godot/drivers/builtin_openssl2/ssl/ssl_ciph.c

2078 lines
68 KiB
C

/* ssl/ssl_ciph.c */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
* ECC cipher suite support in OpenSSL originally developed by
* SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
*/
/* ====================================================================
* Copyright 2005 Nokia. All rights reserved.
*
* The portions of the attached software ("Contribution") is developed by
* Nokia Corporation and is licensed pursuant to the OpenSSL open source
* license.
*
* The Contribution, originally written by Mika Kousa and Pasi Eronen of
* Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
* support (see RFC 4279) to OpenSSL.
*
* No patent licenses or other rights except those expressly stated in
* the OpenSSL open source license shall be deemed granted or received
* expressly, by implication, estoppel, or otherwise.
*
* No assurances are provided by Nokia that the Contribution does not
* infringe the patent or other intellectual property rights of any third
* party or that the license provides you with all the necessary rights
* to make use of the Contribution.
*
* THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
* ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
* SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
* OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
* OTHERWISE.
*/
#include <stdio.h>
#include <openssl/objects.h>
#ifndef OPENSSL_NO_COMP
# include <openssl/comp.h>
#endif
#ifndef OPENSSL_NO_ENGINE
# include <openssl/engine.h>
#endif
#include "ssl_locl.h"
#define SSL_ENC_DES_IDX 0
#define SSL_ENC_3DES_IDX 1
#define SSL_ENC_RC4_IDX 2
#define SSL_ENC_RC2_IDX 3
#define SSL_ENC_IDEA_IDX 4
#define SSL_ENC_NULL_IDX 5
#define SSL_ENC_AES128_IDX 6
#define SSL_ENC_AES256_IDX 7
#define SSL_ENC_CAMELLIA128_IDX 8
#define SSL_ENC_CAMELLIA256_IDX 9
#define SSL_ENC_GOST89_IDX 10
#define SSL_ENC_SEED_IDX 11
#define SSL_ENC_AES128GCM_IDX 12
#define SSL_ENC_AES256GCM_IDX 13
#define SSL_ENC_NUM_IDX 14
static const EVP_CIPHER *ssl_cipher_methods[SSL_ENC_NUM_IDX] = {
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL
};
#define SSL_COMP_NULL_IDX 0
#define SSL_COMP_ZLIB_IDX 1
#define SSL_COMP_NUM_IDX 2
static STACK_OF(SSL_COMP) *ssl_comp_methods = NULL;
#define SSL_MD_MD5_IDX 0
#define SSL_MD_SHA1_IDX 1
#define SSL_MD_GOST94_IDX 2
#define SSL_MD_GOST89MAC_IDX 3
#define SSL_MD_SHA256_IDX 4
#define SSL_MD_SHA384_IDX 5
/*
* Constant SSL_MAX_DIGEST equal to size of digests array should be defined
* in the ssl_locl.h
*/
#define SSL_MD_NUM_IDX SSL_MAX_DIGEST
static const EVP_MD *ssl_digest_methods[SSL_MD_NUM_IDX] = {
NULL, NULL, NULL, NULL, NULL, NULL
};
/*
* PKEY_TYPE for GOST89MAC is known in advance, but, because implementation
* is engine-provided, we'll fill it only if corresponding EVP_PKEY_METHOD is
* found
*/
static int ssl_mac_pkey_id[SSL_MD_NUM_IDX] = {
EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
EVP_PKEY_HMAC, EVP_PKEY_HMAC
};
static int ssl_mac_secret_size[SSL_MD_NUM_IDX] = {
0, 0, 0, 0, 0, 0
};
static int ssl_handshake_digest_flag[SSL_MD_NUM_IDX] = {
SSL_HANDSHAKE_MAC_MD5, SSL_HANDSHAKE_MAC_SHA,
SSL_HANDSHAKE_MAC_GOST94, 0, SSL_HANDSHAKE_MAC_SHA256,
SSL_HANDSHAKE_MAC_SHA384
};
#define CIPHER_ADD 1
#define CIPHER_KILL 2
#define CIPHER_DEL 3
#define CIPHER_ORD 4
#define CIPHER_SPECIAL 5
typedef struct cipher_order_st {
const SSL_CIPHER *cipher;
int active;
int dead;
struct cipher_order_st *next, *prev;
} CIPHER_ORDER;
static const SSL_CIPHER cipher_aliases[] = {
/* "ALL" doesn't include eNULL (must be specifically enabled) */
{0, SSL_TXT_ALL, 0, 0, 0, ~SSL_eNULL, 0, 0, 0, 0, 0, 0},
/* "COMPLEMENTOFALL" */
{0, SSL_TXT_CMPALL, 0, 0, 0, SSL_eNULL, 0, 0, 0, 0, 0, 0},
/*
* "COMPLEMENTOFDEFAULT" (does *not* include ciphersuites not found in
* ALL!)
*/
{0, SSL_TXT_CMPDEF, 0, 0, SSL_aNULL, ~SSL_eNULL, 0, ~SSL_SSLV2,
SSL_EXP_MASK, 0, 0, 0},
/*
* key exchange aliases (some of those using only a single bit here
* combine multiple key exchange algs according to the RFCs, e.g. kEDH
* combines DHE_DSS and DHE_RSA)
*/
{0, SSL_TXT_kRSA, 0, SSL_kRSA, 0, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_kDHr, 0, SSL_kDHr, 0, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_kDHd, 0, SSL_kDHd, 0, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_kDH, 0, SSL_kDHr | SSL_kDHd, 0, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_kEDH, 0, SSL_kEDH, 0, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_kDHE, 0, SSL_kEDH, 0, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_DH, 0, SSL_kDHr | SSL_kDHd | SSL_kEDH, 0, 0, 0, 0, 0, 0, 0,
0},
{0, SSL_TXT_kKRB5, 0, SSL_kKRB5, 0, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_kECDHr, 0, SSL_kECDHr, 0, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_kECDHe, 0, SSL_kECDHe, 0, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_kECDH, 0, SSL_kECDHr | SSL_kECDHe, 0, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_kEECDH, 0, SSL_kEECDH, 0, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_kECDHE, 0, SSL_kEECDH, 0, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_ECDH, 0, SSL_kECDHr | SSL_kECDHe | SSL_kEECDH, 0, 0, 0, 0, 0,
0, 0, 0},
{0, SSL_TXT_kPSK, 0, SSL_kPSK, 0, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_kSRP, 0, SSL_kSRP, 0, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_kGOST, 0, SSL_kGOST, 0, 0, 0, 0, 0, 0, 0, 0},
