387 lines
14 KiB
C++
387 lines
14 KiB
C++
/*************************************************************************/
|
|
/* particle_system_sw.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#include "particle_system_sw.h"
|
|
#include "sort.h"
|
|
|
|
ParticleSystemSW::ParticleSystemSW() {
|
|
|
|
amount = 8;
|
|
emitting = true;
|
|
|
|
for (int i = 0; i < VS::PARTICLE_VAR_MAX; i++) {
|
|
particle_randomness[i] = 0.0;
|
|
}
|
|
|
|
particle_vars[VS::PARTICLE_LIFETIME] = 2.0; //
|
|
particle_vars[VS::PARTICLE_SPREAD] = 0.2; //
|
|
particle_vars[VS::PARTICLE_GRAVITY] = 9.8; //
|
|
particle_vars[VS::PARTICLE_LINEAR_VELOCITY] = 0.2; //
|
|
particle_vars[VS::PARTICLE_ANGULAR_VELOCITY] = 0.0; //
|
|
particle_vars[VS::PARTICLE_LINEAR_ACCELERATION] = 0.0; //
|
|
particle_vars[VS::PARTICLE_RADIAL_ACCELERATION] = 0.0; //
|
|
particle_vars[VS::PARTICLE_TANGENTIAL_ACCELERATION] = 1.0; //
|
|
particle_vars[VS::PARTICLE_DAMPING] = 0.0; //
|
|
particle_vars[VS::PARTICLE_INITIAL_SIZE] = 1.0;
|
|
particle_vars[VS::PARTICLE_FINAL_SIZE] = 0.8;
|
|
particle_vars[VS::PARTICLE_HEIGHT] = 1;
|
|
particle_vars[VS::PARTICLE_HEIGHT_SPEED_SCALE] = 1;
|
|
|
|
height_from_velocity = false;
|
|
local_coordinates = false;
|
|
|
|
particle_vars[VS::PARTICLE_INITIAL_ANGLE] = 0.0; //
|
|
|
|
gravity_normal = Vector3(0, -1.0, 0);
|
|
//emission_half_extents=Vector3(0.1,0.1,0.1);
|
|
emission_half_extents = Vector3(1, 1, 1);
|
|
color_phase_count = 0;
|
|
color_phases[0].pos = 0.0;
|
|
color_phases[0].color = Color(1.0, 0.0, 0.0);
|
|
visibility_aabb = AABB(Vector3(-64, -64, -64), Vector3(128, 128, 128));
|
|
|
|
attractor_count = 0;
|
|
}
|
|
|
|
ParticleSystemSW::~ParticleSystemSW() {
|
|
}
|
|
|
|
#define DEFAULT_SEED 1234567
|
|
|
|
_FORCE_INLINE_ static float _rand_from_seed(uint32_t *seed) {
|
|
|
|
uint32_t k;
|
|
uint32_t s = (*seed);
|
|
if (s == 0)
|
|
s = 0x12345987;
|
|
k = s / 127773;
|
|
s = 16807 * (s - k * 127773) - 2836 * k;
|
|
if (s < 0)
|
|
s += 2147483647;
|
|
(*seed) = s;
|
|
|
|
float v = ((float)((*seed) & 0xFFFFF)) / (float)0xFFFFF;
|
|
v = v * 2.0 - 1.0;
|
|
return v;
|
|
}
|
|
|
|
_FORCE_INLINE_ static uint32_t _irand_from_seed(uint32_t *seed) {
|
|
|
|
uint32_t k;
|
|
uint32_t s = (*seed);
|
|
if (s == 0)
|
|
s = 0x12345987;
|
|
k = s / 127773;
|
|
s = 16807 * (s - k * 127773) - 2836 * k;
|
|
if (s < 0)
|
|
s += 2147483647;
|
|
(*seed) = s;
|
|
|
|
return s;
|
|
}
|
|
|
|
void ParticleSystemProcessSW::process(const ParticleSystemSW *p_system, const Transform &p_transform, float p_time) {
|
|
|
|
valid = false;
|
|
if (p_system->amount <= 0) {
|
|
ERR_EXPLAIN("Invalid amount of particles: " + itos(p_system->amount));
|
|
ERR_FAIL_COND(p_system->amount <= 0);
|
|
}
|
|
if (p_system->attractor_count < 0 || p_system->attractor_count > VS::MAX_PARTICLE_ATTRACTORS) {
|
|
ERR_EXPLAIN("Invalid amount of particle attractors.");
|
|
ERR_FAIL_COND(p_system->attractor_count < 0 || p_system->attractor_count > VS::MAX_PARTICLE_ATTRACTORS);
|
|
}
|
|
float lifetime = p_system->particle_vars[VS::PARTICLE_LIFETIME];
|
|
if (lifetime < CMP_EPSILON) {
|
|
ERR_EXPLAIN("Particle system lifetime too small.");
|
|
