godot/tests/core/math/test_rect2.h

327 lines
14 KiB
C++

/**************************************************************************/
/* test_rect2.h */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifndef TEST_RECT2_H
#define TEST_RECT2_H
#include "core/math/rect2.h"
#include "core/math/rect2i.h"
#include "thirdparty/doctest/doctest.h"
namespace TestRect2 {
TEST_CASE("[Rect2] Constructor methods") {
const Rect2 rect = Rect2(0, 100, 1280, 720);
const Rect2 rect_vector = Rect2(Vector2(0, 100), Vector2(1280, 720));
const Rect2 rect_copy_rect = Rect2(rect);
const Rect2 rect_copy_recti = Rect2(Rect2i(0, 100, 1280, 720));
CHECK_MESSAGE(
rect == rect_vector,
"Rect2s created with the same dimensions but by different methods should be equal.");
CHECK_MESSAGE(
rect == rect_copy_rect,
"Rect2s created with the same dimensions but by different methods should be equal.");
CHECK_MESSAGE(
rect == rect_copy_recti,
"Rect2s created with the same dimensions but by different methods should be equal.");
}
TEST_CASE("[Rect2] String conversion") {
// Note: This also depends on the Vector2 string representation.
CHECK_MESSAGE(
String(Rect2(0, 100, 1280, 720)) == "[P: (0, 100), S: (1280, 720)]",
"The string representation should match the expected value.");
}
TEST_CASE("[Rect2] Basic getters") {
const Rect2 rect = Rect2(0, 100, 1280, 720);
CHECK_MESSAGE(
rect.get_position().is_equal_approx(Vector2(0, 100)),
"get_position() should return the expected value.");
CHECK_MESSAGE(
rect.get_size().is_equal_approx(Vector2(1280, 720)),
"get_size() should return the expected value.");
CHECK_MESSAGE(
rect.get_end().is_equal_approx(Vector2(1280, 820)),
"get_end() should return the expected value.");
CHECK_MESSAGE(
rect.get_center().is_equal_approx(Vector2(640, 460)),
"get_center() should return the expected value.");
CHECK_MESSAGE(
Rect2(0, 100, 1281, 721).get_center().is_equal_approx(Vector2(640.5, 460.5)),
"get_center() should return the expected value.");
}
TEST_CASE("[Rect2] Basic setters") {
Rect2 rect = Rect2(0, 100, 1280, 720);
rect.set_end(Vector2(4000, 4000));
CHECK_MESSAGE(
rect.is_equal_approx(Rect2(0, 100, 4000, 3900)),
"set_end() should result in the expected Rect2.");
rect = Rect2(0, 100, 1280, 720);
rect.set_position(Vector2(4000, 4000));
CHECK_MESSAGE(
rect.is_equal_approx(Rect2(4000, 4000, 1280, 720)),
"set_position() should result in the expected Rect2.");
rect = Rect2(0, 100, 1280, 720);
rect.set_size(Vector2(4000, 4000));
CHECK_MESSAGE(
rect.is_equal_approx(Rect2(0, 100, 4000, 4000)),
"set_size() should result in the expected Rect2.");
}
TEST_CASE("[Rect2] Area getters") {
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).get_area() == doctest::Approx(921'600),
"get_area() should return the expected value.");
CHECK_MESSAGE(
Rect2(0, 100, -1280, -720).get_area() == doctest::Approx(921'600),
"get_area() should return the expected value.");
CHECK_MESSAGE(
Rect2(0, 100, 1280, -720).get_area() == doctest::Approx(-921'600),
"get_area() should return the expected value.");
CHECK_MESSAGE(
Rect2(0, 100, -1280, 720).get_area() == doctest::Approx(-921'600),
"get_area() should return the expected value.");
CHECK_MESSAGE(
Math::is_zero_approx(Rect2(0, 100, 0, 720).get_area()),
"get_area() should return the expected value.");
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).has_area(),
"has_area() should return the expected value on Rect2 with an area.");
CHECK_MESSAGE(
!Rect2(0, 100, 0, 500).has_area(),
"has_area() should return the expected value on Rect2 with no area.");
CHECK_MESSAGE(
!Rect2(0, 100, 500, 0).has_area(),
"has_area() should return the expected value on Rect2 with no area.");
CHECK_MESSAGE(
!Rect2(0, 100, 0, 0).has_area(),
"has_area() should return the expected value on Rect2 with no area.");
}
TEST_CASE("[Rect2] Absolute coordinates") {
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).abs().is_equal_approx(Rect2(0, 100, 1280, 720)),
"abs() should return the expected Rect2.");
CHECK_MESSAGE(
Rect2(0, -100, 1280, 720).abs().is_equal_approx(Rect2(0, -100, 1280, 720)),
"abs() should return the expected Rect2.");
CHECK_MESSAGE(
Rect2(0, -100, -1280, -720).abs().is_equal_approx(Rect2(-1280, -820, 1280, 720)),
"abs() should return the expected Rect2.");
CHECK_MESSAGE(
Rect2(0, 100, -1280, 720).abs().is_equal_approx(Rect2(-1280, 100, 1280, 720)),
"abs() should return the expected Rect2.");
}
TEST_CASE("[Rect2] Intersection") {
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).intersection(Rect2(0, 300, 100, 100)).is_equal_approx(Rect2(0, 300, 100, 100)),
"intersection() with fully enclosed Rect2 should return the expected result.");
// The resulting Rect2 is 100 pixels high because the first Rect2 is vertically offset by 100 pixels.