/* server authentication aliases */
{0, SSL_TXT_aRSA, 0, 0, SSL_aRSA, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_aDSS, 0, 0, SSL_aDSS, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_DSS, 0, 0, SSL_aDSS, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_aKRB5, 0, 0, SSL_aKRB5, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_aNULL, 0, 0, SSL_aNULL, 0, 0, 0, 0, 0, 0, 0},
/* no such ciphersuites supported! */
{0, SSL_TXT_aDH, 0, 0, SSL_aDH, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_aECDH, 0, 0, SSL_aECDH, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_aECDSA, 0, 0, SSL_aECDSA, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_ECDSA, 0, 0, SSL_aECDSA, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_aPSK, 0, 0, SSL_aPSK, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_aGOST94, 0, 0, SSL_aGOST94, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_aGOST01, 0, 0, SSL_aGOST01, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_aGOST, 0, 0, SSL_aGOST94 | SSL_aGOST01, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_aSRP, 0, 0, SSL_aSRP, 0, 0, 0, 0, 0, 0, 0},
/* aliases combining key exchange and server authentication */
{0, SSL_TXT_EDH, 0, SSL_kEDH, ~SSL_aNULL, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_DHE, 0, SSL_kEDH, ~SSL_aNULL, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_EECDH, 0, SSL_kEECDH, ~SSL_aNULL, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_ECDHE, 0, SSL_kEECDH, ~SSL_aNULL, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_NULL, 0, 0, 0, SSL_eNULL, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_KRB5, 0, SSL_kKRB5, SSL_aKRB5, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_RSA, 0, SSL_kRSA, SSL_aRSA, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_ADH, 0, SSL_kEDH, SSL_aNULL, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_AECDH, 0, SSL_kEECDH, SSL_aNULL, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_PSK, 0, SSL_kPSK, SSL_aPSK, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_SRP, 0, SSL_kSRP, 0, 0, 0, 0, 0, 0, 0, 0},
/* symmetric encryption aliases */
{0, SSL_TXT_DES, 0, 0, 0, SSL_DES, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_3DES, 0, 0, 0, SSL_3DES, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_RC4, 0, 0, 0, SSL_RC4, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_RC2, 0, 0, 0, SSL_RC2, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_IDEA, 0, 0, 0, SSL_IDEA, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_SEED, 0, 0, 0, SSL_SEED, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_eNULL, 0, 0, 0, SSL_eNULL, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_AES128, 0, 0, 0, SSL_AES128 | SSL_AES128GCM, 0, 0, 0, 0, 0,
0},
{0, SSL_TXT_AES256, 0, 0, 0, SSL_AES256 | SSL_AES256GCM, 0, 0, 0, 0, 0,
0},
{0, SSL_TXT_AES, 0, 0, 0, SSL_AES, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_AES_GCM, 0, 0, 0, SSL_AES128GCM | SSL_AES256GCM, 0, 0, 0, 0,
0, 0},
{0, SSL_TXT_CAMELLIA128, 0, 0, 0, SSL_CAMELLIA128, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_CAMELLIA256, 0, 0, 0, SSL_CAMELLIA256, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_CAMELLIA, 0, 0, 0, SSL_CAMELLIA128 | SSL_CAMELLIA256, 0, 0, 0,
0, 0, 0},
/* MAC aliases */
{0, SSL_TXT_MD5, 0, 0, 0, 0, SSL_MD5, 0, 0, 0, 0, 0},
{0, SSL_TXT_SHA1, 0, 0, 0, 0, SSL_SHA1, 0, 0, 0, 0, 0},
{0, SSL_TXT_SHA, 0, 0, 0, 0, SSL_SHA1, 0, 0, 0, 0, 0},
{0, SSL_TXT_GOST94, 0, 0, 0, 0, SSL_GOST94, 0, 0, 0, 0, 0},
{0, SSL_TXT_GOST89MAC, 0, 0, 0, 0, SSL_GOST89MAC, 0, 0, 0, 0, 0},
{0, SSL_TXT_SHA256, 0, 0, 0, 0, SSL_SHA256, 0, 0, 0, 0, 0},
{0, SSL_TXT_SHA384, 0, 0, 0, 0, SSL_SHA384, 0, 0, 0, 0, 0},
/* protocol version aliases */
{0, SSL_TXT_SSLV2, 0, 0, 0, 0, 0, SSL_SSLV2, 0, 0, 0, 0},
{0, SSL_TXT_SSLV3, 0, 0, 0, 0, 0, SSL_SSLV3, 0, 0, 0, 0},
{0, SSL_TXT_TLSV1, 0, 0, 0, 0, 0, SSL_TLSV1, 0, 0, 0, 0},
{0, SSL_TXT_TLSV1_2, 0, 0, 0, 0, 0, SSL_TLSV1_2, 0, 0, 0, 0},
/* export flag */
{0, SSL_TXT_EXP, 0, 0, 0, 0, 0, 0, SSL_EXPORT, 0, 0, 0},
{0, SSL_TXT_EXPORT, 0, 0, 0, 0, 0, 0, SSL_EXPORT, 0, 0, 0},
/* strength classes */
{0, SSL_TXT_EXP40, 0, 0, 0, 0, 0, 0, SSL_EXP40, 0, 0, 0},
{0, SSL_TXT_EXP56, 0, 0, 0, 0, 0, 0, SSL_EXP56, 0, 0, 0},
{0, SSL_TXT_LOW, 0, 0, 0, 0, 0, 0, SSL_LOW, 0, 0, 0},
{0, SSL_TXT_MEDIUM, 0, 0, 0, 0, 0, 0, SSL_MEDIUM, 0, 0, 0},
{0, SSL_TXT_HIGH, 0, 0, 0, 0, 0, 0, SSL_HIGH, 0, 0, 0},
/* FIPS 140-2 approved ciphersuite */
{0, SSL_TXT_FIPS, 0, 0, 0, ~SSL_eNULL, 0, 0, SSL_FIPS, 0, 0, 0},
/* "DHE-" aliases to "EDH-" labels (for forward compatibility) */
{0, SSL3_TXT_DHE_DSS_DES_40_CBC_SHA, 0,
SSL_kDHE, SSL_aDSS, SSL_DES, SSL_SHA1, SSL_SSLV3, SSL_EXPORT | SSL_EXP40,
0, 0, 0,},
{0, SSL3_TXT_DHE_DSS_DES_64_CBC_SHA, 0,
SSL_kDHE, SSL_aDSS, SSL_DES, SSL_SHA1, SSL_SSLV3, SSL_NOT_EXP | SSL_LOW,
0, 0, 0,},
{0, SSL3_TXT_DHE_DSS_DES_192_CBC3_SHA, 0,
SSL_kDHE, SSL_aDSS, SSL_3DES, SSL_SHA1, SSL_SSLV3,
SSL_NOT_EXP | SSL_HIGH | SSL_FIPS, 0, 0, 0,},
{0, SSL3_TXT_DHE_RSA_DES_40_CBC_SHA, 0,
SSL_kDHE, SSL_aRSA, SSL_DES, SSL_SHA1, SSL_SSLV3, SSL_EXPORT | SSL_EXP40,
0, 0, 0,},
{0, SSL3_TXT_DHE_RSA_DES_64_CBC_SHA, 0,
SSL_kDHE, SSL_aRSA, SSL_DES, SSL_SHA1, SSL_SSLV3, SSL_NOT_EXP | SSL_LOW,
0, 0, 0,},
