godot/main/input_default.cpp

1321 lines
36 KiB
C++

/*************************************************************************/
/* input_default.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "input_default.h"
#include "core/input_map.h"
#include "core/os/os.h"
#include "main/default_controller_mappings.h"
#include "scene/resources/texture.h"
#include "servers/visual_server.h"
void InputDefault::SpeedTrack::update(const Vector2 &p_delta_p) {
uint64_t tick = OS::get_singleton()->get_ticks_usec();
uint32_t tdiff = tick - last_tick;
float delta_t = tdiff / 1000000.0;
last_tick = tick;
accum += p_delta_p;
accum_t += delta_t;
if (accum_t > max_ref_frame * 10)
accum_t = max_ref_frame * 10;
while (accum_t >= min_ref_frame) {
float slice_t = min_ref_frame / accum_t;
Vector2 slice = accum * slice_t;
accum = accum - slice;
accum_t -= min_ref_frame;
speed = (slice / min_ref_frame).linear_interpolate(speed, min_ref_frame / max_ref_frame);
}
}
void InputDefault::SpeedTrack::reset() {
last_tick = OS::get_singleton()->get_ticks_usec();
speed = Vector2();
accum_t = 0;
}
InputDefault::SpeedTrack::SpeedTrack() {
min_ref_frame = 0.1;
max_ref_frame = 0.3;
reset();
}
bool InputDefault::is_key_pressed(int p_scancode) const {
_THREAD_SAFE_METHOD_
return keys_pressed.has(p_scancode);
}
bool InputDefault::is_mouse_button_pressed(int p_button) const {
_THREAD_SAFE_METHOD_
return (mouse_button_mask & (1 << (p_button - 1))) != 0;
}
static int _combine_device(int p_value, int p_device) {
return p_value | (p_device << 20);
}
bool InputDefault::is_joy_button_pressed(int p_device, int p_button) const {
_THREAD_SAFE_METHOD_
return joy_buttons_pressed.has(_combine_device(p_button, p_device));
}
bool InputDefault::is_action_pressed(const StringName &p_action) const {
return action_state.has(p_action) && action_state[p_action].pressed;
}
bool InputDefault::is_action_just_pressed(const StringName &p_action) const {
const Map<StringName, Action>::Element *E = action_state.find(p_action);
if (!E)
return false;
if (Engine::get_singleton()->is_in_physics_frame()) {
return E->get().pressed && E->get().physics_frame == Engine::get_singleton()->get_physics_frames();
} else {
return E->get().pressed && E->get().idle_frame == Engine::get_singleton()->get_idle_frames();
}
}
bool InputDefault::is_action_just_released(const StringName &p_action) const {
const Map<StringName, Action>::Element *E = action_state.find(p_action);
if (!E)
return false;
if (Engine::get_singleton()->is_in_physics_frame()) {
return !E->get().pressed && E->get().physics_frame == Engine::get_singleton()->get_physics_frames();
} else {
return !E->get().pressed && E->get().idle_frame == Engine::get_singleton()->get_idle_frames();
}
}
float InputDefault::get_action_strength(const StringName &p_action) const {
const Map<StringName, Action>::Element *E = action_state.find(p_action);
if (!E)
return 0.0f;
return E->get().strength;
}
float InputDefault::get_joy_axis(int p_device, int p_axis) const {
_THREAD_SAFE_METHOD_
int c = _combine_device(p_axis, p_device);
if (_joy_axis.has(c)) {
return _joy_axis[c];
} else {
return 0;
}
}
String InputDefault::get_joy_name(int p_idx) {
_THREAD_SAFE_METHOD_
return joy_names[p_idx].name;
};
Vector2 InputDefault::get_joy_vibration_strength(int p_device) {
if (joy_vibration.has(p_device)) {
return Vector2(joy_vibration[p_device].weak_magnitude, joy_vibration[p_device].strong_magnitude);
} else {
return Vector2(0, 0);
}
}
uint64_t InputDefault::get_joy_vibration_timestamp(int p_device) {
if (joy_vibration.has(p_device)) {
return joy_vibration[p_device].timestamp;
} else {
return 0;
}
}
float InputDefault::get_joy_vibration_duration(int p_device) {
if (joy_vibration.has(p_device)) {
return joy_vibration[p_device].duration;
} else {
return 0.f;
}
}
static String _hex_str(uint8_t p_byte) {
static const char *dict = "0123456789abcdef";
char ret[3];
ret[2] = 0;
ret[0] = dict[p_byte >> 4];
ret[1] = dict[p_byte & 0xf];
return ret;
};
void InputDefault::joy_connection_changed(int p_idx, bool p_connected, String p_name, String p_guid) {
_THREAD_SAFE_METHOD_
Joypad js;
js.name = p_connected ? p_name : "";
js.uid = p_connected ? p_guid : "";
if (p_connected) {
String uidname = p_guid;
if (p_guid == "") {
int uidlen = MIN(p_name.length(), 16);
for (int i = 0; i < uidlen; i++) {
uidname = uidname + _hex_str(p_name[i]);