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).intersection(Rect2(1200, 700, 100, 100)).is_equal_approx(Rect2(1200, 700, 80, 100)),
"intersection() with partially enclosed Rect2 should return the expected result.");
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).intersection(Rect2(-4000, -4000, 100, 100)).is_equal_approx(Rect2()),
"intersection() with non-enclosed Rect2 should return the expected result.");
}
TEST_CASE("[Rect2] Enclosing") {
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).encloses(Rect2(0, 300, 100, 100)),
"encloses() with fully contained Rect2 should return the expected result.");
CHECK_MESSAGE(
!Rect2(0, 100, 1280, 720).encloses(Rect2(1200, 700, 100, 100)),
"encloses() with partially contained Rect2 should return the expected result.");
CHECK_MESSAGE(
!Rect2(0, 100, 1280, 720).encloses(Rect2(-4000, -4000, 100, 100)),
"encloses() with non-contained Rect2 should return the expected result.");
}
TEST_CASE("[Rect2] Expanding") {
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).expand(Vector2(500, 600)).is_equal_approx(Rect2(0, 100, 1280, 720)),
"expand() with contained Vector2 should return the expected result.");
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).expand(Vector2(0, 0)).is_equal_approx(Rect2(0, 0, 1280, 820)),
"expand() with non-contained Vector2 should return the expected result.");
}
TEST_CASE("[Rect2] Growing") {
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).grow(100).is_equal_approx(Rect2(-100, 0, 1480, 920)),
"grow() with positive value should return the expected Rect2.");
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).grow(-100).is_equal_approx(Rect2(100, 200, 1080, 520)),
"grow() with negative value should return the expected Rect2.");
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).grow(-4000).is_equal_approx(Rect2(4000, 4100, -6720, -7280)),
"grow() with large negative value should return the expected Rect2.");
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).grow_individual(100, 200, 300, 400).is_equal_approx(Rect2(-100, -100, 1680, 1320)),
"grow_individual() with positive values should return the expected Rect2.");
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).grow_individual(-100, 200, 300, -400).is_equal_approx(Rect2(100, -100, 1480, 520)),
"grow_individual() with positive and negative values should return the expected Rect2.");
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).grow_side(SIDE_TOP, 500).is_equal_approx(Rect2(0, -400, 1280, 1220)),
"grow_side() with positive value should return the expected Rect2.");
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).grow_side(SIDE_TOP, -500).is_equal_approx(Rect2(0, 600, 1280, 220)),
"grow_side() with negative value should return the expected Rect2.");
}
TEST_CASE("[Rect2] Has point") {
Rect2 rect = Rect2(0, 100, 1280, 720);
CHECK_MESSAGE(
rect.has_point(Vector2(500, 600)),
"has_point() with contained Vector2 should return the expected result.");
CHECK_MESSAGE(
!rect.has_point(Vector2(0, 0)),
"has_point() with non-contained Vector2 should return the expected result.");
CHECK_MESSAGE(
rect.has_point(rect.position),
"has_point() with positive size should include `position`.");
CHECK_MESSAGE(
rect.has_point(rect.position + Vector2(1, 1)),
"has_point() with positive size should include `position + (1, 1)`.");
CHECK_MESSAGE(
!rect.has_point(rect.position + Vector2(1, -1)),
"has_point() with positive size should not include `position + (1, -1)`.");
CHECK_MESSAGE(
!rect.has_point(rect.position + rect.size),
"has_point() with positive size should not include `position + size`.");
CHECK_MESSAGE(
!rect.has_point(rect.position + rect.size + Vector2(1, 1)),
"has_point() with positive size should not include `position + size + (1, 1)`.");
