pipeline->push_constant_size) { #ifdef DEBUG_ENABLED cl->validation.pipeline_push_constant_supplied = false; #endif } cl->state.pipeline_shader = pipeline->shader; cl->state.pipeline_shader_driver_id = pipeline->shader_driver_id; cl->state.pipeline_shader_layout_hash = pipeline->shader_layout_hash; cl->state.local_group_size[0] = pipeline->local_group_size[0]; cl->state.local_group_size[1] = pipeline->local_group_size[1]; cl->state.local_group_size[2] = pipeline->local_group_size[2]; } #ifdef DEBUG_ENABLED // Update compute pass pipeline info. cl->validation.pipeline_active = true; cl->validation.pipeline_push_constant_size = pipeline->push_constant_size; #endif } void RenderingDevice::compute_list_bind_uniform_set(ComputeListID p_list, RID p_uniform_set, uint32_t p_index) { // Must be called within a compute list, the class mutex is locked during that time ERR_FAIL_COND(p_list != ID_TYPE_COMPUTE_LIST); ERR_FAIL_NULL(compute_list); ComputeList *cl = compute_list; #ifdef DEBUG_ENABLED ERR_FAIL_COND_MSG(p_index >= driver->limit_get(LIMIT_MAX_BOUND_UNIFORM_SETS) || p_index >= MAX_UNIFORM_SETS, "Attempting to bind a descriptor set (" + itos(p_index) + ") greater than what the hardware supports (" + itos(driver->limit_get(LIMIT_MAX_BOUND_UNIFORM_SETS)) + ")."); #endif #ifdef DEBUG_ENABLED ERR_FAIL_COND_MSG(!cl->validation.active, "Submitted Compute Lists can no longer be modified."); #endif UniformSet *uniform_set = uniform_set_owner.get_or_null(p_uniform_set); ERR_FAIL_NULL(uniform_set); if (p_index > cl->state.set_count) { cl->state.set_count = p_index; } cl->state.sets[p_index].uniform_set_driver_id = uniform_set->driver_id; // Update set pointer. cl->state.sets[p_index].bound = false; // Needs rebind. cl->state.sets[p_index].uniform_set_format = uniform_set->format; cl->state.sets[p_index].uniform_set = p_uniform_set; #if 0 { // Validate that textures bound are not attached as framebuffer bindings. uint32_t attachable_count = uniform_set->attachable_textures.size(); const RID *attachable_ptr = uniform_set->attachable_textures.ptr(); uint32_t bound_count = draw_list_bound_textures.size(); const RID *bound_ptr = draw_list_bound_textures.ptr(); for (uint32_t i = 0; i < attachable_count; i++) { for (uint32_t j = 0; j < bound_count; j++) { ERR_FAIL_COND_MSG(attachable_ptr[i] == bound_ptr[j], "Attempted to use the same texture in framebuffer attachment and a uniform set, this is not allowed."); } } } #endif } void RenderingDevice::compute_list_set_push_constant(ComputeListID p_list, const void *p_data, uint32_t p_data_size) { ERR_FAIL_COND(p_list != ID_TYPE_COMPUTE_LIST); ERR_FAIL_NULL(compute_list); ERR_FAIL_COND_MSG(p_data_size > MAX_PUSH_CONSTANT_SIZE, "Push constants can't be bigger than 128 bytes to maintain compatibility."); ComputeList *cl = compute_list; #ifdef DEBUG_ENABLED ERR_FAIL_COND_MSG(!cl->validation.active, "Submitted Compute Lists can no longer be modified."); #endif #ifdef DEBUG_ENABLED ERR_FAIL_COND_MSG(p_data_size != cl->validation.pipeline_push_constant_size, "This compute pipeline requires (" + itos(cl->validation.pipeline_push_constant_size) + ") bytes of push constant data, supplied: (" + itos(p_data_size) + ")"); #endif draw_graph.add_compute_list_set_push_constant(cl->state.pipeline_shader_driver_id, p_data, p_data_size); // Store it in the state in case we need to restart the compute list. memcpy(cl->state.push_constant_data, p_data, p_data_size); cl->state.push_constant_size = p_data_size; #ifdef DEBUG_ENABLED cl->validation.pipeline_push_constant_supplied = true; #endif } void RenderingDevice::compute_list_dispatch(ComputeListID p_list, uint32_t p_x_groups, uint32_t p_y_groups, uint32_t p_z_groups) { // Must be called within a compute list, the class mutex is locked during that time ERR_FAIL_COND(p_list != ID_TYPE_COMPUTE_LIST); ERR_FAIL_NULL(compute_list); ComputeList *cl = compute_list; #ifdef DEBUG_ENABLED ERR_FAIL_COND_MSG(p_x_groups == 0, "Dispatch amount of X compute groups (" + itos(p_x_groups) + ") is zero."); ERR_FAIL_COND_MSG(p_z_groups == 0, "Dispatch amount of Z compute groups (" + itos(p_z_groups) + ") is zero."); ERR_FAIL_COND_MSG(p_y_groups == 0, "Dispatch amount of Y compute groups (" + itos(p_y_groups) + ") is zero."); ERR_FAIL_COND_MSG(p_x_groups > driver->limit_get(LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_X), "Dispatch amount of X compute groups (" + itos(p_x_groups) + ") is larger than device limit (" + itos(driver->limit_get(LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_X)) + ")"); ERR_FAIL_COND_MSG(p_y_groups > driver->limit_get(LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_Y), "Dispatch amount of Y compute groups (" + itos(p_y_groups) + ") is larger than device limit (" + itos(driver->limit_get(LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_Y)) + ")"); ERR_FAIL_COND_MSG(p_z_groups > driver->limit_get(LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_Z), "Dispatch amount of Z compute groups (" + itos(p_z_groups) + ") is larger than device limit (" + itos(driver->limit_get(LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_Z)) + ")"); ERR_FAIL_COND_MSG(!cl->validation.active, "Submitted Compute Lists can no longer be modified."); #endif #ifdef DEBUG_ENABLED ERR_FAIL_COND_MSG(!cl->validation.pipeline_active, "No compute pipeline was set before attempting to draw."); if (cl->validation.pipeline_push_constant_size > 0) { // Using push constants, check that they were supplied. ERR_FAIL_COND_MSG(!cl->validation.pipeline_push_constant_supplied, "The shader in this pipeline requires a push constant to be set before drawing, but it's not present."); } #endif #ifdef DEBUG_ENABLED for (uint32_t i = 0; i < cl->state.set_count; i++) { if (cl->state.sets[i].pipeline_expected_format == 0) { // Nothing expected by this pipeline. continue; } if (cl->state.sets[i].pipeline_expected_format != cl->state.sets[i].uniform_set_format) { if (cl->state.sets[i].uniform_set_format == 0) { ERR_FAIL_MSG("Uniforms were never supplied for set (" + itos(i) + ") at the time of drawing, which are required by the pipeline."); } else if (uniform_set_owner.owns(cl->state.sets[i].uniform_set)) { UniformSet *us = uniform_set_owner.get_or_null(cl->state.sets[i].uniform_set); ERR_FAIL_MSG("Uniforms supplied for set (" + itos(i) + "):\n" + _shader_uniform_debug(us->shader_id, us->shader_set) + "\nare not the same format as required by the pipeline shader. Pipeline shader requires the following bindings:\n" + _shader_uniform_debug(cl->state.pipeline_shader)); } else { ERR_FAIL_MSG("Uniforms supplied for set (" + itos(i) + ", which was just freed) are not the same format as required by the pipeline shader. Pipeline shader requires the following bindings:\n" + _shader_uniform_debug(cl->state.pipeline_shader)); } } } #endif // Prepare descriptor sets if the API doesn't use pipeline barriers. if (!driver->api_trait_get(RDD::API_TRAIT_HONORS_PIPELINE_BARRIERS)) { for (uint32_t i = 0; i < cl->state.set_count; i++) { if (cl->state.sets[i].pipeline_expected_format == 0) { // Nothing expected by this pipeline. continue; } draw_graph.add_compute_list_uniform_set_prepare_for_use(cl->state.pipeline_shader_driver_id, cl->state.sets[i].uniform_set_driver_id, i); } } // Bind descriptor sets. for (uint32_t i = 0; i < cl->state.set_count; i++) { if (cl->state.sets[i].pipeline_expected_format == 0) { continue; // Nothing expected by this pipeline. } if (!cl->state.sets[i].bound) { // All good, see if this requires re-binding. draw_graph.add_compute_list_bind_uniform_set(cl->state.pipeline_shader_driver_id, cl->state.sets[i].uniform_set_driver_id, i); UniformSet *uniform_set = uniform_set_owner.get_or_null(cl->state.sets[i].uniform_set); draw_graph.add_compute_list_usages(uniform_set->draw_trackers, uniform_set->draw_trackers_usage); cl->state.sets[i].bound = true; } } draw_graph.add_compute_list_dispatch(p_x_groups, p_y_groups, p_z_groups); cl->state.dispatch_count++; } void RenderingDevice::compute_list_dispatch_threads(ComputeListID p_list, uint32_t p_x_threads, uint32_t p_y_threads, uint32_t p_z_threads) { ERR_FAIL_COND(p_list != ID_TYPE_COMPUTE_LIST); ERR_FAIL_NULL(compute_list); #ifdef DEBUG_ENABLED ERR_FAIL_COND_MSG(p_x_threads == 0, "Dispatch amount of X compute threads (" + itos(p_x_threads) + ") is zero."); ERR_FAIL_COND_MSG(p_y_threads == 0, "Dispatch amount of Y compute threads (" + itos(p_y_threads) + ") is zero."); ERR_FAIL_COND_MSG(p_z_threads == 0, "Dispatch amount of Z compute threads (" + itos(p_z_threads) + ") is zero."); #endif ComputeList *cl = compute_list; #ifdef DEBUG_ENABLED ERR_FAIL_COND_MSG(!cl->validation.pipeline_active, "No compute pipeline was set before attempting to draw."); if (cl->validation.pipeline_push_constant_size > 0) { // Using push constants, check that they were supplied. ERR_FAIL_COND_MSG(!cl->validation.pipeline_push_constant_supplied, "The shader in this pipeline requires a push constant to be set before drawing, but it's not present."); } #endif compute_list_dispatch(p_list, Math::division_round_up(p_x_threads, cl->state.local_group_size[0]), Math::division_round_up(p_y_threads, cl->state.local_group_size[1]), Math::division_round_up(p_z_threads, cl->state.local_group_size[2])); } void RenderingDevice::compute_list_dispatch_indirect(ComputeListID p_list, RID p_buffer, uint32_t p_offset) { ERR_FAIL_COND(p_list != ID_TYPE_COMPUTE_LIST); ERR_FAIL_NULL(compute_list); ComputeList *cl = compute_list; Buffer *buffer = storage_buffer_owner.get_or_null(p_buffer); ERR_FAIL_NULL(buffer); ERR_FAIL_COND_MSG(!buffer->usage.has_flag(RDD::BUFFER_USAGE_INDIRECT_BIT), "Buffer provided was not created to do indirect dispatch."); ERR_FAIL_COND_MSG(p_offset + 12 > buffer->size, "Offset provided (+12) is past the end of buffer."); #ifdef DEBUG_ENABLED ERR_FAIL_COND_MSG(!cl->validation.active, "Submitted Compute Lists can no longer be modified."); #endif #ifdef DEBUG_ENABLED ERR_FAIL_COND_MSG(!cl->validation.pipeline_active, "No compute pipeline was set before attempting to draw."); if (cl->validation.pipeline_push_constant_size > 0) { // Using push constants, check that they were supplied. ERR_FAIL_COND_MSG(!cl->validation.pipeline_push_constant_supplied, "The shader in this pipeline requires a push constant to be set before drawing, but it's not present."); } #endif #ifdef DEBUG_ENABLED for (uint32_t i = 0; i < cl->state.set_count; i++) { if (cl->state.sets[i].pipeline_expected_format == 0) { // Nothing expected by this pipeline. continue; } if (cl->state.sets[i].pipeline_expected_format != cl->state.sets[i].uniform_set_format) { if (cl->state.sets[i].uniform_set_format == 0) { ERR_FAIL_MSG("Uniforms were never supplied for set (" + itos(i) + ") at the time of drawing, which are required by the pipeline."); } else if (uniform_set_owner.owns(cl->state.sets[i].uniform_set)) { UniformSet *us = uniform_set_owner.get_or_null(cl->state.sets[i].uniform_set); ERR_FAIL_MSG("Uniforms supplied for set (" + itos(i) + "):\n" + _shader_uniform_debug(us->shader_id, us->shader_set) + "\nare not the same format as required by the pipeline shader. Pipeline shader requires the following bindings:\n" + _shader_uniform_debug(cl->state.pipeline_shader)); } else { ERR_FAIL_MSG("Uniforms supplied for set (" + itos(i) + ", which was just freed) are not the same format as required by the pipeline shader. Pipeline shader requires the following bindings:\n" + _shader_uniform_debug(cl->state.pipeline_shader)); } } } #endif // Prepare descriptor sets if the API doesn't use pipeline barriers. if (!driver->api_trait_get(RDD::API_TRAIT_HONORS_PIPELINE_BARRIERS)) { for (uint32_t i = 0; i < cl->state.set_count; i++) { if (cl->state.sets[i].pipeline_expected_format == 0) { // Nothing expected by this pipeline. continue; } draw_graph.add_compute_list_uniform_set_prepare_for_use(cl->state.pipeline_shader_driver_id, cl->state.sets[i].uniform_set_driver_id, i); } } // Bind descriptor sets. for (uint32_t i = 0; i < cl->state.set_count; i++) { if (cl->state.sets[i].pipeline_expected_format == 0) { continue; // Nothing expected by this pipeline. } if (!cl->state.sets[i].bound) { // All good, see if this requires re-binding. draw_graph.add_compute_list_bind_uniform_set(cl->state.pipeline_shader_driver_id, cl->state.sets[i].uniform_set_driver_id, i); UniformSet *uniform_set = uniform_set_owner.get_or_null(cl->state.sets[i].uniform_set); draw_graph.add_compute_list_usages(uniform_set->draw_trackers, uniform_set->draw_trackers_usage); cl->state.sets[i].bound = true; } } draw_graph.add_compute_list_dispatch_indirect(buffer->driver_id, p_offset); cl->state.dispatch_count++; if (buffer->draw_tracker != nullptr) { draw_graph.add_compute_list_usage(buffer->draw_tracker, RDG::RESOURCE_USAGE_INDIRECT_BUFFER_READ); } } void RenderingDevice::compute_list_add_barrier(ComputeListID p_list) { // Must be called within a compute list, the class mutex is locked during that time compute_list_barrier_state = compute_list->state; compute_list_end(); compute_list_begin(); if (compute_list_barrier_state.pipeline.is_valid()) { compute_list_bind_compute_pipeline(p_list, compute_list_barrier_state.pipeline); } for (uint32_t i = 0; i < compute_list_barrier_state.set_count; i++) { if (compute_list_barrier_state.sets[i].uniform_set.is_valid()) { compute_list_bind_uniform_set(p_list, compute_list_barrier_state.sets[i].uniform_set, i); } } if (compute_list_barrier_state.push_constant_size > 0) { compute_list_set_push_constant(p_list, compute_list_barrier_state.push_constant_data, compute_list_barrier_state.push_constant_size); } } void RenderingDevice::compute_list_end() { ERR_FAIL_NULL(compute_list); draw_graph.add_compute_list_end(); memdelete(compute_list); compute_list = nullptr; // Compute_list is no longer active. _THREAD_SAFE_UNLOCK_ } #ifndef DISABLE_DEPRECATED void RenderingDevice::barrier(BitField p_from, BitField p_to) { WARN_PRINT("Deprecated. Barriers are automatically inserted by RenderingDevice."); } void RenderingDevice::full_barrier() { WARN_PRINT("Deprecated. Barriers are automatically inserted by RenderingDevice."); } #endif /***********************/ /**** COMMAND GRAPH ****/ /***********************/ bool RenderingDevice::_texture_make_mutable(Texture *p_texture, RID p_texture_id) { if (p_texture->draw_tracker != nullptr) { // Texture already has a tracker. return false; } else { if (p_texture->owner.is_valid()) { // Texture has an owner. Texture *owner_texture = texture_owner.get_or_null(p_texture->owner); ERR_FAIL_NULL_V(owner_texture, false); if (owner_texture->draw_tracker != nullptr) { // Create a tracker for this dependency in particular. if (p_texture->slice_type == TEXTURE_SLICE_MAX) { // Shared texture. p_texture->draw_tracker = owner_texture->draw_tracker; p_texture->draw_tracker->reference_count++; } else { // Slice texture. HashMap::ConstIterator draw_tracker_iterator = owner_texture->slice_trackers.find(p_texture->slice_rect); RDG::ResourceTracker *draw_tracker = nullptr; if (draw_tracker_iterator != owner_texture->slice_trackers.end()) { // Reuse the tracker at the matching rectangle. draw_tracker = draw_tracker_iterator->value; } else { // Create a new tracker and store it on the map. draw_tracker = RDG::resource_tracker_create(); draw_tracker->parent = owner_texture->draw_tracker; draw_tracker->texture_driver_id = p_texture->driver_id; draw_tracker->texture_subresources = p_texture->barrier_range(); draw_tracker->texture_slice_or_dirty_rect = p_texture->slice_rect; owner_texture->slice_trackers[p_texture->slice_rect] = draw_tracker; } p_texture->slice_trackers.clear(); p_texture->draw_tracker = draw_tracker; p_texture->draw_tracker->reference_count++; } if (p_texture_id.is_valid()) { _dependencies_make_mutable(p_texture_id, p_texture->draw_tracker); } } else { // Delegate this to the owner instead, as it'll make all its dependencies mutable. _texture_make_mutable(owner_texture, p_texture->owner); } } else { // Regular texture. p_texture->draw_tracker = RDG::resource_tracker_create(); p_texture->draw_tracker->texture_driver_id = p_texture->driver_id; p_texture->draw_tracker->texture_subresources = p_texture->barrier_range(); p_texture->draw_tracker->reference_count = 1; if (p_texture_id.is_valid()) { if (p_texture->has_initial_data) { // If the texture was initialized with initial data but wasn't made mutable from the start, assume the texture sampling usage. p_texture->draw_tracker->usage = RDG::RESOURCE_USAGE_TEXTURE_SAMPLE; } _dependencies_make_mutable(p_texture_id, p_texture->draw_tracker); } } return true; } } bool RenderingDevice::_buffer_make_mutable(Buffer *p_buffer, RID p_buffer_id) { if (p_buffer->draw_tracker != nullptr) { // Buffer already has a tracker. return false; } else { // Create a tracker for the buffer and make all its dependencies mutable. p_buffer->draw_tracker = RDG::resource_tracker_create(); p_buffer->draw_tracker->buffer_driver_id = p_buffer->driver_id; if (p_buffer_id.is_valid()) { _dependencies_make_mutable(p_buffer_id, p_buffer->draw_tracker); } return true; } } bool RenderingDevice::_vertex_array_make_mutable(VertexArray *p_vertex_array, RID p_resource_id, RDG::ResourceTracker *p_resource_tracker) { if (!p_vertex_array->untracked_buffers.has(p_resource_id)) { // Vertex array thinks the buffer is already tracked or does not use it. return false; } else { // Vertex array is aware of the buffer but it isn't being tracked. p_vertex_array->draw_trackers.push_back(p_resource_tracker); p_vertex_array->untracked_buffers.erase(p_resource_id); return true; } } bool RenderingDevice::_index_array_make_mutable(IndexArray *p_index_array, RDG::ResourceTracker *p_resource_tracker) { if (p_index_array->draw_tracker != nullptr) { // Index array already has a tracker. return false; } else { // Index array should assign the tracker from the buffer. p_index_array->draw_tracker = p_resource_tracker; return true; } } bool RenderingDevice::_uniform_set_make_mutable(UniformSet *p_uniform_set, RID p_resource_id, RDG::ResourceTracker *p_resource_tracker) { HashMap::Iterator E = p_uniform_set->untracked_usage.find(p_resource_id); if (!E) { // Uniform set thinks the resource is already tracked or does not use it. return false; } else { // Uniform set has seen the resource but hasn't added its tracker yet. p_uniform_set->draw_trackers.push_back(p_resource_tracker); p_uniform_set->draw_trackers_usage.push_back(E->value); p_uniform_set->untracked_usage.remove(E); return true; } } bool RenderingDevice::_dependency_make_mutable(RID p_id, RID p_resource_id, RDG::ResourceTracker *p_resource_tracker) { if (texture_owner.owns(p_id)) { Texture *texture = texture_owner.get_or_null(p_id); return _texture_make_mutable(texture, p_id); } else if (vertex_array_owner.owns(p_id)) { VertexArray *vertex_array = vertex_array_owner.get_or_null(p_id); return _vertex_array_make_mutable(vertex_array, p_resource_id, p_resource_tracker); } else if (index_array_owner.owns(p_id)) { IndexArray *index_array = index_array_owner.get_or_null(p_id); return _index_array_make_mutable(index_array, p_resource_tracker); } else if (uniform_set_owner.owns(p_id)) { UniformSet *uniform_set = uniform_set_owner.get_or_null(p_id); return _uniform_set_make_mutable(uniform_set, p_resource_id, p_resource_tracker); } else { DEV_ASSERT(false && "Unknown resource type to make mutable."); return false; } } bool RenderingDevice::_dependencies_make_mutable(RID p_id, RDG::ResourceTracker *p_resource_tracker) { bool made_mutable = false; HashMap>::Iterator E = dependency_map.find(p_id); if (E) { for (RID rid : E->value) { made_mutable = _dependency_make_mutable(rid, p_id, p_resource_tracker) || made_mutable; } } return made_mutable; } /**************************/ /**** FRAME MANAGEMENT ****/ /**************************/ void RenderingDevice::free(RID p_id) { _THREAD_SAFE_METHOD_ _free_dependencies(p_id); // Recursively erase dependencies first, to avoid potential API problems. _free_internal(p_id); } void RenderingDevice::_free_internal(RID p_id) { #ifdef DEV_ENABLED String resource_name; if (resource_names.has(p_id)) { resource_name = resource_names[p_id]; resource_names.erase(p_id); } #endif // Push everything so it's disposed of next time this frame index is processed (means, it's safe to do it). if (texture_owner.owns(p_id)) { Texture *texture = texture_owner.get_or_null(p_id); RDG::ResourceTracker *draw_tracker = texture->draw_tracker; if (draw_tracker != nullptr) { draw_tracker->reference_count--; if (draw_tracker->reference_count == 0) { RDG::resource_tracker_free(draw_tracker); if (texture->owner.is_valid() && (texture->slice_type != TEXTURE_SLICE_MAX)) { // If this was a texture slice, erase the tracker from the map. Texture *owner_texture = texture_owner.get_or_null(texture->owner); if (owner_texture != nullptr) { owner_texture->slice_trackers.erase(texture->slice_rect); } } } } frames[frame].textures_to_dispose_of.push_back(*texture); texture_owner.free(p_id); } else if (framebuffer_owner.owns(p_id)) { Framebuffer *framebuffer = framebuffer_owner.get_or_null(p_id); frames[frame].framebuffers_to_dispose_of.push_back(*framebuffer); if (framebuffer->invalidated_callback != nullptr) { framebuffer->invalidated_callback(framebuffer->invalidated_callback_userdata); } framebuffer_owner.free(p_id); } else if (sampler_owner.owns(p_id)) { RDD::SamplerID sampler_driver_id = *sampler_owner.get_or_null(p_id); frames[frame].samplers_to_dispose_of.push_back(sampler_driver_id); sampler_owner.free(p_id); } else if (vertex_buffer_owner.owns(p_id)) { Buffer *vertex_buffer = vertex_buffer_owner.get_or_null(p_id); RDG::resource_tracker_free(vertex_buffer->draw_tracker); frames[frame].buffers_to_dispose_of.push_back(*vertex_buffer); vertex_buffer_owner.free(p_id); } else if (vertex_array_owner.owns(p_id)) { vertex_array_owner.free(p_id); } else if (index_buffer_owner.owns(p_id)) { IndexBuffer *index_buffer = index_buffer_owner.get_or_null(p_id); RDG::resource_tracker_free(index_buffer->draw_tracker); frames[frame].buffers_to_dispose_of.push_back(*index_buffer); index_buffer_owner.free(p_id); } else if (index_array_owner.owns(p_id)) { index_array_owner.free(p_id); } else if (shader_owner.owns(p_id)) { Shader *shader = shader_owner.get_or_null(p_id); if (shader->driver_id) { // Not placeholder? frames[frame].shaders_to_dispose_of.push_back(*shader); } shader_owner.free(p_id); } else if (uniform_buffer_owner.owns(p_id)) { Buffer *uniform_buffer = uniform_buffer_owner.get_or_null(p_id); RDG::resource_tracker_free(uniform_buffer->draw_tracker); frames[frame].buffers_to_dispose_of.push_back(*uniform_buffer); uniform_buffer_owner.free(p_id); } else if (texture_buffer_owner.owns(p_id)) { Buffer *texture_buffer = texture_buffer_owner.get_or_null(p_id); RDG::resource_tracker_free(texture_buffer->draw_tracker); frames[frame].buffers_to_dispose_of.push_back(*texture_buffer); texture_buffer_owner.free(p_id); } else if (storage_buffer_owner.owns(p_id)) { Buffer *storage_buffer = storage_buffer_owner.get_or_null(p_id); RDG::resource_tracker_free(storage_buffer->draw_tracker); frames[frame].buffers_to_dispose_of.push_back(*storage_buffer); storage_buffer_owner.free(p_id); } else if (uniform_set_owner.owns(p_id)) { UniformSet *uniform_set = uniform_set_owner.get_or_null(p_id); frames[frame].uniform_sets_to_dispose_of.push_back(*uniform_set); uniform_set_owner.free(p_id); if (uniform_set->invalidated_callback != nullptr) { uniform_set->invalidated_callback(uniform_set->invalidated_callback_userdata); } } else if (render_pipeline_owner.owns(p_id)) { RenderPipeline *pipeline = render_pipeline_owner.get_or_null(p_id); frames[frame].render_pipelines_to_dispose_of.push_back(*pipeline); render_pipeline_owner.free(p_id); } else if (compute_pipeline_owner.owns(p_id)) { ComputePipeline *pipeline = compute_pipeline_owner.get_or_null(p_id); frames[frame].compute_pipelines_to_dispose_of.push_back(*pipeline); compute_pipeline_owner.free(p_id); } else { #ifdef DEV_ENABLED ERR_PRINT("Attempted to free invalid ID: " + itos(p_id.get_id()) + " " + resource_name); #else ERR_PRINT("Attempted to free invalid ID: " + itos(p_id.get_id())); #endif } } // The full list of resources that can be named is in the VkObjectType enum. // We just expose the resources that are owned and can be accessed easily. void RenderingDevice::set_resource_name(RID p_id, const String &p_name) { if (texture_owner.owns(p_id)) { Texture *texture = texture_owner.get_or_null(p_id); driver->set_object_name(RDD::OBJECT_TYPE_TEXTURE, texture->driver_id, p_name); } else if (framebuffer_owner.owns(p_id)) { //Framebuffer *framebuffer = framebuffer_owner.get_or_null(p_id); // Not implemented for now as the relationship between Framebuffer and RenderPass is very complex. } else if (sampler_owner.owns(p_id)) { RDD::SamplerID sampler_driver_id = *sampler_owner.get_or_null(p_id); driver->set_object_name(RDD::OBJECT_TYPE_SAMPLER, sampler_driver_id, p_name); } else if (vertex_buffer_owner.owns(p_id)) { Buffer *vertex_buffer = vertex_buffer_owner.get_or_null(p_id); driver->set_object_name(RDD::OBJECT_TYPE_BUFFER, vertex_buffer->driver_id, p_name); } else if (index_buffer_owner.owns(p_id)) { IndexBuffer *index_buffer = index_buffer_owner.get_or_null(p_id); driver->set_object_name(RDD::OBJECT_TYPE_BUFFER, index_buffer->driver_id, p_name); } else if (shader_owner.owns(p_id)) { Shader *shader = shader_owner.get_or_null(p_id); driver->set_object_name(RDD::OBJECT_TYPE_SHADER, shader->driver_id, p_name); } else if (uniform_buffer_owner.owns(p_id)) { Buffer *uniform_buffer = uniform_buffer_owner.get_or_null(p_id); driver->set_object_name(RDD::OBJECT_TYPE_BUFFER, uniform_buffer->driver_id, p_name); } else if (texture_buffer_owner.owns(p_id)) { Buffer *texture_buffer = texture_buffer_owner.get_or_null(p_id); driver->set_object_name(RDD::OBJECT_TYPE_BUFFER, texture_buffer->driver_id, p_name); } else if (storage_buffer_owner.owns(p_id)) { Buffer *storage_buffer = storage_buffer_owner.get_or_null(p_id); driver->set_object_name(RDD::OBJECT_TYPE_BUFFER, storage_buffer->driver_id, p_name); } else if (uniform_set_owner.owns(p_id)) { UniformSet *uniform_set = uniform_set_owner.get_or_null(p_id); driver->set_object_name(RDD::OBJECT_TYPE_UNIFORM_SET, uniform_set->driver_id, p_name); } else if (render_pipeline_owner.owns(p_id)) { RenderPipeline *pipeline = render_pipeline_owner.get_or_null(p_id); driver->set_object_name(RDD::OBJECT_TYPE_PIPELINE, pipeline->driver_id, p_name); } else if (compute_pipeline_owner.owns(p_id)) { ComputePipeline *pipeline = compute_pipeline_owner.get_or_null(p_id); driver->set_object_name(RDD::OBJECT_TYPE_PIPELINE, pipeline->driver_id, p_name); } else { ERR_PRINT("Attempted to name invalid ID: " + itos(p_id.get_id())); return; } #ifdef DEV_ENABLED resource_names[p_id] = p_name; #endif } void RenderingDevice::draw_command_begin_label(String p_label_name, const Color &p_color) { if (!context->is_debug_utils_enabled()) { return; } draw_graph.begin_label(p_label_name, p_color); } #ifndef DISABLE_DEPRECATED void RenderingDevice::draw_command_insert_label(String p_label_name, const Color &p_color) { WARN_PRINT("Deprecated. Inserting labels no longer applies due to command reordering."); } #endif void RenderingDevice::draw_command_end_label() { draw_graph.end_label(); } String RenderingDevice::get_device_vendor_name() const { return _get_device_vendor_name(device); } String RenderingDevice::get_device_name() const { return device.name; } RenderingDevice::DeviceType RenderingDevice::get_device_type() const { return DeviceType(device.type); } String RenderingDevice::get_device_api_name() const { return driver->get_api_name(); } String RenderingDevice::get_device_api_version() const { return driver->get_api_version(); } String RenderingDevice::get_device_pipeline_cache_uuid() const { return driver->get_pipeline_cache_uuid(); } void RenderingDevice::swap_buffers() { _THREAD_SAFE_METHOD_ _end_frame(); _execute_frame(true); // Advance to the next frame and begin recording again. frame = (frame + 1) % frames.size(); _begin_frame(); } void RenderingDevice::submit() { _THREAD_SAFE_METHOD_ _end_frame(); _execute_frame(false); } void RenderingDevice::sync() { _THREAD_SAFE_METHOD_ _begin_frame(); } void RenderingDevice::_free_pending_resources(int p_frame) { // Free in dependency usage order, so nothing weird happens. // Pipelines. while (frames[p_frame].render_pipelines_to_dispose_of.front()) { RenderPipeline *pipeline = &frames[p_frame].render_pipelines_to_dispose_of.front()->get(); driver->pipeline_free(pipeline->driver_id); frames[p_frame].render_pipelines_to_dispose_of.pop_front(); } while (frames[p_frame].compute_pipelines_to_dispose_of.front()) { ComputePipeline *pipeline = &frames[p_frame].compute_pipelines_to_dispose_of.front()->get(); driver->pipeline_free(pipeline->driver_id); frames[p_frame].compute_pipelines_to_dispose_of.pop_front(); } // Uniform sets. while (frames[p_frame].uniform_sets_to_dispose_of.front()) { UniformSet *uniform_set = &frames[p_frame].uniform_sets_to_dispose_of.front()->get(); driver->uniform_set_free(uniform_set->driver_id); frames[p_frame].uniform_sets_to_dispose_of.pop_front(); } // Shaders. while (frames[p_frame].shaders_to_dispose_of.front()) { Shader *shader = &frames[p_frame].shaders_to_dispose_of.front()->get(); driver->shader_free(shader->driver_id); frames[p_frame].shaders_to_dispose_of.pop_front(); } // Samplers. while (frames[p_frame].samplers_to_dispose_of.front()) { RDD::SamplerID sampler = frames[p_frame].samplers_to_dispose_of.front()->get(); driver->sampler_free(sampler); frames[p_frame].samplers_to_dispose_of.pop_front(); } // Framebuffers. while (frames[p_frame].framebuffers_to_dispose_of.front()) { Framebuffer *framebuffer = &frames[p_frame].framebuffers_to_dispose_of.front()->get(); for (const KeyValue &E : framebuffer->framebuffers) { // First framebuffer, then render pass because it depends on it. driver->framebuffer_free(E.value.framebuffer); driver->render_pass_free(E.value.render_pass); } frames[p_frame].framebuffers_to_dispose_of.pop_front(); } // Textures. while (frames[p_frame].textures_to_dispose_of.front()) { Texture *texture = &frames[p_frame].textures_to_dispose_of.front()->get(); if (texture->bound) { WARN_PRINT("Deleted a texture while it was bound."); } texture_memory -= driver->texture_get_allocation_size(texture->driver_id); driver->texture_free(texture->driver_id); frames[p_frame].textures_to_dispose_of.pop_front(); } // Buffers. while (frames[p_frame].buffers_to_dispose_of.front()) { Buffer &buffer = frames[p_frame].buffers_to_dispose_of.front()->get(); driver->buffer_free(buffer.driver_id); buffer_memory -= buffer.size; frames[p_frame].buffers_to_dispose_of.pop_front(); } } uint32_t RenderingDevice::get_frame_delay() const { return frames.size(); } uint64_t RenderingDevice::get_memory_usage(MemoryType p_type) const { switch (p_type) { case MEMORY_BUFFERS: { return buffer_memory; } case MEMORY_TEXTURES: { return texture_memory; } case MEMORY_TOTAL: { return driver->get_total_memory_used(); } default: { DEV_ASSERT(false); return 0; } } } void RenderingDevice::_begin_frame() { // Before beginning this frame, wait on the fence if it was signaled to make sure its work is finished. if (frames[frame].draw_fence_signaled) { driver->fence_wait(frames[frame].draw_fence); frames[frame].draw_fence_signaled = false; } // Begin recording on the frame's command buffers. driver->begin_segment(frame, frames_drawn++); driver->command_buffer_begin(frames[frame].setup_command_buffer); driver->command_buffer_begin(frames[frame].draw_command_buffer); // Reset the graph. draw_graph.begin(); // Erase pending resources. _free_pending_resources(frame); // Advance staging buffer if used. if (staging_buffer_used) { staging_buffer_current = (staging_buffer_current + 1) % staging_buffer_blocks.size(); staging_buffer_used = false; } if (frames[frame].timestamp_count) { driver->timestamp_query_pool_get_results(frames[frame].timestamp_pool, frames[frame].timestamp_count, frames[frame].timestamp_result_values.ptr()); driver->command_timestamp_query_pool_reset(frames[frame].setup_command_buffer, frames[frame].timestamp_pool, frames[frame].timestamp_count); SWAP(frames[frame].timestamp_names, frames[frame].timestamp_result_names); SWAP(frames[frame].timestamp_cpu_values, frames[frame].timestamp_cpu_result_values); } frames[frame].timestamp_result_count = frames[frame].timestamp_count; frames[frame].timestamp_count = 0; frames[frame].index = Engine::get_singleton()->get_frames_drawn(); } void RenderingDevice::_end_frame() { if (draw_list) { ERR_PRINT("Found open draw list at the end of the frame, this should never happen (further drawing will likely not work)."); } if (compute_list) { ERR_PRINT("Found open compute list at the end of the frame, this should never happen (further compute will likely not work)."); } driver->command_buffer_end(frames[frame].setup_command_buffer); // The command buffer must be copied into a stack variable as the driver workarounds can change the command buffer in use. RDD::CommandBufferID command_buffer = frames[frame].draw_command_buffer; draw_graph.end(RENDER_GRAPH_REORDER, RENDER_GRAPH_FULL_BARRIERS, command_buffer, frames[frame].command_buffer_pool); driver->command_buffer_end(command_buffer); driver->end_segment(); } void RenderingDevice::_execute_frame(bool p_present) { // Check whether this frame should present the swap chains and in which queue. const bool frame_can_present = p_present && !frames[frame].swap_chains_to_present.is_empty(); const bool separate_present_queue = main_queue != present_queue; thread_local LocalVector swap_chains; swap_chains.clear(); // Execute the setup command buffer. driver->command_queue_execute_and_present(main_queue, {}, frames[frame].setup_command_buffer, frames[frame].setup_semaphore, {}, {}); // Execute command buffers and use semaphores to wait on the execution of the previous one. Normally there's only one command buffer, // but driver workarounds can force situations where there'll be more. uint32_t command_buffer_count = 1; RDG::CommandBufferPool &buffer_pool = frames[frame].command_buffer_pool; if (buffer_pool.buffers_used > 0) { command_buffer_count += buffer_pool.buffers_used; buffer_pool.buffers_used = 0; } RDD::SemaphoreID wait_semaphore = frames[frame].setup_semaphore; for (uint32_t i = 0; i < command_buffer_count; i++) { RDD::CommandBufferID command_buffer; RDD::SemaphoreID signal_semaphore; RDD::FenceID signal_fence; if (i > 0) { command_buffer = buffer_pool.buffers[i - 1]; signal_semaphore = buffer_pool.semaphores[i - 1]; } else { command_buffer = frames[frame].draw_command_buffer; signal_semaphore = frames[frame].draw_semaphore; } bool signal_semaphore_valid; if (i == (command_buffer_count - 1)) { // This is the last command buffer, it should signal the fence. signal_fence = frames[frame].draw_fence; signal_semaphore_valid = false; if (frame_can_present && separate_present_queue) { // The semaphore is required if the frame can be presented and a separate present queue is used. signal_semaphore_valid = true; } else if (frame_can_present) { // Just present the swap chains as part of the last command execution. swap_chains = frames[frame].swap_chains_to_present; } } else { // Semaphores always need to be signaled if it's not the last command buffer. signal_semaphore_valid = true; } driver->command_queue_execute_and_present(main_queue, wait_semaphore, command_buffer, signal_semaphore_valid ? signal_semaphore : VectorView(), signal_fence, swap_chains); // Make the next command buffer wait on the semaphore signaled by this one. wait_semaphore = signal_semaphore; } // Indicate the fence has been signaled so the next time the frame's contents need to be used, the CPU needs to wait on the work to be completed. frames[frame].draw_fence_signaled = true; if (frame_can_present) { if (separate_present_queue) { // Issue the presentation separately if the presentation queue is different from the main queue. driver->command_queue_execute_and_present(present_queue, wait_semaphore, {}, {}, {}, frames[frame].swap_chains_to_present); } frames[frame].swap_chains_to_present.clear(); } } void RenderingDevice::_stall_for_previous_frames() { for (uint32_t i = 0; i < frames.size(); i++) { if (frames[i].draw_fence_signaled) { driver->fence_wait(frames[i].draw_fence); frames[i].draw_fence_signaled = false; } } } void RenderingDevice::_flush_and_stall_for_all_frames() { _stall_for_previous_frames(); _end_frame(); _execute_frame(false); _begin_frame(); } Error RenderingDevice::initialize(RenderingContextDriver *p_context, DisplayServer::WindowID p_main_window) { Error err; RenderingContextDriver::SurfaceID main_surface = 0; const bool main_instance = (singleton == this) && (p_main_window != DisplayServer::INVALID_WINDOW_ID); if (p_main_window != DisplayServer::INVALID_WINDOW_ID) { // Retrieve the surface from the main window if it was specified. main_surface = p_context->surface_get_from_window(p_main_window); ERR_FAIL_COND_V(main_surface == 0, FAILED); } context = p_context; driver = context->driver_create(); print_verbose("Devices:"); int32_t device_index = Engine::get_singleton()->get_gpu_index(); const uint32_t device_count = context->device_get_count(); const bool detect_device = (device_index < 0) || (device_index >= int32_t(device_count)); uint32_t device_type_score = 0; for (uint32_t i = 0; i < device_count; i++) { RenderingContextDriver::Device device_option = context->device_get(i); String name = device_option.name; String vendor = _get_device_vendor_name(device_option); String type = _get_device_type_name(device_option); bool present_supported = main_surface != 0 ? context->device_supports_present(i, main_surface) : false; print_verbose(" #" + itos(i) + ": " + vendor + " " + name + " - " + (present_supported ? "Supported" : "Unsupported") + ", " + type); if (detect_device && (present_supported || main_surface == 0)) { // If a window was specified, present must be supported by the device to be available as an option. // Assign a score for each type of device and prefer the device with the higher score. uint32_t option_score = _get_device_type_score(device_option); if (option_score > device_type_score) { device_index = i; device_type_score = option_score; } } } ERR_FAIL_COND_V_MSG((device_index < 0) || (device_index >= int32_t(device_count)), ERR_CANT_CREATE, "None of the devices supports both graphics and present queues."); uint32_t frame_count = 1; if (main_surface != 0) { frame_count = MAX(2U, uint32_t(GLOBAL_GET("rendering/rendering_device/vsync/frame_queue_size"))); } frame = 0; frames.resize(frame_count); max_timestamp_query_elements = 256; device = context->device_get(device_index); err = driver->initialize(device_index, frame_count); ERR_FAIL_COND_V_MSG(err != OK, FAILED, "Failed to initialize driver for device."); if (main_instance) { // Only the singleton instance with a display should print this information. String rendering_method; if (OS::get_singleton()->get_current_rendering_method() == "mobile") { rendering_method = "Forward Mobile"; } else { rendering_method = "Forward+"; } // Output our device version. Engine::get_singleton()->print_header(vformat("%s %s - %s - Using Device #%d: %s - %s", get_device_api_name(), get_device_api_version(), rendering_method, device_index, _get_device_vendor_name(device), device.name)); } // Pick the main queue family. It is worth noting we explicitly do not request the transfer bit, as apparently the specification defines // that the existence of either the graphics or compute bit implies that the queue can also do transfer operations, but it is optional // to indicate whether it supports them or not with the dedicated transfer bit if either is set. BitField main_queue_bits; main_queue_bits.set_flag(RDD::COMMAND_QUEUE_FAMILY_GRAPHICS_BIT); main_queue_bits.set_flag(RDD::COMMAND_QUEUE_FAMILY_COMPUTE_BIT); #if !FORCE_SEPARATE_PRESENT_QUEUE // Needing to use a separate queue for presentation is an edge case that remains to be seen what hardware triggers it at all. main_queue_family = driver->command_queue_family_get(main_queue_bits, main_surface); if (!main_queue_family && (main_surface != 0)) #endif { // If it was not possible to find a main queue that supports the surface, we attempt to get two different queues instead. main_queue_family = driver->command_queue_family_get(main_queue_bits); present_queue_family = driver->command_queue_family_get(BitField(), main_surface); ERR_FAIL_COND_V(!present_queue_family, FAILED); } ERR_FAIL_COND_V(!main_queue_family, FAILED); // Create the main queue. main_queue = driver->command_queue_create(main_queue_family, true); ERR_FAIL_COND_V(!main_queue, FAILED); if (present_queue_family) { // Create the presentation queue. present_queue = driver->command_queue_create(present_queue_family); ERR_FAIL_COND_V(!present_queue, FAILED); } else { present_queue = main_queue; } // Create data for all the frames. for (uint32_t i = 0; i < frames.size(); i++) { frames[i].index = 0; // Create command pool, command buffers, semaphores and fences. frames[i].command_pool = driver->command_pool_create(main_queue_family, RDD::COMMAND_BUFFER_TYPE_PRIMARY); ERR_FAIL_COND_V(!frames[i].command_pool, FAILED); frames[i].setup_command_buffer = driver->command_buffer_create(frames[i].command_pool); ERR_FAIL_COND_V(!frames[i].setup_command_buffer, FAILED); frames[i].draw_command_buffer = driver->command_buffer_create(frames[i].command_pool); ERR_FAIL_COND_V(!frames[i].draw_command_buffer, FAILED); frames[i].setup_semaphore = driver->semaphore_create(); ERR_FAIL_COND_V(!frames[i].setup_semaphore, FAILED); frames[i].draw_semaphore = driver->semaphore_create(); ERR_FAIL_COND_V(!frames[i].draw_semaphore, FAILED); frames[i].draw_fence = driver->fence_create(); ERR_FAIL_COND_V(!frames[i].draw_fence, FAILED); frames[i].draw_fence_signaled = false; // Create query pool. frames[i].timestamp_pool = driver->timestamp_query_pool_create(max_timestamp_query_elements); frames[i].timestamp_names.resize(max_timestamp_query_elements); frames[i].timestamp_cpu_values.resize(max_timestamp_query_elements); frames[i].timestamp_count = 0; frames[i].timestamp_result_names.resize(max_timestamp_query_elements); frames[i].timestamp_cpu_result_values.resize(max_timestamp_query_elements); frames[i].timestamp_result_values.resize(max_timestamp_query_elements); frames[i].timestamp_result_count = 0; // Assign the main queue family and command pool to the command buffer pool. frames[i].command_buffer_pool.pool = frames[i].command_pool; } // Start from frame count, so everything else is immediately old. frames_drawn = frames.size(); // Initialize recording on the first frame. driver->begin_segment(frame, frames_drawn++); driver->command_buffer_begin(frames[0].setup_command_buffer); driver->command_buffer_begin(frames[0].draw_command_buffer); // Create draw graph and start it initialized as well. draw_graph.initialize(driver, device, frames.size(), main_queue_family, SECONDARY_COMMAND_BUFFERS_PER_FRAME); draw_graph.begin(); for (uint32_t i = 0; i < frames.size(); i++) { // Reset all queries in a query pool before doing any operations with them.. driver->command_timestamp_query_pool_reset(frames[0].setup_command_buffer, frames[i].timestamp_pool, max_timestamp_query_elements); } // Convert block size from KB. staging_buffer_block_size = GLOBAL_GET("rendering/rendering_device/staging_buffer/block_size_kb"); staging_buffer_block_size = MAX(4u, staging_buffer_block_size); staging_buffer_block_size *= 1024; // Convert staging buffer size from MB. staging_buffer_max_size = GLOBAL_GET("rendering/rendering_device/staging_buffer/max_size_mb"); staging_buffer_max_size = MAX(1u, staging_buffer_max_size); staging_buffer_max_size *= 1024 * 1024; if (staging_buffer_max_size < staging_buffer_block_size * 4) { // Validate enough blocks. staging_buffer_max_size = staging_buffer_block_size * 4; } texture_upload_region_size_px = GLOBAL_GET("rendering/rendering_device/staging_buffer/texture_upload_region_size_px"); texture_upload_region_size_px = nearest_power_of_2_templated(texture_upload_region_size_px); // Ensure current staging block is valid and at least one per frame exists. staging_buffer_current = 0; staging_buffer_used = false; for (uint32_t i = 0; i < frames.size(); i++) { // Staging was never used, create a block. err = _insert_staging_block(); ERR_CONTINUE(err != OK); } draw_list = nullptr; compute_list = nullptr; bool project_pipeline_cache_enable = GLOBAL_GET("rendering/rendering_device/pipeline_cache/enable"); if (main_instance && project_pipeline_cache_enable) { // Only the instance that is not a local device and is also the singleton is allowed to manage a pipeline cache. pipeline_cache_file_path = vformat("user://vulkan/pipelines.%s.%s", OS::get_singleton()->get_current_rendering_method(), device.name.validate_filename().replace(" ", "_").to_lower()); if (Engine::get_singleton()->is_editor_hint()) { pipeline_cache_file_path += ".editor"; } pipeline_cache_file_path += ".cache"; Vector cache_data = _load_pipeline_cache(); pipeline_cache_enabled = driver->pipeline_cache_create(cache_data); if (pipeline_cache_enabled) { pipeline_cache_size = driver->pipeline_cache_query_size(); print_verbose(vformat("Startup PSO cache (%.1f MiB)", pipeline_cache_size / (1024.0f * 1024.0f))); } } return OK; } Vector RenderingDevice::_load_pipeline_cache() { DirAccess::make_dir_recursive_absolute(pipeline_cache_file_path.get_base_dir()); if (FileAccess::exists(pipeline_cache_file_path)) { Error file_error; Vector file_data = FileAccess::get_file_as_bytes(pipeline_cache_file_path, &file_error); return file_data; } else { return Vector(); } } void RenderingDevice::_update_pipeline_cache(bool p_closing) { { bool still_saving = pipeline_cache_save_task != WorkerThreadPool::INVALID_TASK_ID && !WorkerThreadPool::get_singleton()->is_task_completed(pipeline_cache_save_task); if (still_saving) { if (p_closing) { WorkerThreadPool::get_singleton()->wait_for_task_completion(pipeline_cache_save_task); pipeline_cache_save_task = WorkerThreadPool::INVALID_TASK_ID; } else { // We can't save until the currently running save is done. We'll retry next time; worst case, we'll save when exiting. return; } } } { size_t new_pipelines_cache_size = driver->pipeline_cache_query_size(); ERR_FAIL_COND(!new_pipelines_cache_size); size_t difference = new_pipelines_cache_size - pipeline_cache_size; bool must_save = false; if (p_closing) { must_save = difference > 0; } else { float save_interval = GLOBAL_GET("rendering/rendering_device/pipeline_cache/save_chunk_size_mb"); must_save = difference > 0 && difference / (1024.0f * 1024.0f) >= save_interval; } if (must_save) { pipeline_cache_size = new_pipelines_cache_size; } else { return; } } if (p_closing) { _save_pipeline_cache(this); } else { pipeline_cache_save_task = WorkerThreadPool::get_singleton()->add_native_task(&_save_pipeline_cache, this, false, "PipelineCacheSave"); } } void RenderingDevice::_save_pipeline_cache(void *p_data) { RenderingDevice *self = static_cast(p_data); self->_thread_safe_.lock(); Vector cache_blob = self->driver->pipeline_cache_serialize(); self->_thread_safe_.unlock(); if (cache_blob.size() == 0) { return; } print_verbose(vformat("Updated PSO cache (%.1f MiB)", cache_blob.size() / (1024.0f * 1024.0f))); Ref f = FileAccess::open(self->pipeline_cache_file_path, FileAccess::WRITE, nullptr); if (f.is_valid()) { f->store_buffer(cache_blob); } } template void RenderingDevice::_free_rids(T &p_owner, const char *p_type) { List owned; p_owner.get_owned_list(&owned); if (owned.size()) { if (owned.size() == 1) { WARN_PRINT(vformat("1 RID of type \"%s\" was leaked.", p_type)); } else { WARN_PRINT(vformat("%d RIDs of type \"%s\" were leaked.", owned.size(), p_type)); } for (const RID &E : owned) { #ifdef DEV_ENABLED if (resource_names.has(E)) { print_line(String(" - ") + resource_names[E]); } #endif free(E); } } } void RenderingDevice::capture_timestamp(const String &p_name) { ERR_FAIL_COND_MSG(draw_list != nullptr && draw_list->state.draw_count > 0, "Capturing timestamps during draw list creation is not allowed. Offending timestamp was: " + p_name); ERR_FAIL_COND_MSG(compute_list != nullptr && compute_list->state.dispatch_count > 0, "Capturing timestamps during compute list creation is not allowed. Offending timestamp was: " + p_name); ERR_FAIL_COND(frames[frame].timestamp_count >= max_timestamp_query_elements); draw_graph.add_capture_timestamp(frames[frame].timestamp_pool, frames[frame].timestamp_count); frames[frame].timestamp_names[frames[frame].timestamp_count] = p_name; frames[frame].timestamp_cpu_values[frames[frame].timestamp_count] = OS::get_singleton()->get_ticks_usec(); frames[frame].timestamp_count++; } uint64_t RenderingDevice::get_driver_resource(DriverResource p_resource, RID p_rid, uint64_t p_index) { _THREAD_SAFE_METHOD_ uint64_t driver_id = 0; switch (p_resource) { case DRIVER_RESOURCE_LOGICAL_DEVICE: case DRIVER_RESOURCE_PHYSICAL_DEVICE: case DRIVER_RESOURCE_TOPMOST_OBJECT: break; case DRIVER_RESOURCE_COMMAND_QUEUE: driver_id = main_queue.id; break; case DRIVER_RESOURCE_QUEUE_FAMILY: driver_id = main_queue_family.id; break; case DRIVER_RESOURCE_TEXTURE: case DRIVER_RESOURCE_TEXTURE_VIEW: case DRIVER_RESOURCE_TEXTURE_DATA_FORMAT: { Texture *tex = texture_owner.get_or_null(p_rid); ERR_FAIL_NULL_V(tex, 0); driver_id = tex->driver_id.id; } break; case DRIVER_RESOURCE_SAMPLER: { RDD::SamplerID *sampler_driver_id = sampler_owner.get_or_null(p_rid); ERR_FAIL_NULL_V(sampler_driver_id, 0); driver_id = (*sampler_driver_id).id; } break; case DRIVER_RESOURCE_UNIFORM_SET: { UniformSet *uniform_set = uniform_set_owner.get_or_null(p_rid); ERR_FAIL_NULL_V(uniform_set, 0); driver_id = uniform_set->driver_id.id; } break; case DRIVER_RESOURCE_BUFFER: { Buffer *buffer = nullptr; if (vertex_buffer_owner.owns(p_rid)) { buffer = vertex_buffer_owner.get_or_null(p_rid); } else if (index_buffer_owner.owns(p_rid)) { buffer = index_buffer_owner.get_or_null(p_rid); } else if (uniform_buffer_owner.owns(p_rid)) { buffer = uniform_buffer_owner.get_or_null(p_rid); } else if (texture_buffer_owner.owns(p_rid)) { buffer = texture_buffer_owner.get_or_null(p_rid); } else if (storage_buffer_owner.owns(p_rid)) { buffer = storage_buffer_owner.get_or_null(p_rid); } ERR_FAIL_NULL_V(buffer, 0); driver_id = buffer->driver_id.id; } break; case DRIVER_RESOURCE_COMPUTE_PIPELINE: { ComputePipeline *compute_pipeline = compute_pipeline_owner.get_or_null(p_rid); ERR_FAIL_NULL_V(compute_pipeline, 0); driver_id = compute_pipeline->driver_id.id; } break; case DRIVER_RESOURCE_RENDER_PIPELINE: { RenderPipeline *render_pipeline = render_pipeline_owner.get_or_null(p_rid); ERR_FAIL_NULL_V(render_pipeline, 0); driver_id = render_pipeline->driver_id.id; } break; default: { ERR_FAIL_V(0); } break; } return driver->get_resource_native_handle(p_resource, driver_id); } uint32_t RenderingDevice::get_captured_timestamps_count() const { return frames[frame].timestamp_result_count; } uint64_t RenderingDevice::get_captured_timestamps_frame() const { return frames[frame].index; } uint64_t RenderingDevice::get_captured_timestamp_gpu_time(uint32_t p_index) const { ERR_FAIL_UNSIGNED_INDEX_V(p_index, frames[frame].timestamp_result_count, 0); return driver->timestamp_query_result_to_time(frames[frame].timestamp_result_values[p_index]); } uint64_t RenderingDevice::get_captured_timestamp_cpu_time(uint32_t p_index) const { ERR_FAIL_UNSIGNED_INDEX_V(p_index, frames[frame].timestamp_result_count, 0); return frames[frame].timestamp_cpu_result_values[p_index]; } String RenderingDevice::get_captured_timestamp_name(uint32_t p_index) const { ERR_FAIL_UNSIGNED_INDEX_V(p_index, frames[frame].timestamp_result_count, String()); return frames[frame].timestamp_result_names[p_index]; } uint64_t RenderingDevice::limit_get(Limit p_limit) const { return driver->limit_get(p_limit); } void RenderingDevice::finalize() { if (!frames.is_empty()) { // Wait for all frames to have finished rendering. _flush_and_stall_for_all_frames(); } // Delete everything the graph has created. draw_graph.finalize(); // Free all resources. _free_rids(render_pipeline_owner, "Pipeline"); _free_rids(compute_pipeline_owner, "Compute"); _free_rids(uniform_set_owner, "UniformSet"); _free_rids(texture_buffer_owner, "TextureBuffer"); _free_rids(storage_buffer_owner, "StorageBuffer"); _free_rids(uniform_buffer_owner, "UniformBuffer"); _free_rids(shader_owner, "Shader"); _free_rids(index_array_owner, "IndexArray"); _free_rids(index_buffer_owner, "IndexBuffer"); _free_rids(vertex_array_owner, "VertexArray"); _free_rids(vertex_buffer_owner, "VertexBuffer"); _free_rids(framebuffer_owner, "Framebuffer"); _free_rids(sampler_owner, "Sampler"); { // For textures it's a bit more difficult because they may be shared. List owned; texture_owner.get_owned_list(&owned); if (owned.size()) { if (owned.size() == 1) { WARN_PRINT("1 RID of type \"Texture\" was leaked."); } else { WARN_PRINT(vformat("%d RIDs of type \"Texture\" were leaked.", owned.size())); } // Free shared first. for (List::Element *E = owned.front(); E;) { List::Element *N = E->next(); if (texture_is_shared(E->get())) { #ifdef