godot/core/math/bsp_tree.cpp
lawnjelly d24c715678 Float literals - fix math classes to allow 32 bit calculations
Converts float literals from double format (e.g. 0.0) to float format (e.g. 0.0f) where appropriate for 32 bit calculations, and cast to (real_t) or (float) as appropriate.

This ensures that appropriate calculations will be done at 32 bits when real_t is compiled as float, rather than promoted to 64 bits.
2022-02-24 16:46:02 +00:00

553 lines
14 KiB
C++

/*************************************************************************/
/* bsp_tree.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "bsp_tree.h"
#include "core/error_macros.h"
#include "core/print_string.h"
void BSP_Tree::from_aabb(const AABB &p_aabb) {
planes.clear();
for (int i = 0; i < 3; i++) {
Vector3 n;
n[i] = 1;
planes.push_back(Plane(n, p_aabb.position[i] + p_aabb.size[i]));
planes.push_back(Plane(-n, -p_aabb.position[i]));
}
nodes.clear();
for (int i = 0; i < 6; i++) {
Node n;
n.plane = i;
n.under = (i == 0) ? UNDER_LEAF : i - 1;
n.over = OVER_LEAF;
nodes.push_back(n);
}
aabb = p_aabb;
error_radius = 0;
}
Vector<BSP_Tree::Node> BSP_Tree::get_nodes() const {
return nodes;
}
Vector<Plane> BSP_Tree::get_planes() const {
return planes;
}
AABB BSP_Tree::get_aabb() const {
return aabb;
}
int BSP_Tree::_get_points_inside(int p_node, const Vector3 *p_points, int *p_indices, const Vector3 &p_center, const Vector3 &p_half_extents, int p_indices_count) const {
const Node *node = &nodes[p_node];
const Plane &p = planes[node->plane];
Vector3 min(
(p.normal.x > 0) ? -p_half_extents.x : p_half_extents.x,
(p.normal.y > 0) ? -p_half_extents.y : p_half_extents.y,
(p.normal.z > 0) ? -p_half_extents.z : p_half_extents.z);
Vector3 max = -min;
max += p_center;
min += p_center;
real_t dist_min = p.distance_to(min);
real_t dist_max = p.distance_to(max);
if ((dist_min * dist_max) < (real_t)CMP_EPSILON) { //intersection, test point by point
int under_count = 0;
//sort points, so the are under first, over last
for (int i = 0; i < p_indices_count; i++) {
int index = p_indices[i];
if (p.is_point_over(p_points[index])) {
// kind of slow (but cache friendly), should try something else,
// but this is a corner case most of the time
for (int j = index; j < p_indices_count - 1; j++) {
p_indices[j] = p_indices[j + 1];
}
p_indices[p_indices_count - 1] = index;
} else {
under_count++;
}
}
int total = 0;
if (under_count > 0) {
if (node->under == UNDER_LEAF) {
total += under_count;
} else {
total += _get_points_inside(node->under, p_points, p_indices, p_center, p_half_extents, under_count);
}
}
if (under_count != p_indices_count) {
if (node->over == OVER_LEAF) {
//total+=0 //if they are over an OVER_LEAF, they are outside the model
} else {
total += _get_points_inside(node->over, p_points, &p_indices[under_count], p_center, p_half_extents, p_indices_count - under_count);
}
}
return total;
} else if (dist_min > 0) { //all points over plane
if (node->over == OVER_LEAF) {
return 0; // all these points are not visible
}
return _get_points_inside(node->over, p_points, p_indices, p_center, p_half_extents, p_indices_count);
} else { //all points behind plane
if (node->under == UNDER_LEAF) {
return p_indices_count; // all these points are visible
}
return _get_points_inside(node->under, p_points, p_indices, p_center, p_half_extents, p_indices_count);
}
}
int BSP_Tree::get_points_inside(const Vector3 *p_points, int p_point_count) const {
if (nodes.size() == 0) {
return 0;
}
#if 1
//this version is easier to debug, and and MUCH faster in real world cases
int pass_count = 0;
const Node *nodesptr = &nodes[0];
const Plane *planesptr = &planes[0];
int node_count = nodes.size();
if (node_count == 0) { // no nodes!