ERR_FAIL_COND(lifetime < CMP_EPSILON);
|
|
}
|
|
valid = true;
|
|
int particle_count = MIN(p_system->amount, ParticleSystemSW::MAX_PARTICLES);
|
|
;
|
|
|
|
int emission_point_count = p_system->emission_points.size();
|
|
DVector<Vector3>::Read r;
|
|
if (emission_point_count)
|
|
r = p_system->emission_points.read();
|
|
|
|
if (particle_count != particle_data.size()) {
|
|
|
|
//clear the whole system if particle amount changed
|
|
particle_data.clear();
|
|
particle_data.resize(p_system->amount);
|
|
particle_system_time = 0;
|
|
}
|
|
|
|
float next_time = particle_system_time + p_time;
|
|
|
|
if (next_time > lifetime)
|
|
next_time = Math::fmod(next_time, lifetime);
|
|
|
|
ParticleData *pdata = &particle_data[0];
|
|
Vector3 attractor_positions[VS::MAX_PARTICLE_ATTRACTORS];
|
|
|
|
for (int i = 0; i < p_system->attractor_count; i++) {
|
|
|
|
attractor_positions[i] = p_transform.xform(p_system->attractors[i].pos);
|
|
}
|
|
|
|
for (int i = 0; i < particle_count; i++) {
|
|
|
|
ParticleData &p = pdata[i];
|
|
|
|
float restart_time = (i * lifetime / p_system->amount);
|
|
|
|
bool restart = false;
|
|
|
|
if (next_time < particle_system_time) {
|
|
|
|
if (restart_time > particle_system_time || restart_time < next_time)
|
|
restart = true;
|
|
|
|
} else if (restart_time > particle_system_time && restart_time < next_time) {
|
|
restart = true;
|
|
}
|
|
|
|
if (restart) {
|
|
|
|
if (p_system->emitting) {
|
|
if (emission_point_count == 0) { //use AABB
|
|
if (p_system->local_coordinates)
|
|
p.pos = p_system->emission_half_extents * Vector3(_rand_from_seed(&rand_seed), _rand_from_seed(&rand_seed), _rand_from_seed(&rand_seed));
|
|
else
|
|
p.pos = p_transform.xform(p_system->emission_half_extents * Vector3(_rand_from_seed(&rand_seed), _rand_from_seed(&rand_seed), _rand_from_seed(&rand_seed)));
|
|
} else {
|
|
//use preset positions
|
|
if (p_system->local_coordinates)
|
|
p.pos = r[_irand_from_seed(&rand_seed) % emission_point_count];
|
|
else
|
|
p.pos = p_transform.xform(r[_irand_from_seed(&rand_seed) % emission_point_count]);
|
|
}
|
|
|
|
float angle1 = _rand_from_seed(&rand_seed) * p_system->particle_vars[VS::PARTICLE_SPREAD] * Math_PI;
|
|
float angle2 = _rand_from_seed(&rand_seed) * 20.0 * Math_PI; // make it more random like
|
|
|
|
Vector3 rot_xz = Vector3(Math::sin(angle1), 0.0, Math::cos(angle1));
|
|
Vector3 rot = Vector3(Math::cos(angle2) * rot_xz.x, Math::sin(angle2) * rot_xz.x, rot_xz.z);
|
|
|
|
p.vel = (rot * p_system->particle_vars[VS::PARTICLE_LINEAR_VELOCITY] + rot * p_system->particle_randomness[VS::PARTICLE_LINEAR_VELOCITY] * _rand_from_seed(&rand_seed));
|
|
if (!p_system->local_coordinates)
|
|
p.vel = p_transform.basis.xform(p.vel);
|
|
|
|
p.vel += p_system->emission_base_velocity;
|
|
|
|
p.rot = p_system->particle_vars[VS::PARTICLE_INITIAL_ANGLE] + p_system->particle_randomness[VS::PARTICLE_INITIAL_ANGLE] * _rand_from_seed(&rand_seed);
|
|
p.active = true;
|
|
for (int r = 0; r < PARTICLE_RANDOM_NUMBERS; r++)
|
|
p.random[r] = _rand_from_seed(&rand_seed);
|
|
|
|
} else {
|
|
|
|
p.pos = Vector3();
|
|
p.rot = 0;
|
|
p.vel = Vector3();
|
|
p.active = false;
|
|
}
|