};
};
js.uid = uidname;
js.connected = true;
int mapping = fallback_mapping;
for (int i = 0; i < map_db.size(); i++) {
if (js.uid == map_db[i].uid) {
mapping = i;
js.name = map_db[i].name;
};
};
js.mapping = mapping;
} else {
js.connected = false;
for (int i = 0; i < JOY_BUTTON_MAX; i++) {
if (i < JOY_AXIS_MAX)
set_joy_axis(p_idx, i, 0.0f);
int c = _combine_device(i, p_idx);
joy_buttons_pressed.erase(c);
};
};
joy_names[p_idx] = js;
emit_signal("joy_connection_changed", p_idx, p_connected);
};
Vector3 InputDefault::get_gravity() const {
_THREAD_SAFE_METHOD_
return gravity;
}
Vector3 InputDefault::get_accelerometer() const {
_THREAD_SAFE_METHOD_
return accelerometer;
}
Vector3 InputDefault::get_magnetometer() const {
_THREAD_SAFE_METHOD_
return magnetometer;
}
Vector3 InputDefault::get_gyroscope() const {
_THREAD_SAFE_METHOD_
return gyroscope;
}
void InputDefault::parse_input_event(const Ref<InputEvent> &p_event) {
_parse_input_event_impl(p_event, false);
}
void InputDefault::_parse_input_event_impl(const Ref<InputEvent> &p_event, bool p_is_emulated) {
// Notes on mouse-touch emulation:
// - Emulated mouse events are parsed, that is, re-routed to this method, so they make the same effects
// as true mouse events. The only difference is the situation is flagged as emulated so they are not
// emulated back to touch events in an endless loop.
// - Emulated touch events are handed right to the main loop (i.e., the SceneTree) because they don't
// require additional handling by this class.
_THREAD_SAFE_METHOD_
Ref<InputEventKey> k = p_event;
if (k.is_valid() && !k->is_echo() && k->get_scancode() != 0) {
if (k->is_pressed())
keys_pressed.insert(k->get_scancode());
else
keys_pressed.erase(k->get_scancode());
}
Ref<InputEventMouseButton> mb = p_event;
if (mb.is_valid()) {
if (mb->is_pressed()) {
mouse_button_mask |= (1 << (mb->get_button_index() - 1));
} else {
mouse_button_mask &= ~(1 << (mb->get_button_index() - 1));
}
Point2 pos = mb->get_global_position();
if (mouse_pos != pos) {
set_mouse_position(pos);
}
if (main_loop && emulate_touch_from_mouse && !p_is_emulated && mb->get_button_index() == 1) {
Ref<InputEventScreenTouch> touch_event;
touch_event.instance();
touch_event->set_pressed(mb->is_pressed());
touch_event->set_position(mb->get_position());
main_loop->input_event(touch_event);
}
}
Ref<InputEventMouseMotion> mm = p_event;
if (mm.is_valid()) {
Point2 pos = mm->get_global_position();
if (mouse_pos != pos) {
set_mouse_position(pos);
}
if (main_loop && emulate_touch_from_mouse && !p_is_emulated && mm->get_button_mask() & 1) {
Ref<InputEventScreenDrag> drag_event;
drag_event.instance();
drag_event->set_position(mm->get_position());
drag_event->set_relative(mm->get_relative());
drag_event->set_speed(mm->get_speed());
main_loop->input_event(drag_event);
}
}
Ref<InputEventScreenTouch> st = p_event;
if (st.is_valid()) {
if (st->is_pressed()) {
SpeedTrack &track = touch_speed_track[st->get_index()];
track.reset();
} else {
// Since a pointer index may not occur again (OSs may or may not reuse them),
// imperatively remove it from the map to keep no fossil entries in it
touch_speed_track.erase(st->get_index());
}
if (emulate_mouse_from_touch) {
bool translate = false;
if (st->is_pressed()) {
if (mouse_from_touch_index == -1) {
translate = true;
mouse_from_touch_index = st->get_index();
}
} else {
if (st->get_index() == mouse_from_touch_index) {
translate = true;
mouse_from_touch_index = -1;
}
}
if (translate) {
Ref<InputEventMouseButton> button_event;
button_event.instance();
button_event->set_device(InputEvent::DEVICE_ID_TOUCH_MOUSE);
button_event->set_position(st->get_position());
button_event->set_global_position(st->get_position());
button_event->set_pressed(st->is_pressed());
button_event->set_button_index(BUTTON_LEFT);
if (st->is_pressed()) {
button_event->set_button_mask(mouse_button_mask | (1 << (BUTTON_LEFT - 1)));
} else {
button_event->set_button_mask(mouse_button_mask & ~(1 << (BUTTON_LEFT - 1)));
}
_parse_input_event_impl(button_event, true);
}
}
}
Ref<InputEventScreenDrag> sd = p_event;
if (sd.is_valid()) {
SpeedTrack &track = touch_speed_track[sd->get_index()];
track.update(sd->get_relative());
sd->set_speed(track.speed);
if (emulate_mouse_from_touch && sd->get_index() == mouse_from_touch_index) {
Ref<InputEventMouseMotion> motion_event;