DEV_ENABLED if (resource_names.has(E->get())) { print_line(String(" - ") + resource_names[E->get()]); } #endif free(E->get()); owned.erase(E); } E = N; } // Free non shared second, this will avoid an error trying to free unexisting textures due to dependencies. for (const RID &E : owned) { #ifdef DEV_ENABLED if (resource_names.has(E)) { print_line(String(" - ") + resource_names[E]); } #endif free(E); } } } // Free everything pending. for (uint32_t i = 0; i < frames.size(); i++) { int f = (frame + i) % frames.size(); _free_pending_resources(f); driver->command_pool_free(frames[i].command_pool); driver->timestamp_query_pool_free(frames[i].timestamp_pool); driver->semaphore_free(frames[i].setup_semaphore); driver->semaphore_free(frames[i].draw_semaphore); driver->fence_free(frames[i].draw_fence); RDG::CommandBufferPool &buffer_pool = frames[i].command_buffer_pool; for (uint32_t j = 0; j < buffer_pool.buffers.size(); j++) { driver->semaphore_free(buffer_pool.semaphores[j]); } } if (pipeline_cache_enabled) { _update_pipeline_cache(true); driver->pipeline_cache_free(); } frames.clear(); for (int i = 0; i < staging_buffer_blocks.size(); i++) { driver->buffer_free(staging_buffer_blocks[i].driver_id); } while (vertex_formats.size()) { HashMap::Iterator temp = vertex_formats.begin(); driver->vertex_format_free(temp->value.driver_id); vertex_formats.remove(temp); } for (KeyValue &E : framebuffer_formats) { driver->render_pass_free(E.value.render_pass); } framebuffer_formats.clear(); // Delete the swap chains created for the screens. for (const KeyValue &it : screen_swap_chains) { driver->swap_chain_free(it.value); } screen_swap_chains.clear(); // Delete the command queues. if (present_queue) { if (main_queue != present_queue) { // Only delete the present queue if it's unique. driver->command_queue_free(present_queue); } present_queue = RDD::CommandQueueID(); } if (main_queue) { driver->command_queue_free(main_queue); main_queue = RDD::CommandQueueID(); } // Delete the driver once everything else has been deleted. if (driver != nullptr) { context->driver_free(driver); driver = nullptr; } // All these should be clear at this point. ERR_FAIL_COND(dependency_map.size()); ERR_FAIL_COND(reverse_dependency_map.size()); } RenderingDevice *RenderingDevice::create_local_device() { RenderingDevice *rd = memnew(RenderingDevice); rd->initialize(context); return rd; } bool RenderingDevice::has_feature(const Features p_feature) const { return driver->has_feature(p_feature); } void RenderingDevice::_bind_methods() { ClassDB::bind_method(D_METHOD("texture_create", "format", "view", "data"), &RenderingDevice::_texture_create, DEFVAL(Array())); ClassDB::bind_method(D_METHOD("texture_create_shared", "view", "with_texture"), &RenderingDevice::_texture_create_shared); ClassDB::bind_method(D_METHOD("texture_create_shared_from_slice", "view", "with_texture", "layer", "mipmap", "mipmaps", "slice_type"), &RenderingDevice::_texture_create_shared_from_slice, DEFVAL(1), DEFVAL(TEXTURE_SLICE_2D)); ClassDB::bind_method(D_METHOD("texture_create_from_extension", "type", "format", "samples", "usage_flags", "image", "width", "height", "depth", "layers"), &RenderingDevice::texture_create_from_extension); ClassDB::bind_method(D_METHOD("texture_update", "texture", "layer", "data"), &RenderingDevice::texture_update); ClassDB::bind_method(D_METHOD("texture_get_data", "texture", "layer"), &RenderingDevice::texture_get_data); ClassDB::bind_method(D_METHOD("texture_is_format_supported_for_usage", "format", "usage_flags"), &RenderingDevice::texture_is_format_supported_for_usage); ClassDB::bind_method(D_METHOD("texture_is_shared", "texture"), &RenderingDevice::texture_is_shared); ClassDB::bind_method(D_METHOD("texture_is_valid", "texture"), &RenderingDevice::texture_is_valid); ClassDB::bind_method(D_METHOD("texture_copy", "from_texture", "to_texture", "from_pos", "to_pos", "size", "src_mipmap", "dst_mipmap", "src_layer", "dst_layer"), &RenderingDevice::texture_copy); ClassDB::bind_method(D_METHOD("texture_clear", "texture", "color", "base_mipmap", "mipmap_count", "base_layer", "layer_count"), &RenderingDevice::texture_clear); ClassDB::bind_method(D_METHOD("texture_resolve_multisample", "from_texture", "to_texture"), &RenderingDevice::texture_resolve_multisample); ClassDB::bind_method(D_METHOD("texture_get_format", "texture"), &RenderingDevice::_texture_get_format); #ifndef DISABLE_DEPRECATED ClassDB::bind_method(D_METHOD("texture_get_native_handle", "texture"), &RenderingDevice::texture_get_native_handle); #endif ClassDB::bind_method(D_METHOD("framebuffer_format_create", "attachments", "view_count"), &RenderingDevice::_framebuffer_format_create, DEFVAL(1)); ClassDB::bind_method(D_METHOD("framebuffer_format_create_multipass", "attachments", "passes", "view_count"), &RenderingDevice::_framebuffer_format_create_multipass, DEFVAL(1)); ClassDB::bind_method(D_METHOD("framebuffer_format_create_empty", "samples"), &RenderingDevice::framebuffer_format_create_empty, DEFVAL(TEXTURE_SAMPLES_1)); ClassDB::bind_method(D_METHOD("framebuffer_format_get_texture_samples", "format", "render_pass"), &RenderingDevice::framebuffer_format_get_texture_samples, DEFVAL(0)); ClassDB::bind_method(D_METHOD("framebuffer_create", "textures", "validate_with_format", "view_count"), &RenderingDevice::_framebuffer_create, DEFVAL(INVALID_FORMAT_ID), DEFVAL(1)); ClassDB::bind_method(D_METHOD("framebuffer_create_multipass", "textures", "passes", "validate_with_format", "view_count"), &RenderingDevice::_framebuffer_create_multipass, DEFVAL(INVALID_FORMAT_ID), DEFVAL(1)); ClassDB::bind_method(D_METHOD("framebuffer_create_empty", "size", "samples", "validate_with_format"), &RenderingDevice::framebuffer_create_empty, DEFVAL(TEXTURE_SAMPLES_1), DEFVAL(INVALID_FORMAT_ID)); ClassDB::bind_method(D_METHOD("framebuffer_get_format", "framebuffer"), &RenderingDevice::framebuffer_get_format); ClassDB::bind_method(D_METHOD("framebuffer_is_valid", "framebuffer"), &RenderingDevice::framebuffer_is_valid); ClassDB::bind_method(D_METHOD("sampler_create", "state"), &RenderingDevice::_sampler_create); ClassDB::bind_method(D_METHOD("sampler_is_format_supported_for_filter", "format", "sampler_filter"), &RenderingDevice::sampler_is_format_supported_for_filter); ClassDB::bind_method(D_METHOD("vertex_buffer_create", "size_bytes", "data", "use_as_storage"), &RenderingDevice::vertex_buffer_create, DEFVAL(Vector()), DEFVAL(false)); ClassDB::bind_method(D_METHOD("vertex_format_create", "vertex_descriptions"), &RenderingDevice::_vertex_format_create); ClassDB::bind_method(D_METHOD("vertex_array_create", "vertex_count", "vertex_format", "src_buffers", "offsets"), &RenderingDevice::_vertex_array_create, DEFVAL(Vector())); ClassDB::bind_method(D_METHOD("index_buffer_create", "size_indices", "format", "data", "use_restart_indices"), &RenderingDevice::index_buffer_create, DEFVAL(Vector()), DEFVAL(false)); ClassDB::bind_method(D_METHOD("index_array_create", "index_buffer", "index_offset", "index_count"), &RenderingDevice::index_array_create); ClassDB::bind_method(D_METHOD("shader_compile_spirv_from_source", "shader_source", "allow_cache"), &RenderingDevice::_shader_compile_spirv_from_source, DEFVAL(true)); ClassDB::bind_method(D_METHOD("shader_compile_binary_from_spirv", "spirv_data", "name"), &RenderingDevice::_shader_compile_binary_from_spirv, DEFVAL("")); ClassDB::bind_method(D_METHOD("shader_create_from_spirv", "spirv_data", "name"), &RenderingDevice::_shader_create_from_spirv, DEFVAL("")); ClassDB::bind_method(D_METHOD("shader_create_from_bytecode", "binary_data", "placeholder_rid"), &RenderingDevice::shader_create_from_bytecode, DEFVAL(RID())); ClassDB::bind_method(D_METHOD("shader_create_placeholder"), &RenderingDevice::shader_create_placeholder); ClassDB::bind_method(D_METHOD("shader_get_vertex_input_attribute_mask", "shader"), &RenderingDevice::shader_get_vertex_input_attribute_mask); ClassDB::bind_method(D_METHOD("uniform_buffer_create", "size_bytes", "data"), &RenderingDevice::uniform_buffer_create, DEFVAL(Vector())); ClassDB::bind_method(D_METHOD("storage_buffer_create", "size_bytes", "data", "usage"), &RenderingDevice::storage_buffer_create, DEFVAL(Vector()), DEFVAL(0)); ClassDB::bind_method(D_METHOD("texture_buffer_create", "size_bytes", "format", "data"), &RenderingDevice::texture_buffer_create, DEFVAL(Vector())); ClassDB::bind_method(D_METHOD("uniform_set_create", "uniforms", "shader", "shader_set"), &RenderingDevice::_uniform_set_create); ClassDB::bind_method(D_METHOD("uniform_set_is_valid", "uniform_set"), &RenderingDevice::uniform_set_is_valid); ClassDB::bind_method(D_METHOD("buffer_copy", "src_buffer", "dst_buffer", "src_offset", "dst_offset", "size"), &RenderingDevice::buffer_copy); ClassDB::bind_method(D_METHOD("buffer_update", "buffer", "offset", "size_bytes", "data"), &RenderingDevice::_buffer_update_bind); ClassDB::bind_method(D_METHOD("buffer_clear", "buffer", "offset", "size_bytes"), &RenderingDevice::buffer_clear); ClassDB::bind_method(D_METHOD("buffer_get_data", "buffer", "offset_bytes", "size_bytes"), &RenderingDevice::buffer_get_data, DEFVAL(0), DEFVAL(0)); ClassDB::bind_method(D_METHOD("render_pipeline_create", "shader", "framebuffer_format", "vertex_format", "primitive", "rasterization_state", "multisample_state", "stencil_state", "color_blend_state", "dynamic_state_flags", "for_render_pass", "specialization_constants"), &RenderingDevice::_render_pipeline_create, DEFVAL(0), DEFVAL(0), DEFVAL(TypedArray())); ClassDB::bind_method(D_METHOD("render_pipeline_is_valid", "render_pipeline"), &RenderingDevice::render_pipeline_is_valid); ClassDB::bind_method(D_METHOD("compute_pipeline_create", "shader", "specialization_constants"), &RenderingDevice::_compute_pipeline_create, DEFVAL(TypedArray())); ClassDB::bind_method(D_METHOD("compute_pipeline_is_valid", "compute_pipeline"), &RenderingDevice::compute_pipeline_is_valid); ClassDB::bind_method(D_METHOD("screen_get_width", "screen"), &RenderingDevice::screen_get_width, DEFVAL(DisplayServer::MAIN_WINDOW_ID)); ClassDB::bind_method(D_METHOD("screen_get_height", "screen"), &RenderingDevice::screen_get_height, DEFVAL(DisplayServer::MAIN_WINDOW_ID)); ClassDB::bind_method(D_METHOD("screen_get_framebuffer_format", "screen"), &RenderingDevice::screen_get_framebuffer_format, DEFVAL(DisplayServer::MAIN_WINDOW_ID)); ClassDB::bind_method(D_METHOD("draw_list_begin_for_screen", "screen", "clear_color"), &RenderingDevice::draw_list_begin_for_screen, DEFVAL(DisplayServer::MAIN_WINDOW_ID), DEFVAL(Color())); ClassDB::bind_method(D_METHOD("draw_list_begin", "framebuffer", "initial_color_action", "final_color_action", "initial_depth_action", "final_depth_action", "clear_color_values", "clear_depth", "clear_stencil", "region"), &RenderingDevice::draw_list_begin, DEFVAL(Vector()), DEFVAL(1.0), DEFVAL(0), DEFVAL(Rect2())); #ifndef DISABLE_DEPRECATED ClassDB::bind_method(D_METHOD("draw_list_begin_split", "framebuffer", "splits", "initial_color_action", "final_color_action", "initial_depth_action", "final_depth_action", "clear_color_values", "clear_depth", "clear_stencil", "region", "storage_textures"), &RenderingDevice::_draw_list_begin_split, DEFVAL(Vector()), DEFVAL(1.0), DEFVAL(0), DEFVAL(Rect2()), DEFVAL(TypedArray())); #endif ClassDB::bind_method(D_METHOD("draw_list_set_blend_constants", "draw_list", "color"), &RenderingDevice::draw_list_set_blend_constants); ClassDB::bind_method(D_METHOD("draw_list_bind_render_pipeline", "draw_list", "render_pipeline"), &RenderingDevice::draw_list_bind_render_pipeline); ClassDB::bind_method(D_METHOD("draw_list_bind_uniform_set", "draw_list", "uniform_set", "set_index"), &RenderingDevice::draw_list_bind_uniform_set); ClassDB::bind_method(D_METHOD("draw_list_bind_vertex_array", "draw_list", "vertex_array"), &RenderingDevice::draw_list_bind_vertex_array); ClassDB::bind_method(D_METHOD("draw_list_bind_index_array", "draw_list", "index_array"), &RenderingDevice::draw_list_bind_index_array); ClassDB::bind_method(D_METHOD("draw_list_set_push_constant", "draw_list", "buffer", "size_bytes"), &RenderingDevice::_draw_list_set_push_constant); ClassDB::bind_method(D_METHOD("draw_list_draw", "draw_list", "use_indices", "instances", "procedural_vertex_count"), &RenderingDevice::draw_list_draw, DEFVAL(0)); ClassDB::bind_method(D_METHOD("draw_list_enable_scissor", "draw_list", "rect"), &RenderingDevice::draw_list_enable_scissor, DEFVAL(Rect2())); ClassDB::bind_method(D_METHOD("draw_list_disable_scissor", "draw_list"), &RenderingDevice::draw_list_disable_scissor); ClassDB::bind_method(D_METHOD("draw_list_switch_to_next_pass"), &RenderingDevice::draw_list_switch_to_next_pass); #ifndef DISABLE_DEPRECATED ClassDB::bind_method(D_METHOD("draw_list_switch_to_next_pass_split", "splits"), &RenderingDevice::_draw_list_switch_to_next_pass_split); #endif