|
|
|
} else {
|
|
|
|
if (!p.active)
|
|
continue;
|
|
|
|
Vector3 force;
|
|
//apply gravity
|
|
force = p_system->gravity_normal * (p_system->particle_vars[VS::PARTICLE_GRAVITY] + (p_system->particle_randomness[VS::PARTICLE_GRAVITY] * p.random[0]));
|
|
//apply linear acceleration
|
|
force += p.vel.normalized() * (p_system->particle_vars[VS::PARTICLE_LINEAR_ACCELERATION] + p_system->particle_randomness[VS::PARTICLE_LINEAR_ACCELERATION] * p.random[1]);
|
|
//apply radial acceleration
|
|
Vector3 org;
|
|
if (!p_system->local_coordinates)
|
|
org = p_transform.origin;
|
|
force += (p.pos - org).normalized() * (p_system->particle_vars[VS::PARTICLE_RADIAL_ACCELERATION] + p_system->particle_randomness[VS::PARTICLE_RADIAL_ACCELERATION] * p.random[2]);
|
|
//apply tangential acceleration
|
|
force += (p.pos - org).cross(p_system->gravity_normal).normalized() * (p_system->particle_vars[VS::PARTICLE_TANGENTIAL_ACCELERATION] + p_system->particle_randomness[VS::PARTICLE_TANGENTIAL_ACCELERATION] * p.random[3]);
|
|
//apply attractor forces
|
|
for (int a = 0; a < p_system->attractor_count; a++) {
|
|
|
|
force += (p.pos - attractor_positions[a]).normalized() * p_system->attractors[a].force;
|
|
}
|
|
|
|
p.vel += force * p_time;
|
|
if (p_system->particle_vars[VS::PARTICLE_DAMPING]) {
|
|
|
|
float v = p.vel.length();
|
|
float damp = p_system->particle_vars[VS::PARTICLE_DAMPING] + p_system->particle_vars[VS::PARTICLE_DAMPING] * p_system->particle_randomness[VS::PARTICLE_DAMPING];
|
|
v -= damp * p_time;
|
|
if (v < 0) {
|
|
p.vel = Vector3();
|
|
} else {
|
|
p.vel = p.vel.normalized() * v;
|
|
}
|
|
}
|
|
p.rot += (p_system->particle_vars[VS::PARTICLE_ANGULAR_VELOCITY] + p_system->particle_randomness[VS::PARTICLE_ANGULAR_VELOCITY] * p.random[4]) * p_time;
|
|
p.pos += p.vel * p_time;
|
|
}
|
|
}
|
|
|
|
particle_system_time = Math::fmod(particle_system_time + p_time, lifetime);
|
|
}
|
|
|
|
ParticleSystemProcessSW::ParticleSystemProcessSW() {
|
|
|
|
particle_system_time = 0;
|
|
rand_seed = 1234567;
|
|
valid = false;
|
|
}
|
|
|
|
struct _ParticleSorterSW {
|
|
|
|
_FORCE_INLINE_ bool operator()(const ParticleSystemDrawInfoSW::ParticleDrawInfo *p_a, const ParticleSystemDrawInfoSW::ParticleDrawInfo *p_b) const {
|
|
|
|
return p_a->d > p_b->d; // draw from further away to closest
|
|
}
|
|
};
|
|
|
|
void ParticleSystemDrawInfoSW::prepare(const ParticleSystemSW *p_system, const ParticleSystemProcessSW *p_process, const Transform &p_system_transform, const Transform &p_camera_transform) {
|
|
|
|
ERR_FAIL_COND(p_process->particle_data.size() != p_system->amount);
|
|
ERR_FAIL_COND(p_system->amount <= 0 || p_system->amount >= ParticleSystemSW::MAX_PARTICLES);
|
|
|
|
const ParticleSystemProcessSW::ParticleData *pdata = &p_process->particle_data[0];
|
|
float time_pos = p_process->particle_system_time / p_system->particle_vars[VS::PARTICLE_LIFETIME];
|
|
|
|
ParticleSystemSW::ColorPhase cphase[VS::MAX_PARTICLE_COLOR_PHASES];
|
|
|
|
float last = -1;
|
|
int col_count = 0;
|
|
|
|
for (int i = 0; i < p_system->color_phase_count; i++) {
|
|
|
|
if (p_system->color_phases[i].pos <= last)
|
|
break;
|
|