motion_event.instance();
motion_event->set_device(InputEvent::DEVICE_ID_TOUCH_MOUSE);
motion_event->set_position(sd->get_position());
motion_event->set_global_position(sd->get_position());
motion_event->set_relative(sd->get_relative());
motion_event->set_speed(sd->get_speed());
motion_event->set_button_mask(mouse_button_mask);
_parse_input_event_impl(motion_event, true);
}
}
Ref<InputEventJoypadButton> jb = p_event;
if (jb.is_valid()) {
int c = _combine_device(jb->get_button_index(), jb->get_device());
if (jb->is_pressed())
joy_buttons_pressed.insert(c);
else
joy_buttons_pressed.erase(c);
}
Ref<InputEventJoypadMotion> jm = p_event;
if (jm.is_valid()) {
set_joy_axis(jm->get_device(), jm->get_axis(), jm->get_axis_value());
}
Ref<InputEventGesture> ge = p_event;
if (ge.is_valid()) {
if (main_loop) {
main_loop->input_event(ge);
}
}
for (const Map<StringName, InputMap::Action>::Element *E = InputMap::get_singleton()->get_action_map().front(); E; E = E->next()) {
if (InputMap::get_singleton()->event_is_action(p_event, E->key())) {
// Save the action's state
if (!p_event->is_echo() && is_action_pressed(E->key()) != p_event->is_action_pressed(E->key())) {
Action action;
action.physics_frame = Engine::get_singleton()->get_physics_frames();
action.idle_frame = Engine::get_singleton()->get_idle_frames();
action.pressed = p_event->is_action_pressed(E->key());
action.strength = 0.f;
action_state[E->key()] = action;
}
action_state[E->key()].strength = p_event->get_action_strength(E->key());
}
}
if (main_loop)
main_loop->input_event(p_event);
}
void InputDefault::set_joy_axis(int p_device, int p_axis, float p_value) {
_THREAD_SAFE_METHOD_
int c = _combine_device(p_axis, p_device);
_joy_axis[c] = p_value;
}
void InputDefault::start_joy_vibration(int p_device, float p_weak_magnitude, float p_strong_magnitude, float p_duration) {
_THREAD_SAFE_METHOD_
if (p_weak_magnitude < 0.f || p_weak_magnitude > 1.f || p_strong_magnitude < 0.f || p_strong_magnitude > 1.f) {
return;
}
VibrationInfo vibration;
vibration.weak_magnitude = p_weak_magnitude;
vibration.strong_magnitude = p_strong_magnitude;
vibration.duration = p_duration;
vibration.timestamp = OS::get_singleton()->get_ticks_usec();
joy_vibration[p_device] = vibration;
}
void InputDefault::stop_joy_vibration(int p_device) {
_THREAD_SAFE_METHOD_
VibrationInfo vibration;
vibration.weak_magnitude = 0;
vibration.strong_magnitude = 0;
vibration.duration = 0;
vibration.timestamp = OS::get_singleton()->get_ticks_usec();
joy_vibration[p_device] = vibration;
}
void InputDefault::vibrate_handheld(int p_duration_ms) {
OS::get_singleton()->vibrate_handheld(p_duration_ms);
}
void InputDefault::set_gravity(const Vector3 &p_gravity) {
_THREAD_SAFE_METHOD_
gravity = p_gravity;
}
void InputDefault::set_accelerometer(const Vector3 &p_accel) {
_THREAD_SAFE_METHOD_
accelerometer = p_accel;
}
void InputDefault::set_magnetometer(const Vector3 &p_magnetometer) {
_THREAD_SAFE_METHOD_
magnetometer = p_magnetometer;
}
void InputDefault::set_gyroscope(const Vector3 &p_gyroscope) {
_THREAD_SAFE_METHOD_
gyroscope = p_gyroscope;
}
void InputDefault::set_main_loop(MainLoop *p_main_loop) {
main_loop = p_main_loop;
}
void InputDefault::set_mouse_position(const Point2 &p_posf) {
mouse_speed_track.update(p_posf - mouse_pos);
mouse_pos = p_posf;
}
Point2 InputDefault::get_mouse_position() const {
return mouse_pos;
}
Point2 InputDefault::get_last_mouse_speed() const {
return mouse_speed_track.speed;
}
int InputDefault::get_mouse_button_mask() const {
return mouse_button_mask; // do not trust OS implementation, should remove it - OS::get_singleton()->get_mouse_button_state();
}
void InputDefault::warp_mouse_position(const Vector2 &p_to) {
OS::get_singleton()->warp_mouse_position(p_to);
}
Point2i InputDefault::warp_mouse_motion(const Ref<InputEventMouseMotion> &p_motion, const Rect2 &p_rect) {
// The relative distance reported for the next event after a warp is in the boundaries of the
// size of the rect on that axis, but it may be greater, in which case there's not problem as fmod()
// will warp it, but if the pointer has moved in the opposite direction between the pointer relocation
// and the subsequent event, the reported relative distance will be less than the size of the rect
// and thus fmod() will be disabled for handling the situation.