ClassDB::bind_method(D_METHOD("draw_list_end"), &RenderingDevice::draw_list_end); ClassDB::bind_method(D_METHOD("compute_list_begin"), &RenderingDevice::compute_list_begin); ClassDB::bind_method(D_METHOD("compute_list_bind_compute_pipeline", "compute_list", "compute_pipeline"), &RenderingDevice::compute_list_bind_compute_pipeline); ClassDB::bind_method(D_METHOD("compute_list_set_push_constant", "compute_list", "buffer", "size_bytes"), &RenderingDevice::_compute_list_set_push_constant); ClassDB::bind_method(D_METHOD("compute_list_bind_uniform_set", "compute_list", "uniform_set", "set_index"), &RenderingDevice::compute_list_bind_uniform_set); ClassDB::bind_method(D_METHOD("compute_list_dispatch", "compute_list", "x_groups", "y_groups", "z_groups"), &RenderingDevice::compute_list_dispatch); ClassDB::bind_method(D_METHOD("compute_list_dispatch_indirect", "compute_list", "buffer", "offset"), &RenderingDevice::compute_list_dispatch_indirect); ClassDB::bind_method(D_METHOD("compute_list_add_barrier", "compute_list"), &RenderingDevice::compute_list_add_barrier); ClassDB::bind_method(D_METHOD("compute_list_end"), &RenderingDevice::compute_list_end); ClassDB::bind_method(D_METHOD("free_rid", "rid"), &RenderingDevice::free); ClassDB::bind_method(D_METHOD("capture_timestamp", "name"), &RenderingDevice::capture_timestamp); ClassDB::bind_method(D_METHOD("get_captured_timestamps_count"), &RenderingDevice::get_captured_timestamps_count); ClassDB::bind_method(D_METHOD("get_captured_timestamps_frame"), &RenderingDevice::get_captured_timestamps_frame); ClassDB::bind_method(D_METHOD("get_captured_timestamp_gpu_time", "index"), &RenderingDevice::get_captured_timestamp_gpu_time); ClassDB::bind_method(D_METHOD("get_captured_timestamp_cpu_time", "index"), &RenderingDevice::get_captured_timestamp_cpu_time); ClassDB::bind_method(D_METHOD("get_captured_timestamp_name", "index"), &RenderingDevice::get_captured_timestamp_name); ClassDB::bind_method(D_METHOD("limit_get", "limit"), &RenderingDevice::limit_get); ClassDB::bind_method(D_METHOD("get_frame_delay"), &RenderingDevice::get_frame_delay); ClassDB::bind_method(D_METHOD("submit"), &RenderingDevice::submit); ClassDB::bind_method(D_METHOD("sync"), &RenderingDevice::sync); #ifndef DISABLE_DEPRECATED ClassDB::bind_method(D_METHOD("barrier", "from", "to"), &RenderingDevice::barrier, DEFVAL(BARRIER_MASK_ALL_BARRIERS), DEFVAL(BARRIER_MASK_ALL_BARRIERS)); ClassDB::bind_method(D_METHOD("full_barrier"), &RenderingDevice::full_barrier); #endif ClassDB::bind_method(D_METHOD("create_local_device"), &RenderingDevice::create_local_device); ClassDB::bind_method(D_METHOD("set_resource_name", "id", "name"), &RenderingDevice::set_resource_name); ClassDB::bind_method(D_METHOD("draw_command_begin_label", "name", "color"), &RenderingDevice::draw_command_begin_label); #ifndef DISABLE_DEPRECATED ClassDB::bind_method(D_METHOD("draw_command_insert_label", "name", "color"), &RenderingDevice::draw_command_insert_label); #endif ClassDB::bind_method(D_METHOD("draw_command_end_label"), &RenderingDevice::draw_command_end_label); ClassDB::bind_method(D_METHOD("get_device_vendor_name"), &RenderingDevice::get_device_vendor_name); ClassDB::bind_method(D_METHOD("get_device_name"), &RenderingDevice::get_device_name); ClassDB::bind_method(D_METHOD("get_device_pipeline_cache_uuid"), &RenderingDevice::get_device_pipeline_cache_uuid); ClassDB::bind_method(D_METHOD("get_memory_usage", "type"), &RenderingDevice::get_memory_usage); ClassDB::bind_method(D_METHOD("get_driver_resource", "resource", "rid", "index"), &RenderingDevice::get_driver_resource); BIND_ENUM_CONSTANT(DEVICE_TYPE_OTHER); BIND_ENUM_CONSTANT(DEVICE_TYPE_INTEGRATED_GPU); BIND_ENUM_CONSTANT(DEVICE_TYPE_DISCRETE_GPU); BIND_ENUM_CONSTANT(DEVICE_TYPE_VIRTUAL_GPU); BIND_ENUM_CONSTANT(DEVICE_TYPE_CPU); BIND_ENUM_CONSTANT(DEVICE_TYPE_MAX); BIND_ENUM_CONSTANT(DRIVER_RESOURCE_LOGICAL_DEVICE); BIND_ENUM_CONSTANT(DRIVER_RESOURCE_PHYSICAL_DEVICE); BIND_ENUM_CONSTANT(DRIVER_RESOURCE_TOPMOST_OBJECT); BIND_ENUM_CONSTANT(DRIVER_RESOURCE_COMMAND_QUEUE); BIND_ENUM_CONSTANT(DRIVER_RESOURCE_QUEUE_FAMILY); BIND_ENUM_CONSTANT(DRIVER_RESOURCE_TEXTURE); BIND_ENUM_CONSTANT(DRIVER_RESOURCE_TEXTURE_VIEW); BIND_ENUM_CONSTANT(DRIVER_RESOURCE_TEXTURE_DATA_FORMAT); BIND_ENUM_CONSTANT(DRIVER_RESOURCE_SAMPLER); BIND_ENUM_CONSTANT(DRIVER_RESOURCE_UNIFORM_SET); BIND_ENUM_CONSTANT(DRIVER_RESOURCE_BUFFER); BIND_ENUM_CONSTANT(DRIVER_RESOURCE_COMPUTE_PIPELINE); BIND_ENUM_CONSTANT(DRIVER_RESOURCE_RENDER_PIPELINE); #ifndef DISABLE_DEPRECATED BIND_ENUM_CONSTANT(DRIVER_RESOURCE_VULKAN_DEVICE); BIND_ENUM_CONSTANT(DRIVER_RESOURCE_VULKAN_PHYSICAL_DEVICE); BIND_ENUM_CONSTANT(DRIVER_RESOURCE_VULKAN_INSTANCE); BIND_ENUM_CONSTANT(DRIVER_RESOURCE_VULKAN_QUEUE); BIND_ENUM_CONSTANT(DRIVER_RESOURCE_VULKAN_QUEUE_FAMILY_INDEX); BIND_ENUM_CONSTANT(DRIVER_RESOURCE_VULKAN_IMAGE); BIND_ENUM_CONSTANT(DRIVER_RESOURCE_VULKAN_IMAGE_VIEW); BIND_ENUM_CONSTANT(DRIVER_RESOURCE_VULKAN_IMAGE_NATIVE_TEXTURE_FORMAT); BIND_ENUM_CONSTANT(DRIVER_RESOURCE_VULKAN_SAMPLER); BIND_ENUM_CONSTANT(DRIVER_RESOURCE_VULKAN_DESCRIPTOR_SET); BIND_ENUM_CONSTANT(DRIVER_RESOURCE_VULKAN_BUFFER); BIND_ENUM_CONSTANT(DRIVER_RESOURCE_VULKAN_COMPUTE_PIPELINE); BIND_ENUM_CONSTANT(DRIVER_RESOURCE_VULKAN_RENDER_PIPELINE); #endif BIND_ENUM_CONSTANT(DATA_FORMAT_R4G4_UNORM_PACK8); BIND_ENUM_CONSTANT(DATA_FORMAT_R4G4B4A4_UNORM_PACK16); BIND_ENUM_CONSTANT(DATA_FORMAT_B4G4R4A4_UNORM_PACK16); BIND_ENUM_CONSTANT(DATA_FORMAT_R5G6B5_UNORM_PACK16); BIND_ENUM_CONSTANT(DATA_FORMAT_B5G6R5_UNORM_PACK16); BIND_ENUM_CONSTANT(DATA_FORMAT_R5G5B5A1_UNORM_PACK16); BIND_ENUM_CONSTANT(DATA_FORMAT_B5G5R5A1_UNORM_PACK16); BIND_ENUM_CONSTANT(DATA_FORMAT_A1R5G5B5_UNORM_PACK16); BIND_ENUM_CONSTANT(DATA_FORMAT_R8_UNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_R8_SNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_R8_USCALED); BIND_ENUM_CONSTANT(DATA_FORMAT_R8_SSCALED); BIND_ENUM_CONSTANT(DATA_FORMAT_R8_UINT); BIND_ENUM_CONSTANT(DATA_FORMAT_R8_SINT); BIND_ENUM_CONSTANT(DATA_FORMAT_R8_SRGB); BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8_UNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8_SNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8_USCALED); BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8_SSCALED); BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8_UINT); BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8_SINT); BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8_SRGB); BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8B8_UNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8B8_SNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8B8_USCALED); BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8B8_SSCALED); BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8B8_UINT); BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8B8_SINT); BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8B8_SRGB); BIND_ENUM_CONSTANT(DATA_FORMAT_B8G8R8_UNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_B8G8R8_SNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_B8G8R8_USCALED); BIND_ENUM_CONSTANT(DATA_FORMAT_B8G8R8_SSCALED); BIND_ENUM_CONSTANT(DATA_FORMAT_B8G8R8_UINT); BIND_ENUM_CONSTANT(DATA_FORMAT_B8G8R8_SINT); BIND_ENUM_CONSTANT(DATA_FORMAT_B8G8R8_SRGB); BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8B8A8_UNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8B8A8_SNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8B8A8_USCALED); BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8B8A8_SSCALED); BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8B8A8_UINT); BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8B8A8_SINT); BIND_ENUM_CONSTANT(DATA_FORMAT_R8G8B8A8_SRGB); BIND_ENUM_CONSTANT(DATA_FORMAT_B8G8R8A8_UNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_B8G8R8A8_SNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_B8G8R8A8_USCALED); BIND_ENUM_CONSTANT(DATA_FORMAT_B8G8R8A8_SSCALED); BIND_ENUM_CONSTANT(DATA_FORMAT_B8G8R8A8_UINT); BIND_ENUM_CONSTANT(DATA_FORMAT_B8G8R8A8_SINT); BIND_ENUM_CONSTANT(DATA_FORMAT_B8G8R8A8_SRGB); BIND_ENUM_CONSTANT(DATA_FORMAT_A8B8G8R8_UNORM_PACK32); BIND_ENUM_CONSTANT(DATA_FORMAT_A8B8G8R8_SNORM_PACK32); BIND_ENUM_CONSTANT(DATA_FORMAT_A8B8G8R8_USCALED_PACK32); BIND_ENUM_CONSTANT(DATA_FORMAT_A8B8G8R8_SSCALED_PACK32); BIND_ENUM_CONSTANT(DATA_FORMAT_A8B8G8R8_UINT_PACK32); BIND_ENUM_CONSTANT(DATA_FORMAT_A8B8G8R8_SINT_PACK32); BIND_ENUM_CONSTANT(DATA_FORMAT_A8B8G8R8_SRGB_PACK32); BIND_ENUM_CONSTANT(DATA_FORMAT_A2R10G10B10_UNORM_PACK32); BIND_ENUM_CONSTANT(DATA_FORMAT_A2R10G10B10_SNORM_PACK32); BIND_ENUM_CONSTANT(DATA_FORMAT_A2R10G10B10_USCALED_PACK32); BIND_ENUM_CONSTANT(DATA_FORMAT_A2R10G10B10_SSCALED_PACK32); BIND_ENUM_CONSTANT(DATA_FORMAT_A2R10G10B10_UINT_PACK32); BIND_ENUM_CONSTANT(DATA_FORMAT_A2R10G10B10_SINT_PACK32); BIND_ENUM_CONSTANT(DATA_FORMAT_A2B10G10R10_UNORM_PACK32); BIND_ENUM_CONSTANT(DATA_FORMAT_A2B10G10R10_SNORM_PACK32); BIND_ENUM_CONSTANT(DATA_FORMAT_A2B10G10R10_USCALED_PACK32); BIND_ENUM_CONSTANT(DATA_FORMAT_A2B10G10R10_SSCALED_PACK32); BIND_ENUM_CONSTANT(DATA_FORMAT_A2B10G10R10_UINT_PACK32); BIND_ENUM_CONSTANT(DATA_FORMAT_A2B10G10R10_SINT_PACK32); BIND_ENUM_CONSTANT(DATA_FORMAT_R16_UNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_R16_SNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_R16_USCALED); BIND_ENUM_CONSTANT(DATA_FORMAT_R16_SSCALED); BIND_ENUM_CONSTANT(DATA_FORMAT_R16_UINT); BIND_ENUM_CONSTANT(DATA_FORMAT_R16_SINT); BIND_ENUM_CONSTANT(DATA_FORMAT_R16_SFLOAT); BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16_UNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16_SNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16_USCALED); BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16_SSCALED); BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16_UINT); BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16_SINT); BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16_SFLOAT); BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16B16_UNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16B16_SNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16B16_USCALED); BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16B16_SSCALED); BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16B16_UINT); BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16B16_SINT); BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16B16_SFLOAT); BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16B16A16_UNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16B16A16_SNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16B16A16_USCALED); BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16B16A16_SSCALED); BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16B16A16_UINT); BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16B16A16_SINT); BIND_ENUM_CONSTANT(DATA_FORMAT_R16G16B16A16_SFLOAT); BIND_ENUM_CONSTANT(DATA_FORMAT_R32_UINT); BIND_ENUM_CONSTANT(DATA_FORMAT_R32_SINT); BIND_ENUM_CONSTANT(DATA_FORMAT_R32_SFLOAT); BIND_ENUM_CONSTANT(DATA_FORMAT_R32G32_UINT); BIND_ENUM_CONSTANT(DATA_FORMAT_R32G32_SINT); BIND_ENUM_CONSTANT(DATA_FORMAT_R32G32_SFLOAT); BIND_ENUM_CONSTANT(DATA_FORMAT_R32G32B32_UINT); BIND_ENUM_CONSTANT(DATA_FORMAT_R32G32B32_SINT); BIND_ENUM_CONSTANT(DATA_FORMAT_R32G32B32_SFLOAT); BIND_ENUM_CONSTANT(DATA_FORMAT_R32G32B32A32_UINT); BIND_ENUM_CONSTANT(DATA_FORMAT_R32G32B32A32_SINT); BIND_ENUM_CONSTANT(DATA_FORMAT_R32G32B32A32_SFLOAT); BIND_ENUM_CONSTANT(DATA_FORMAT_R64_UINT); BIND_ENUM_CONSTANT(DATA_FORMAT_R64_SINT); BIND_ENUM_CONSTANT(DATA_FORMAT_R64_SFLOAT); BIND_ENUM_CONSTANT(DATA_FORMAT_R64G64_UINT); BIND_ENUM_CONSTANT(DATA_FORMAT_R64G64_SINT); BIND_ENUM_CONSTANT(DATA_FORMAT_R64G64_SFLOAT); BIND_ENUM_CONSTANT(DATA_FORMAT_R64G64B64_UINT); BIND_ENUM_CONSTANT(DATA_FORMAT_R64G64B64_SINT); BIND_ENUM_CONSTANT(DATA_FORMAT_R64G64B64_SFLOAT); BIND_ENUM_CONSTANT(DATA_FORMAT_R64G64B64A64_UINT); BIND_ENUM_CONSTANT(DATA_FORMAT_R64G64B64A64_SINT); BIND_ENUM_CONSTANT(DATA_FORMAT_R64G64B64A64_SFLOAT); BIND_ENUM_CONSTANT(DATA_FORMAT_B10G11R11_UFLOAT_PACK32); BIND_ENUM_CONSTANT(DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32); BIND_ENUM_CONSTANT(DATA_FORMAT_D16_UNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_X8_D24_UNORM_PACK32); BIND_ENUM_CONSTANT(DATA_FORMAT_D32_SFLOAT); BIND_ENUM_CONSTANT(DATA_FORMAT_S8_UINT); BIND_ENUM_CONSTANT(DATA_FORMAT_D16_UNORM_S8_UINT); BIND_ENUM_CONSTANT(DATA_FORMAT_D24_UNORM_S8_UINT); BIND_ENUM_CONSTANT(DATA_FORMAT_D32_SFLOAT_S8_UINT); BIND_ENUM_CONSTANT(DATA_FORMAT_BC1_RGB_UNORM_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_BC1_RGB_SRGB_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_BC1_RGBA_UNORM_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_BC1_RGBA_SRGB_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_BC2_UNORM_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_BC2_SRGB_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_BC3_UNORM_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_BC3_SRGB_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_BC4_UNORM_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_BC4_SNORM_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_BC5_UNORM_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_BC5_SNORM_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_BC6H_UFLOAT_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_BC6H_SFLOAT_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_BC7_UNORM_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_BC7_SRGB_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_ETC2_R8G8B8_UNORM_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_ETC2_R8G8B8_SRGB_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_EAC_R11_UNORM_