CHECK_MESSAGE(
rect.has_point(rect.position + rect.size + Vector2(-1, -1)),
"has_point() with positive size should include `position + size + (-1, -1)`.");
CHECK_MESSAGE(
!rect.has_point(rect.position + rect.size + Vector2(-1, 1)),
"has_point() with positive size should not include `position + size + (-1, 1)`.");
CHECK_MESSAGE(
rect.has_point(rect.position + Vector2(0, 10)),
"has_point() with point located on left edge should return true.");
CHECK_MESSAGE(
!rect.has_point(rect.position + Vector2(rect.size.x, 10)),
"has_point() with point located on right edge should return false.");
CHECK_MESSAGE(
rect.has_point(rect.position + Vector2(10, 0)),
"has_point() with point located on top edge should return true.");
CHECK_MESSAGE(
!rect.has_point(rect.position + Vector2(10, rect.size.y)),
"has_point() with point located on bottom edge should return false.");
/*
// FIXME: Disabled for now until GH-37617 is fixed one way or another.
// More tests should then be written like for the positive size case.
rect = Rect2(0, 100, -1280, -720);
CHECK_MESSAGE(
rect.has_point(rect.position),
"has_point() with negative size should include `position`.");
CHECK_MESSAGE(
!rect.has_point(rect.position + rect.size),
"has_point() with negative size should not include `position + size`.");
*/
rect = Rect2(-4000, -200, 1280, 720);
CHECK_MESSAGE(
rect.has_point(rect.position + Vector2(0, 10)),
"has_point() with negative position and point located on left edge should return true.");
CHECK_MESSAGE(
!rect.has_point(rect.position + Vector2(rect.size.x, 10)),
"has_point() with negative position and point located on right edge should return false.");
CHECK_MESSAGE(
rect.has_point(rect.position + Vector2(10, 0)),
"has_point() with negative position and point located on top edge should return true.");
CHECK_MESSAGE(
!rect.has_point(rect.position + Vector2(10, rect.size.y)),
"has_point() with negative position and point located on bottom edge should return false.");
}
TEST_CASE("[Rect2] Intersection") {
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).intersects(Rect2(0, 300, 100, 100)),
"intersects() with fully enclosed Rect2 should return the expected result.");
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).intersects(Rect2(1200, 700, 100, 100)),
"intersects() with partially enclosed Rect2 should return the expected result.");
CHECK_MESSAGE(
!Rect2(0, 100, 1280, 720).intersects(Rect2(-4000, -4000, 100, 100)),
"intersects() with non-enclosed Rect2 should return the expected result.");
}
TEST_CASE("[Rect2] Merging") {
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).merge(Rect2(0, 300, 100, 100)).is_equal_approx(Rect2(0, 100, 1280, 720)),
"merge() with fully enclosed Rect2 should return the expected result.");
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).merge(Rect2(1200, 700, 100, 100)).is_equal_approx(Rect2(0, 100, 1300, 720)),
"merge() with partially enclosed Rect2 should return the expected result.");
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).merge(Rect2(-4000, -4000, 100, 100)).is_equal_approx(Rect2(-4000, -4000, 5280, 4820)),
"merge() with non-enclosed Rect2 should return the expected result.");
}
TEST_CASE("[Rect2] Finite number checks") {
const Vector2 x(0, 1);
const Vector2 infinite(NAN, NAN);
CHECK_MESSAGE(
Rect2(x, x).is_finite(),
"Rect2 with all components finite should be finite");
CHECK_FALSE_MESSAGE(
Rect2(infinite, x).is_finite(),
"Rect2 with one component infinite should not be finite.");
CHECK_FALSE_MESSAGE(
Rect2(x, infinite).is_finite(),
"Rect2 with one component infinite should not be finite.");
CHECK_FALSE_MESSAGE(
Rect2(infinite, infinite).is_finite(),
"Rect2 with two components infinite should not be finite.");
}
} // namespace TestRect2
#endif // TEST_RECT2_H