godot/thirdparty/basis_universal/encoder/basisu_backend.cpp

1779 lines
63 KiB
C++

// basisu_backend.cpp
// Copyright (C) 2019-2021 Binomial LLC. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// TODO: This code originally supported full ETC1 and ETC1S, so there's some legacy stuff in here.
//
#include "basisu_backend.h"
#if BASISU_SUPPORT_SSE
#define CPPSPMD_NAME(a) a##_sse41
#include "basisu_kernels_declares.h"
#endif
#define BASISU_FASTER_SELECTOR_REORDERING 0
#define BASISU_BACKEND_VERIFY(c) verify(c, __LINE__);
namespace basisu
{
// TODO
static inline void verify(bool condition, int line)
{
if (!condition)
{
fprintf(stderr, "ERROR: basisu_backend: verify() failed at line %i!\n", line);
abort();
}
}
basisu_backend::basisu_backend()
{
clear();
}
void basisu_backend::clear()
{
m_pFront_end = NULL;
m_params.clear();
m_output.clear();
}
void basisu_backend::init(basisu_frontend* pFront_end, basisu_backend_params& params, const basisu_backend_slice_desc_vec& slice_descs)
{
m_pFront_end = pFront_end;
m_params = params;
m_slices = slice_descs;
debug_printf("basisu_backend::Init: Slices: %u, ETC1S: %u, EndpointRDOQualityThresh: %f, SelectorRDOQualityThresh: %f\n",
m_slices.size(),
params.m_etc1s,
params.m_endpoint_rdo_quality_thresh,
params.m_selector_rdo_quality_thresh);
debug_printf("Frontend endpoints: %u selectors: %u\n", m_pFront_end->get_total_endpoint_clusters(), m_pFront_end->get_total_selector_clusters());
for (uint32_t i = 0; i < m_slices.size(); i++)
{
debug_printf("Slice: %u, OrigWidth: %u, OrigHeight: %u, Width: %u, Height: %u, NumBlocksX: %u, NumBlocksY: %u, FirstBlockIndex: %u\n",
i,
m_slices[i].m_orig_width, m_slices[i].m_orig_height,
m_slices[i].m_width, m_slices[i].m_height,
m_slices[i].m_num_blocks_x, m_slices[i].m_num_blocks_y,
m_slices[i].m_first_block_index);
}
}
void basisu_backend::create_endpoint_palette()
{
const basisu_frontend& r = *m_pFront_end;
m_output.m_num_endpoints = r.get_total_endpoint_clusters();
m_endpoint_palette.resize(r.get_total_endpoint_clusters());
for (uint32_t i = 0; i < r.get_total_endpoint_clusters(); i++)
{
etc1_endpoint_palette_entry& e = m_endpoint_palette[i];
e.m_color5_valid = r.get_endpoint_cluster_color_is_used(i, false);
e.m_color5 = r.get_endpoint_cluster_unscaled_color(i, false);
e.m_inten5 = r.get_endpoint_cluster_inten_table(i, false);
BASISU_BACKEND_VERIFY(e.m_color5_valid);
}
}
void basisu_backend::create_selector_palette()
{
const basisu_frontend& r = *m_pFront_end;
m_output.m_num_selectors = r.get_total_selector_clusters();
m_selector_palette.resize(r.get_total_selector_clusters());
for (uint32_t i = 0; i < r.get_total_selector_clusters(); i++)
{
etc1_selector_palette_entry& s = m_selector_palette[i];
const etc_block& selector_bits = r.get_selector_cluster_selector_bits(i);
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
s[y * 4 + x] = static_cast<uint8_t>(selector_bits.get_selector(x, y));
}
}
}
}
static const struct
{
int8_t m_dx, m_dy;
} g_endpoint_preds[] =
{
{ -1, 0 },
{ 0, -1 },
{ -1, -1 }
};
void basisu_backend::reoptimize_and_sort_endpoints_codebook(uint32_t total_block_endpoints_remapped, uint_vec& all_endpoint_indices)
{
basisu_frontend& r = *m_pFront_end;
//const bool is_video = r.get_params().m_tex_type == basist::cBASISTexTypeVideoFrames;
if (m_params.m_used_global_codebooks)
{
m_endpoint_remap_table_old_to_new.clear();
m_endpoint_remap_table_old_to_new.resize(r.get_total_endpoint_clusters());
for (uint32_t i = 0; i < r.get_total_endpoint_clusters(); i++)
m_endpoint_remap_table_old_to_new[i] = i;
}
else
{
//if ((total_block_endpoints_remapped) && (m_params.m_compression_level > 0))
if ((total_block_endpoints_remapped) && (m_params.m_compression_level > 1))
{
// We've changed the block endpoint indices, so we need to go and adjust the endpoint codebook (remove unused entries, optimize existing entries that have changed)
uint_vec new_block_endpoints(get_total_blocks());
for (uint32_t slice_index = 0; slice_index < m_slices.size(); slice_index++)
{
const uint32_t first_block_index = m_slices[slice_index].m_first_block_index;
const uint32_t num_blocks_x = m_slices[slice_index].m_num_blocks_x;
const uint32_t num_blocks_y = m_slices[slice_index].m_num_blocks_y;
for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++)
for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++)
new_block_endpoints[first_block_index + block_x + block_y * num_blocks_x] = m_slice_encoder_blocks[slice_index](block_x, block_y).m_endpoint_index;
}
int_vec old_to_new_endpoint_indices;
r.reoptimize_remapped_endpoints(new_block_endpoints, old_to_new_endpoint_indices, true);
create_endpoint_palette();
for (uint32_t slice_index = 0; slice_index < m_slices.size(); slice_index++)
{
//const uint32_t first_block_index = m_slices[slice_index].m_first_block_index;
//const uint32_t width = m_slices[slice_index].m_width;
//const uint32_t height = m_slices[slice_index].m_height;
const uint32_t num_blocks_x = m_slices[slice_index].m_num_blocks_x;
const uint32_t num_blocks_y = m_slices[slice_index].m_num_blocks_y;
for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++)
{
for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++)
{
//const uint32_t block_index = first_block_index + block_x + block_y * num_blocks_x;
encoder_block& m = m_slice_encoder_blocks[slice_index](block_x, block_y);
m.m_endpoint_index = old_to_new_endpoint_indices[m.m_endpoint_index];
} // block_x
} // block_y
} // slice_index
for (uint32_t i = 0; i < all_endpoint_indices.size(); i++)
all_endpoint_indices[i] = old_to_new_endpoint_indices[all_endpoint_indices[i]];
} //if (total_block_endpoints_remapped)
// Sort endpoint codebook
palette_index_reorderer reorderer;
reorderer.init((uint32_t)all_endpoint_indices.size(), &all_endpoint_indices[0], r.get_total_endpoint_clusters(), nullptr, nullptr, 0);
m_endpoint_remap_table_old_to_new = reorderer.get_remap_table();
}
// For endpoints, old_to_new[] may not be bijective!
// Some "old" entries may be unused and don't get remapped into the "new" array.
m_old_endpoint_was_used.clear();
m_old_endpoint_was_used.resize(r.get_total_endpoint_clusters());
uint32_t first_old_entry_index = UINT32_MAX;
for (uint32_t slice_index = 0; slice_index < m_slices.size(); slice_index++)
{
const uint32_t num_blocks_x = m_slices[slice_index].m_num_blocks_x, num_blocks_y = m_slices[slice_index].m_num_blocks_y;
for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++)
{
for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++)
{
encoder_block& m = m_slice_encoder_blocks[slice_index](block_x, block_y);
const uint32_t old_endpoint_index = m.m_endpoint_index;
m_old_endpoint_was_used[old_endpoint_index] = true;
first_old_entry_index = basisu::minimum(first_old_entry_index, old_endpoint_index);
} // block_x
} // block_y
} // slice_index
debug_printf("basisu_backend::reoptimize_and_sort_endpoints_codebook: First old entry index: %u\n", first_old_entry_index);
m_new_endpoint_was_used.clear();
m_new_endpoint_was_used.resize(r.get_total_endpoint_clusters());
m_endpoint_remap_table_new_to_old.clear();
m_endpoint_remap_table_new_to_old.resize(r.get_total_endpoint_clusters());
// Set unused entries in the new array to point to the first used entry in the old array.
