godot/thirdparty/embree/kernels/bvh/bvh_node_aabb_mb.h

256 lines
9.6 KiB
C++

// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "bvh_node_base.h"
namespace embree
{
/*! Motion Blur AABBNode */
template<typename NodeRef, int N>
struct AABBNodeMB_t : public BaseNode_t<NodeRef, N>
{
using BaseNode_t<NodeRef,N>::children;
typedef BVHNodeRecord<NodeRef> NodeRecord;
typedef BVHNodeRecordMB<NodeRef> NodeRecordMB;
typedef BVHNodeRecordMB4D<NodeRef> NodeRecordMB4D;
struct Create
{
template<typename BuildRecord>
__forceinline NodeRef operator() (BuildRecord* children, const size_t num, const FastAllocator::CachedAllocator& alloc) const
{
AABBNodeMB_t* node = (AABBNodeMB_t*) alloc.malloc0(sizeof(AABBNodeMB_t),NodeRef::byteNodeAlignment); node->clear();
return NodeRef::encodeNode(node);
}
};
struct Set
{
template<typename BuildRecord>
__forceinline NodeRecordMB operator() (const BuildRecord& precord, const BuildRecord* crecords, NodeRef ref, NodeRecordMB* children, const size_t num) const
{
#if defined(DEBUG)
// check that empty children are only at the end of the child list
bool emptyChild = false;
for (size_t i=0; i<num; i++) {
emptyChild |= (children[i].ref == NodeRef::emptyNode);
assert(emptyChild == (children[i].ref == NodeRef::emptyNode));
}
#endif
AABBNodeMB_t* node = ref.getAABBNodeMB();
LBBox3fa bounds = empty;
for (size_t i=0; i<num; i++) {
node->setRef(i,children[i].ref);
node->setBounds(i,children[i].lbounds);
bounds.extend(children[i].lbounds);
}
return NodeRecordMB(ref,bounds);
}
};
struct SetTimeRange
{
__forceinline SetTimeRange(BBox1f tbounds) : tbounds(tbounds) {}
template<typename BuildRecord>
__forceinline NodeRecordMB operator() (const BuildRecord& precord, const BuildRecord* crecords, NodeRef ref, NodeRecordMB* children, const size_t num) const
{
AABBNodeMB_t* node = ref.getAABBNodeMB();
LBBox3fa bounds = empty;
for (size_t i=0; i<num; i++) {
node->setRef(i, children[i].ref);
node->setBounds(i, children[i].lbounds, tbounds);
bounds.extend(children[i].lbounds);
}
return NodeRecordMB(ref,bounds);
}
BBox1f tbounds;
};
/*! Clears the node. */
__forceinline void clear() {
lower_x = lower_y = lower_z = vfloat<N>(pos_inf);
upper_x = upper_y = upper_z = vfloat<N>(neg_inf);
lower_dx = lower_dy = lower_dz = vfloat<N>(0.0f);
upper_dx = upper_dy = upper_dz = vfloat<N>(0.0f);
BaseNode_t<NodeRef,N>::clear();
}
/*! Sets ID of child. */
__forceinline void setRef(size_t i, NodeRef ref) {
children[i] = ref;
}
/*! Sets bounding box of child. */
__forceinline void setBounds(size_t i, const BBox3fa& bounds0_i, const BBox3fa& bounds1_i)
{
/*! for empty bounds we have to avoid inf-inf=nan */
BBox3fa bounds0(min(bounds0_i.lower,Vec3fa(+FLT_MAX)),max(bounds0_i.upper,Vec3fa(-FLT_MAX)));
BBox3fa bounds1(min(bounds1_i.lower,Vec3fa(+FLT_MAX)),max(bounds1_i.upper,Vec3fa(-FLT_MAX)));
bounds0 = bounds0.enlarge_by(4.0f*float(ulp));
bounds1 = bounds1.enlarge_by(4.0f*float(ulp));
Vec3fa dlower = bounds1.lower-bounds0.lower;
Vec3fa dupper = bounds1.upper-bounds0.upper;
lower_x[i] = bounds0.lower.x; lower_y[i] = bounds0.lower.y; lower_z[i] = bounds0.lower.z;
upper_x[i] = bounds0.upper.x; upper_y[i] = bounds0.upper.y; upper_z[i] = bounds0.upper.z;
lower_dx[i] = dlower.x; lower_dy[i] = dlower.y; lower_dz[i] = dlower.z;
upper_dx[i] = dupper.x; upper_dy[i] = dupper.y; upper_dz[i] = dupper.z;
}
/*! Sets bounding box of child. */
__forceinline void setBounds(size_t i, const LBBox3fa& bounds) {
setBounds(i, bounds.bounds0, bounds.bounds1);
}
/*! Sets bounding box of child. */
__forceinline void setBounds(size_t i, const LBBox3fa& bounds, const BBox1f& tbounds) {
setBounds(i, bounds.global(tbounds));
}
/*! Sets bounding box and ID of child. */
__forceinline void set(size_t i, NodeRef ref, const BBox3fa& bounds) {
lower_x[i] = bounds.lower.x; lower_y[i] = bounds.lower.y; lower_z[i] = bounds.lower.z;
upper_x[i] = bounds.upper.x; upper_y[i] = bounds.upper.y; upper_z[i] = bounds.upper.z;
children[i] = ref;
}
/*! Sets bounding box and ID of child. */
__forceinline void set(size_t i, const NodeRecordMB4D& child)
{
setRef(i, child.ref);
setBounds(i, child.lbounds, child.dt);