cphase[i] = p_system->color_phases[i];
|
|
col_count++;
|
|
}
|
|
|
|
Vector3 camera_z_axis = p_camera_transform.basis.get_axis(2);
|
|
|
|
for (int i = 0; i < p_system->amount; i++) {
|
|
|
|
ParticleDrawInfo &pdi = draw_info[i];
|
|
pdi.data = &pdata[i];
|
|
pdi.transform.origin = pdi.data->pos;
|
|
if (p_system->local_coordinates)
|
|
pdi.transform.origin = p_system_transform.xform(pdi.transform.origin);
|
|
|
|
pdi.d = -camera_z_axis.dot(pdi.transform.origin);
|
|
|
|
// adjust particle size, color and rotation
|
|
|
|
float time = ((float)i / p_system->amount);
|
|
if (time < time_pos)
|
|
time = time_pos - time;
|
|
else
|
|
time = (1.0 - time) + time_pos;
|
|
|
|
Vector3 up = p_camera_transform.basis.get_axis(1); // up determines the rotation
|
|
float up_scale = 1.0;
|
|
|
|
if (p_system->height_from_velocity) {
|
|
|
|
Vector3 veld = pdi.data->vel;
|
|
Vector3 cam_z = camera_z_axis.normalized();
|
|
float vc = Math::abs(veld.normalized().dot(cam_z));
|
|
|
|
if (vc < (1.0 - CMP_EPSILON)) {
|
|
up = Plane(cam_z, 0).project(veld).normalized();
|
|
float h = p_system->particle_vars[VS::PARTICLE_HEIGHT] + p_system->particle_randomness[VS::PARTICLE_HEIGHT] * pdi.data->random[7];
|
|
float velh = veld.length();
|
|
h += velh * (p_system->particle_vars[VS::PARTICLE_HEIGHT_SPEED_SCALE] + p_system->particle_randomness[VS::PARTICLE_HEIGHT_SPEED_SCALE] * pdi.data->random[7]);
|
|
|
|
up_scale = Math::lerp(1.0, h, (1.0 - vc));
|
|
}
|
|
|
|
} else if (pdi.data->rot) {
|
|
|
|
up.rotate(camera_z_axis, pdi.data->rot);
|
|
}
|
|
|
|
{
|
|
// matrix
|
|
Vector3 v_z = (p_camera_transform.origin - pdi.transform.origin).normalized();
|
|
// Vector3 v_z = (p_camera_transform.origin-pdi.data->pos).normalized();
|
|
Vector3 v_y = up;
|
|
Vector3 v_x = v_y.cross(v_z);
|
|
v_y = v_z.cross(v_x);
|
|
v_x.normalize();
|
|
v_y.normalize();
|
|
|
|
float initial_scale, final_scale;
|
|
initial_scale = p_system->particle_vars[VS::PARTICLE_INITIAL_SIZE] + p_system->particle_randomness[VS::PARTICLE_INITIAL_SIZE] * pdi.data->random[5];
|
|
final_scale = p_system->particle_vars[VS::PARTICLE_FINAL_SIZE] + p_system->particle_randomness[VS::PARTICLE_FINAL_SIZE] * pdi.data->random[6];
|
|
float scale = initial_scale + time * (final_scale - initial_scale);
|
|
|
|
pdi.transform.basis.set_axis(0, v_x * scale);
|
|
pdi.transform.basis.set_axis(1, v_y * scale * up_scale);
|
|
pdi.transform.basis.set_axis(2, v_z * scale);
|
|
}
|
|
|
|
int cpos = 0;
|
|
|
|
while (cpos < col_count) {
|
|
|
|
if (cphase[cpos].pos > time)
|
|
break;
|
|
cpos++;
|
|
}
|
|
|
|
cpos--;
|
|
|
|
if (cpos == -1)
|
|
pdi.color = Color(1, 1, 1, 1);
|
|
else {
|
|
if (cpos == col_count - 1)
|
|
pdi.color = cphase[cpos].color;
|
|
else {
|
|
float diff = (cphase[cpos + 1].pos - cphase[cpos].pos);
|
|
if (diff > 0)
|
|
pdi.color = cphase[cpos].color.linear_interpolate(cphase[cpos + 1].color, (time - cphase[cpos].pos) / diff);
|
|
else
|
|
pdi.color = cphase[cpos + 1].color;
|
|
}
|
|
}
|
|
|
|
draw_info_order[i] = &pdi;
|
|
}
|
|
|
|
SortArray<ParticleDrawInfo *, _ParticleSorterSW> particle_sort;
|
|
particle_sort.sort(&draw_info_order[0], p_system->amount);
|
|
}
|