m_endpoint_remap_table_new_to_old.set_all(first_old_entry_index);
for (uint32_t old_index = 0; old_index < m_endpoint_remap_table_old_to_new.size(); old_index++)
{
if (m_old_endpoint_was_used[old_index])
{
const uint32_t new_index = m_endpoint_remap_table_old_to_new[old_index];
m_new_endpoint_was_used[new_index] = true;
m_endpoint_remap_table_new_to_old[new_index] = old_index;
}
}
}
void basisu_backend::sort_selector_codebook()
{
basisu_frontend& r = *m_pFront_end;
m_selector_remap_table_new_to_old.resize(r.get_total_selector_clusters());
if ((m_params.m_compression_level == 0) || (m_params.m_used_global_codebooks))
{
for (uint32_t i = 0; i < r.get_total_selector_clusters(); i++)
m_selector_remap_table_new_to_old[i] = i;
}
else
{
m_selector_remap_table_new_to_old[0] = 0;
uint32_t prev_selector_index = 0;
int_vec remaining_selectors;
remaining_selectors.reserve(r.get_total_selector_clusters() - 1);
for (uint32_t i = 1; i < r.get_total_selector_clusters(); i++)
remaining_selectors.push_back(i);
uint_vec selector_palette_bytes(m_selector_palette.size());
for (uint32_t i = 0; i < m_selector_palette.size(); i++)
selector_palette_bytes[i] = m_selector_palette[i].get_byte(0) | (m_selector_palette[i].get_byte(1) << 8) | (m_selector_palette[i].get_byte(2) << 16) | (m_selector_palette[i].get_byte(3) << 24);
// This is the traveling salesman problem.
for (uint32_t i = 1; i < r.get_total_selector_clusters(); i++)
{
uint32_t best_hamming_dist = 100;
uint32_t best_index = 0;
#if BASISU_FASTER_SELECTOR_REORDERING
const uint32_t step = (remaining_selectors.size() > 16) ? 16 : 1;
for (uint32_t j = 0; j < remaining_selectors.size(); j += step)
#else
for (uint32_t j = 0; j < remaining_selectors.size(); j++)
#endif
{
int selector_index = remaining_selectors[j];
uint32_t k = selector_palette_bytes[prev_selector_index] ^ selector_palette_bytes[selector_index];
uint32_t hamming_dist = g_hamming_dist[k & 0xFF] + g_hamming_dist[(k >> 8) & 0xFF] + g_hamming_dist[(k >> 16) & 0xFF] + g_hamming_dist[k >> 24];
if (hamming_dist < best_hamming_dist)
{
best_hamming_dist = hamming_dist;
best_index = j;
if (best_hamming_dist <= 1)
break;
}
}
prev_selector_index = remaining_selectors[best_index];
m_selector_remap_table_new_to_old[i] = prev_selector_index;
remaining_selectors[best_index] = remaining_selectors.back();
remaining_selectors.resize(remaining_selectors.size() - 1);
}
}
m_selector_remap_table_old_to_new.resize(r.get_total_selector_clusters());
for (uint32_t i = 0; i < m_selector_remap_table_new_to_old.size(); i++)
m_selector_remap_table_old_to_new[m_selector_remap_table_new_to_old[i]] = i;
}
int basisu_backend::find_video_frame(int slice_index, int delta)
{
for (uint32_t s = 0; s < m_slices.size(); s++)
{
if ((int)m_slices[s].m_source_file_index != ((int)m_slices[slice_index].m_source_file_index + delta))
continue;
if (m_slices[s].m_mip_index != m_slices[slice_index].m_mip_index)
continue;
// Being super paranoid here.
if (m_slices[s].m_num_blocks_x != (m_slices[slice_index].m_num_blocks_x))
continue;
if (m_slices[s].m_num_blocks_y != (m_slices[slice_index].m_num_blocks_y))
continue;
if (m_slices[s].m_alpha != (m_slices[slice_index].m_alpha))
continue;
return s;
}
return -1;
}
void basisu_backend::check_for_valid_cr_blocks()
{
basisu_frontend& r = *m_pFront_end;
const bool is_video = r.get_params().m_tex_type == basist::cBASISTexTypeVideoFrames;
if (!is_video)
return;
debug_printf("basisu_backend::check_for_valid_cr_blocks\n");
uint32_t total_crs = 0;
uint32_t total_invalid_crs = 0;
for (uint32_t slice_index = 0; slice_index < m_slices.size(); slice_index++)
{
const bool is_iframe = m_slices[slice_index].m_iframe;
//const uint32_t first_block_index = m_slices[slice_index].m_first_block_index;
//const uint32_t width = m_slices[slice_index].m_width;
//const uint32_t height = m_slices[slice_index].m_height;
const uint32_t num_blocks_x = m_slices[slice_index].m_num_blocks_x;
const uint32_t num_blocks_y = m_slices[slice_index].m_num_blocks_y;
const int prev_frame_slice_index = find_video_frame(slice_index, -1);
// If we don't have a previous frame, and we're not an i-frame, something is wrong.
if ((prev_frame_slice_index < 0) && (!is_iframe))
{
BASISU_BACKEND_VERIFY(0);
}
if ((is_iframe) || (prev_frame_slice_index < 0))
{
// Ensure no blocks use CR's
for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++)
{
for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++)
{
encoder_block& m = m_slice_encoder_blocks[slice_index](block_x, block_y);
BASISU_BACKEND_VERIFY(m.m_endpoint_predictor != basist::CR_ENDPOINT_PRED_INDEX);
}
}
}
else
{
// For blocks that use CR's, make sure the endpoints/selectors haven't really changed.
for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++)
{
for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++)
{
encoder_block& m = m_slice_encoder_blocks[slice_index](block_x, block_y);
if (m.m_endpoint_predictor == basist::CR_ENDPOINT_PRED_INDEX)
{
total_crs++;
encoder_block& prev_m = m_slice_encoder_blocks[prev_frame_slice_index](block_x, block_y);
if ((m.m_endpoint_index != prev_m.m_endpoint_index) || (m.m_selector_index != prev_m.m_selector_index))
{
total_invalid_crs++;
}
}
} // block_x
} // block_y
} // !slice_index
} // slice_index
debug_printf("Total CR's: %u, Total invalid CR's: %u\n", total_crs, total_invalid_crs);
BASISU_BACKEND_VERIFY(total_invalid_crs == 0);
}
void basisu_backend::create_encoder_blocks()
{
debug_printf("basisu_backend::create_encoder_blocks\n");
interval_timer tm;
tm.start();
basisu_frontend& r = *m_pFront_end;
const bool is_video = r.get_params().m_tex_type == basist::cBASISTexTypeVideoFrames;
m_slice_encoder_blocks.resize(m_slices.size());
uint32_t total_endpoint_pred_missed = 0, total_endpoint_pred_hits = 0, total_block_endpoints_remapped = 0;
uint_vec all_endpoint_indices;
all_endpoint_indices.reserve(get_total_blocks());
for (uint32_t slice_index = 0; slice_index < m_slices.size(); slice_index++)
{
const int prev_frame_slice_index = is_video ? find_video_frame(slice_index, -1) : -1;
const bool is_iframe = m_slices[slice_index].m_iframe;
const uint32_t first_block_index = m_slices[slice_index].m_first_block_index;
//const uint32_t width = m_slices[slice_index].m_width;
//const uint32_t height = m_slices[slice_index].m_height;
const uint32_t num_blocks_x = m_slices[slice_index].m_num_blocks_x;
const uint32_t num_blocks_y = m_slices[slice_index].m_num_blocks_y;
m_slice_encoder_blocks[slice_index].resize(num_blocks_x, num_blocks_y);
for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++)
{
for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++)
{
const uint32_t block_index = first_block_index + block_x + block_y * num_blocks_x;
encoder_block& m = m_slice_encoder_blocks[slice_index](block_x, block_y);
m.m_endpoint_index = r.get_subblock_endpoint_cluster_index(block_index, 0);
BASISU_BACKEND_VERIFY(r.get_subblock_endpoint_cluster_index(block_index, 0) == r.get_subblock_endpoint_cluster_index(block_index, 1));