{0, SSL3_TXT_DHE_RSA_DES_192_CBC3_SHA, 0,
SSL_kDHE, SSL_aRSA, SSL_3DES, SSL_SHA1, SSL_SSLV3,
SSL_NOT_EXP | SSL_HIGH | SSL_FIPS, 0, 0, 0,},
};
/*
* Search for public key algorithm with given name and return its pkey_id if
* it is available. Otherwise return 0
*/
#ifdef OPENSSL_NO_ENGINE
static int get_optional_pkey_id(const char *pkey_name)
{
const EVP_PKEY_ASN1_METHOD *ameth;
int pkey_id = 0;
ameth = EVP_PKEY_asn1_find_str(NULL, pkey_name, -1);
if (ameth && EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
ameth) > 0) {
return pkey_id;
}
return 0;
}
#else
static int get_optional_pkey_id(const char *pkey_name)
{
const EVP_PKEY_ASN1_METHOD *ameth;
ENGINE *tmpeng = NULL;
int pkey_id = 0;
ameth = EVP_PKEY_asn1_find_str(&tmpeng, pkey_name, -1);
if (ameth) {
if (EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
ameth) <= 0)
pkey_id = 0;
}
if (tmpeng)
ENGINE_finish(tmpeng);
return pkey_id;
}
#endif
void ssl_load_ciphers(void)
{
ssl_cipher_methods[SSL_ENC_DES_IDX] = EVP_get_cipherbyname(SN_des_cbc);
ssl_cipher_methods[SSL_ENC_3DES_IDX] =
EVP_get_cipherbyname(SN_des_ede3_cbc);
ssl_cipher_methods[SSL_ENC_RC4_IDX] = EVP_get_cipherbyname(SN_rc4);
ssl_cipher_methods[SSL_ENC_RC2_IDX] = EVP_get_cipherbyname(SN_rc2_cbc);
#ifndef OPENSSL_NO_IDEA
ssl_cipher_methods[SSL_ENC_IDEA_IDX] = EVP_get_cipherbyname(SN_idea_cbc);
#else
ssl_cipher_methods[SSL_ENC_IDEA_IDX] = NULL;
#endif
ssl_cipher_methods[SSL_ENC_AES128_IDX] =
EVP_get_cipherbyname(SN_aes_128_cbc);
ssl_cipher_methods[SSL_ENC_AES256_IDX] =
EVP_get_cipherbyname(SN_aes_256_cbc);
ssl_cipher_methods[SSL_ENC_CAMELLIA128_IDX] =
EVP_get_cipherbyname(SN_camellia_128_cbc);
ssl_cipher_methods[SSL_ENC_CAMELLIA256_IDX] =
EVP_get_cipherbyname(SN_camellia_256_cbc);
ssl_cipher_methods[SSL_ENC_GOST89_IDX] =
EVP_get_cipherbyname(SN_gost89_cnt);
ssl_cipher_methods[SSL_ENC_SEED_IDX] = EVP_get_cipherbyname(SN_seed_cbc);
ssl_cipher_methods[SSL_ENC_AES128GCM_IDX] =
EVP_get_cipherbyname(SN_aes_128_gcm);
ssl_cipher_methods[SSL_ENC_AES256GCM_IDX] =
EVP_get_cipherbyname(SN_aes_256_gcm);
ssl_digest_methods[SSL_MD_MD5_IDX] = EVP_get_digestbyname(SN_md5);
ssl_mac_secret_size[SSL_MD_MD5_IDX] =
EVP_MD_size(ssl_digest_methods[SSL_MD_MD5_IDX]);
OPENSSL_assert(ssl_mac_secret_size[SSL_MD_MD5_IDX] >= 0);
ssl_digest_methods[SSL_MD_SHA1_IDX] = EVP_get_digestbyname(SN_sha1);
ssl_mac_secret_size[SSL_MD_SHA1_IDX] =
EVP_MD_size(ssl_digest_methods[SSL_MD_SHA1_IDX]);
OPENSSL_assert(ssl_mac_secret_size[SSL_MD_SHA1_IDX] >= 0);
ssl_digest_methods[SSL_MD_GOST94_IDX] =
EVP_get_digestbyname(SN_id_GostR3411_94);
if (ssl_digest_methods[SSL_MD_GOST94_IDX]) {
ssl_mac_secret_size[SSL_MD_GOST94_IDX] =
EVP_MD_size(ssl_digest_methods[SSL_MD_GOST94_IDX]);
OPENSSL_assert(ssl_mac_secret_size[SSL_MD_GOST94_IDX] >= 0);
}
ssl_digest_methods[SSL_MD_GOST89MAC_IDX] =
EVP_get_digestbyname(SN_id_Gost28147_89_MAC);
ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX] = get_optional_pkey_id("gost-mac");
if (ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX]) {
ssl_mac_secret_size[SSL_MD_GOST89MAC_IDX] = 32;
}
ssl_digest_methods[SSL_MD_SHA256_IDX] = EVP_get_digestbyname(SN_sha256);
ssl_mac_secret_size[SSL_MD_SHA256_IDX] =
EVP_MD_size(ssl_digest_methods[SSL_MD_SHA256_IDX]);
ssl_digest_methods[SSL_MD_SHA384_IDX] = EVP_get_digestbyname(SN_sha384);
ssl_mac_secret_size[SSL_MD_SHA384_IDX] =
EVP_MD_size(ssl_digest_methods[SSL_MD_SHA384_IDX]);
}
#ifndef OPENSSL_NO_COMP
static int sk_comp_cmp(const SSL_COMP *const *a, const SSL_COMP *const *b)
{
return ((*a)->id - (*b)->id);
}
static void load_builtin_compressions(void)
{
int got_write_lock = 0;
CRYPTO_r_lock(CRYPTO_LOCK_SSL);
if (ssl_comp_methods == NULL) {
CRYPTO_r_unlock(CRYPTO_LOCK_SSL);
CRYPTO_w_lock(CRYPTO_LOCK_SSL);
got_write_lock = 1;
if (ssl_comp_methods == NULL) {
SSL_COMP *comp = NULL;
MemCheck_off();
ssl_comp_methods = sk_SSL_COMP_new(sk_comp_cmp);
if (ssl_comp_methods != NULL) {
comp = (SSL_COMP *)OPENSSL_malloc(sizeof(SSL_COMP));
if (comp != NULL) {
comp->method = COMP_zlib();
if (comp->method && comp->method->type == NID_undef)
OPENSSL_free(comp);
else {
comp->id = SSL_COMP_ZLIB_IDX;
comp->name = comp->method->name;
sk_SSL_COMP_push(ssl_comp_methods, comp);
}
}
sk_SSL_COMP_sort(ssl_comp_methods);
}
MemCheck_on();
}
}
if (got_write_lock)
CRYPTO_w_unlock(CRYPTO_LOCK_SSL);
else
CRYPTO_r_unlock(CRYPTO_LOCK_SSL);
}
#endif
int ssl_cipher_get_evp(const SSL_SESSION *s, const EVP_CIPHER **enc,
const EVP_MD **md, int *mac_pkey_type,
int *mac_secret_size, SSL_COMP **comp)
{
int i;
const SSL_CIPHER *c;
c = s->cipher;
if (c == NULL)
return (0);
if (comp != NULL) {
SSL_COMP ctmp;
#ifndef OPENSSL_NO_COMP
load_builtin_compressions();
#endif
*comp = NULL;
ctmp.id = s->compress_meth;
if (ssl_comp_methods != NULL) {
i = sk_SSL_COMP_find(ssl_comp_methods, &ctmp);
if (i >= 0)
*comp = sk_SSL_COMP_value(ssl_comp_methods, i);
else
*comp = NULL;
}
}
if ((enc == NULL) || (md == NULL))
return (0);
switch (c->algorithm_enc) {
case SSL_DES:
i = SSL_ENC_DES_IDX;
break;
case SSL_3DES:
i = SSL_ENC_3DES_IDX;
break;
case SSL_RC4:
i = SSL_ENC_RC4_IDX;
break;
case SSL_RC2:
i = SSL_ENC_RC2_IDX;
break;
case SSL_IDEA:
i = SSL_ENC_IDEA_IDX;
break;
case SSL_eNULL:
i = SSL_ENC_NULL_IDX;
break;
case SSL_AES128:
i = SSL_ENC_AES128_IDX;
break;
case SSL_AES256:
i = SSL_ENC_AES256_IDX;
break;
case SSL_CAMELLIA128:
i = SSL_ENC_CAMELLIA128_IDX;
break;
case SSL_CAMELLIA256:
i = SSL_ENC_CAMELLIA256_IDX;
break;
case SSL_eGOST2814789CNT:
i = SSL_ENC_GOST89_IDX;
break;
case SSL_SEED:
i = SSL_ENC_SEED_IDX;
break;
case SSL_AES128GCM:
i = SSL_ENC_AES128GCM_IDX;
break;
case SSL_AES256GCM:
i = SSL_ENC_AES256GCM_IDX;
break;
default:
i = -1;
break;
}
if ((i < 0) || (i >= SSL_ENC_NUM_IDX))
*enc = NULL;
else {
if (i == SSL_ENC_NULL_IDX)
*enc = EVP_enc_null();
else
*enc = ssl_cipher_methods[i];
}
switch (c->algorithm_mac) {
case SSL_MD5:
i = SSL_MD_MD5_IDX;
break;
case SSL_SHA1:
i = SSL_MD_SHA1_IDX;
break;
case SSL_SHA256:
i = SSL_MD_SHA256_IDX;
break;
case SSL_SHA384:
i = SSL_MD_SHA384_IDX;
break;
case SSL_GOST94:
i = SSL_MD_GOST94_IDX;
break;
case SSL_GOST89MAC:
i = SSL_MD_GOST89MAC_IDX;
break;
default:
i = -1;
break;
}
if ((i < 0) || (i >= SSL_MD_NUM_IDX)) {
*md = NULL;
if (mac_pkey_type != NULL)
*mac_pkey_type = NID_undef;
if (mac_secret_size != NULL)
*mac_secret_size = 0;
if (c->algorithm_mac == SSL_AEAD)
mac_pkey_type = NULL;
} else {
*md = ssl_digest_methods[i];
if (mac_pkey_type != NULL)
*mac_pkey_type = ssl_mac_pkey_id[i];
if (mac_secret_size != NULL)
*mac_secret_size = ssl_mac_secret_size[i];
}
if ((*enc != NULL) &&
(*md != NULL || (EVP_CIPHER_flags(*enc) & EVP_CIPH_FLAG_AEAD_CIPHER))
&& (!mac_pkey_type || *mac_pkey_type != NID_undef)) {
const EVP_CIPHER *evp;
if (s->ssl_version >> 8 != TLS1_VERSION_MAJOR ||
s->ssl_version < TLS1_VERSION)
return 1;
#ifdef OPENSSL_FIPS
if (FIPS_mode())
return 1;
#endif
if (c->algorithm_enc == SSL_RC4 &&
c->algorithm_mac == SSL_MD5 &&
(evp = EVP_get_cipherbyname("RC4-HMAC-MD5")))
*enc = evp, *md = NULL;
else if (c->algorithm_enc == SSL_AES128 &&
c->algorithm_mac == SSL_SHA1 &&
(evp = EVP_get_cipherbyname("AES-128-CBC-HMAC-SHA1")))
*enc = evp, *md = NULL;
else if (c->algorithm_enc == SSL_AES256 &&
c->algorithm_mac == SSL_SHA1 &&
(evp = EVP_get_cipherbyname("AES-256-CBC-HMAC-SHA1")))
*enc = evp, *md = NULL;
else if (c->algorithm_enc == SSL_AES128 &&
c->algorithm_mac == SSL_SHA256 &&
(evp = EVP_get_cipherbyname("AES-128-CBC-HMAC-SHA256")))
*enc = evp, *md = NULL;
else if (c->algorithm_enc == SSL_AES256 &&
c->algorithm_mac == SSL_SHA256 &&
(evp = EVP_get_cipherbyname("AES-256-CBC-HMAC-SHA256")))
*enc = evp, *md = NULL;
return (1);
} else
return (0);
}
int ssl_get_handshake_digest(int idx, long *mask, const EVP_MD **md)
{
if (idx < 0 || idx >= SSL_MD_NUM_IDX) {
return 0;
}
*mask = ssl_handshake_digest_flag[idx];
if (*mask)
*md = ssl_digest_methods[idx];
else
*md = NULL;
return 1;
}
#define ITEM_SEP(a) \
(((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
CIPHER_ORDER **tail)
{
if (curr == *tail)
return;
if (curr == *head)
*head = curr->next;
if (curr->prev != NULL)
curr->prev->next = curr->next;
if (curr->next != NULL)
curr->next->prev = curr->prev;
(*tail)->next = curr;
curr->prev = *tail;
curr->next = NULL;
*tail = curr;
}
static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
CIPHER_ORDER **tail)
{
if (curr == *head)
return;
if (curr == *tail)
*tail = curr->prev;
if (curr->next != NULL)
curr->next->prev = curr->prev;
if (curr->prev != NULL)
curr->prev->next = curr->next;
(*head)->prev = curr;
curr->next = *head;
curr->prev = NULL;
*head = curr;
}
static void ssl_cipher_get_disabled(unsigned long *mkey, unsigned long *auth,
unsigned long *enc, unsigned long *mac,
unsigned long *ssl)
{
*mkey = 0;
*auth = 0;
*enc = 0;
*mac = 0;
*ssl = 0;
#ifdef OPENSSL_NO_RSA
*mkey |= SSL_kRSA;
*auth |= SSL_aRSA;
#endif
#ifdef OPENSSL_NO_DSA
*auth |= SSL_aDSS;
#endif
#ifdef OPENSSL_NO_DH
*mkey |= SSL_kDHr | SSL_kDHd | SSL_kEDH;
*auth |= SSL_aDH;
#endif
#ifdef OPENSSL_NO_KRB5
*mkey |= SSL_kKRB5;
*auth |= SSL_aKRB5;
#endif
#ifdef OPENSSL_NO_ECDSA
*auth |= SSL_aECDSA;
#endif
#ifdef OPENSSL_NO_ECDH
*mkey |= SSL_kECDHe | SSL_kECDHr;
*auth |= SSL_aECDH;
#endif
#ifdef OPENSSL_NO_PSK
*mkey |= SSL_kPSK;
*auth |= SSL_aPSK;
#endif
#ifdef OPENSSL_NO_SRP
*mkey |= SSL_kSRP;
#endif
/*
* Check for presence of GOST 34.10 algorithms, and if they do not
* present, disable appropriate auth and key exchange
*/
if (!get_optional_pkey_id("gost94")) {
*auth |= SSL_aGOST94;
}
if (!get_optional_pkey_id("gost2001")) {
*auth |= SSL_aGOST01;
}
/*
* Disable GOST key exchange if no GOST signature algs are available *
*/
if ((*auth & (SSL_aGOST94 | SSL_aGOST01)) == (SSL_aGOST94 | SSL_aGOST01)) {
*mkey |= SSL_kGOST;
}
#ifdef SSL_FORBID_ENULL
*enc |= SSL_eNULL;
#endif
*enc |= (ssl_cipher_methods[SSL_ENC_DES_IDX] == NULL) ? SSL_DES : 0;
*enc |= (ssl_cipher_methods[SSL_ENC_3DES_IDX] == NULL) ? SSL_3DES : 0;
*enc |= (ssl_cipher_methods[SSL_ENC_RC4_IDX] == NULL) ? SSL_RC4 : 0;
*enc |= (ssl_cipher_methods[SSL_ENC_RC2_IDX] == NULL) ? SSL_RC2 : 0;
*enc |= (ssl_cipher_methods[SSL_ENC_IDEA_IDX] == NULL) ? SSL_IDEA : 0;
*enc |= (ssl_cipher_methods[SSL_ENC_AES128_IDX] == NULL) ? SSL_AES128 : 0;
*enc |= (ssl_cipher_methods[SSL_ENC_AES256_IDX] == NULL) ? SSL_AES256 : 0;
*enc |=
(ssl_cipher_methods[SSL_ENC_AES128GCM_IDX] ==
NULL) ? SSL_AES128GCM : 0;
*enc |=
(ssl_cipher_methods[SSL_ENC_AES256GCM_IDX] ==
NULL) ? SSL_AES256GCM : 0;
*enc |=
(ssl_cipher_methods[SSL_ENC_CAMELLIA128_IDX] ==
NULL) ? SSL_CAMELLIA128 : 0;
*enc |=
(ssl_cipher_methods[SSL_ENC_CAMELLIA256_IDX] ==
NULL) ? SSL_CAMELLIA256 : 0;
*enc |=
(ssl_cipher_methods[SSL_ENC_GOST89_IDX] ==