// And due to this mouse warping mechanism being stateless, we need to apply some heuristics to
// detect the warp: if the relative distance is greater than the half of the size of the relevant rect
// (checked per each axis), it will be considered as the consequence of a former pointer warp.
const Point2i rel_sgn(p_motion->get_relative().x >= 0.0f ? 1 : -1, p_motion->get_relative().y >= 0.0 ? 1 : -1);
const Size2i warp_margin = p_rect.size * 0.5f;
const Point2i rel_warped(
Math::fmod(p_motion->get_relative().x + rel_sgn.x * warp_margin.x, p_rect.size.x) - rel_sgn.x * warp_margin.x,
Math::fmod(p_motion->get_relative().y + rel_sgn.y * warp_margin.y, p_rect.size.y) - rel_sgn.y * warp_margin.y);
const Point2i pos_local = p_motion->get_global_position() - p_rect.position;
const Point2i pos_warped(Math::fposmod(pos_local.x, p_rect.size.x), Math::fposmod(pos_local.y, p_rect.size.y));
if (pos_warped != pos_local) {
OS::get_singleton()->warp_mouse_position(pos_warped + p_rect.position);
}
return rel_warped;
}
void InputDefault::iteration(float p_step) {
}
void InputDefault::action_press(const StringName &p_action, float p_strength) {
Action action;
action.physics_frame = Engine::get_singleton()->get_physics_frames();
action.idle_frame = Engine::get_singleton()->get_idle_frames();
action.pressed = true;
action.strength = p_strength;
action_state[p_action] = action;
}
void InputDefault::action_release(const StringName &p_action) {
Action action;
action.physics_frame = Engine::get_singleton()->get_physics_frames();
action.idle_frame = Engine::get_singleton()->get_idle_frames();
action.pressed = false;
action.strength = 0.f;
action_state[p_action] = action;
}
void InputDefault::set_emulate_touch_from_mouse(bool p_emulate) {
emulate_touch_from_mouse = p_emulate;
}
bool InputDefault::is_emulating_touch_from_mouse() const {
return emulate_touch_from_mouse;
}
// Calling this whenever the game window is focused helps unstucking the "touch mouse"
// if the OS or its abstraction class hasn't properly reported that touch pointers raised
void InputDefault::ensure_touch_mouse_raised() {
if (mouse_from_touch_index != -1) {
mouse_from_touch_index = -1;
Ref<InputEventMouseButton> button_event;
button_event.instance();
button_event->set_device(InputEvent::DEVICE_ID_TOUCH_MOUSE);
button_event->set_position(mouse_pos);
button_event->set_global_position(mouse_pos);
button_event->set_pressed(false);
button_event->set_button_index(BUTTON_LEFT);
button_event->set_button_mask(mouse_button_mask & ~(1 << (BUTTON_LEFT - 1)));
_parse_input_event_impl(button_event, true);
}
}
void InputDefault::set_emulate_mouse_from_touch(bool p_emulate) {
emulate_mouse_from_touch = p_emulate;
}
bool InputDefault::is_emulating_mouse_from_touch() const {
return emulate_mouse_from_touch;
}
Input::CursorShape InputDefault::get_default_cursor_shape() const {
return default_shape;
}
void InputDefault::set_default_cursor_shape(CursorShape p_shape) {
if (default_shape == p_shape)
return;
default_shape = p_shape;
// The default shape is set in Viewport::_gui_input_event. To instantly
// see the shape in the viewport we need to trigger a mouse motion event.
Ref<InputEventMouseMotion> mm;
mm.instance();
mm->set_position(mouse_pos);
mm->set_global_position(mouse_pos);
parse_input_event(mm);
}
Input::CursorShape InputDefault::get_current_cursor_shape() const {
return (Input::CursorShape)OS::get_singleton()->get_cursor_shape();
}
void InputDefault::set_custom_mouse_cursor(const RES &p_cursor, CursorShape p_shape, const Vector2 &p_hotspot) {
if (Engine::get_singleton()->is_editor_hint())
return;
OS::get_singleton()->set_custom_mouse_cursor(p_cursor, (OS::CursorShape)p_shape, p_hotspot);
}
void InputDefault::accumulate_input_event(const Ref<InputEvent> &p_event) {
ERR_FAIL_COND(p_event.is_null());
if (!use_accumulated_input) {
parse_input_event(p_event);
return;
}
if (!accumulated_events.empty() && accumulated_events.back()->get()->accumulate(p_event)) {
return; //event was accumulated, exit
}
accumulated_events.push_back(p_event);
}
void InputDefault::flush_accumulated_events() {
while (accumulated_events.front()) {
parse_input_event(accumulated_events.front()->get());
accumulated_events.pop_front();
}
}
void InputDefault::set_use_accumulated_input(bool p_enable) {
use_accumulated_input = p_enable;
}
void InputDefault::release_pressed_events() {
flush_accumulated_events(); // this is needed to release actions strengths
keys_pressed.clear();
joy_buttons_pressed.clear();
_joy_axis.clear();
for (Map<StringName, InputDefault::Action>::Element *E = action_state.front(); E; E = E->next()) {
if (E->get().pressed)
action_release(E->key());
}
}
InputDefault::InputDefault() {
use_accumulated_input = true;
mouse_button_mask = 0;
emulate_touch_from_mouse = false;
emulate_mouse_from_touch = false;
mouse_from_touch_index = -1;
main_loop = NULL;
default_shape = CURSOR_ARROW;
fallback_mapping = -1;
// Parse default mappings.