m.m_selector_index = r.get_block_selector_cluster_index(block_index);
m.m_endpoint_predictor = basist::NO_ENDPOINT_PRED_INDEX;
const uint32_t block_endpoint = m.m_endpoint_index;
uint32_t best_endpoint_pred = UINT32_MAX;
for (uint32_t endpoint_pred = 0; endpoint_pred < basist::NUM_ENDPOINT_PREDS; endpoint_pred++)
{
if ((is_video) && (endpoint_pred == basist::CR_ENDPOINT_PRED_INDEX))
{
if ((prev_frame_slice_index != -1) && (!is_iframe))
{
const uint32_t cur_endpoint = m_slice_encoder_blocks[slice_index](block_x, block_y).m_endpoint_index;
const uint32_t cur_selector = m_slice_encoder_blocks[slice_index](block_x, block_y).m_selector_index;
const uint32_t prev_endpoint = m_slice_encoder_blocks[prev_frame_slice_index](block_x, block_y).m_endpoint_index;
const uint32_t prev_selector = m_slice_encoder_blocks[prev_frame_slice_index](block_x, block_y).m_selector_index;
if ((cur_endpoint == prev_endpoint) && (cur_selector == prev_selector))
{
best_endpoint_pred = basist::CR_ENDPOINT_PRED_INDEX;
m_slice_encoder_blocks[prev_frame_slice_index](block_x, block_y).m_is_cr_target = true;
}
}
}
else
{
int pred_block_x = block_x + g_endpoint_preds[endpoint_pred].m_dx;
if ((pred_block_x < 0) || (pred_block_x >= (int)num_blocks_x))
continue;
int pred_block_y = block_y + g_endpoint_preds[endpoint_pred].m_dy;
if ((pred_block_y < 0) || (pred_block_y >= (int)num_blocks_y))
continue;
uint32_t pred_endpoint = m_slice_encoder_blocks[slice_index](pred_block_x, pred_block_y).m_endpoint_index;
if (pred_endpoint == block_endpoint)
{
if (endpoint_pred < best_endpoint_pred)
{
best_endpoint_pred = endpoint_pred;
}
}
}
} // endpoint_pred
if (best_endpoint_pred != UINT32_MAX)
{
m.m_endpoint_predictor = best_endpoint_pred;
total_endpoint_pred_hits++;
}
else if (m_params.m_endpoint_rdo_quality_thresh > 0.0f)
{
const pixel_block& src_pixels = r.get_source_pixel_block(block_index);
etc_block etc_blk(r.get_output_block(block_index));
uint64_t cur_err = etc_blk.evaluate_etc1_error(src_pixels.get_ptr(), r.get_params().m_perceptual);
if (cur_err)
{
const uint64_t thresh_err = (uint64_t)(cur_err * maximum(1.0f, m_params.m_endpoint_rdo_quality_thresh));
etc_block trial_etc_block(etc_blk);
uint64_t best_err = UINT64_MAX;
uint32_t best_endpoint_index = 0;
best_endpoint_pred = UINT32_MAX;
for (uint32_t endpoint_pred = 0; endpoint_pred < basist::NUM_ENDPOINT_PREDS; endpoint_pred++)
{
if ((is_video) && (endpoint_pred == basist::CR_ENDPOINT_PRED_INDEX))
continue;
int pred_block_x = block_x + g_endpoint_preds[endpoint_pred].m_dx;
if ((pred_block_x < 0) || (pred_block_x >= (int)num_blocks_x))
continue;
int pred_block_y = block_y + g_endpoint_preds[endpoint_pred].m_dy;
if ((pred_block_y < 0) || (pred_block_y >= (int)num_blocks_y))
continue;
uint32_t pred_endpoint_index = m_slice_encoder_blocks[slice_index](pred_block_x, pred_block_y).m_endpoint_index;
uint32_t pred_inten = r.get_endpoint_cluster_inten_table(pred_endpoint_index, false);
color_rgba pred_color = r.get_endpoint_cluster_unscaled_color(pred_endpoint_index, false);
trial_etc_block.set_block_color5(pred_color, pred_color);
trial_etc_block.set_inten_table(0, pred_inten);
trial_etc_block.set_inten_table(1, pred_inten);
color_rgba trial_colors[16];
unpack_etc1(trial_etc_block, trial_colors);
uint64_t trial_err = 0;
if (r.get_params().m_perceptual)
{
for (uint32_t p = 0; p < 16; p++)
{
trial_err += color_distance(true, src_pixels.get_ptr()[p], trial_colors[p], false);
if (trial_err > thresh_err)
break;
}
}
else
{
for (uint32_t p = 0; p < 16; p++)
{
trial_err += color_distance(false, src_pixels.get_ptr()[p], trial_colors[p], false);
if (trial_err > thresh_err)
break;
}
}
if (trial_err <= thresh_err)
{
if ((trial_err < best_err) || ((trial_err == best_err) && (endpoint_pred < best_endpoint_pred)))
{
best_endpoint_pred = endpoint_pred;
best_err = trial_err;
best_endpoint_index = pred_endpoint_index;
}
}
} // endpoint_pred
if (best_endpoint_pred != UINT32_MAX)
{
m.m_endpoint_index = best_endpoint_index;
m.m_endpoint_predictor = best_endpoint_pred;
total_endpoint_pred_hits++;
total_block_endpoints_remapped++;
}
else
{
total_endpoint_pred_missed++;
}
}
}
else
{
total_endpoint_pred_missed++;
}
if (m.m_endpoint_predictor == basist::NO_ENDPOINT_PRED_INDEX)
{
all_endpoint_indices.push_back(m.m_endpoint_index);
}
} // block_x
} // block_y
} // slice
debug_printf("total_endpoint_pred_missed: %u (%3.2f%%) total_endpoint_pred_hit: %u (%3.2f%%), total_block_endpoints_remapped: %u (%3.2f%%)\n",
total_endpoint_pred_missed, total_endpoint_pred_missed * 100.0f / get_total_blocks(),
total_endpoint_pred_hits, total_endpoint_pred_hits * 100.0f / get_total_blocks(),
total_block_endpoints_remapped, total_block_endpoints_remapped * 100.0f / get_total_blocks());
reoptimize_and_sort_endpoints_codebook(total_block_endpoints_remapped, all_endpoint_indices);
sort_selector_codebook();
check_for_valid_cr_blocks();
debug_printf("Elapsed time: %3.3f secs\n", tm.get_elapsed_secs());
}
void basisu_backend::compute_slice_crcs()
{
for (uint32_t slice_index = 0; slice_index < m_slices.size(); slice_index++)
{
//const uint32_t first_block_index = m_slices[slice_index].m_first_block_index;
const uint32_t width = m_slices[slice_index].m_width;
const uint32_t height = m_slices[slice_index].m_height;
const uint32_t num_blocks_x = m_slices[slice_index].m_num_blocks_x;
const uint32_t num_blocks_y = m_slices[slice_index].m_num_blocks_y;
gpu_image gi;
gi.init(texture_format::cETC1, width, height);
for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++)
{
for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++)
{
//const uint32_t block_index = first_block_index + block_x + block_y * num_blocks_x;
encoder_block& m = m_slice_encoder_blocks[slice_index](block_x, block_y);
{
etc_block& output_block = *(etc_block*)gi.get_block_ptr(block_x, block_y);
output_block.set_diff_bit(true);
// Setting the flip bit to false to be compatible with the Khronos KDFS.
//output_block.set_flip_bit(true);
output_block.set_flip_bit(false);
const uint32_t endpoint_index = m.m_endpoint_index;
output_block.set_block_color5_etc1s(m_endpoint_palette[endpoint_index].m_color5);
output_block.set_inten_tables_etc1s(m_endpoint_palette[endpoint_index].m_inten5);
const uint32_t selector_idx = m.m_selector_index;
const etc1_selector_palette_entry& selectors = m_selector_palette[selector_idx];
for (uint32_t sy = 0; sy < 4; sy++)
for (uint32_t sx = 0; sx < 4; sx++)
output_block.set_selector(sx, sy, selectors(sx, sy));
}
} // block_x
} // block_y
m_output.m_slice_image_crcs[slice_index] = basist::crc16(gi.get_ptr(), gi.get_size_in_bytes(), 0);
if (m_params.m_debug_images)
{
image gi_unpacked;
gi.unpack(gi_unpacked);
char buf[256];
#ifdef _WIN32
sprintf_s(buf, sizeof(buf), "basisu_backend_slice_%u.png", slice_index);
#else
snprintf(buf, sizeof(buf), "basisu_backend_slice_%u.png", slice_index);
#endif
save_png(buf, gi_unpacked);
}
} // slice_index
}
//uint32_t g_color_delta_hist[255 * 3 + 1];
//uint32_t g_color_delta_bad_hist[255 * 3 + 1];
// TODO: Split this into multiple methods.
