godot/doc/classes/Vector3i.xml

298 lines
13 KiB
XML

<?xml version="1.0" encoding="UTF-8" ?>
<class name="Vector3i" version="4.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd">
<brief_description>
Vector used for 3D math using integer coordinates.
</brief_description>
<description>
3-element structure that can be used to represent positions in 3D space or any other triplet of numeric values.
It uses integer coordinates and is therefore preferable to [Vector3] when exact precision is required.
[b]Note:[/b] In a boolean context, a Vector3i will evaluate to [code]false[/code] if it's equal to [code]Vector3i(0, 0, 0)[/code]. Otherwise, a Vector3i will always evaluate to [code]true[/code].
</description>
<tutorials>
<link title="Math documentation index">$DOCS_URL/tutorials/math/index.html</link>
<link title="Vector math">$DOCS_URL/tutorials/math/vector_math.html</link>
<link title="3Blue1Brown Essence of Linear Algebra">https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab</link>
</tutorials>
<constructors>
<constructor name="Vector3i">
<return type="Vector3i" />
<description>
Constructs a default-initialized [Vector3i] with all components set to [code]0[/code].
</description>
</constructor>
<constructor name="Vector3i">
<return type="Vector3i" />
<argument index="0" name="from" type="Vector3i" />
<description>
Constructs a [Vector3i] as a copy of the given [Vector3i].
</description>
</constructor>
<constructor name="Vector3i">
<return type="Vector3i" />
<argument index="0" name="from" type="Vector3" />
<description>
Constructs a new [Vector3i] from [Vector3]. The floating point coordinates will be truncated.
</description>
</constructor>
<constructor name="Vector3i">
<return type="Vector3i" />
<argument index="0" name="x" type="int" />
<argument index="1" name="y" type="int" />
<argument index="2" name="z" type="int" />
<description>
Returns a [Vector3i] with the given components.
</description>
</constructor>
</constructors>
<methods>
<method name="abs" qualifiers="const">
<return type="Vector3i" />
<description>
Returns a new vector with all components in absolute values (i.e. positive).
</description>
</method>
<method name="clamp" qualifiers="const">
<return type="Vector3i" />
<argument index="0" name="min" type="Vector3i" />
<argument index="1" name="max" type="Vector3i" />
<description>
Returns a new vector with all components clamped between the components of [code]min[/code] and [code]max[/code], by running [method @GlobalScope.clamp] on each component.
</description>
</method>
<method name="length" qualifiers="const">
<return type="float" />
<description>
Returns the length (magnitude) of this vector.
</description>
</method>
<method name="length_squared" qualifiers="const">
<return type="int" />
<description>
Returns the squared length (squared magnitude) of this vector.
This method runs faster than [method length], so prefer it if you need to compare vectors or need the squared distance for some formula.
</description>
</method>
<method name="max_axis_index" qualifiers="const">
<return type="int" />
<description>
Returns the axis of the vector's highest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_X].
</description>
</method>
<method name="min_axis_index" qualifiers="const">
<return type="int" />
<description>
Returns the axis of the vector's lowest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_Z].
</description>
</method>
<method name="sign" qualifiers="const">
<return type="Vector3i" />
<description>
Returns the vector with each component set to one or negative one, depending on the signs of the components.
</description>
</method>
</methods>
<members>
<member name="x" type="int" setter="" getter="" default="0">
The vector's X component. Also accessible by using the index position [code][0][/code].
</member>
<member name="y" type="int" setter="" getter="" default="0">
The vector's Y component. Also accessible by using the index position [code][1][/code].
</member>
<member name="z" type="int" setter="" getter="" default="0">
The vector's Z component. Also accessible by using the index position [code][2][/code].
</member>
</members>
<constants>
<constant name="AXIS_X" value="0">
Enumerated value for the X axis. Returned by [method max_axis_index] and [method min_axis_index].
</constant>
<constant name="AXIS_Y" value="1">
Enumerated value for the Y axis. Returned by [method max_axis_index] and [method min_axis_index].
</constant>
<constant name="AXIS_Z" value="2">
Enumerated value for the Z axis. Returned by [method max_axis_index] and [method min_axis_index].
</constant>
<constant name="ZERO" value="Vector3i(0, 0, 0)">
Zero vector, a vector with all components set to [code]0[/code].
</constant>
<constant name="ONE" value="Vector3i(1, 1, 1)">
One vector, a vector with all components set to [code]1[/code].
</constant>
<constant name="LEFT" value="Vector3i(-1, 0, 0)">
Left unit vector. Represents the local direction of left, and the global direction of west.
</constant>
<constant name="RIGHT" value="Vector3i(1, 0, 0)">
Right unit vector. Represents the local direction of right, and the global direction of east.
</constant>
<constant name="UP" value="Vector3i(0, 1, 0)">
Up unit vector.
</constant>
<constant name="DOWN" value="Vector3i(0, -1, 0)">
Down unit vector.
</constant>
<constant name="FORWARD" value="Vector3i(0, 0, -1)">
Forward unit vector. Represents the local direction of forward, and the global direction of north.
</constant>
<constant name="BACK" value="Vector3i(0, 0, 1)">
Back unit vector. Represents the local direction of back, and the global direction of south.
</constant>
</constants>
<operators>
<operator name="operator !=">
<return type="bool" />
<argument index="0" name="right" type="Vector3i" />
<description>
Returns [code]true[/code] if the vectors are not equal.
</description>
</operator>
<operator name="operator %">
<return type="Vector3i" />
<argument index="0" name="right" type="Vector3i" />
<description>
Gets the remainder of each component of the [Vector3i] with the components of the given [Vector3i]. This operation uses truncated division, which is often not desired as it does not work well with negative numbers. Consider using [method @GlobalScope.posmod] instead if you want to handle negative numbers.