{
int i = 0;
while (DefaultControllerMappings::mappings[i]) {
parse_mapping(DefaultControllerMappings::mappings[i++]);
}
}
// If defined, parse SDL_GAMECONTROLLERCONFIG for possible new mappings/overrides.
String env_mapping = OS::get_singleton()->get_environment("SDL_GAMECONTROLLERCONFIG");
if (env_mapping != "") {
Vector<String> entries = env_mapping.split("\n");
for (int i = 0; i < entries.size(); i++) {
if (entries[i] == "")
continue;
parse_mapping(entries[i]);
}
}
}
void InputDefault::joy_button(int p_device, int p_button, bool p_pressed) {
_THREAD_SAFE_METHOD_;
Joypad &joy = joy_names[p_device];
//printf("got button %i, mapping is %i\n", p_button, joy.mapping);
if (joy.last_buttons[p_button] == p_pressed) {
return;
}
joy.last_buttons[p_button] = p_pressed;
if (joy.mapping == -1) {
_button_event(p_device, p_button, p_pressed);
return;
}
JoyEvent map = _get_mapped_button_event(map_db[joy.mapping], p_button);
if (map.type == TYPE_BUTTON) {
//fake additional axis event for triggers
if (map.index == JOY_L2 || map.index == JOY_R2) {
float value = p_pressed ? 1.0f : 0.0f;
int axis = map.index == JOY_L2 ? JOY_ANALOG_L2 : JOY_ANALOG_R2;
_axis_event(p_device, axis, value);
}
_button_event(p_device, map.index, p_pressed);
return;
}
if (map.type == TYPE_AXIS) {
_axis_event(p_device, map.index, p_pressed ? 1.0 : 0.0);
}
// no event?
}
void InputDefault::joy_axis(int p_device, int p_axis, const JoyAxis &p_value) {
_THREAD_SAFE_METHOD_;
ERR_FAIL_INDEX(p_axis, JOY_AXIS_MAX);
Joypad &joy = joy_names[p_device];
if (joy.last_axis[p_axis] == p_value.value) {
return;
}
if (p_value.value > joy.last_axis[p_axis]) {
if (p_value.value < joy.last_axis[p_axis] + joy.filter) {
return;
}
} else if (p_value.value > joy.last_axis[p_axis] - joy.filter) {
return;
}
//when changing direction quickly, insert fake event to release pending inputmap actions
float last = joy.last_axis[p_axis];
if (p_value.min == 0 && (last < 0.25 || last > 0.75) && (last - 0.5) * (p_value.value - 0.5) < 0) {
JoyAxis jx;
jx.min = p_value.min;
jx.value = p_value.value < 0.5 ? 0.6 : 0.4;
joy_axis(p_device, p_axis, jx);
} else if (ABS(last) > 0.5 && last * p_value.value < 0) {
JoyAxis jx;
jx.min = p_value.min;
jx.value = p_value.value < 0 ? 0.1 : -0.1;
joy_axis(p_device, p_axis, jx);
}
joy.last_axis[p_axis] = p_value.value;
float val = p_value.min == 0 ? -1.0f + 2.0f * p_value.value : p_value.value;
if (joy.mapping == -1) {
_axis_event(p_device, p_axis, val);
return;
};
JoyEvent map = _get_mapped_axis_event(map_db[joy.mapping], p_axis, p_value);
if (map.type == TYPE_BUTTON) {
//send axis event for triggers
if (map.index == JOY_L2 || map.index == JOY_R2) {
float value = p_value.min == 0 ? p_value.value : 0.5f + p_value.value / 2.0f;
int axis = map.index == JOY_L2 ? JOY_ANALOG_L2 : JOY_ANALOG_R2;
_axis_event(p_device, axis, value);
}
if (map.index == JOY_DPAD_UP || map.index == JOY_DPAD_DOWN) {
bool pressed = p_value.value != 0.0f;
int button = p_value.value < 0 ? JOY_DPAD_UP : JOY_DPAD_DOWN;
if (!pressed) {
if (joy_buttons_pressed.has(_combine_device(JOY_DPAD_UP, p_device))) {
_button_event(p_device, JOY_DPAD_UP, false);
}
if (joy_buttons_pressed.has(_combine_device(JOY_DPAD_DOWN, p_device))) {
_button_event(p_device, JOY_DPAD_DOWN, false);
}
}
if (pressed == joy_buttons_pressed.has(_combine_device(button, p_device))) {
return;
}
_button_event(p_device, button, true);
return;
}
if (map.index == JOY_DPAD_LEFT || map.index == JOY_DPAD_RIGHT) {
bool pressed = p_value.value != 0.0f;
int button = p_value.value < 0 ? JOY_DPAD_LEFT : JOY_DPAD_RIGHT;
if (!pressed) {
if (joy_buttons_pressed.has(_combine_device(JOY_DPAD_LEFT, p_device))) {
_button_event(p_device, JOY_DPAD_LEFT, false);
}
if (joy_buttons_pressed.has(_combine_device(JOY_DPAD_RIGHT, p_device))) {
_button_event(p_device, JOY_DPAD_RIGHT, false);
}
}