bool basisu_backend::encode_image()
{
basisu_frontend& r = *m_pFront_end;
const bool is_video = r.get_params().m_tex_type == basist::cBASISTexTypeVideoFrames;
uint32_t total_used_selector_history_buf = 0;
uint32_t total_selector_indices_remapped = 0;
basist::approx_move_to_front selector_history_buf(basist::MAX_SELECTOR_HISTORY_BUF_SIZE);
histogram selector_history_buf_histogram(basist::MAX_SELECTOR_HISTORY_BUF_SIZE);
histogram selector_histogram(r.get_total_selector_clusters() + basist::MAX_SELECTOR_HISTORY_BUF_SIZE + 1);
histogram selector_history_buf_rle_histogram(1 << basist::SELECTOR_HISTORY_BUF_RLE_COUNT_BITS);
basisu::vector<uint_vec> selector_syms(m_slices.size());
const uint32_t SELECTOR_HISTORY_BUF_FIRST_SYMBOL_INDEX = r.get_total_selector_clusters();
const uint32_t SELECTOR_HISTORY_BUF_RLE_SYMBOL_INDEX = SELECTOR_HISTORY_BUF_FIRST_SYMBOL_INDEX + basist::MAX_SELECTOR_HISTORY_BUF_SIZE;
m_output.m_slice_image_crcs.resize(m_slices.size());
histogram delta_endpoint_histogram(r.get_total_endpoint_clusters());
histogram endpoint_pred_histogram(basist::ENDPOINT_PRED_TOTAL_SYMBOLS);
basisu::vector<uint_vec> endpoint_pred_syms(m_slices.size());
uint32_t total_endpoint_indices_remapped = 0;
uint_vec block_endpoint_indices, block_selector_indices;
interval_timer tm;
tm.start();
const int COLOR_DELTA_THRESH = 8;
const int SEL_DIFF_THRESHOLD = 11;
for (uint32_t slice_index = 0; slice_index < m_slices.size(); slice_index++)
{
//const int prev_frame_slice_index = is_video ? find_video_frame(slice_index, -1) : -1;
//const int next_frame_slice_index = is_video ? find_video_frame(slice_index, 1) : -1;
const uint32_t first_block_index = m_slices[slice_index].m_first_block_index;
//const uint32_t width = m_slices[slice_index].m_width;
//const uint32_t height = m_slices[slice_index].m_height;
const uint32_t num_blocks_x = m_slices[slice_index].m_num_blocks_x;
const uint32_t num_blocks_y = m_slices[slice_index].m_num_blocks_y;
selector_history_buf.reset();
int selector_history_buf_rle_count = 0;
int prev_endpoint_pred_sym_bits = -1, endpoint_pred_repeat_count = 0;
uint32_t prev_endpoint_index = 0;
vector2D<uint8_t> block_endpoints_are_referenced(num_blocks_x, num_blocks_y);
for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++)
{
for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++)
{
//const uint32_t block_index = first_block_index + block_x + block_y * num_blocks_x;
encoder_block& m = m_slice_encoder_blocks[slice_index](block_x, block_y);
if (m.m_endpoint_predictor == 0)
block_endpoints_are_referenced(block_x - 1, block_y) = true;
else if (m.m_endpoint_predictor == 1)
block_endpoints_are_referenced(block_x, block_y - 1) = true;
else if (m.m_endpoint_predictor == 2)
{
if (!is_video)
block_endpoints_are_referenced(block_x - 1, block_y - 1) = true;
}
if (is_video)
{
if (m.m_is_cr_target)
block_endpoints_are_referenced(block_x, block_y) = true;
}
} // block_x
} // block_y
for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++)
{
for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++)
{
const uint32_t block_index = first_block_index + block_x + block_y * num_blocks_x;
encoder_block& m = m_slice_encoder_blocks[slice_index](block_x, block_y);
if (((block_x & 1) == 0) && ((block_y & 1) == 0))
{
uint32_t endpoint_pred_cur_sym_bits = 0;
for (uint32_t y = 0; y < 2; y++)
{
for (uint32_t x = 0; x < 2; x++)
{
const uint32_t bx = block_x + x;
const uint32_t by = block_y + y;
uint32_t pred = basist::NO_ENDPOINT_PRED_INDEX;
if ((bx < num_blocks_x) && (by < num_blocks_y))
pred = m_slice_encoder_blocks[slice_index](bx, by).m_endpoint_predictor;
endpoint_pred_cur_sym_bits |= (pred << (x * 2 + y * 4));
}
}
if ((int)endpoint_pred_cur_sym_bits == prev_endpoint_pred_sym_bits)
{
endpoint_pred_repeat_count++;
}
else
{
if (endpoint_pred_repeat_count > 0)
{
if (endpoint_pred_repeat_count > (int)basist::ENDPOINT_PRED_MIN_REPEAT_COUNT)
{
endpoint_pred_histogram.inc(basist::ENDPOINT_PRED_REPEAT_LAST_SYMBOL);
endpoint_pred_syms[slice_index].push_back(basist::ENDPOINT_PRED_REPEAT_LAST_SYMBOL);
endpoint_pred_syms[slice_index].push_back(endpoint_pred_repeat_count);
}
else
{
for (int j = 0; j < endpoint_pred_repeat_count; j++)
{
endpoint_pred_histogram.inc(prev_endpoint_pred_sym_bits);
endpoint_pred_syms[slice_index].push_back(prev_endpoint_pred_sym_bits);
}
}
endpoint_pred_repeat_count = 0;
}
endpoint_pred_histogram.inc(endpoint_pred_cur_sym_bits);
endpoint_pred_syms[slice_index].push_back(endpoint_pred_cur_sym_bits);
prev_endpoint_pred_sym_bits = endpoint_pred_cur_sym_bits;
}
}
int new_endpoint_index = m_endpoint_remap_table_old_to_new[m.m_endpoint_index];
if (m.m_endpoint_predictor == basist::NO_ENDPOINT_PRED_INDEX)
{
int endpoint_delta = new_endpoint_index - prev_endpoint_index;
if ((m_params.m_endpoint_rdo_quality_thresh > 1.0f) && (iabs(endpoint_delta) > 1) && (!block_endpoints_are_referenced(block_x, block_y)))
{
const pixel_block& src_pixels = r.get_source_pixel_block(block_index);
etc_block etc_blk(r.get_output_block(block_index));
const uint64_t cur_err = etc_blk.evaluate_etc1_error(src_pixels.get_ptr(), r.get_params().m_perceptual);
const uint32_t cur_inten5 = etc_blk.get_inten_table(0);
const etc1_endpoint_palette_entry& cur_endpoints = m_endpoint_palette[m.m_endpoint_index];
if (cur_err)
{
const float endpoint_remap_thresh = maximum(1.0f, m_params.m_endpoint_rdo_quality_thresh);
const uint64_t thresh_err = (uint64_t)(cur_err * endpoint_remap_thresh);
//const int MAX_ENDPOINT_SEARCH_DIST = (m_params.m_compression_level >= 2) ? 64 : 32;
const int MAX_ENDPOINT_SEARCH_DIST = (m_params.m_compression_level >= 2) ? 64 : 16;
if (!g_cpu_supports_sse41)
{
const uint64_t initial_best_trial_err = UINT64_MAX;
uint64_t best_trial_err = initial_best_trial_err;
int best_trial_idx = 0;
etc_block trial_etc_blk(etc_blk);
const int search_dist = minimum<int>(iabs(endpoint_delta) - 1, MAX_ENDPOINT_SEARCH_DIST);
for (int d = -search_dist; d < search_dist; d++)
{
int trial_idx = prev_endpoint_index + d;
if (trial_idx < 0)
trial_idx += (int)r.get_total_endpoint_clusters();
else if (trial_idx >= (int)r.get_total_endpoint_clusters())
trial_idx -= (int)r.get_total_endpoint_clusters();
if (trial_idx == new_endpoint_index)
continue;
// Skip it if this new endpoint palette entry is actually never used.
if (!m_new_endpoint_was_used[trial_idx])
continue;
const etc1_endpoint_palette_entry& p = m_endpoint_palette[m_endpoint_remap_table_new_to_old[trial_idx]];
if (m_params.m_compression_level <= 1)
{
if (p.m_inten5 > cur_inten5)
continue;
int delta_r = iabs(cur_endpoints.m_color5.r - p.m_color5.r);
int delta_g = iabs(cur_endpoints.m_color5.g - p.m_color5.g);
int delta_b = iabs(cur_endpoints.m_color5.b - p.m_color5.b);
int color_delta = delta_r + delta_g + delta_b;
if (color_delta > COLOR_DELTA_THRESH)
continue;
}
trial_etc_blk.set_block_color5_etc1s(p.m_color5);
trial_etc_blk.set_inten_tables_etc1s(p.m_inten5);
uint64_t trial_err = trial_etc_blk.evaluate_etc1_error(src_pixels.get_ptr(), r.get_params().m_perceptual);
if ((trial_err < best_trial_err) && (trial_err <= thresh_err))
{
best_trial_err = trial_err;
best_trial_idx = trial_idx;
}
}
if (best_trial_err != initial_best_trial_err)
{
m.m_endpoint_index = m_endpoint_remap_table_new_to_old[best_trial_idx];
new_endpoint_index = best_trial_idx;
endpoint_delta = new_endpoint_index - prev_endpoint_index;
total_endpoint_indices_remapped++;
}
}
else
{
#if BASISU_SUPPORT_SSE
uint8_t block_selectors[16];
for (uint32_t i = 0; i < 16; i++)
block_selectors[i] = (uint8_t)etc_blk.get_selector(i & 3, i >> 2);
const int64_t initial_best_trial_err = INT64_MAX;
int64_t best_trial_err = initial_best_trial_err;
int best_trial_idx = 0;
const int search_dist = minimum<int>(iabs(endpoint_delta) - 1, MAX_ENDPOINT_SEARCH_DIST);
for (int d = -search_dist; d < search_dist; d++)
{
int trial_idx = prev_endpoint_index + d;
if (trial_idx < 0)
trial_idx += (int)r.get_total_endpoint_clusters();
else if (trial_idx >= (int)r.get_total_endpoint_clusters())
trial_idx -= (int)r.get_total_endpoint_clusters();
if (trial_idx == new_endpoint_index)
continue;
// Skip it if this new endpoint palette entry is actually never used.