}
/*! Return bounding box for time 0 */
__forceinline BBox3fa bounds0(size_t i) const {
return BBox3fa(Vec3fa(lower_x[i],lower_y[i],lower_z[i]),
Vec3fa(upper_x[i],upper_y[i],upper_z[i]));
}
/*! Return bounding box for time 1 */
__forceinline BBox3fa bounds1(size_t i) const {
return BBox3fa(Vec3fa(lower_x[i]+lower_dx[i],lower_y[i]+lower_dy[i],lower_z[i]+lower_dz[i]),
Vec3fa(upper_x[i]+upper_dx[i],upper_y[i]+upper_dy[i],upper_z[i]+upper_dz[i]));
}
/*! Returns bounds of node. */
__forceinline BBox3fa bounds() const {
return BBox3fa(Vec3fa(reduce_min(min(lower_x,lower_x+lower_dx)),
reduce_min(min(lower_y,lower_y+lower_dy)),
reduce_min(min(lower_z,lower_z+lower_dz))),
Vec3fa(reduce_max(max(upper_x,upper_x+upper_dx)),
reduce_max(max(upper_y,upper_y+upper_dy)),
reduce_max(max(upper_z,upper_z+upper_dz))));
}
/*! Return bounding box of child i */
__forceinline BBox3fa bounds(size_t i) const {
return merge(bounds0(i),bounds1(i));
}
/*! Return linear bounding box of child i */
__forceinline LBBox3fa lbounds(size_t i) const {
return LBBox3fa(bounds0(i),bounds1(i));
}
/*! Return bounding box of child i at specified time */
__forceinline BBox3fa bounds(size_t i, float time) const {
return lerp(bounds0(i),bounds1(i),time);
}
/*! Returns the expected surface area when randomly sampling the time. */
__forceinline float expectedHalfArea(size_t i) const {
return lbounds(i).expectedHalfArea();
}
/*! Returns the expected surface area when randomly sampling the time. */
__forceinline float expectedHalfArea(size_t i, const BBox1f& t0t1) const {
return lbounds(i).expectedHalfArea(t0t1);
}
/*! swap two children of the node */
__forceinline void swap(size_t i, size_t j)
{
assert(i<N && j<N);
std::swap(children[i],children[j]);
std::swap(lower_x[i],lower_x[j]);
std::swap(upper_x[i],upper_x[j]);
std::swap(lower_y[i],lower_y[j]);
std::swap(upper_y[i],upper_y[j]);
std::swap(lower_z[i],lower_z[j]);
std::swap(upper_z[i],upper_z[j]);
std::swap(lower_dx[i],lower_dx[j]);
std::swap(upper_dx[i],upper_dx[j]);
std::swap(lower_dy[i],lower_dy[j]);
std::swap(upper_dy[i],upper_dy[j]);
std::swap(lower_dz[i],lower_dz[j]);
std::swap(upper_dz[i],upper_dz[j]);
}
/*! compacts a node (moves empty children to the end) */
__forceinline static void compact(AABBNodeMB_t* a)
{
/* find right most filled node */
ssize_t j=N;
for (j=j-1; j>=0; j--)
if (a->child(j) != NodeRef::emptyNode)
break;
/* replace empty nodes with filled nodes */
for (ssize_t i=0; i<j; i++) {
if (a->child(i) == NodeRef::emptyNode) {
a->swap(i,j);
for (j=j-1; j>i; j--)
if (a->child(j) != NodeRef::emptyNode)
break;
}
}
}
/*! Returns reference to specified child */
__forceinline NodeRef& child(size_t i) { assert(i<N); return children[i]; }
__forceinline const NodeRef& child(size_t i) const { assert(i<N); return children[i]; }
/*! stream output operator */
friend embree_ostream operator<<(embree_ostream cout, const AABBNodeMB_t& n)
{
cout << "AABBNodeMB {" << embree_endl;
for (size_t i=0; i<N; i++)
{
const BBox3fa b0 = n.bounds0(i);
const BBox3fa b1 = n.bounds1(i);
cout << " child" << i << " { " << embree_endl;
cout << " bounds0 = " << b0 << ", " << embree_endl;
cout << " bounds1 = " << b1 << ", " << embree_endl;
cout << " }";
}
cout << "}";
return cout;
}
public:
vfloat<N> lower_x; //!< X dimension of lower bounds of all N children.
vfloat<N> upper_x; //!< X dimension of upper bounds of all N children.
vfloat<N> lower_y; //!< Y dimension of lower bounds of all N children.
vfloat<N> upper_y; //!< Y dimension of upper bounds of all N children.
vfloat<N> lower_z; //!< Z dimension of lower bounds of all N children.
vfloat<N> upper_z; //!< Z dimension of upper bounds of all N children.
vfloat<N> lower_dx; //!< X dimension of lower bounds of all N children.
vfloat<N> upper_dx; //!< X dimension of upper bounds of all N children.
vfloat<N> lower_dy; //!< Y dimension of lower bounds of all N children.
vfloat<N> upper_dy; //!< Y dimension of upper bounds of all N children.
vfloat<N> lower_dz; //!< Z dimension of lower bounds of all N children.
vfloat<N> upper_dz; //!< Z dimension of upper bounds of all N children.
};
}