NULL) ? SSL_eGOST2814789CNT : 0;
*enc |= (ssl_cipher_methods[SSL_ENC_SEED_IDX] == NULL) ? SSL_SEED : 0;
*mac |= (ssl_digest_methods[SSL_MD_MD5_IDX] == NULL) ? SSL_MD5 : 0;
*mac |= (ssl_digest_methods[SSL_MD_SHA1_IDX] == NULL) ? SSL_SHA1 : 0;
*mac |= (ssl_digest_methods[SSL_MD_SHA256_IDX] == NULL) ? SSL_SHA256 : 0;
*mac |= (ssl_digest_methods[SSL_MD_SHA384_IDX] == NULL) ? SSL_SHA384 : 0;
*mac |= (ssl_digest_methods[SSL_MD_GOST94_IDX] == NULL) ? SSL_GOST94 : 0;
*mac |= (ssl_digest_methods[SSL_MD_GOST89MAC_IDX] == NULL
|| ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX] ==
NID_undef) ? SSL_GOST89MAC : 0;
}
static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method,
int num_of_ciphers,
unsigned long disabled_mkey,
unsigned long disabled_auth,
unsigned long disabled_enc,
unsigned long disabled_mac,
unsigned long disabled_ssl,
CIPHER_ORDER *co_list,
CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p)
{
int i, co_list_num;
const SSL_CIPHER *c;
/*
* We have num_of_ciphers descriptions compiled in, depending on the
* method selected (SSLv2 and/or SSLv3, TLSv1 etc).
* These will later be sorted in a linked list with at most num
* entries.
*/
/* Get the initial list of ciphers */
co_list_num = 0; /* actual count of ciphers */
for (i = 0; i < num_of_ciphers; i++) {
c = ssl_method->get_cipher(i);
/* drop those that use any of that is not available */
if ((c != NULL) && c->valid &&
#ifdef OPENSSL_FIPS
(!FIPS_mode() || (c->algo_strength & SSL_FIPS)) &&
#endif
!(c->algorithm_mkey & disabled_mkey) &&
!(c->algorithm_auth & disabled_auth) &&
!(c->algorithm_enc & disabled_enc) &&
!(c->algorithm_mac & disabled_mac) &&
!(c->algorithm_ssl & disabled_ssl)) {
co_list[co_list_num].cipher = c;
co_list[co_list_num].next = NULL;
co_list[co_list_num].prev = NULL;
co_list[co_list_num].active = 0;
co_list_num++;
#ifdef KSSL_DEBUG
fprintf(stderr, "\t%d: %s %lx %lx %lx\n", i, c->name, c->id,
c->algorithm_mkey, c->algorithm_auth);
#endif /* KSSL_DEBUG */
/*
* if (!sk_push(ca_list,(char *)c)) goto err;
*/
}
}
/*
* Prepare linked list from list entries
*/
if (co_list_num > 0) {
co_list[0].prev = NULL;
if (co_list_num > 1) {
co_list[0].next = &co_list[1];
for (i = 1; i < co_list_num - 1; i++) {
co_list[i].prev = &co_list[i - 1];
co_list[i].next = &co_list[i + 1];
}
co_list[co_list_num - 1].prev = &co_list[co_list_num - 2];
}
co_list[co_list_num - 1].next = NULL;
*head_p = &co_list[0];
*tail_p = &co_list[co_list_num - 1];
}
}
static void ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list,
int num_of_group_aliases,
unsigned long disabled_mkey,
unsigned long disabled_auth,
unsigned long disabled_enc,
unsigned long disabled_mac,
unsigned long disabled_ssl,
CIPHER_ORDER *head)
{
CIPHER_ORDER *ciph_curr;
const SSL_CIPHER **ca_curr;
int i;
unsigned long mask_mkey = ~disabled_mkey;
unsigned long mask_auth = ~disabled_auth;
unsigned long mask_enc = ~disabled_enc;
unsigned long mask_mac = ~disabled_mac;
unsigned long mask_ssl = ~disabled_ssl;
/*
* First, add the real ciphers as already collected
*/
ciph_curr = head;
ca_curr = ca_list;
while (ciph_curr != NULL) {
*ca_curr = ciph_curr->cipher;
ca_curr++;
ciph_curr = ciph_curr->next;
}
/*
* Now we add the available ones from the cipher_aliases[] table.
* They represent either one or more algorithms, some of which
* in any affected category must be supported (set in enabled_mask),
* or represent a cipher strength value (will be added in any case because algorithms=0).
*/
for (i = 0; i < num_of_group_aliases; i++) {
unsigned long algorithm_mkey = cipher_aliases[i].algorithm_mkey;
unsigned long algorithm_auth = cipher_aliases[i].algorithm_auth;
unsigned long algorithm_enc = cipher_aliases[i].algorithm_enc;
unsigned long algorithm_mac = cipher_aliases[i].algorithm_mac;
unsigned long algorithm_ssl = cipher_aliases[i].algorithm_ssl;
if (algorithm_mkey)
if ((algorithm_mkey & mask_mkey) == 0)
continue;
if (algorithm_auth)
if ((algorithm_auth & mask_auth) == 0)
continue;
if (algorithm_enc)
if ((algorithm_enc & mask_enc) == 0)
continue;
if (algorithm_mac)
if ((algorithm_mac & mask_mac) == 0)
continue;
if (algorithm_ssl)
if ((algorithm_ssl & mask_ssl) == 0)
continue;
*ca_curr = (SSL_CIPHER *)(cipher_aliases + i);
ca_curr++;
}
*ca_curr = NULL; /* end of list */
}
static void ssl_cipher_apply_rule(unsigned long cipher_id,
unsigned long alg_mkey,
unsigned long alg_auth,
unsigned long alg_enc,
unsigned long alg_mac,
unsigned long alg_ssl,
unsigned long algo_strength, int rule,
int strength_bits, CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p)
{
CIPHER_ORDER *head, *tail, *curr, *next, *last;
const SSL_CIPHER *cp;
int reverse = 0;
#ifdef CIPHER_DEBUG
fprintf(stderr,
"Applying rule %d with %08lx/%08lx/%08lx/%08lx/%08lx %08lx (%d)\n",
rule, alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl,
algo_strength, strength_bits);
#endif
if (rule == CIPHER_DEL)
reverse = 1; /* needed to maintain sorting between
* currently deleted ciphers */
head = *head_p;
tail = *tail_p;
if (reverse) {
next = tail;
last = head;
} else {
next = head;
last = tail;
}
curr = NULL;
for (;;) {
if (curr == last)
break;
curr = next;
if (curr == NULL)
break;
next = reverse ? curr->prev : curr->next;
cp = curr->cipher;
/*
* Selection criteria is either the value of strength_bits
* or the algorithms used.