if (!m_new_endpoint_was_used[trial_idx])
continue;
const etc1_endpoint_palette_entry& p = m_endpoint_palette[m_endpoint_remap_table_new_to_old[trial_idx]];
if (m_params.m_compression_level <= 1)
{
if (p.m_inten5 > cur_inten5)
continue;
int delta_r = iabs(cur_endpoints.m_color5.r - p.m_color5.r);
int delta_g = iabs(cur_endpoints.m_color5.g - p.m_color5.g);
int delta_b = iabs(cur_endpoints.m_color5.b - p.m_color5.b);
int color_delta = delta_r + delta_g + delta_b;
if (color_delta > COLOR_DELTA_THRESH)
continue;
}
color_rgba block_colors[4];
etc_block::get_block_colors_etc1s(block_colors, p.m_color5, p.m_inten5);
int64_t trial_err;
if (r.get_params().m_perceptual)
{
perceptual_distance_rgb_4_N_sse41(&trial_err, block_selectors, block_colors, src_pixels.get_ptr(), 16, best_trial_err);
}
else
{
linear_distance_rgb_4_N_sse41(&trial_err, block_selectors, block_colors, src_pixels.get_ptr(), 16, best_trial_err);
}
//if (trial_err > thresh_err)
// g_color_delta_bad_hist[color_delta]++;
if ((trial_err < best_trial_err) && (trial_err <= (int64_t)thresh_err))
{
best_trial_err = trial_err;
best_trial_idx = trial_idx;
}
}
if (best_trial_err != initial_best_trial_err)
{
m.m_endpoint_index = m_endpoint_remap_table_new_to_old[best_trial_idx];
new_endpoint_index = best_trial_idx;
endpoint_delta = new_endpoint_index - prev_endpoint_index;
total_endpoint_indices_remapped++;
}
#endif // BASISU_SUPPORT_SSE
} // if (!g_cpu_supports_sse41)
} // if (cur_err)
} // if ((m_params.m_endpoint_rdo_quality_thresh > 1.0f) && (iabs(endpoint_delta) > 1) && (!block_endpoints_are_referenced(block_x, block_y)))
if (endpoint_delta < 0)
endpoint_delta += (int)r.get_total_endpoint_clusters();
delta_endpoint_histogram.inc(endpoint_delta);
} // if (m.m_endpoint_predictor == basist::NO_ENDPOINT_PRED_INDEX)
block_endpoint_indices.push_back(m_endpoint_remap_table_new_to_old[new_endpoint_index]);
prev_endpoint_index = new_endpoint_index;
if ((!is_video) || (m.m_endpoint_predictor != basist::CR_ENDPOINT_PRED_INDEX))
{
int new_selector_index = m_selector_remap_table_old_to_new[m.m_selector_index];
const float selector_remap_thresh = maximum(1.0f, m_params.m_selector_rdo_quality_thresh); //2.5f;
int selector_history_buf_index = -1;
// At low comp levels this hurts compression a tiny amount, but is significantly faster so it's a good tradeoff.
if ((m.m_is_cr_target) || (m_params.m_compression_level <= 1))
{
for (uint32_t j = 0; j < selector_history_buf.size(); j++)
{
const int trial_idx = selector_history_buf[j];
if (trial_idx == new_selector_index)
{
total_used_selector_history_buf++;
selector_history_buf_index = j;
selector_history_buf_histogram.inc(j);
break;
}
}
}
// If the block is a CR target we can't override its selectors.
if ((!m.m_is_cr_target) && (selector_history_buf_index == -1))
{
const pixel_block& src_pixels = r.get_source_pixel_block(block_index);
etc_block etc_blk = r.get_output_block(block_index);
// This is new code - the initial release just used the endpoints from the frontend, which isn't correct/accurate.
const etc1_endpoint_palette_entry& q = m_endpoint_palette[m_endpoint_remap_table_new_to_old[new_endpoint_index]];
etc_blk.set_block_color5_etc1s(q.m_color5);
etc_blk.set_inten_tables_etc1s(q.m_inten5);
color_rgba block_colors[4];
etc_blk.get_block_colors(block_colors, 0);
const uint8_t* pCur_selectors = &m_selector_palette[m.m_selector_index][0];
uint64_t cur_err = 0;
if (r.get_params().m_perceptual)
{
for (uint32_t p = 0; p < 16; p++)
cur_err += color_distance(true, src_pixels.get_ptr()[p], block_colors[pCur_selectors[p]], false);
}
else
{
for (uint32_t p = 0; p < 16; p++)
cur_err += color_distance(false, src_pixels.get_ptr()[p], block_colors[pCur_selectors[p]], false);
}
const uint64_t limit_err = (uint64_t)ceilf(cur_err * selector_remap_thresh);
// Even if cur_err==limit_err, we still want to scan the history buffer because there may be equivalent entries that are cheaper to code.
uint64_t best_trial_err = UINT64_MAX;
int best_trial_idx = 0;
uint32_t best_trial_history_buf_idx = 0;
for (uint32_t j = 0; j < selector_history_buf.size(); j++)
{
const int trial_idx = selector_history_buf[j];
const uint8_t* pSelectors = &m_selector_palette[m_selector_remap_table_new_to_old[trial_idx]][0];
if (m_params.m_compression_level <= 1)
{
// Predict if evaluating the full color error would cause an early out, by summing the abs err of the selector indices.
int sel_diff = 0;
for (uint32_t p = 0; p < 16; p += 4)
{
sel_diff += iabs(pCur_selectors[p + 0] - pSelectors[p + 0]);
sel_diff += iabs(pCur_selectors[p + 1] - pSelectors[p + 1]);
sel_diff += iabs(pCur_selectors[p + 2] - pSelectors[p + 2]);
sel_diff += iabs(pCur_selectors[p + 3] - pSelectors[p + 3]);
if (sel_diff >= SEL_DIFF_THRESHOLD)
break;
}
if (sel_diff >= SEL_DIFF_THRESHOLD)
continue;
}
const uint64_t thresh_err = minimum(limit_err, best_trial_err);
uint64_t trial_err = 0;
// This tends to early out quickly, so SSE has a hard time competing.