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_EAC_R11_SNORM_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_EAC_R11G11_UNORM_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_EAC_R11G11_SNORM_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_4x4_UNORM_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_4x4_SRGB_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_5x4_UNORM_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_5x4_SRGB_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_5x5_UNORM_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_5x5_SRGB_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_6x5_UNORM_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_6x5_SRGB_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_6x6_UNORM_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_6x6_SRGB_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_8x5_UNORM_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_8x5_SRGB_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_8x6_UNORM_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_8x6_SRGB_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_8x8_UNORM_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_8x8_SRGB_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_10x5_UNORM_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_10x5_SRGB_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_10x6_UNORM_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_10x6_SRGB_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_10x8_UNORM_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_10x8_SRGB_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_10x10_UNORM_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_10x10_SRGB_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_12x10_UNORM_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_12x10_SRGB_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_12x12_UNORM_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_ASTC_12x12_SRGB_BLOCK); BIND_ENUM_CONSTANT(DATA_FORMAT_G8B8G8R8_422_UNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_B8G8R8G8_422_UNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_G8_B8_R8_3PLANE_420_UNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_G8_B8R8_2PLANE_420_UNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_G8_B8_R8_3PLANE_422_UNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_G8_B8R8_2PLANE_422_UNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_G8_B8_R8_3PLANE_444_UNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_R10X6_UNORM_PACK16); BIND_ENUM_CONSTANT(DATA_FORMAT_R10X6G10X6_UNORM_2PACK16); BIND_ENUM_CONSTANT(DATA_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16); BIND_ENUM_CONSTANT(DATA_FORMAT_G10X6B10X6G10X6R10X6_422_UNORM_4PACK16); BIND_ENUM_CONSTANT(DATA_FORMAT_B10X6G10X6R10X6G10X6_422_UNORM_4PACK16); BIND_ENUM_CONSTANT(DATA_FORMAT_G10X6_B10X6_R10X6_3PLANE_420_UNORM_3PACK16); BIND_ENUM_CONSTANT(DATA_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16); BIND_ENUM_CONSTANT(DATA_FORMAT_G10X6_B10X6_R10X6_3PLANE_422_UNORM_3PACK16); BIND_ENUM_CONSTANT(DATA_FORMAT_G10X6_B10X6R10X6_2PLANE_422_UNORM_3PACK16); BIND_ENUM_CONSTANT(DATA_FORMAT_G10X6_B10X6_R10X6_3PLANE_444_UNORM_3PACK16); BIND_ENUM_CONSTANT(DATA_FORMAT_R12X4_UNORM_PACK16); BIND_ENUM_CONSTANT(DATA_FORMAT_R12X4G12X4_UNORM_2PACK16); BIND_ENUM_CONSTANT(DATA_FORMAT_R12X4G12X4B12X4A12X4_UNORM_4PACK16); BIND_ENUM_CONSTANT(DATA_FORMAT_G12X4B12X4G12X4R12X4_422_UNORM_4PACK16); BIND_ENUM_CONSTANT(DATA_FORMAT_B12X4G12X4R12X4G12X4_422_UNORM_4PACK16); BIND_ENUM_CONSTANT(DATA_FORMAT_G12X4_B12X4_R12X4_3PLANE_420_UNORM_3PACK16); BIND_ENUM_CONSTANT(DATA_FORMAT_G12X4_B12X4R12X4_2PLANE_420_UNORM_3PACK16); BIND_ENUM_CONSTANT(DATA_FORMAT_G12X4_B12X4_R12X4_3PLANE_422_UNORM_3PACK16); BIND_ENUM_CONSTANT(DATA_FORMAT_G12X4_B12X4R12X4_2PLANE_422_UNORM_3PACK16); BIND_ENUM_CONSTANT(DATA_FORMAT_G12X4_B12X4_R12X4_3PLANE_444_UNORM_3PACK16); BIND_ENUM_CONSTANT(DATA_FORMAT_G16B16G16R16_422_UNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_B16G16R16G16_422_UNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_G16_B16_R16_3PLANE_420_UNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_G16_B16R16_2PLANE_420_UNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_G16_B16_R16_3PLANE_422_UNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_G16_B16R16_2PLANE_422_UNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_G16_B16_R16_3PLANE_444_UNORM); BIND_ENUM_CONSTANT(DATA_FORMAT_MAX); #ifndef DISABLE_DEPRECATED BIND_BITFIELD_FLAG(BARRIER_MASK_VERTEX); BIND_BITFIELD_FLAG(BARRIER_MASK_FRAGMENT); BIND_BITFIELD_FLAG(BARRIER_MASK_COMPUTE); BIND_BITFIELD_FLAG(BARRIER_MASK_TRANSFER); BIND_BITFIELD_FLAG(BARRIER_MASK_RASTER); BIND_BITFIELD_FLAG(BARRIER_MASK_ALL_BARRIERS); BIND_BITFIELD_FLAG(BARRIER_MASK_NO_BARRIER); #endif BIND_ENUM_CONSTANT(TEXTURE_TYPE_1D); BIND_ENUM_CONSTANT(TEXTURE_TYPE_2D); BIND_ENUM_CONSTANT(TEXTURE_TYPE_3D); BIND_ENUM_CONSTANT(TEXTURE_TYPE_CUBE); BIND_ENUM_CONSTANT(TEXTURE_TYPE_1D_ARRAY); BIND_ENUM_CONSTANT(TEXTURE_TYPE_2D_ARRAY); BIND_ENUM_CONSTANT(TEXTURE_TYPE_CUBE_ARRAY); BIND_ENUM_CONSTANT(TEXTURE_TYPE_MAX); BIND_ENUM_CONSTANT(TEXTURE_SAMPLES_1); BIND_ENUM_CONSTANT(TEXTURE_SAMPLES_2); BIND_ENUM_CONSTANT(TEXTURE_SAMPLES_4); BIND_ENUM_CONSTANT(TEXTURE_SAMPLES_8); BIND_ENUM_CONSTANT(TEXTURE_SAMPLES_16); BIND_ENUM_CONSTANT(TEXTURE_SAMPLES_32); BIND_ENUM_CONSTANT(TEXTURE_SAMPLES_64); BIND_ENUM_CONSTANT(TEXTURE_SAMPLES_MAX); BIND_BITFIELD_FLAG(TEXTURE_USAGE_SAMPLING_BIT); BIND_BITFIELD_FLAG(TEXTURE_USAGE_COLOR_ATTACHMENT_BIT); BIND_BITFIELD_FLAG(TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT); BIND_BITFIELD_FLAG(TEXTURE_USAGE_STORAGE_BIT); BIND_BITFIELD_FLAG(TEXTURE_USAGE_STORAGE_ATOMIC_BIT); BIND_BITFIELD_FLAG(TEXTURE_USAGE_CPU_READ_BIT); BIND_BITFIELD_FLAG(TEXTURE_USAGE_CAN_UPDATE_BIT); BIND_BITFIELD_FLAG(TEXTURE_USAGE_CAN_COPY_FROM_BIT); BIND_BITFIELD_FLAG(TEXTURE_USAGE_CAN_COPY_TO_BIT); BIND_BITFIELD_FLAG(TEXTURE_USAGE_INPUT_ATTACHMENT_BIT); BIND_ENUM_CONSTANT(TEXTURE_SWIZZLE_IDENTITY); BIND_ENUM_CONSTANT(TEXTURE_SWIZZLE_ZERO); BIND_ENUM_CONSTANT(TEXTURE_SWIZZLE_ONE); BIND_ENUM_CONSTANT(TEXTURE_SWIZZLE_R); BIND_ENUM_CONSTANT(TEXTURE_SWIZZLE_G); BIND_ENUM_CONSTANT(TEXTURE_SWIZZLE_B); BIND_ENUM_CONSTANT(TEXTURE_SWIZZLE_A); BIND_ENUM_CONSTANT(TEXTURE_SWIZZLE_MAX); BIND_ENUM_CONSTANT(TEXTURE_SLICE_2D); BIND_ENUM_CONSTANT(TEXTURE_SLICE_CUBEMAP); BIND_ENUM_CONSTANT(TEXTURE_SLICE_3D); BIND_ENUM_CONSTANT(SAMPLER_FILTER_NEAREST); BIND_ENUM_CONSTANT(SAMPLER_FILTER_LINEAR); BIND_ENUM_CONSTANT(SAMPLER_REPEAT_MODE_REPEAT); BIND_ENUM_CONSTANT(SAMPLER_REPEAT_MODE_MIRRORED_REPEAT); BIND_ENUM_CONSTANT(SAMPLER_REPEAT_MODE_CLAMP_TO_EDGE); BIND_ENUM_CONSTANT(SAMPLER_REPEAT_MODE_CLAMP_TO_BORDER); BIND_ENUM_CONSTANT(SAMPLER_REPEAT_MODE_MIRROR_CLAMP_TO_EDGE); BIND_ENUM_CONSTANT(SAMPLER_REPEAT_MODE_MAX); BIND_ENUM_CONSTANT(SAMPLER_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK); BIND_ENUM_CONSTANT(SAMPLER_BORDER_COLOR_INT_TRANSPARENT_BLACK); BIND_ENUM_CONSTANT(SAMPLER_BORDER_COLOR_FLOAT_OPAQUE_BLACK); BIND_ENUM_CONSTANT(SAMPLER_BORDER_COLOR_INT_OPAQUE_BLACK); BIND_ENUM_CONSTANT(SAMPLER_BORDER_COLOR_FLOAT_OPAQUE_WHITE); BIND_ENUM_CONSTANT(SAMPLER_BORDER_COLOR_INT_OPAQUE_WHITE); BIND_ENUM_CONSTANT(SAMPLER_BORDER_COLOR_MAX); BIND_ENUM_CONSTANT(VERTEX_FREQUENCY_VERTEX); BIND_ENUM_CONSTANT(VERTEX_FREQUENCY_INSTANCE); BIND_ENUM_CONSTANT(INDEX_BUFFER_FORMAT_UINT16); BIND_ENUM_CONSTANT(INDEX_BUFFER_FORMAT_UINT32); BIND_BITFIELD_FLAG(STORAGE_BUFFER_USAGE_DISPATCH_INDIRECT); BIND_ENUM_CONSTANT(UNIFORM_TYPE_SAMPLER); //for sampling only (sampler GLSL type) BIND_ENUM_CONSTANT(UNIFORM_TYPE_SAMPLER_WITH_TEXTURE); // for sampling only); but includes a texture); (samplerXX GLSL type)); first a sampler then a texture BIND_ENUM_CONSTANT(UNIFORM_TYPE_TEXTURE); //only texture); (textureXX GLSL type) BIND_ENUM_CONSTANT(UNIFORM_TYPE_IMAGE); // storage image (imageXX GLSL type)); for compute mostly BIND_ENUM_CONSTANT(UNIFORM_TYPE_TEXTURE_BUFFER); // buffer texture (or TBO); textureBuffer type) BIND_ENUM_CONSTANT(UNIFORM_TYPE_SAMPLER_WITH_TEXTURE_BUFFER); // buffer texture with a sampler(or TBO); samplerBuffer type) BIND_ENUM_CONSTANT(UNIFORM_TYPE_IMAGE_BUFFER); //texel buffer); (imageBuffer type)); for compute mostly BIND_ENUM_CONSTANT(UNIFORM_TYPE_UNIFORM_BUFFER); //regular uniform buffer (or UBO). BIND_ENUM_CONSTANT(UNIFORM_TYPE_STORAGE_BUFFER); //storage buffer ("buffer" qualifier) like UBO); but supports storage); for compute mostly BIND_ENUM_CONSTANT(UNIFORM_TYPE_INPUT_ATTACHMENT); //used for sub-pass read/write); for mobile mostly BIND_ENUM_CONSTANT(UNIFORM_TYPE_MAX); BIND_ENUM_CONSTANT(RENDER_PRIMITIVE_POINTS); BIND_ENUM_CONSTANT(RENDER_PRIMITIVE_LINES); BIND_ENUM_CONSTANT(RENDER_PRIMITIVE_LINES_WITH_ADJACENCY); BIND_ENUM_CONSTANT(RENDER_PRIMITIVE_LINESTRIPS); BIND_ENUM_CONSTANT(RENDER_PRIMITIVE_LINESTRIPS_WITH_ADJACENCY); BIND_ENUM_CONSTANT(RENDER_PRIMITIVE_TRIANGLES); BIND_ENUM_CONSTANT(RENDER_PRIMITIVE_TRIANGLES_WITH_ADJACENCY); BIND_ENUM_CONSTANT(RENDER_PRIMITIVE_TRIANGLE_STRIPS); BIND_ENUM_CONSTANT(RENDER_PRIMITIVE_TRIANGLE_STRIPS_WITH_AJACENCY); BIND_ENUM_CONSTANT(RENDER_PRIMITIVE_TRIANGLE_STRIPS_WITH_RESTART_INDEX); BIND_ENUM_CONSTANT(RENDER_PRIMITIVE_TESSELATION_PATCH); BIND_ENUM_CONSTANT(RENDER_PRIMITIVE_MAX); BIND_ENUM_CONSTANT(POLYGON_CULL_DISABLED); BIND_ENUM_CONSTANT(POLYGON_CULL_FRONT); BIND_ENUM_CONSTANT(POLYGON_CULL_BACK); BIND_ENUM_CONSTANT(POLYGON_FRONT_FACE_CLOCKWISE); BIND_ENUM_CONSTANT(POLYGON_FRONT_FACE_COUNTER_CLOCKWISE); BIND_ENUM_CONSTANT(STENCIL_OP_KEEP); BIND_ENUM_CONSTANT(STENCIL_OP_ZERO); BIND_ENUM_CONSTANT(STENCIL_OP_REPLACE); BIND_ENUM_CONSTANT(STENCIL_OP_INCREMENT_AND_CLAMP); BIND_ENUM_CONSTANT(STENCIL_OP_DECREMENT_AND_CLAMP); BIND_ENUM_CONSTANT(STENCIL_OP_INVERT); BIND_ENUM_CONSTANT(STENCIL_OP_INCREMENT_AND_WRAP); BIND_ENUM_CONSTANT(STENCIL_OP_DECREMENT_AND_WRAP); BIND_ENUM_CONSTANT(STENCIL_OP_MAX); //not an actual operator); just the amount of operators :D BIND_ENUM_CONSTANT(COMPARE_OP_NEVER); BIND_ENUM_CONSTANT(COMPARE_OP_LESS); BIND_ENUM_CONSTANT(COMPARE_OP_EQUAL); BIND_ENUM_CONSTANT(COMPARE_OP_LESS_OR_EQUAL); BIND_ENUM_CONSTANT(COMPARE_OP_GREATER); BIND_ENUM_CONSTANT(COMPARE_OP_NOT_EQUAL); BIND_ENUM_CONSTANT(COMPARE_OP_GREATER_OR_EQUAL); BIND_ENUM_CONSTANT(COMPARE_OP_ALWAYS); BIND_ENUM_CONSTANT(COMPARE_OP_MAX); BIND_ENUM_CONSTANT(LOGIC_OP_CLEAR); BIND_ENUM_CONSTANT(LOGIC_OP_AND); BIND_ENUM_CONSTANT(LOGIC_OP_AND_REVERSE); BIND_ENUM_CONSTANT(LOGIC_OP_COPY); BIND_ENUM_CONSTANT(LOGIC_OP_AND_INVERTED); BIND_ENUM_CONSTANT(LOGIC_OP_NO_OP); BIND_ENUM_CONSTANT(LOGIC_OP_XOR); BIND_ENUM_CONSTANT(LOGIC_OP_OR); BIND_ENUM_CONSTANT(LOGIC_OP_NOR); BIND_ENUM_CONSTANT(LOGIC_OP_EQUIVALENT); BIND_ENUM_CONSTANT(LOGIC_OP_INVERT); BIND_ENUM_CONSTANT(LOGIC_OP_OR_REVERSE); BIND_ENUM_CONSTANT(LOGIC_OP_COPY_INVERTED); BIND_ENUM_CONSTANT(LOGIC_OP_OR_INVERTED); BIND_ENUM_CONSTANT(LOGIC_OP_NAND); BIND_ENUM_CONSTANT(LOGIC_OP_SET); BIND_ENUM_CONSTANT(LOGIC_OP_MAX); //not an actual operator); just the amount of operators :D BIND_ENUM_CONSTANT(BLEND_FACTOR_ZERO); BIND_ENUM_CONSTANT(BLEND_FACTOR_ONE); BIND_ENUM_CONSTANT(BLEND_FACTOR_SRC_COLOR); BIND_ENUM_CONSTANT(BLEND_FACTOR_ONE_MINUS_SRC_COLOR); BIND_ENUM_CONSTANT(BLEND_FACTOR_DST_COLOR); BIND_ENUM_CONSTANT(BLEND_FACTOR_ONE_MINUS_DST_COLOR); BIND_ENUM_CONSTANT(BLEND_FACTOR_SRC_ALPHA); BIND_ENUM_CONSTANT(BLEND_FACTOR_ONE_MINUS_SRC_ALPHA); BIND_ENUM_CONSTANT(BLEND_FACTOR_DST_ALPHA); BIND_ENUM_CONSTANT(BLEND_FACTOR_ONE_MINUS_DST_ALPHA); BIND_ENUM_CONSTANT(BLEND_FACTOR_CONSTANT_COLOR); BIND_ENUM_CONSTANT(BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR); BIND_ENUM_CONSTANT(BLEND_FACTOR_CONSTANT_ALPHA); BIND_ENUM_CONSTANT(BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA); BIND_ENUM_CONSTANT(BLEND_FACTOR_SRC_ALPHA_SATURATE); BIND_ENUM_CONSTANT(BLEND_FACTOR_SRC1_COLOR); BIND_ENUM_CONSTANT(BLEND_FACTOR_ONE_MINUS_SRC1_COLOR); BIND_ENUM_CONSTANT(BLEND_FACTOR_SRC1_ALPHA); BIND_ENUM_CONSTANT(BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA); BIND_ENUM_CONSTANT(BLEND_FACTOR_MAX); BIND_ENUM_CONSTANT(BLEND_OP_ADD); BIND_ENUM_CONSTANT(BLEND_OP_SUBTRACT); BIND_ENUM_CONSTANT(BLEND_OP_REVERSE_SUBTRACT); BIND_ENUM_CONSTANT(BLEND_OP_MINIMUM); BIND_ENUM_CONSTANT(BLEND_OP_MAXIMUM); BIND_ENUM_CONSTANT(BLEND_OP_MAX); BIND_BITFIELD_FLAG(DYNAMIC_STATE_LINE_WIDTH); BIND_BITFIELD_FLAG(DYNAMIC_STATE_DEPTH_BIAS); BIND_BITFIELD_FLAG(DYNAMIC_STATE_BLEND_CONSTANTS); BIND_BITFIELD_FLAG(DYNAMIC_STATE_DEPTH_BOUNDS); BIND_BITFIELD_FLAG(DYNAMIC_STATE_STENCIL_COMPARE_MASK); BIND_BITFIELD_FLAG(DYNAMIC_STATE_STENCIL_WRITE_MASK); BIND_BITFIELD_FLAG(DYNAMIC_STATE_STENCIL_REFERENCE); BIND_ENUM_CONSTANT(INITIAL_ACTION_LOAD); BIND_ENUM_CONSTANT(INITIAL_ACTION_CLEAR); BIND_ENUM_CONSTANT(INITIAL_ACTION_DISCARD); BIND_ENUM_CONSTANT(INITIAL_ACTION_MAX); #ifndef DISABLE_DEPRECATED BIND_ENUM_CONSTANT(INITIAL_ACTION_CLEAR_REGION); BIND_ENUM_CONSTANT(INITIAL_ACTION_CLEAR_REGION_CONTINUE); BIND_ENUM_CONSTANT(INITIAL_ACTION_KEEP); BIND_ENUM_CONSTANT(INITIAL_ACTION_DROP); BIND_ENUM_CONSTANT(INITIAL_ACTION_CONTINUE); #endif BIND_ENUM_CONSTANT(FINAL_ACTION_STORE); BIND_ENUM_CONSTANT(FINAL_ACTION_DISCARD); BIND_ENUM_CONSTANT(FINAL_ACTION_MAX); #ifndef DISABLE_DEPRECATED