*/
if (strength_bits >= 0) {
if (strength_bits != cp->strength_bits)
continue;
} else {
#ifdef CIPHER_DEBUG
fprintf(stderr,
"\nName: %s:\nAlgo = %08lx/%08lx/%08lx/%08lx/%08lx Algo_strength = %08lx\n",
cp->name, cp->algorithm_mkey, cp->algorithm_auth,
cp->algorithm_enc, cp->algorithm_mac, cp->algorithm_ssl,
cp->algo_strength);
#endif
#ifdef OPENSSL_SSL_DEBUG_BROKEN_PROTOCOL
if (cipher_id && cipher_id != cp->id)
continue;
#endif
if (algo_strength == SSL_EXP_MASK && SSL_C_IS_EXPORT(cp))
goto ok;
if (alg_ssl == ~SSL_SSLV2 && cp->algorithm_ssl == SSL_SSLV2)
goto ok;
if (alg_mkey && !(alg_mkey & cp->algorithm_mkey))
continue;
if (alg_auth && !(alg_auth & cp->algorithm_auth))
continue;
if (alg_enc && !(alg_enc & cp->algorithm_enc))
continue;
if (alg_mac && !(alg_mac & cp->algorithm_mac))
continue;
if (alg_ssl && !(alg_ssl & cp->algorithm_ssl))
continue;
if ((algo_strength & SSL_EXP_MASK)
&& !(algo_strength & SSL_EXP_MASK & cp->algo_strength))
continue;
if ((algo_strength & SSL_STRONG_MASK)
&& !(algo_strength & SSL_STRONG_MASK & cp->algo_strength))
continue;
}
ok:
#ifdef CIPHER_DEBUG
fprintf(stderr, "Action = %d\n", rule);
#endif
/* add the cipher if it has not been added yet. */
if (rule == CIPHER_ADD) {
/* reverse == 0 */
if (!curr->active) {
ll_append_tail(&head, curr, &tail);
curr->active = 1;
}
}
/* Move the added cipher to this location */
else if (rule == CIPHER_ORD) {
/* reverse == 0 */
if (curr->active) {
ll_append_tail(&head, curr, &tail);
}
} else if (rule == CIPHER_DEL) {
/* reverse == 1 */
if (curr->active) {
/*
* most recently deleted ciphersuites get best positions for
* any future CIPHER_ADD (note that the CIPHER_DEL loop works
* in reverse to maintain the order)
*/
ll_append_head(&head, curr, &tail);
curr->active = 0;
}
} else if (rule == CIPHER_KILL) {
/* reverse == 0 */
if (head == curr)
head = curr->next;
else
curr->prev->next = curr->next;
if (tail == curr)
tail = curr->prev;
curr->active = 0;
if (curr->next != NULL)
curr->next->prev = curr->prev;
if (curr->prev != NULL)
curr->prev->next = curr->next;
curr->next = NULL;
curr->prev = NULL;
}
}
*head_p = head;
*tail_p = tail;
}
static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p)
{
int max_strength_bits, i, *number_uses;
CIPHER_ORDER *curr;
/*
* This routine sorts the ciphers with descending strength. The sorting
* must keep the pre-sorted sequence, so we apply the normal sorting
* routine as '+' movement to the end of the list.
*/
max_strength_bits = 0;
curr = *head_p;
while (curr != NULL) {
if (curr->active && (curr->cipher->strength_bits > max_strength_bits))
max_strength_bits = curr->cipher->strength_bits;
curr = curr->next;
}
number_uses = OPENSSL_malloc((max_strength_bits + 1) * sizeof(int));
if (!number_uses) {
SSLerr(SSL_F_SSL_CIPHER_STRENGTH_SORT, ERR_R_MALLOC_FAILURE);
return (0);
}
memset(number_uses, 0, (max_strength_bits + 1) * sizeof(int));
/*
* Now find the strength_bits values actually used
*/
curr = *head_p;
while (curr != NULL) {
if (curr->active)
number_uses[curr->cipher->strength_bits]++;
curr = curr->next;
}
/*
* Go through the list of used strength_bits values in descending
* order.
*/
for (i = max_strength_bits; i >= 0; i--)
if (number_uses[i] > 0)
ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p,
tail_p);
OPENSSL_free(number_uses);
return (1);
}
static int ssl_cipher_process_rulestr(const char *rule_str,
CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p,
const SSL_CIPHER **ca_list)
{
unsigned long alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl,
algo_strength;
const char *l, *buf;
int j, multi, found, rule, retval, ok, buflen;
unsigned long cipher_id = 0;
char ch;
retval = 1;
l = rule_str;
for (;;) {
ch = *l;
if (ch == '\0')
break; /* done */
if (ch == '-') {
rule = CIPHER_DEL;
l++;
} else if (ch == '+') {
rule = CIPHER_ORD;
l++;
} else if (ch == '!') {
rule = CIPHER_KILL;
l++;
} else if (ch == '@') {
rule = CIPHER_SPECIAL;
l++;
} else {
rule = CIPHER_ADD;
}
if (ITEM_SEP(ch)) {
l++;
continue;
}
alg_mkey = 0;
alg_auth = 0;
alg_enc = 0;
alg_mac = 0;
alg_ssl = 0;
algo_strength = 0;
for (;;) {
ch = *l;
buf = l;
buflen = 0;
#ifndef CHARSET_EBCDIC
while (((ch >= 'A') && (ch <= 'Z')) ||
((ch >= '0') && (ch <= '9')) ||
((ch >= 'a') && (ch <= 'z')) || (ch == '-') || (ch == '.'))
#else
while (isalnum(ch) || (ch == '-') || (ch == '.'))
#endif
{
ch = *(++l);
buflen++;
}
if (buflen == 0) {
/*
* We hit something we cannot deal with,
* it is no command or separator nor
* alphanumeric, so we call this an error.
*/
SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR,
SSL_R_INVALID_COMMAND);
retval = found = 0;
l++;
break;
}
if (rule == CIPHER_SPECIAL) {
found = 0; /* unused -- avoid compiler warning */
break; /* special treatment */
}
/* check for multi-part specification */
if (ch == '+') {
multi = 1;
l++;
} else
multi = 0;
/*
* Now search for the cipher alias in the ca_list. Be careful
* with the strncmp, because the "buflen" limitation
* will make the rule "ADH:SOME" and the cipher
* "ADH-MY-CIPHER" look like a match for buflen=3.
* So additionally check whether the cipher name found
* has the correct length. We can save a strlen() call:
* just checking for the '\0' at the right place is
* sufficient, we have to strncmp() anyway. (We cannot
* use strcmp(), because buf is not '\0' terminated.)