if (r.get_params().m_perceptual)
{
for (uint32_t p = 0; p < 16; p++)
{
uint32_t sel = pSelectors[p];
trial_err += color_distance(true, src_pixels.get_ptr()[p], block_colors[sel], false);
if (trial_err > thresh_err)
break;
}
}
else
{
for (uint32_t p = 0; p < 16; p++)
{
uint32_t sel = pSelectors[p];
trial_err += color_distance(false, src_pixels.get_ptr()[p], block_colors[sel], false);
if (trial_err > thresh_err)
break;
}
}
if ((trial_err < best_trial_err) && (trial_err <= thresh_err))
{
assert(trial_err <= limit_err);
best_trial_err = trial_err;
best_trial_idx = trial_idx;
best_trial_history_buf_idx = j;
}
}
if (best_trial_err != UINT64_MAX)
{
if (new_selector_index != best_trial_idx)
total_selector_indices_remapped++;
new_selector_index = best_trial_idx;
total_used_selector_history_buf++;
selector_history_buf_index = best_trial_history_buf_idx;
selector_history_buf_histogram.inc(best_trial_history_buf_idx);
}
} // if (m_params.m_selector_rdo_quality_thresh > 0.0f)
m.m_selector_index = m_selector_remap_table_new_to_old[new_selector_index];
if ((selector_history_buf_rle_count) && (selector_history_buf_index != 0))
{
if (selector_history_buf_rle_count >= (int)basist::SELECTOR_HISTORY_BUF_RLE_COUNT_THRESH)
{
selector_syms[slice_index].push_back(SELECTOR_HISTORY_BUF_RLE_SYMBOL_INDEX);
selector_syms[slice_index].push_back(selector_history_buf_rle_count);
int run_sym = selector_history_buf_rle_count - basist::SELECTOR_HISTORY_BUF_RLE_COUNT_THRESH;
if (run_sym >= ((int)basist::SELECTOR_HISTORY_BUF_RLE_COUNT_TOTAL - 1))
selector_history_buf_rle_histogram.inc(basist::SELECTOR_HISTORY_BUF_RLE_COUNT_TOTAL - 1);
else
selector_history_buf_rle_histogram.inc(run_sym);
selector_histogram.inc(SELECTOR_HISTORY_BUF_RLE_SYMBOL_INDEX);
}
else
{
for (int k = 0; k < selector_history_buf_rle_count; k++)
{
uint32_t sym_index = SELECTOR_HISTORY_BUF_FIRST_SYMBOL_INDEX + 0;
selector_syms[slice_index].push_back(sym_index);
selector_histogram.inc(sym_index);
}
}
selector_history_buf_rle_count = 0;
}
if (selector_history_buf_index >= 0)
{
if (selector_history_buf_index == 0)
selector_history_buf_rle_count++;
else
{
uint32_t history_buf_sym = SELECTOR_HISTORY_BUF_FIRST_SYMBOL_INDEX + selector_history_buf_index;
selector_syms[slice_index].push_back(history_buf_sym);
selector_histogram.inc(history_buf_sym);
}
}
else
{
selector_syms[slice_index].push_back(new_selector_index);
selector_histogram.inc(new_selector_index);
}
m.m_selector_history_buf_index = selector_history_buf_index;
if (selector_history_buf_index < 0)
selector_history_buf.add(new_selector_index);
else if (selector_history_buf.size())
selector_history_buf.use(selector_history_buf_index);
}
block_selector_indices.push_back(m.m_selector_index);
} // block_x
} // block_y
if (endpoint_pred_repeat_count > 0)
{
if (endpoint_pred_repeat_count > (int)basist::ENDPOINT_PRED_MIN_REPEAT_COUNT)
{
endpoint_pred_histogram.inc(basist::ENDPOINT_PRED_REPEAT_LAST_SYMBOL);
endpoint_pred_syms[slice_index].push_back(basist::ENDPOINT_PRED_REPEAT_LAST_SYMBOL);
endpoint_pred_syms[slice_index].push_back(endpoint_pred_repeat_count);
}
else
{
for (int j = 0; j < endpoint_pred_repeat_count; j++)
{
endpoint_pred_histogram.inc(prev_endpoint_pred_sym_bits);
endpoint_pred_syms[slice_index].push_back(prev_endpoint_pred_sym_bits);
}
}
endpoint_pred_repeat_count = 0;
}
if (selector_history_buf_rle_count)
{
if (selector_history_buf_rle_count >= (int)basist::SELECTOR_HISTORY_BUF_RLE_COUNT_THRESH)
{
selector_syms[slice_index].push_back(SELECTOR_HISTORY_BUF_RLE_SYMBOL_INDEX);
selector_syms[slice_index].push_back(selector_history_buf_rle_count);
int run_sym = selector_history_buf_rle_count - basist::SELECTOR_HISTORY_BUF_RLE_COUNT_THRESH;
if (run_sym >= ((int)basist::SELECTOR_HISTORY_BUF_RLE_COUNT_TOTAL - 1))
selector_history_buf_rle_histogram.inc(basist::SELECTOR_HISTORY_BUF_RLE_COUNT_TOTAL - 1);
else
selector_history_buf_rle_histogram.inc(run_sym);
selector_histogram.inc(SELECTOR_HISTORY_BUF_RLE_SYMBOL_INDEX);
}
else
{
for (int i = 0; i < selector_history_buf_rle_count; i++)
{
uint32_t sym_index = SELECTOR_HISTORY_BUF_FIRST_SYMBOL_INDEX + 0;
selector_syms[slice_index].push_back(sym_index);
selector_histogram.inc(sym_index);
}
}
selector_history_buf_rle_count = 0;
}
} // slice_index
//for (int i = 0; i <= 255 * 3; i++)
//{
// printf("%u, %u, %f\n", g_color_delta_bad_hist[i], g_color_delta_hist[i], g_color_delta_hist[i] ? g_color_delta_bad_hist[i] / (float)g_color_delta_hist[i] : 0);
//}
double total_prep_time = tm.get_elapsed_secs();
debug_printf("basisu_backend::encode_image: Total prep time: %3.2f\n", total_prep_time);
debug_printf("Endpoint pred RDO total endpoint indices remapped: %u %3.2f%%\n",
total_endpoint_indices_remapped, total_endpoint_indices_remapped * 100.0f / get_total_blocks());
debug_printf("Selector history RDO total selector indices remapped: %u %3.2f%%, Used history buf: %u %3.2f%%\n",
total_selector_indices_remapped, total_selector_indices_remapped * 100.0f / get_total_blocks(),
total_used_selector_history_buf, total_used_selector_history_buf * 100.0f / get_total_blocks());
//if ((total_endpoint_indices_remapped) && (m_params.m_compression_level > 0))
if ((total_endpoint_indices_remapped) && (m_params.m_compression_level > 1) && (!m_params.m_used_global_codebooks))
{
int_vec unused;
r.reoptimize_remapped_endpoints(block_endpoint_indices, unused, false, &block_selector_indices);
create_endpoint_palette();
}
check_for_valid_cr_blocks();
compute_slice_crcs();
double endpoint_pred_entropy = endpoint_pred_histogram.get_entropy() / endpoint_pred_histogram.get_total();
double delta_endpoint_entropy = delta_endpoint_histogram.get_entropy() / delta_endpoint_histogram.get_total();
double selector_entropy = selector_histogram.get_entropy() / selector_histogram.get_total();
debug_printf("Histogram entropy: EndpointPred: %3.3f DeltaEndpoint: %3.3f DeltaSelector: %3.3f\n", endpoint_pred_entropy, delta_endpoint_entropy, selector_entropy);
if (!endpoint_pred_histogram.get_total())
endpoint_pred_histogram.inc(0);
huffman_encoding_table endpoint_pred_model;
if (!endpoint_pred_model.init(endpoint_pred_histogram, 16))
{
error_printf("endpoint_pred_model.init() failed!");
return false;
}
if (!delta_endpoint_histogram.get_total())
delta_endpoint_histogram.inc(0);
huffman_encoding_table delta_endpoint_model;
if (!delta_endpoint_model.init(delta_endpoint_histogram, 16))
{
error_printf("delta_endpoint_model.init() failed!");
return false;
}
if (!selector_histogram.get_total())
selector_histogram.inc(0);
huffman_encoding_table selector_model;
if (!selector_model.init(selector_histogram, 16))
{
error_printf("selector_model.init() failed!");
return false;
}
if (!selector_history_buf_rle_histogram.get_total())
selector_history_buf_rle_histogram.inc(0);
huffman_encoding_table selector_history_buf_rle_model;
if (!selector_history_buf_rle_model.init(selector_history_buf_rle_histogram, 16))
{
error_printf("selector_history_buf_rle_model.init() failed!");
return false;
}
bitwise_coder coder;
coder.init(1024 * 1024 * 4);
uint32_t endpoint_pred_model_bits = coder.emit_huffman_table(endpoint_pred_model);
uint32_t delta_endpoint_bits = coder.emit_huffman_table(delta_endpoint_model);
uint32_t selector_model_bits = coder.emit_huffman_table(selector_model);
uint32_t selector_history_buf_run_sym_bits = coder.emit_huffman_table(selector_history_buf_rle_model);
coder.put_bits(basist::MAX_SELECTOR_HISTORY_BUF_SIZE, 13);