return 0;
}
for (int i = 0; i < p_point_count; i++) {
const Vector3 &point = p_points[i];
if (!aabb.has_point(point)) {
continue;
}
int idx = node_count - 1;
bool pass = false;
while (true) {
if (idx == OVER_LEAF) {
pass = false;
break;
} else if (idx == UNDER_LEAF) {
pass = true;
break;
}
#ifdef DEBUG_ENABLED
int plane_count = planes.size();
uint16_t plane = nodesptr[idx].plane;
ERR_FAIL_UNSIGNED_INDEX_V(plane, plane_count, 0);
#endif
idx = planesptr[nodesptr[idx].plane].is_point_over(point) ? nodes[idx].over : nodes[idx].under;
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_V(idx < MAX_NODES && idx >= node_count, 0);
#endif
}
if (pass) {
pass_count++;
}
}
return pass_count;
#else
//this version scales better but it's slower for real world cases
int *indices = (int *)alloca(p_point_count * sizeof(int));
AABB bounds;
for (int i = 0; i < p_point_count; i++) {
indices[i] = i;
if (i == 0)
bounds.pos = p_points[i];
else
bounds.expand_to(p_points[i]);
}
Vector3 half_extents = bounds.size / 2;
return _get_points_inside(nodes.size() + 1, p_points, indices, bounds.pos + half_extents, half_extents, p_point_count);
#endif
}
bool BSP_Tree::point_is_inside(const Vector3 &p_point) const {
if (!aabb.has_point(p_point)) {
return false;
}
int node_count = nodes.size();
if (node_count == 0) { // no nodes!
return false;
}
const Node *nodesptr = &nodes[0];
const Plane *planesptr = &planes[0];
int idx = node_count - 1;
while (true) {
if (idx == OVER_LEAF) {
return false;
}
if (idx == UNDER_LEAF) {
return true;
}
#ifdef DEBUG_ENABLED
int plane_count = planes.size();
uint16_t plane = nodesptr[idx].plane;
ERR_FAIL_UNSIGNED_INDEX_V(plane, plane_count, false);
#endif
bool over = planesptr[nodesptr[idx].plane].is_point_over(p_point);
idx = over ? nodes[idx].over : nodes[idx].under;
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_V(idx < MAX_NODES && idx >= node_count, false);
#endif
}
}
static int _bsp_find_best_half_plane(const Face3 *p_faces, const Vector<int> &p_indices, real_t p_tolerance) {
int ic = p_indices.size();
const int *indices = p_indices.ptr();
int best_plane = -1;
real_t best_plane_cost = 1e20;
// Loop to find the polygon that best divides the set.
for (int i = 0; i < ic; i++) {
const Face3 &f = p_faces[indices[i]];
Plane p = f.get_plane();
int num_over = 0, num_under = 0, num_spanning = 0;
for (int j = 0; j < ic; j++) {
if (i == j) {
continue;
}
const Face3 &g = p_faces[indices[j]];
int over = 0, under = 0;
for (int k = 0; k < 3; k++) {
real_t d = p.distance_to(g.vertex[j]);
if (Math::abs(d) > p_tolerance) {
if (d > 0) {
over++;
} else {
under++;
}
}
}
if (over && under) {
num_spanning++;
} else if (over) {
num_over++;
} else {
num_under++;
}
}
//real_t split_cost = num_spanning / (real_t) face_count;
real_t relation = Math::abs(num_over - num_under) / (real_t)ic;
// being honest, i never found a way to add split cost to the mix in a meaninguful way
// in this engine, also, will likely be ignored anyway
real_t plane_cost = /*split_cost +*/ relation;
//printf("plane %i, %i over, %i under, %i spanning, cost is %g\n",i,num_over,num_under,num_spanning,plane_cost);
if (plane_cost < best_plane_cost) {
best_plane = i;
best_plane_cost = plane_cost;
}
}
return best_plane;
}
static int _bsp_create_node(const Face3 *p_faces, const Vector<int> &p_indices, Vector<Plane> &p_planes, Vector<BSP_Tree::Node> &p_nodes, real_t p_tolerance) {
ERR_FAIL_COND_V(p_nodes.size() == BSP_Tree::MAX_NODES, -1);
// should not reach here
ERR_FAIL_COND_V(p_indices.size() == 0, -1);
int ic = p_indices.size();
const int *indices = p_indices.ptr();
int divisor_idx = _bsp_find_best_half_plane(p_faces, p_indices, p_tolerance);
// returned error
ERR_FAIL_COND_V(divisor_idx < 0, -1);
Vector<int> faces_over;
Vector<int> faces_under;
Plane divisor_plane = p_faces[indices[divisor_idx]].get_plane();
for (int i = 0; i < ic; i++) {
if (i == divisor_idx) {
continue;
}
const Face3 &f = p_faces[indices[i]];
/*
if (f.get_plane().is_equal_approx(divisor_plane))
continue;
*/
int over_count = 0;
int under_count = 0;
for (int j = 0; j < 3; j++) {
real_t d = divisor_plane.distance_to(f.vertex[j]);
if (Math::abs(d) > p_tolerance) {
if (d > 0) {
over_count++;
} else {
under_count++;
}
}
}
if (over_count) {
faces_over.push_back(indices[i]);
}
if (under_count) {
faces_under.push_back(indices[i]);
}
}
uint16_t over_idx = BSP_Tree::OVER_LEAF, under_idx = BSP_Tree::UNDER_LEAF;
if (faces_over.size() > 0) { //have facess above?
int idx = _bsp_create_node(p_faces, faces_over, p_planes, p_nodes, p_tolerance);
if (idx >= 0) {
over_idx = idx;
}
}
if (faces_under.size() > 0) { //have facess above?