BIND_ENUM_CONSTANT(FINAL_ACTION_READ); BIND_ENUM_CONSTANT(FINAL_ACTION_CONTINUE); #endif BIND_ENUM_CONSTANT(SHADER_STAGE_VERTEX); BIND_ENUM_CONSTANT(SHADER_STAGE_FRAGMENT); BIND_ENUM_CONSTANT(SHADER_STAGE_TESSELATION_CONTROL); BIND_ENUM_CONSTANT(SHADER_STAGE_TESSELATION_EVALUATION); BIND_ENUM_CONSTANT(SHADER_STAGE_COMPUTE); BIND_ENUM_CONSTANT(SHADER_STAGE_MAX); BIND_ENUM_CONSTANT(SHADER_STAGE_VERTEX_BIT); BIND_ENUM_CONSTANT(SHADER_STAGE_FRAGMENT_BIT); BIND_ENUM_CONSTANT(SHADER_STAGE_TESSELATION_CONTROL_BIT); BIND_ENUM_CONSTANT(SHADER_STAGE_TESSELATION_EVALUATION_BIT); BIND_ENUM_CONSTANT(SHADER_STAGE_COMPUTE_BIT); BIND_ENUM_CONSTANT(SHADER_LANGUAGE_GLSL); BIND_ENUM_CONSTANT(SHADER_LANGUAGE_HLSL); BIND_ENUM_CONSTANT(PIPELINE_SPECIALIZATION_CONSTANT_TYPE_BOOL); BIND_ENUM_CONSTANT(PIPELINE_SPECIALIZATION_CONSTANT_TYPE_INT); BIND_ENUM_CONSTANT(PIPELINE_SPECIALIZATION_CONSTANT_TYPE_FLOAT); BIND_ENUM_CONSTANT(LIMIT_MAX_BOUND_UNIFORM_SETS); BIND_ENUM_CONSTANT(LIMIT_MAX_FRAMEBUFFER_COLOR_ATTACHMENTS); BIND_ENUM_CONSTANT(LIMIT_MAX_TEXTURES_PER_UNIFORM_SET); BIND_ENUM_CONSTANT(LIMIT_MAX_SAMPLERS_PER_UNIFORM_SET); BIND_ENUM_CONSTANT(LIMIT_MAX_STORAGE_BUFFERS_PER_UNIFORM_SET); BIND_ENUM_CONSTANT(LIMIT_MAX_STORAGE_IMAGES_PER_UNIFORM_SET); BIND_ENUM_CONSTANT(LIMIT_MAX_UNIFORM_BUFFERS_PER_UNIFORM_SET); BIND_ENUM_CONSTANT(LIMIT_MAX_DRAW_INDEXED_INDEX); BIND_ENUM_CONSTANT(LIMIT_MAX_FRAMEBUFFER_HEIGHT); BIND_ENUM_CONSTANT(LIMIT_MAX_FRAMEBUFFER_WIDTH); BIND_ENUM_CONSTANT(LIMIT_MAX_TEXTURE_ARRAY_LAYERS); BIND_ENUM_CONSTANT(LIMIT_MAX_TEXTURE_SIZE_1D); BIND_ENUM_CONSTANT(LIMIT_MAX_TEXTURE_SIZE_2D); BIND_ENUM_CONSTANT(LIMIT_MAX_TEXTURE_SIZE_3D); BIND_ENUM_CONSTANT(LIMIT_MAX_TEXTURE_SIZE_CUBE); BIND_ENUM_CONSTANT(LIMIT_MAX_TEXTURES_PER_SHADER_STAGE); BIND_ENUM_CONSTANT(LIMIT_MAX_SAMPLERS_PER_SHADER_STAGE); BIND_ENUM_CONSTANT(LIMIT_MAX_STORAGE_BUFFERS_PER_SHADER_STAGE); BIND_ENUM_CONSTANT(LIMIT_MAX_STORAGE_IMAGES_PER_SHADER_STAGE); BIND_ENUM_CONSTANT(LIMIT_MAX_UNIFORM_BUFFERS_PER_SHADER_STAGE); BIND_ENUM_CONSTANT(LIMIT_MAX_PUSH_CONSTANT_SIZE); BIND_ENUM_CONSTANT(LIMIT_MAX_UNIFORM_BUFFER_SIZE); BIND_ENUM_CONSTANT(LIMIT_MAX_VERTEX_INPUT_ATTRIBUTE_OFFSET); BIND_ENUM_CONSTANT(LIMIT_MAX_VERTEX_INPUT_ATTRIBUTES); BIND_ENUM_CONSTANT(LIMIT_MAX_VERTEX_INPUT_BINDINGS); BIND_ENUM_CONSTANT(LIMIT_MAX_VERTEX_INPUT_BINDING_STRIDE); BIND_ENUM_CONSTANT(LIMIT_MIN_UNIFORM_BUFFER_OFFSET_ALIGNMENT); BIND_ENUM_CONSTANT(LIMIT_MAX_COMPUTE_SHARED_MEMORY_SIZE); BIND_ENUM_CONSTANT(LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_X); BIND_ENUM_CONSTANT(LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_Y); BIND_ENUM_CONSTANT(LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_Z); BIND_ENUM_CONSTANT(LIMIT_MAX_COMPUTE_WORKGROUP_INVOCATIONS); BIND_ENUM_CONSTANT(LIMIT_MAX_COMPUTE_WORKGROUP_SIZE_X); BIND_ENUM_CONSTANT(LIMIT_MAX_COMPUTE_WORKGROUP_SIZE_Y); BIND_ENUM_CONSTANT(LIMIT_MAX_COMPUTE_WORKGROUP_SIZE_Z); BIND_ENUM_CONSTANT(LIMIT_MAX_VIEWPORT_DIMENSIONS_X); BIND_ENUM_CONSTANT(LIMIT_MAX_VIEWPORT_DIMENSIONS_Y); BIND_ENUM_CONSTANT(MEMORY_TEXTURES); BIND_ENUM_CONSTANT(MEMORY_BUFFERS); BIND_ENUM_CONSTANT(MEMORY_TOTAL); BIND_CONSTANT(INVALID_ID); BIND_CONSTANT(INVALID_FORMAT_ID); } RenderingDevice::~RenderingDevice() { finalize(); if (singleton == this) { singleton = nullptr; } } RenderingDevice::RenderingDevice() { if (singleton == nullptr) { singleton = this; } } /*****************/ /**** BINDERS ****/ /*****************/ RID RenderingDevice::_texture_create(const Ref &p_format, const Ref &p_view, const TypedArray &p_data) { ERR_FAIL_COND_V(p_format.is_null(), RID()); ERR_FAIL_COND_V(p_view.is_null(), RID()); Vector> data; for (int i = 0; i < p_data.size(); i++) { Vector byte_slice = p_data[i]; ERR_FAIL_COND_V(byte_slice.is_empty(), RID()); data.push_back(byte_slice); } return texture_create(p_format->base, p_view->base, data); } RID RenderingDevice::_texture_create_shared(const Ref &p_view, RID p_with_texture) { ERR_FAIL_COND_V(p_view.is_null(), RID()); return texture_create_shared(p_view->base, p_with_texture); } RID RenderingDevice::_texture_create_shared_from_slice(const Ref &p_view, RID p_with_texture, uint32_t p_layer, uint32_t p_mipmap, uint32_t p_mipmaps, TextureSliceType p_slice_type) { ERR_FAIL_COND_V(p_view.is_null(), RID()); return texture_create_shared_from_slice(p_view->base, p_with_texture, p_layer, p_mipmap, p_mipmaps, p_slice_type); } Ref RenderingDevice::_texture_get_format(RID p_rd_texture) { Ref rtf; rtf.instantiate(); rtf->base = texture_get_format(p_rd_texture); return rtf; } RenderingDevice::FramebufferFormatID RenderingDevice::_framebuffer_format_create(const TypedArray &p_attachments, uint32_t p_view_count) { Vector attachments; attachments.resize(p_attachments.size()); for (int i = 0; i < p_attachments.size(); i++) { Ref af = p_attachments[i]; ERR_FAIL_COND_V(af.is_null(), INVALID_FORMAT_ID); attachments.write[i] = af->base; } return framebuffer_format_create(attachments, p_view_count); } RenderingDevice::FramebufferFormatID RenderingDevice::_framebuffer_format_create_multipass(const TypedArray &p_attachments, const TypedArray &p_passes, uint32_t p_view_count) { Vector attachments; attachments.resize(p_attachments.size()); for (int i = 0; i < p_attachments.size(); i++) { Ref af = p_attachments[i]; ERR_FAIL_COND_V(af.is_null(), INVALID_FORMAT_ID); attachments.write[i] = af->base; } Vector passes; for (int i = 0; i < p_passes.size(); i++) { Ref pass = p_passes[i]; ERR_CONTINUE(pass.is_null()); passes.push_back(pass->base); } return framebuffer_format_create_multipass(attachments, passes, p_view_count); } RID RenderingDevice::_framebuffer_create(const TypedArray &p_textures, FramebufferFormatID p_format_check, uint32_t p_view_count) { Vector textures = Variant(p_textures); return framebuffer_create(textures, p_format_check, p_view_count); } RID RenderingDevice::_framebuffer_create_multipass(const TypedArray &p_textures, const TypedArray &p_passes, FramebufferFormatID p_format_check, uint32_t p_view_count) { Vector textures = Variant(p_textures); Vector passes; for (int i = 0; i < p_passes.size(); i++) { Ref pass = p_passes[i]; ERR_CONTINUE(pass.is_null()); passes.push_back(pass->base); } return framebuffer_create_multipass(textures, passes, p_format_check, p_view_count); } RID RenderingDevice::_sampler_create(const Ref &p_state) { ERR_FAIL_COND_V(p_state.is_null(), RID()); return sampler_create(p_state->base); } RenderingDevice::VertexFormatID RenderingDevice::_vertex_format_create(const TypedArray &p_vertex_formats) { Vector descriptions; descriptions.resize(p_vertex_formats.size()); for (int i = 0; i < p_vertex_formats.size(); i++) { Ref af = p_vertex_formats[i]; ERR_FAIL_COND_V(af.is_null(), INVALID_FORMAT_ID); descriptions.write[i] = af->base; } return vertex_format_create(descriptions); } RID RenderingDevice::_vertex_array_create(uint32_t p_vertex_count, VertexFormatID p_vertex_format, const TypedArray &p_src_buffers, const Vector &p_offsets) { Vector buffers = Variant(p_src_buffers); Vector offsets; offsets.resize(p_offsets.size()); for (int i = 0; i < p_offsets.size(); i++) { offsets.write[i] = p_offsets[i]; } return vertex_array_create(p_vertex_count, p_vertex_format, buffers, offsets); } Ref RenderingDevice::_shader_compile_spirv_from_source(const Ref &p_source, bool p_allow_cache) { ERR_FAIL_COND_V(p_source.is_null(), Ref()); Ref bytecode; bytecode.instantiate(); for (int i = 0; i < RD::SHADER_STAGE_MAX; i++) { String error; ShaderStage stage = ShaderStage(i); String source = p_source->get_stage_source(stage); if (!source.is_empty()) { Vector spirv = shader_compile_spirv_from_source(stage, source, p_source->get_language(), &error, p_allow_cache); bytecode->set_stage_bytecode(stage, spirv); bytecode->set_stage_compile_error(stage, error); } } return bytecode; } Vector RenderingDevice::_shader_compile_binary_from_spirv(const Ref &p_spirv, const String &p_shader_name) { ERR_FAIL_COND_V(p_spirv.is_null(), Vector()); Vector stage_data; for (int i = 0; i < RD::SHADER_STAGE_MAX; i++) { ShaderStage stage = ShaderStage(i); ShaderStageSPIRVData sd; sd.shader_stage = stage; String error = p_spirv->get_stage_compile_error(stage); ERR_FAIL_COND_V_MSG(!error.is_empty(), Vector(), "Can't create a shader from an errored bytecode. Check errors in source bytecode."); sd.spirv = p_spirv->get_stage_bytecode(stage); if (sd.spirv.is_empty()) { continue; } stage_data.push_back(sd); } return shader_compile_binary_from_spirv(stage_data, p_shader_name); } RID RenderingDevice::_shader_create_from_spirv(const Ref &p_spirv, const String &p_shader_name) { ERR_FAIL_COND_V(p_spirv.is_null(), RID()); Vector stage_data; for (int i = 0; i < RD::SHADER_STAGE_MAX; i++) { ShaderStage stage = ShaderStage(i); ShaderStageSPIRVData sd; sd.shader_stage = stage; String error = p_spirv->get_stage_compile_error(stage); ERR_FAIL_COND_V_MSG(!error.is_empty(), RID(), "Can't create a shader from an errored bytecode. Check errors in source bytecode."); sd.spirv = p_spirv->get_stage_bytecode(stage); if (sd.spirv.is_empty()) { continue; } stage_data.push_back(sd); } return shader_create_from_spirv(stage_data); } RID RenderingDevice::_uniform_set_create(const TypedArray &p_uniforms, RID p_shader, uint32_t p_shader_set) { Vector uniforms; uniforms.resize(p_uniforms.size()); for (int i = 0; i < p_uniforms.size(); i++) { Ref uniform = p_uniforms[i]; ERR_FAIL_COND_V(!uniform.is_valid(), RID()); uniforms.write[i] = uniform->base; } return uniform_set_create(uniforms, p_shader, p_shader_set); } Error RenderingDevice::_buffer_update_bind(RID p_buffer, uint32_t p_offset, uint32_t p_size, const Vector &p_data) { return buffer_update(p_buffer, p_offset, p_size, p_data.ptr()); } static Vector _get_spec_constants(const TypedArray &p_constants) { Vector ret; ret.resize(p_constants.size()); for (int i = 0; i < p_constants.size(); i++) { Ref c = p_constants[i]; ERR_CONTINUE(c.is_null()); RenderingDevice::PipelineSpecializationConstant &sc = ret.write[i]; Variant value = c->get_value(); switch (value.get_type()) { case Variant::BOOL: { sc.type = RD::PIPELINE_SPECIALIZATION_CONSTANT_TYPE_BOOL; sc.bool_value = value; } break; case Variant::INT: { sc.type = RD::PIPELINE_SPECIALIZATION_CONSTANT_TYPE_INT; sc.int_value = value; } break; case Variant::FLOAT: { sc.type = RD::PIPELINE_SPECIALIZATION_CONSTANT_TYPE_FLOAT; sc.float_value = value; } break; default: { } } sc.constant_id = c->get_constant_id(); } return ret; } RID RenderingDevice::_render_pipeline_create(RID p_shader, FramebufferFormatID p_framebuffer_format, VertexFormatID p_vertex_format, RenderPrimitive p_render_primitive, const Ref &p_rasterization_state, const Ref &p_multisample_state, const Ref &p_depth_stencil_state, const Ref &p_blend_state, BitField p_dynamic_state_flags, uint32_t p_for_render_pass, const TypedArray &p_specialization_constants) { PipelineRasterizationState rasterization_state; if (p_rasterization_state.is_valid()) { rasterization_state = p_rasterization_state->base; } PipelineMultisampleState multisample_state; if (p_multisample_state.is_valid()) { multisample_state = p_multisample_state->base; for (int i = 0; i < p_multisample_state->sample_masks.size(); i++) { int64_t mask = p_multisample_state->sample_masks[i]; multisample_state.sample_mask.push_back(mask); } } PipelineDepthStencilState depth_stencil_state; if (p_depth_stencil_state.is_valid()) { depth_stencil_state = p_depth_stencil_state->base; } PipelineColorBlendState color_blend_state; if (p_blend_state.is_valid()) { color_blend_state = p_blend_state->base; for (int i = 0; i < p_blend_state->attachments.size(); i++) { Ref attachment = p_blend_state->attachments[i]; if (attachment.is_valid()) { color_blend_state.attachments.push_back(attachment->base); } } } return render_pipeline_create(p_shader, p_framebuffer_format, p_vertex_format, p_render_primitive, rasterization_state, multisample_state, depth_stencil_state, color_blend_state, p_dynamic_state_flags, p_for_render_pass, _get_spec_constants(p_specialization_constants)); } RID RenderingDevice::_compute_pipeline_create(RID p_shader, const TypedArray &p_specialization_constants = TypedArray()) { return compute_pipeline_create(p_shader, _get_spec_constants(p_specialization_constants)); } #ifndef DISABLE_DEPRECATED Vector RenderingDevice::_draw_list_begin_split(RID p_framebuffer, uint32_t p_splits, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector &p_clear_color_values, float p_clear_depth, uint32_t p_clear_stencil, const Rect2 &p_region, const TypedArray &p_storage_textures) { ERR_FAIL_V_MSG(Vector(), "Deprecated. Split draw lists are used automatically by RenderingDevice."); } Vector RenderingDevice::_draw_list_switch_to_next_pass_split(uint32_t p_splits) { ERR_FAIL_V_MSG(Vector(), "Deprecated. Split draw lists are used automatically by RenderingDevice."); } #endif void RenderingDevice::_draw_list_set_push_constant(DrawListID p_list, const Vector &p_data, uint32_t p_data_size) { ERR_FAIL_COND(p_data_size > (uint32_t)p_data.size()); draw_list_set_push_constant(p_list, p_data.ptr(), p_data_size); } void RenderingDevice::_compute_list_set_push_constant(ComputeListID p_list, const Vector &p_data, uint32_t p_data_size) { ERR_FAIL_COND(p_data_size > (uint32_t)p_data.size()); compute_list_set_push_constant(p_list, p_data.ptr(), p_data_size); }