debug_printf("Model sizes: EndpointPred: %u bits %u bytes (%3.3f bpp) DeltaEndpoint: %u bits %u bytes (%3.3f bpp) Selector: %u bits %u bytes (%3.3f bpp) SelectorHistBufRLE: %u bits %u bytes (%3.3f bpp)\n",
endpoint_pred_model_bits, (endpoint_pred_model_bits + 7) / 8, endpoint_pred_model_bits / float(get_total_input_texels()),
delta_endpoint_bits, (delta_endpoint_bits + 7) / 8, delta_endpoint_bits / float(get_total_input_texels()),
selector_model_bits, (selector_model_bits + 7) / 8, selector_model_bits / float(get_total_input_texels()),
selector_history_buf_run_sym_bits, (selector_history_buf_run_sym_bits + 7) / 8, selector_history_buf_run_sym_bits / float(get_total_input_texels()));
coder.flush();
m_output.m_slice_image_tables = coder.get_bytes();
uint32_t total_endpoint_pred_bits = 0, total_delta_endpoint_bits = 0, total_selector_bits = 0;
uint32_t total_image_bytes = 0;
m_output.m_slice_image_data.resize(m_slices.size());
for (uint32_t slice_index = 0; slice_index < m_slices.size(); slice_index++)
{
//const uint32_t width = m_slices[slice_index].m_width;
//const uint32_t height = m_slices[slice_index].m_height;
const uint32_t num_blocks_x = m_slices[slice_index].m_num_blocks_x;
const uint32_t num_blocks_y = m_slices[slice_index].m_num_blocks_y;
coder.init(1024 * 1024 * 4);
uint32_t cur_selector_sym_ofs = 0;
uint32_t selector_rle_count = 0;
int endpoint_pred_repeat_count = 0;
uint32_t cur_endpoint_pred_sym_ofs = 0;
// uint32_t prev_endpoint_pred_sym = 0;
uint32_t prev_endpoint_index = 0;
for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++)
{
for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++)
{
const encoder_block& m = m_slice_encoder_blocks[slice_index](block_x, block_y);
if (((block_x & 1) == 0) && ((block_y & 1) == 0))
{
if (endpoint_pred_repeat_count > 0)
{
endpoint_pred_repeat_count--;
}
else
{
uint32_t sym = endpoint_pred_syms[slice_index][cur_endpoint_pred_sym_ofs++];
if (sym == basist::ENDPOINT_PRED_REPEAT_LAST_SYMBOL)
{
total_endpoint_pred_bits += coder.put_code(sym, endpoint_pred_model);
endpoint_pred_repeat_count = endpoint_pred_syms[slice_index][cur_endpoint_pred_sym_ofs++];
assert(endpoint_pred_repeat_count >= (int)basist::ENDPOINT_PRED_MIN_REPEAT_COUNT);
total_endpoint_pred_bits += coder.put_vlc(endpoint_pred_repeat_count - basist::ENDPOINT_PRED_MIN_REPEAT_COUNT, basist::ENDPOINT_PRED_COUNT_VLC_BITS);
endpoint_pred_repeat_count--;
}
else
{
total_endpoint_pred_bits += coder.put_code(sym, endpoint_pred_model);
//prev_endpoint_pred_sym = sym;
}
}
}
const int new_endpoint_index = m_endpoint_remap_table_old_to_new[m.m_endpoint_index];
if (m.m_endpoint_predictor == basist::NO_ENDPOINT_PRED_INDEX)
{
int endpoint_delta = new_endpoint_index - prev_endpoint_index;
if (endpoint_delta < 0)
endpoint_delta += (int)r.get_total_endpoint_clusters();
total_delta_endpoint_bits += coder.put_code(endpoint_delta, delta_endpoint_model);
}
prev_endpoint_index = new_endpoint_index;
if ((!is_video) || (m.m_endpoint_predictor != basist::CR_ENDPOINT_PRED_INDEX))
{
if (!selector_rle_count)
{
uint32_t selector_sym_index = selector_syms[slice_index][cur_selector_sym_ofs++];
if (selector_sym_index == SELECTOR_HISTORY_BUF_RLE_SYMBOL_INDEX)
selector_rle_count = selector_syms[slice_index][cur_selector_sym_ofs++];
total_selector_bits += coder.put_code(selector_sym_index, selector_model);
if (selector_sym_index == SELECTOR_HISTORY_BUF_RLE_SYMBOL_INDEX)
{
int run_sym = selector_rle_count - basist::SELECTOR_HISTORY_BUF_RLE_COUNT_THRESH;
if (run_sym >= ((int)basist::SELECTOR_HISTORY_BUF_RLE_COUNT_TOTAL - 1))
{
total_selector_bits += coder.put_code(basist::SELECTOR_HISTORY_BUF_RLE_COUNT_TOTAL - 1, selector_history_buf_rle_model);
uint32_t n = selector_rle_count - basist::SELECTOR_HISTORY_BUF_RLE_COUNT_THRESH;
total_selector_bits += coder.put_vlc(n, 7);
}
else
total_selector_bits += coder.put_code(run_sym, selector_history_buf_rle_model);
}
}
if (selector_rle_count)
selector_rle_count--;
}
} // block_x
} // block_y
BASISU_BACKEND_VERIFY(cur_endpoint_pred_sym_ofs == endpoint_pred_syms[slice_index].size());
BASISU_BACKEND_VERIFY(cur_selector_sym_ofs == selector_syms[slice_index].size());
coder.flush();
m_output.m_slice_image_data[slice_index] = coder.get_bytes();
total_image_bytes += (uint32_t)coder.get_bytes().size();
debug_printf("Slice %u compressed size: %u bytes, %3.3f bits per slice texel\n", slice_index, m_output.m_slice_image_data[slice_index].size(), m_output.m_slice_image_data[slice_index].size() * 8.0f / (m_slices[slice_index].m_orig_width * m_slices[slice_index].m_orig_height));
} // slice_index
const double total_texels = static_cast<double>(get_total_input_texels());
const double total_blocks = static_cast<double>(get_total_blocks());
debug_printf("Total endpoint pred bits: %u bytes: %u bits/texel: %3.3f bits/block: %3.3f\n", total_endpoint_pred_bits, total_endpoint_pred_bits / 8, total_endpoint_pred_bits / total_texels, total_endpoint_pred_bits / total_blocks);
debug_printf("Total delta endpoint bits: %u bytes: %u bits/texel: %3.3f bits/block: %3.3f\n", total_delta_endpoint_bits, total_delta_endpoint_bits / 8, total_delta_endpoint_bits / total_texels, total_delta_endpoint_bits / total_blocks);
debug_printf("Total selector bits: %u bytes: %u bits/texel: %3.3f bits/block: %3.3f\n", total_selector_bits, total_selector_bits / 8, total_selector_bits / total_texels, total_selector_bits / total_blocks);
debug_printf("Total table bytes: %u, %3.3f bits/texel\n", m_output.m_slice_image_tables.size(), m_output.m_slice_image_tables.size() * 8.0f / total_texels);
debug_printf("Total image bytes: %u, %3.3f bits/texel\n", total_image_bytes, total_image_bytes * 8.0f / total_texels);
return true;
}
bool basisu_backend::encode_endpoint_palette()
{
const basisu_frontend& r = *m_pFront_end;
// The endpoint indices may have been changed by the backend's RDO step, so go and figure out which ones are actually used again.
bool_vec old_endpoint_was_used(r.get_total_endpoint_clusters());
uint32_t first_old_entry_index = UINT32_MAX;
for (uint32_t slice_index = 0; slice_index < m_slices.size(); slice_index++)
{
const uint32_t num_blocks_x = m_slices[slice_index].m_num_blocks_x, num_blocks_y = m_slices[slice_index].m_num_blocks_y;
for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++)
{
for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++)
{
encoder_block& m = m_slice_encoder_blocks[slice_index](block_x, block_y);
const uint32_t old_endpoint_index = m.m_endpoint_index;
old_endpoint_was_used[old_endpoint_index] = true;
first_old_entry_index = basisu::minimum(first_old_entry_index, old_endpoint_index);
} // block_x
} // block_y
} // slice_index
debug_printf("basisu_backend::encode_endpoint_palette: first_old_entry_index: %u\n", first_old_entry_index);
// Maps NEW to OLD endpoints
uint_vec endpoint_remap_table_new_to_old(r.get_total_endpoint_clusters());
endpoint_remap_table_new_to_old.set_all(first_old_entry_index);
bool_vec new_endpoint_was_used(r.get_total_endpoint_clusters());
for (uint32_t old_endpoint_index = 0; old_endpoint_index < m_endpoint_remap_table_old_to_new.size(); old_endpoint_index++)
{
if (old_endpoint_was_used[old_endpoint_index])
{
const uint32_t new_endpoint_index = m_endpoint_remap_table_old_to_new[old_endpoint_index];
new_endpoint_was_used[new_endpoint_index] = true;
endpoint_remap_table_new_to_old[new_endpoint_index] = old_endpoint_index;
}
}
// TODO: Some new endpoint palette entries may actually be unused and aren't worth coding. Fix that.