int idx = _bsp_create_node(p_faces, faces_under, p_planes, p_nodes, p_tolerance);
if (idx >= 0) {
under_idx = idx;
}
}
/* Create the node */
// find existing divisor plane
int divisor_plane_idx = -1;
for (int i = 0; i < p_planes.size(); i++) {
if (p_planes[i].is_equal_approx(divisor_plane)) {
divisor_plane_idx = i;
break;
}
}
if (divisor_plane_idx == -1) {
ERR_FAIL_COND_V(p_planes.size() == BSP_Tree::MAX_PLANES, -1);
divisor_plane_idx = p_planes.size();
p_planes.push_back(divisor_plane);
}
BSP_Tree::Node node;
node.plane = divisor_plane_idx;
node.under = under_idx;
node.over = over_idx;
p_nodes.push_back(node);
return p_nodes.size() - 1;
}
BSP_Tree::operator Variant() const {
Dictionary d;
d["error_radius"] = error_radius;
Vector<real_t> plane_values;
plane_values.resize(planes.size() * 4);
for (int i = 0; i < planes.size(); i++) {
plane_values.write[i * 4 + 0] = planes[i].normal.x;
plane_values.write[i * 4 + 1] = planes[i].normal.y;
plane_values.write[i * 4 + 2] = planes[i].normal.z;
plane_values.write[i * 4 + 3] = planes[i].d;
}
d["planes"] = plane_values;
PoolVector<int> dst_nodes;
dst_nodes.resize(nodes.size() * 3);
for (int i = 0; i < nodes.size(); i++) {
dst_nodes.set(i * 3 + 0, nodes[i].over);
dst_nodes.set(i * 3 + 1, nodes[i].under);
dst_nodes.set(i * 3 + 2, nodes[i].plane);
}
d["nodes"] = dst_nodes;
d["aabb"] = aabb;
return Variant(d);
}
BSP_Tree::BSP_Tree() {
}
BSP_Tree::BSP_Tree(const Variant &p_variant) {
Dictionary d = p_variant;
ERR_FAIL_COND(!d.has("nodes"));
ERR_FAIL_COND(!d.has("planes"));
ERR_FAIL_COND(!d.has("aabb"));
ERR_FAIL_COND(!d.has("error_radius"));
PoolVector<int> src_nodes = d["nodes"];
ERR_FAIL_COND(src_nodes.size() % 3);
if (d["planes"].get_type() == Variant::POOL_REAL_ARRAY) {
PoolVector<real_t> src_planes = d["planes"];
int plane_count = src_planes.size();
ERR_FAIL_COND(plane_count % 4);
planes.resize(plane_count / 4);
if (plane_count) {
PoolVector<real_t>::Read r = src_planes.read();
for (int i = 0; i < plane_count / 4; i++) {
planes.write[i].normal.x = r[i * 4 + 0];
planes.write[i].normal.y = r[i * 4 + 1];
planes.write[i].normal.z = r[i * 4 + 2];
planes.write[i].d = r[i * 4 + 3];
}
}
} else {
planes = d["planes"];
}
error_radius = d["error"];
aabb = d["aabb"];
//int node_count = src_nodes.size();
nodes.resize(src_nodes.size() / 3);
PoolVector<int>::Read r = src_nodes.read();
for (int i = 0; i < nodes.size(); i++) {
nodes.write[i].over = r[i * 3 + 0];
nodes.write[i].under = r[i * 3 + 1];
nodes.write[i].plane = r[i * 3 + 2];
}
}
BSP_Tree::BSP_Tree(const PoolVector<Face3> &p_faces, real_t p_error_radius) {
// compute aabb
int face_count = p_faces.size();
PoolVector<Face3>::Read faces_r = p_faces.read();
const Face3 *facesptr = faces_r.ptr();
bool first = true;
Vector<int> indices;
for (int i = 0; i < face_count; i++) {
const Face3 &f = facesptr[i];
if (f.is_degenerate()) {
continue;
}
for (int j = 0; j < 3; j++) {
if (first) {
aabb.position = f.vertex[0];
first = false;
} else {
aabb.expand_to(f.vertex[j]);
}
}
indices.push_back(i);
}
ERR_FAIL_COND(aabb.has_no_area());
int top = _bsp_create_node(faces_r.ptr(), indices, planes, nodes, aabb.get_longest_axis_size() * 0.0001f);
if (top < 0) {
nodes.clear();
planes.clear();
ERR_FAIL_COND(top < 0);
}
error_radius = p_error_radius;
}
BSP_Tree::BSP_Tree(const Vector<Node> &p_nodes, const Vector<Plane> &p_planes, const AABB &p_aabb, real_t p_error_radius) :
nodes(p_nodes),
planes(p_planes),
aabb(p_aabb),
error_radius(p_error_radius) {
}
BSP_Tree::~BSP_Tree() {
}