if (pressed == joy_buttons_pressed.has(_combine_device(button, p_device))) {
return;
}
_button_event(p_device, button, true);
return;
}
float deadzone = p_value.min == 0 ? 0.5f : 0.0f;
bool pressed = p_value.value > deadzone;
if (pressed == joy_buttons_pressed.has(_combine_device(map.index, p_device))) {
// button already pressed or released, this is an axis bounce value
return;
}
_button_event(p_device, map.index, pressed);
return;
}
if (map.type == TYPE_AXIS) {
_axis_event(p_device, map.index, val);
return;
}
//printf("invalid mapping\n");
}
void InputDefault::joy_hat(int p_device, int p_val) {
_THREAD_SAFE_METHOD_;
const Joypad &joy = joy_names[p_device];
JoyEvent map[HAT_MAX];
map[HAT_UP].type = TYPE_BUTTON;
map[HAT_UP].index = JOY_DPAD_UP;
map[HAT_UP].value = 0;
map[HAT_RIGHT].type = TYPE_BUTTON;
map[HAT_RIGHT].index = JOY_DPAD_RIGHT;
map[HAT_RIGHT].value = 0;
map[HAT_DOWN].type = TYPE_BUTTON;
map[HAT_DOWN].index = JOY_DPAD_DOWN;
map[HAT_DOWN].value = 0;
map[HAT_LEFT].type = TYPE_BUTTON;
map[HAT_LEFT].index = JOY_DPAD_LEFT;
map[HAT_LEFT].value = 0;
if (joy.mapping != -1) {
_get_mapped_hat_events(map_db[joy.mapping], 0, map);
};
int cur_val = joy_names[p_device].hat_current;
if ((p_val & HAT_MASK_UP) != (cur_val & HAT_MASK_UP)) {
_button_event(p_device, map[HAT_UP].index, p_val & HAT_MASK_UP);
}
if ((p_val & HAT_MASK_RIGHT) != (cur_val & HAT_MASK_RIGHT)) {
_button_event(p_device, map[HAT_RIGHT].index, p_val & HAT_MASK_RIGHT);
}
if ((p_val & HAT_MASK_DOWN) != (cur_val & HAT_MASK_DOWN)) {
_button_event(p_device, map[HAT_DOWN].index, p_val & HAT_MASK_DOWN);
}
if ((p_val & HAT_MASK_LEFT) != (cur_val & HAT_MASK_LEFT)) {
_button_event(p_device, map[HAT_LEFT].index, p_val & HAT_MASK_LEFT);
}
joy_names[p_device].hat_current = p_val;
}
void InputDefault::_button_event(int p_device, int p_index, bool p_pressed) {
Ref<InputEventJoypadButton> ievent;
ievent.instance();
ievent->set_device(p_device);
ievent->set_button_index(p_index);
ievent->set_pressed(p_pressed);
parse_input_event(ievent);
}
void InputDefault::_axis_event(int p_device, int p_axis, float p_value) {
Ref<InputEventJoypadMotion> ievent;
ievent.instance();
ievent->set_device(p_device);
ievent->set_axis(p_axis);
ievent->set_axis_value(p_value);
parse_input_event(ievent);
};
InputDefault::JoyEvent InputDefault::_get_mapped_button_event(const JoyDeviceMapping &mapping, int p_button) {
JoyEvent event;
event.type = TYPE_MAX;
for (int i = 0; i < mapping.bindings.size(); i++) {
const JoyBinding binding = mapping.bindings[i];
if (binding.inputType == TYPE_BUTTON && binding.input.button == p_button) {
event.type = binding.outputType;
switch (binding.outputType) {
case TYPE_BUTTON:
event.index = binding.output.button;
return event;
case TYPE_AXIS:
event.index = binding.output.axis.axis;
return event;
default:
ERR_PRINT_ONCE("Joypad button mapping error.");
}
}
}
return event;
}
InputDefault::JoyEvent InputDefault::_get_mapped_axis_event(const JoyDeviceMapping &mapping, int p_axis, const JoyAxis &p_value) {
JoyEvent event;
event.type = TYPE_MAX;
for (int i = 0; i < mapping.bindings.size(); i++) {
const JoyBinding binding = mapping.bindings[i];
if (binding.inputType == TYPE_AXIS && binding.input.axis.axis == p_axis) {
float value = p_value.value;
if (binding.input.axis.invert)
value = -value;
if (binding.input.axis.range == FULL_AXIS ||
(binding.input.axis.range == POSITIVE_HALF_AXIS && value > 0) ||
(binding.input.axis.range == NEGATIVE_HALF_AXIS && value < 0)) {
event.type = binding.outputType;
switch (binding.outputType) {
case TYPE_BUTTON:
event.index = binding.output.button;
return event;
case TYPE_AXIS:
event.index = binding.output.axis.axis;
event.value = value;
if (binding.output.axis.range != binding.input.axis.range) {
float shifted_positive_value = 0;
switch (binding.input.axis.range) {
case POSITIVE_HALF_AXIS:
shifted_positive_value = value;
break;
case NEGATIVE_HALF_AXIS:
shifted_positive_value = value + 1;
break;
case FULL_AXIS:
shifted_positive_value = (value + 1) / 2;
break;
}
switch (binding.output.axis.range) {
case POSITIVE_HALF_AXIS:
event.value = shifted_positive_value;
break;
case NEGATIVE_HALF_AXIS:
event.value = shifted_positive_value - 1;
break;
case FULL_AXIS:
event.value = (shifted_positive_value * 2) - 1;
break;
}
}
return event;
default:
ERR_PRINT_ONCE("Joypad axis mapping error.");
}
}
}
}
return event;
}
void InputDefault::_get_mapped_hat_events(const JoyDeviceMapping &mapping, int p_hat, JoyEvent r_events[]) {
for (int i = 0; i < mapping.bindings.size(); i++) {
const JoyBinding binding = mapping.bindings[i];
if (binding.inputType == TYPE_HAT && binding.input.hat.hat == p_hat) {
int index;
switch (binding.input.hat.hat_mask) {
case HAT_MASK_UP:
index = 0;
break;
case HAT_MASK_RIGHT:
index = 1;
break;
case HAT_MASK_DOWN:
index = 2;
break;
case HAT_MASK_LEFT:
index = 3;
break;
default:
ERR_PRINT_ONCE("Joypad button mapping error.");
continue;
}
r_events[index].type = binding.outputType;
switch (binding.outputType) {
case TYPE_BUTTON:
r_events[index].index = binding.output.button;
break;
case TYPE_AXIS:
r_events[index].index = binding.output.axis.axis;
break;
default:
ERR_PRINT_ONCE("Joypad button mapping error.");
}
}
}
}
// string names of the SDL buttons in the same order as input_event.h godot buttons
static const char *_joy_buttons[] = { "a", "b", "x", "y", "leftshoulder", "rightshoulder", "lefttrigger", "righttrigger", "leftstick", "rightstick", "back", "start", "dpup", "dpdown", "dpleft", "dpright", "guide", nullptr };
static const char *_joy_axes[] = { "leftx", "lefty", "rightx", "righty", nullptr };
JoystickList InputDefault::_get_output_button(String output) {
for (int i = 0; _joy_buttons[i]; i++) {
if (output == _joy_buttons[i])
return JoystickList(i);
}
return JoystickList::JOY_INVALID_OPTION;
}
JoystickList InputDefault::_get_output_axis(String output) {
for (int i = 0; _joy_axes[i]; i++) {
if (output == _joy_axes[i])
return JoystickList(i);
}
return JoystickList::JOY_INVALID_OPTION;
}
void InputDefault::parse_mapping(String p_mapping) {
_THREAD_SAFE_METHOD_;
JoyDeviceMapping mapping;
Vector<String> entry = p_mapping.split(",");
if (entry.size() < 2) {
return;
}
CharString uid;
uid.resize(17);
mapping.uid = entry[0];
mapping.name = entry[1];
int idx = 1;
while (++idx < entry.size()) {
if (entry[idx] == "")
continue;
String output = entry[idx].get_slice(":", 0).replace(" ", "");
String input = entry[idx].get_slice(":", 1).replace(" ", "");
ERR_CONTINUE_MSG(output.length() < 1 || input.length() < 2,
String(entry[idx] + "\nInvalid device mapping entry: " + entry[idx]));
if (output == "platform")
continue;
JoyAxisRange output_range = FULL_AXIS;
if (output[0] == '+' || output[0] == '-') {
ERR_CONTINUE_MSG(output.length() < 2, String(entry[idx] + "\nInvalid output: " + entry[idx]));
output = output.right(1);
if (output[0] == '+')
output_range = POSITIVE_HALF_AXIS;
else if (output[0] == '-')
output_range = NEGATIVE_HALF_AXIS;
}
JoyAxisRange input_range = FULL_AXIS;
if (input[0] == '+') {
input_range = POSITIVE_HALF_AXIS;
input = input.right(1);
} else if (input[0] == '-') {
input_range = NEGATIVE_HALF_AXIS;
input = input.right(1);
}
bool invert_axis = false;
if (input[input.length() - 1] == '~')
invert_axis = true;
JoystickList output_button = _get_output_button(output);
JoystickList output_axis = _get_output_axis(output);
ERR_CONTINUE_MSG(output_button == JOY_INVALID_OPTION && output_axis == JOY_INVALID_OPTION,
String(entry[idx] + "\nUnrecognised output string: " + output));
ERR_CONTINUE_MSG(output_button != JOY_INVALID_OPTION && output_axis != JOY_INVALID_OPTION,
String("BUG: Output string matched both button and axis: " + output));
JoyBinding binding;