*/
j = found = 0;
cipher_id = 0;
while (ca_list[j]) {
if (!strncmp(buf, ca_list[j]->name, buflen) &&
(ca_list[j]->name[buflen] == '\0')) {
found = 1;
break;
} else
j++;
}
if (!found)
break; /* ignore this entry */
if (ca_list[j]->algorithm_mkey) {
if (alg_mkey) {
alg_mkey &= ca_list[j]->algorithm_mkey;
if (!alg_mkey) {
found = 0;
break;
}
} else
alg_mkey = ca_list[j]->algorithm_mkey;
}
if (ca_list[j]->algorithm_auth) {
if (alg_auth) {
alg_auth &= ca_list[j]->algorithm_auth;
if (!alg_auth) {
found = 0;
break;
}
} else
alg_auth = ca_list[j]->algorithm_auth;
}
if (ca_list[j]->algorithm_enc) {
if (alg_enc) {
alg_enc &= ca_list[j]->algorithm_enc;
if (!alg_enc) {
found = 0;
break;
}
} else
alg_enc = ca_list[j]->algorithm_enc;
}
if (ca_list[j]->algorithm_mac) {
if (alg_mac) {
alg_mac &= ca_list[j]->algorithm_mac;
if (!alg_mac) {
found = 0;
break;
}
} else
alg_mac = ca_list[j]->algorithm_mac;
}
if (ca_list[j]->algo_strength & SSL_EXP_MASK) {
if (algo_strength & SSL_EXP_MASK) {
algo_strength &=
(ca_list[j]->algo_strength & SSL_EXP_MASK) |
~SSL_EXP_MASK;
if (!(algo_strength & SSL_EXP_MASK)) {
found = 0;
break;
}
} else
algo_strength |= ca_list[j]->algo_strength & SSL_EXP_MASK;
}
if (ca_list[j]->algo_strength & SSL_STRONG_MASK) {
if (algo_strength & SSL_STRONG_MASK) {
algo_strength &=
(ca_list[j]->algo_strength & SSL_STRONG_MASK) |
~SSL_STRONG_MASK;
if (!(algo_strength & SSL_STRONG_MASK)) {
found = 0;
break;
}
} else
algo_strength |=
ca_list[j]->algo_strength & SSL_STRONG_MASK;
}
if (ca_list[j]->valid) {
/*
* explicit ciphersuite found; its protocol version does not
* become part of the search pattern!
*/
cipher_id = ca_list[j]->id;
} else {
/*
* not an explicit ciphersuite; only in this case, the
* protocol version is considered part of the search pattern
*/
if (ca_list[j]->algorithm_ssl) {
if (alg_ssl) {
alg_ssl &= ca_list[j]->algorithm_ssl;
if (!alg_ssl) {
found = 0;
break;
}
} else
alg_ssl = ca_list[j]->algorithm_ssl;
}
}
if (!multi)
break;
}
/*
* Ok, we have the rule, now apply it
*/
if (rule == CIPHER_SPECIAL) { /* special command */
ok = 0;
if ((buflen == 8) && !strncmp(buf, "STRENGTH", 8))
ok = ssl_cipher_strength_sort(head_p, tail_p);
else
SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR,
SSL_R_INVALID_COMMAND);
if (ok == 0)
retval = 0;
/*
* We do not support any "multi" options
* together with "@", so throw away the
* rest of the command, if any left, until
* end or ':' is found.
*/
while ((*l != '\0') && !ITEM_SEP(*l))
l++;
} else if (found) {
ssl_cipher_apply_rule(cipher_id,
alg_mkey, alg_auth, alg_enc, alg_mac,
alg_ssl, algo_strength, rule, -1, head_p,
tail_p);
} else {
while ((*l != '\0') && !ITEM_SEP(*l))
l++;
}
if (*l == '\0')
break; /* done */
}
return (retval);
}
#ifndef OPENSSL_NO_EC
static int check_suiteb_cipher_list(const SSL_METHOD *meth, CERT *c,
const char **prule_str)
{
unsigned int suiteb_flags = 0, suiteb_comb2 = 0;
if (strncmp(*prule_str, "SUITEB128ONLY", 13) == 0) {
suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS_ONLY;
} else if (strncmp(*prule_str, "SUITEB128C2", 11) == 0) {
suiteb_comb2 = 1;
suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
} else if (strncmp(*prule_str, "SUITEB128", 9) == 0) {
suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
} else if (strncmp(*prule_str, "SUITEB192", 9) == 0) {
suiteb_flags = SSL_CERT_FLAG_SUITEB_192_LOS;
}
if (suiteb_flags) {
c->cert_flags &= ~SSL_CERT_FLAG_SUITEB_128_LOS;
c->cert_flags |= suiteb_flags;
} else
suiteb_flags = c->cert_flags & SSL_CERT_FLAG_SUITEB_128_LOS;
if (!suiteb_flags)
return 1;
/* Check version: if TLS 1.2 ciphers allowed we can use Suite B */
if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_TLS1_2_CIPHERS)) {
if (meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS)
SSLerr(SSL_F_CHECK_SUITEB_CIPHER_LIST,
SSL_R_ONLY_DTLS_1_2_ALLOWED_IN_SUITEB_MODE);
else
SSLerr(SSL_F_CHECK_SUITEB_CIPHER_LIST,
SSL_R_ONLY_TLS_1_2_ALLOWED_IN_SUITEB_MODE);
return 0;
}
# ifndef OPENSSL_NO_ECDH
switch (suiteb_flags) {
case SSL_CERT_FLAG_SUITEB_128_LOS:
if (suiteb_comb2)
*prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
else
*prule_str =
"ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384";
break;
case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
*prule_str = "ECDHE-ECDSA-AES128-GCM-SHA256";
break;
case SSL_CERT_FLAG_SUITEB_192_LOS:
*prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
break;
}
/* Set auto ECDH parameter determination */
c->ecdh_tmp_auto = 1;
return 1;
# else
SSLerr(SSL_F_CHECK_SUITEB_CIPHER_LIST,
SSL_R_ECDH_REQUIRED_FOR_SUITEB_MODE);
return 0;
# endif
}
#endif
STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(const SSL_METHOD *ssl_method, STACK_OF(SSL_CIPHER)
**cipher_list, STACK_OF(SSL_CIPHER)
**cipher_list_by_id,
const char *rule_str, CERT *c)
{
int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases;
unsigned long disabled_mkey, disabled_auth, disabled_enc, disabled_mac,
disabled_ssl;
STACK_OF(SSL_CIPHER) *cipherstack, *tmp_cipher_list;
const char *rule_p;
CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
const SSL_CIPHER **ca_list = NULL;
/*
* Return with error if nothing to do.
*/
if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL)
return NULL;
#ifndef OPENSSL_NO_EC
if (!check_suiteb_cipher_list(ssl_method, c, &rule_str))
return NULL;
#endif
/*
* To reduce the work to do we only want to process the compiled
* in algorithms, so we first get the mask of disabled ciphers.
*/
ssl_cipher_get_disabled(&disabled_mkey, &disabled_auth, &disabled_enc,
&disabled_mac, &disabled_ssl);
/*
* Now we have to collect the available ciphers from the compiled
* in ciphers. We cannot get more than the number compiled in, so
* it is used for allocation.