[codeblock]
print(Vector3i(10, -20, 30) % Vector3i(7, 8, 9)) # Prints "(3, -4, 3)"
[/codeblock]
</description>
</operator>
<operator name="operator %">
<return type="Vector3i" />
<argument index="0" name="right" type="int" />
<description>
Gets the remainder of each component of the [Vector3i] with the the given [int]. This operation uses truncated division, which is often not desired as it does not work well with negative numbers. Consider using [method @GlobalScope.posmod] instead if you want to handle negative numbers.
[codeblock]
print(Vector2i(10, -20, 30) % 7) # Prints "(3, -6, 2)"
[/codeblock]
</description>
</operator>
<operator name="operator *">
<return type="Vector3i" />
<argument index="0" name="right" type="Vector3i" />
<description>
Multiplies each component of the [Vector3i] by the components of the given [Vector3i].
[codeblock]
print(Vector3i(10, 20, 30) * Vector3i(3, 4, 5)) # Prints "(30, 80, 150)"
[/codeblock]
</description>
</operator>
<operator name="operator *">
<return type="Vector3" />
<argument index="0" name="right" type="float" />
<description>
Multiplies each component of the [Vector3i] by the given [float]. Returns a [Vector3].
[codeblock]
print(Vector3i(10, 15, 20) * 0.9) # Prints "(9, 13.5, 18)"
[/codeblock]
</description>
</operator>
<operator name="operator *">
<return type="Vector3i" />
<argument index="0" name="right" type="int" />
<description>
Multiplies each component of the [Vector3i] by the given [int].
</description>
</operator>
<operator name="operator +">
<return type="Vector3i" />
<argument index="0" name="right" type="Vector3i" />
<description>
Adds each component of the [Vector3i] by the components of the given [Vector3i].
[codeblock]
print(Vector3i(10, 20, 30) + Vector3i(3, 4, 5)) # Prints "(13, 24, 35)"
[/codeblock]
</description>
</operator>
<operator name="operator -">
<return type="Vector3i" />
<argument index="0" name="right" type="Vector3i" />
<description>
Subtracts each component of the [Vector3i] by the components of the given [Vector3i].
[codeblock]
print(Vector3i(10, 20, 30) - Vector3i(3, 4, 5)) # Prints "(7, 16, 25)"
[/codeblock]
</description>
</operator>
<operator name="operator /">
<return type="Vector3i" />
<argument index="0" name="right" type="Vector3i" />
<description>
Divides each component of the [Vector3i] by the components of the given [Vector3i].
[codeblock]
print(Vector3i(10, 20, 30) / Vector3i(2, 5, 3)) # Prints "(5, 4, 10)"
[/codeblock]
</description>
</operator>
<operator name="operator /">
<return type="Vector3" />
<argument index="0" name="right" type="float" />
<description>
Divides each component of the [Vector3i] by the given [float]. Returns a [Vector3].
[codeblock]
print(Vector3i(10, 20, 30) / 2.9) # Prints "(5, 10, 15)"
[/codeblock]
</description>
</operator>
<operator name="operator /">
<return type="Vector3i" />
<argument index="0" name="right" type="int" />
<description>
Divides each component of the [Vector3i] by the given [int].
</description>
</operator>
<operator name="operator &lt;">
<return type="bool" />
<argument index="0" name="right" type="Vector3i" />
<description>
Compares two [Vector3i] vectors by first checking if the X value of the left vector is less than the X value of the [code]right[/code] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, and then with the Z values. This operator is useful for sorting vectors.
</description>
</operator>
<operator name="operator &lt;=">
<return type="bool" />
<argument index="0" name="right" type="Vector3i" />
<description>
Compares two [Vector3i] vectors by first checking if the X value of the left vector is less than or equal to the X value of the [code]right[/code] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, and then with the Z values. This operator is useful for sorting vectors.
</description>
</operator>
<operator name="operator ==">
<return type="bool" />
<argument index="0" name="right" type="Vector3i" />
<description>
Returns [code]true[/code] if the vectors are equal.
</description>
</operator>
<operator name="operator &gt;">
<return type="bool" />
<argument index="0" name="right" type="Vector3i" />
<description>
Compares two [Vector3i] vectors by first checking if the X value of the left vector is greater than the X value of the [code]right[/code] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, and then with the Z values. This operator is useful for sorting vectors.
</description>
</operator>
<operator name="operator &gt;=">
<return type="bool" />
<argument index="0" name="right" type="Vector3i" />
<description>
Compares two [Vector3i] vectors by first checking if the X value of the left vector is greater than or equal to the X value of the [code]right[/code] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, and then with the Z values. This operator is useful for sorting vectors.
</description>
</operator>
<operator name="operator []">
<return type="int" />
<argument index="0" name="index" type="int" />
<description>
Access vector components using their index. [code]v[0][/code] is equivalent to [code]v.x[/code], [code]v[1][/code] is equivalent to [code]v.y[/code], and [code]v[2][/code] is equivalent to [code]v.z[/code].
</description>
</operator>
<operator name="operator unary+">
<return type="Vector3i" />
<description>
Returns the same value as if the [code]+[/code] was not there. Unary [code]+[/code] does nothing, but sometimes it can make your code more readable.
</description>
</operator>
<operator name="operator unary-">
<return type="Vector3i" />
<description>
Returns the negative value of the [Vector3i]. This is the same as writing [code]Vector3i(-v.x, -v.y, -v.z)[/code]. This operation flips the direction of the vector while keeping the same magnitude.
</description>
</operator>
</operators>
</class>