uint32_t total_unused_new_entries = 0;
for (uint32_t i = 0; i < new_endpoint_was_used.size(); i++)
if (!new_endpoint_was_used[i])
total_unused_new_entries++;
debug_printf("basisu_backend::encode_endpoint_palette: total_unused_new_entries: %u out of %u\n", total_unused_new_entries, new_endpoint_was_used.size());
bool is_grayscale = true;
for (uint32_t old_endpoint_index = 0; old_endpoint_index < (uint32_t)m_endpoint_palette.size(); old_endpoint_index++)
{
int r5 = m_endpoint_palette[old_endpoint_index].m_color5[0];
int g5 = m_endpoint_palette[old_endpoint_index].m_color5[1];
int b5 = m_endpoint_palette[old_endpoint_index].m_color5[2];
if ((r5 != g5) || (r5 != b5))
{
is_grayscale = false;
break;
}
}
histogram color5_delta_hist0(32); // prev 0-9, delta is -9 to 31
histogram color5_delta_hist1(32); // prev 10-21, delta is -21 to 21
histogram color5_delta_hist2(32); // prev 22-31, delta is -31 to 9
histogram inten_delta_hist(8);
color_rgba prev_color5(16, 16, 16, 0);
uint32_t prev_inten = 0;
for (uint32_t new_endpoint_index = 0; new_endpoint_index < r.get_total_endpoint_clusters(); new_endpoint_index++)
{
const uint32_t old_endpoint_index = endpoint_remap_table_new_to_old[new_endpoint_index];
int delta_inten = m_endpoint_palette[old_endpoint_index].m_inten5 - prev_inten;
inten_delta_hist.inc(delta_inten & 7);
prev_inten = m_endpoint_palette[old_endpoint_index].m_inten5;
for (uint32_t i = 0; i < (is_grayscale ? 1U : 3U); i++)
{
const int delta = (m_endpoint_palette[old_endpoint_index].m_color5[i] - prev_color5[i]) & 31;
if (prev_color5[i] <= basist::COLOR5_PAL0_PREV_HI)
color5_delta_hist0.inc(delta);
else if (prev_color5[i] <= basist::COLOR5_PAL1_PREV_HI)
color5_delta_hist1.inc(delta);
else
color5_delta_hist2.inc(delta);
prev_color5[i] = m_endpoint_palette[old_endpoint_index].m_color5[i];
}
}
if (!color5_delta_hist0.get_total()) color5_delta_hist0.inc(0);
if (!color5_delta_hist1.get_total()) color5_delta_hist1.inc(0);
if (!color5_delta_hist2.get_total()) color5_delta_hist2.inc(0);
huffman_encoding_table color5_delta_model0, color5_delta_model1, color5_delta_model2, inten_delta_model;
if (!color5_delta_model0.init(color5_delta_hist0, 16))
{
error_printf("color5_delta_model.init() failed!");
return false;
}
if (!color5_delta_model1.init(color5_delta_hist1, 16))
{
error_printf("color5_delta_model.init() failed!");
return false;
}
if (!color5_delta_model2.init(color5_delta_hist2, 16))
{
error_printf("color5_delta_model.init() failed!");
return false;
}
if (!inten_delta_model.init(inten_delta_hist, 16))
{
error_printf("inten3_model.init() failed!");
return false;
}
bitwise_coder coder;
coder.init(8192);
coder.emit_huffman_table(color5_delta_model0);
coder.emit_huffman_table(color5_delta_model1);
coder.emit_huffman_table(color5_delta_model2);
coder.emit_huffman_table(inten_delta_model);
coder.put_bits(is_grayscale, 1);
prev_color5.set(16, 16, 16, 0);
prev_inten = 0;
for (uint32_t new_endpoint_index = 0; new_endpoint_index < r.get_total_endpoint_clusters(); new_endpoint_index++)
{
const uint32_t old_endpoint_index = endpoint_remap_table_new_to_old[new_endpoint_index];
int delta_inten = (m_endpoint_palette[old_endpoint_index].m_inten5 - prev_inten) & 7;
coder.put_code(delta_inten, inten_delta_model);
prev_inten = m_endpoint_palette[old_endpoint_index].m_inten5;
for (uint32_t i = 0; i < (is_grayscale ? 1U : 3U); i++)
{
const int delta = (m_endpoint_palette[old_endpoint_index].m_color5[i] - prev_color5[i]) & 31;
if (prev_color5[i] <= basist::COLOR5_PAL0_PREV_HI)
coder.put_code(delta, color5_delta_model0);
else if (prev_color5[i] <= basist::COLOR5_PAL1_PREV_HI)
coder.put_code(delta, color5_delta_model1);
else
coder.put_code(delta, color5_delta_model2);
prev_color5[i] = m_endpoint_palette[old_endpoint_index].m_color5[i];
}
} // q
coder.flush();
m_output.m_endpoint_palette = coder.get_bytes();
debug_printf("Endpoint codebook size: %u bits %u bytes, Bits per entry: %3.1f, Avg bits/texel: %3.3f\n",
8 * (int)m_output.m_endpoint_palette.size(), (int)m_output.m_endpoint_palette.size(), m_output.m_endpoint_palette.size() * 8.0f / r.get_total_endpoint_clusters(), m_output.m_endpoint_palette.size() * 8.0f / get_total_input_texels());
return true;
}
bool basisu_backend::encode_selector_palette()
{
const basisu_frontend& r = *m_pFront_end;
histogram delta_selector_pal_histogram(256);
for (uint32_t q = 0; q < r.get_total_selector_clusters(); q++)
{
if (!q)
continue;
const etc1_selector_palette_entry& cur = m_selector_palette[m_selector_remap_table_new_to_old[q]];
const etc1_selector_palette_entry predictor(m_selector_palette[m_selector_remap_table_new_to_old[q - 1]]);
for (uint32_t j = 0; j < 4; j++)
delta_selector_pal_histogram.inc(cur.get_byte(j) ^ predictor.get_byte(j));
}
if (!delta_selector_pal_histogram.get_total())
delta_selector_pal_histogram.inc(0);
huffman_encoding_table delta_selector_pal_model;
if (!delta_selector_pal_model.init(delta_selector_pal_histogram, 16))
{
error_printf("delta_selector_pal_model.init() failed!");
return false;
}
bitwise_coder coder;
coder.init(1024 * 1024);
coder.put_bits(0, 1); // use global codebook
coder.put_bits(0, 1); // uses hybrid codebooks
coder.put_bits(0, 1); // raw bytes
coder.emit_huffman_table(delta_selector_pal_model);
for (uint32_t q = 0; q < r.get_total_selector_clusters(); q++)
{
if (!q)
{
for (uint32_t j = 0; j < 4; j++)
coder.put_bits(m_selector_palette[m_selector_remap_table_new_to_old[q]].get_byte(j), 8);
continue;
}
const etc1_selector_palette_entry& cur = m_selector_palette[m_selector_remap_table_new_to_old[q]];
const etc1_selector_palette_entry predictor(m_selector_palette[m_selector_remap_table_new_to_old[q - 1]]);
for (uint32_t j = 0; j < 4; j++)
coder.put_code(cur.get_byte(j) ^ predictor.get_byte(j), delta_selector_pal_model);
}
coder.flush();
m_output.m_selector_palette = coder.get_bytes();
if (m_output.m_selector_palette.size() >= r.get_total_selector_clusters() * 4)
{
coder.init(1024 * 1024);
coder.put_bits(0, 1); // use global codebook
coder.put_bits(0, 1); // uses hybrid codebooks
coder.put_bits(1, 1); // raw bytes
for (uint32_t q = 0; q < r.get_total_selector_clusters(); q++)
{
const uint32_t i = m_selector_remap_table_new_to_old[q];
for (uint32_t j = 0; j < 4; j++)
coder.put_bits(m_selector_palette[i].get_byte(j), 8);
}
coder.flush();
m_output.m_selector_palette = coder.get_bytes();
}
debug_printf("Selector codebook bits: %u bytes: %u, Bits per entry: %3.1f, Avg bits/texel: %3.3f\n",
(int)m_output.m_selector_palette.size() * 8, (int)m_output.m_selector_palette.size(),
m_output.m_selector_palette.size() * 8.0f / r.get_total_selector_clusters(), m_output.m_selector_palette.size() * 8.0f / get_total_input_texels());
return true;
}
uint32_t basisu_backend::encode()
{
//const bool is_video = m_pFront_end->get_params().m_tex_type == basist::cBASISTexTypeVideoFrames;
m_output.m_slice_desc = m_slices;
m_output.m_etc1s = m_params.m_etc1s;
m_output.m_uses_global_codebooks = m_params.m_used_global_codebooks;
m_output.m_srgb = m_pFront_end->get_params().m_perceptual;
create_endpoint_palette();
create_selector_palette();
create_encoder_blocks();
if (!encode_image())
return 0;
if (!encode_endpoint_palette())
return 0;
if (!encode_selector_palette())
return 0;
uint32_t total_compressed_bytes = (uint32_t)(m_output.m_slice_image_tables.size() + m_output.m_endpoint_palette.size() + m_output.m_selector_palette.size());
for (uint32_t i = 0; i < m_output.m_slice_image_data.size(); i++)
total_compressed_bytes += (uint32_t)m_output.m_slice_image_data[i].size();
debug_printf("Wrote %u bytes, %3.3f bits/texel\n", total_compressed_bytes, total_compressed_bytes * 8.0f / get_total_input_texels());
return total_compressed_bytes;
}
} // namespace basisu