if (output_button != JOY_INVALID_OPTION) {
binding.outputType = TYPE_BUTTON;
binding.output.button = output_button;
} else if (output_axis != JOY_INVALID_OPTION) {
binding.outputType = TYPE_AXIS;
binding.output.axis.axis = output_axis;
binding.output.axis.range = output_range;
}
switch (input[0]) {
case 'b':
binding.inputType = TYPE_BUTTON;
binding.input.button = input.right(1).to_int();
break;
case 'a':
binding.inputType = TYPE_AXIS;
binding.input.axis.axis = input.right(1).to_int();
binding.input.axis.range = input_range;
binding.input.axis.invert = invert_axis;
break;
case 'h':
ERR_CONTINUE_MSG(input.length() != 4 || input[2] != '.',
String(entry[idx] + "\nInvalid hat input: " + input));
binding.inputType = TYPE_HAT;
binding.input.hat.hat = input.substr(1, 1).to_int();
binding.input.hat.hat_mask = static_cast<HatMask>(input.right(3).to_int());
break;
default:
ERR_CONTINUE_MSG(true, String(entry[idx] + "\nUnrecognised input string: " + input));
}
mapping.bindings.push_back(binding);
};
map_db.push_back(mapping);
};
void InputDefault::add_joy_mapping(String p_mapping, bool p_update_existing) {
parse_mapping(p_mapping);
if (p_update_existing) {
Vector<String> entry = p_mapping.split(",");
String uid = entry[0];
for (int i = 0; i < joy_names.size(); i++) {
if (uid == joy_names[i].uid) {
joy_names[i].mapping = map_db.size() - 1;
}
}
}
}
void InputDefault::remove_joy_mapping(String p_guid) {
for (int i = map_db.size() - 1; i >= 0; i--) {
if (p_guid == map_db[i].uid) {
map_db.remove(i);
}
}
for (int i = 0; i < joy_names.size(); i++) {
if (joy_names[i].uid == p_guid) {
joy_names[i].mapping = -1;
}
}
}
void InputDefault::set_fallback_mapping(String p_guid) {
for (int i = 0; i < map_db.size(); i++) {
if (map_db[i].uid == p_guid) {
fallback_mapping = i;
return;
}
}
}
//Defaults to simple implementation for platforms with a fixed gamepad layout, like consoles.
bool InputDefault::is_joy_known(int p_device) {
return OS::get_singleton()->is_joy_known(p_device);
}
String InputDefault::get_joy_guid(int p_device) const {
return OS::get_singleton()->get_joy_guid(p_device);
}
//platforms that use the remapping system can override and call to these ones
bool InputDefault::is_joy_mapped(int p_device) {
int mapping = joy_names[p_device].mapping;
return mapping != -1 ? (mapping != fallback_mapping) : false;
}
String InputDefault::get_joy_guid_remapped(int p_device) const {
ERR_FAIL_COND_V(!joy_names.has(p_device), "");
return joy_names[p_device].uid;
}
Array InputDefault::get_connected_joypads() {
Array ret;
Map<int, Joypad>::Element *elem = joy_names.front();
while (elem) {
if (elem->get().connected) {
ret.push_back(elem->key());
}
elem = elem->next();
}
return ret;
}
static const char *_buttons[JOY_BUTTON_MAX] = {
"Face Button Bottom",
"Face Button Right",
"Face Button Left",
"Face Button Top",
"L",
"R",
"L2",
"R2",
"L3",
"R3",
"Select",
"Start",
"DPAD Up",
"DPAD Down",
"DPAD Left",
"DPAD Right"
};
static const char *_axes[JOY_AXIS_MAX] = {
"Left Stick X",
"Left Stick Y",
"Right Stick X",
"Right Stick Y",
"",
"",
"L2",
"R2",
"",
""
};
String InputDefault::get_joy_button_string(int p_button) {
ERR_FAIL_INDEX_V(p_button, JOY_BUTTON_MAX, "");
return _buttons[p_button];
}
int InputDefault::get_joy_button_index_from_string(String p_button) {
for (int i = 0; i < JOY_BUTTON_MAX; i++) {
if (p_button == _buttons[i]) {
return i;
}
}
ERR_FAIL_V(-1);
}
int InputDefault::get_unused_joy_id() {
for (int i = 0; i < JOYPADS_MAX; i++) {
if (!joy_names.has(i) || !joy_names[i].connected) {
return i;
}
}
return -1;
}
String InputDefault::get_joy_axis_string(int p_axis) {
ERR_FAIL_INDEX_V(p_axis, JOY_AXIS_MAX, "");
return _axes[p_axis];
}
int InputDefault::get_joy_axis_index_from_string(String p_axis) {
for (int i = 0; i < JOY_AXIS_MAX; i++) {
if (p_axis == _axes[i]) {
return i;
}
}
ERR_FAIL_V(-1);
}