*/
num_of_ciphers = ssl_method->num_ciphers();
#ifdef KSSL_DEBUG
fprintf(stderr, "ssl_create_cipher_list() for %d ciphers\n",
num_of_ciphers);
#endif /* KSSL_DEBUG */
co_list =
(CIPHER_ORDER *)OPENSSL_malloc(sizeof(CIPHER_ORDER) * num_of_ciphers);
if (co_list == NULL) {
SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
return (NULL); /* Failure */
}
ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers,
disabled_mkey, disabled_auth, disabled_enc,
disabled_mac, disabled_ssl, co_list, &head,
&tail);
/* Now arrange all ciphers by preference: */
/*
* Everything else being equal, prefer ephemeral ECDH over other key
* exchange mechanisms
*/
ssl_cipher_apply_rule(0, SSL_kEECDH, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head,
&tail);
ssl_cipher_apply_rule(0, SSL_kEECDH, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head,
&tail);
/* AES is our preferred symmetric cipher */
ssl_cipher_apply_rule(0, 0, 0, SSL_AES, 0, 0, 0, CIPHER_ADD, -1, &head,
&tail);
/* Temporarily enable everything else for sorting */
ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail);
/* Low priority for MD5 */
ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head,
&tail);
/*
* Move anonymous ciphers to the end. Usually, these will remain
* disabled. (For applications that allow them, they aren't too bad, but
* we prefer authenticated ciphers.)
*/
ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
&tail);
/* Move ciphers without forward secrecy to the end */
ssl_cipher_apply_rule(0, 0, SSL_aECDH, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
&tail);
/*
* ssl_cipher_apply_rule(0, 0, SSL_aDH, 0, 0, 0, 0, CIPHER_ORD, -1,
* &head, &tail);
*/
ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
&tail);
ssl_cipher_apply_rule(0, SSL_kPSK, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
&tail);
ssl_cipher_apply_rule(0, SSL_kKRB5, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
&tail);
/* RC4 is sort-of broken -- move the the end */
ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head,
&tail);
/*
* Now sort by symmetric encryption strength. The above ordering remains
* in force within each class
*/
if (!ssl_cipher_strength_sort(&head, &tail)) {
OPENSSL_free(co_list);
return NULL;
}
/* Now disable everything (maintaining the ordering!) */
ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail);
/*
* We also need cipher aliases for selecting based on the rule_str.
* There might be two types of entries in the rule_str: 1) names
* of ciphers themselves 2) aliases for groups of ciphers.
* For 1) we need the available ciphers and for 2) the cipher
* groups of cipher_aliases added together in one list (otherwise
* we would be happy with just the cipher_aliases table).
*/
num_of_group_aliases = sizeof(cipher_aliases) / sizeof(SSL_CIPHER);
num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1;
ca_list = OPENSSL_malloc(sizeof(SSL_CIPHER *) * num_of_alias_max);
if (ca_list == NULL) {
OPENSSL_free(co_list);
SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
return (NULL); /* Failure */
}
ssl_cipher_collect_aliases(ca_list, num_of_group_aliases,
disabled_mkey, disabled_auth, disabled_enc,
disabled_mac, disabled_ssl, head);
/*
* If the rule_string begins with DEFAULT, apply the default rule
* before using the (possibly available) additional rules.
*/
ok = 1;
rule_p = rule_str;
if (strncmp(rule_str, "DEFAULT", 7) == 0) {
ok = ssl_cipher_process_rulestr(SSL_DEFAULT_CIPHER_LIST,
&head, &tail, ca_list);
rule_p += 7;
if (*rule_p == ':')
rule_p++;
}
if (ok && (strlen(rule_p) > 0))
ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list);
OPENSSL_free((void *)ca_list); /* Not needed anymore */
if (!ok) { /* Rule processing failure */
OPENSSL_free(co_list);
return (NULL);
}
/*
* Allocate new "cipherstack" for the result, return with error
* if we cannot get one.
*/
if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) {
OPENSSL_free(co_list);
return (NULL);
}
/*
* The cipher selection for the list is done. The ciphers are added
* to the resulting precedence to the STACK_OF(SSL_CIPHER).
*/
for (curr = head; curr != NULL; curr = curr->next) {
#ifdef OPENSSL_FIPS
if (curr->active
&& (!FIPS_mode() || curr->cipher->algo_strength & SSL_FIPS))
#else
if (curr->active)
#endif
{
sk_SSL_CIPHER_push(cipherstack, curr->cipher);
#ifdef CIPHER_DEBUG
fprintf(stderr, "<%s>\n", curr->cipher->name);
#endif
}
}
OPENSSL_free(co_list); /* Not needed any longer */
tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack);
if (tmp_cipher_list == NULL) {
sk_SSL_CIPHER_free(cipherstack);
return NULL;
}
if (*cipher_list != NULL)
sk_SSL_CIPHER_free(*cipher_list);
*cipher_list = cipherstack;
if (*cipher_list_by_id != NULL)
sk_SSL_CIPHER_free(*cipher_list_by_id);
*cipher_list_by_id = tmp_cipher_list;
(void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id,
ssl_cipher_ptr_id_cmp);
sk_SSL_CIPHER_sort(*cipher_list_by_id);
return (cipherstack);
}
char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len)
{
int is_export, pkl, kl;
const char *ver, *exp_str;
const char *kx, *au, *enc, *mac;
unsigned long alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl, alg2;
#ifdef KSSL_DEBUG
static const char *format =
"%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s%s AL=%lx/%lx/%lx/%lx/%lx\n";
#else
static const char *format =
"%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s%s\n";
#endif /* KSSL_DEBUG */
alg_mkey = cipher->algorithm_mkey;
alg_auth = cipher->algorithm_auth;
alg_enc = cipher->algorithm_enc;
alg_mac = cipher->algorithm_mac;
alg_ssl = cipher->algorithm_ssl;
alg2 = cipher->algorithm2;
is_export = SSL_C_IS_EXPORT(cipher);
pkl = SSL_C_EXPORT_PKEYLENGTH(cipher);
kl = SSL_C_EXPORT_KEYLENGTH(cipher);
exp_str = is_export ? " export" : "";
if (alg_ssl & SSL_SSLV2)
ver = "SSLv2";
else if (alg_ssl & SSL_SSLV3)
ver = "SSLv3";
else if (alg_ssl & SSL_TLSV1_2)
ver = "TLSv1.2";
else
ver = "unknown";
switch (alg_mkey) {
case SSL_kRSA:
kx = is_export ? (pkl == 512 ? "RSA(512)" : "RSA(1024)") : "RSA";
break;
case SSL_kDHr:
kx = "DH/RSA";
break;
case SSL_kDHd:
kx = "DH/DSS";
break;
case SSL_kKRB5:
kx = "KRB5";
break;
case SSL_kEDH:
kx = is_export ? (pkl == 512 ? "DH(512)" : "DH(1024)") : "DH";
break;
case SSL_kECDHr:
kx = "ECDH/RSA";
break;
case SSL_kECDHe:
kx = "ECDH/ECDSA";
break;
case SSL_kEECDH:
kx = "ECDH";
break;
case SSL_kPSK:
kx = "PSK";
break;
case SSL_kSRP:
kx = "SRP";
break;
case SSL_kGOST:
kx = "GOST";
break;
default:
kx = "unknown";
}
switch (alg_auth) {
case SSL_aRSA:
au = "RSA";
break;
case SSL_aDSS:
au = "DSS";
break;
case SSL_aDH:
au = "DH";
break;
case SSL_aKRB5:
au = "KRB5";
break;
case SSL_aECDH:
au = "ECDH";
break;
case SSL_aNULL:
au = "None";
break;
case SSL_aECDSA:
au = "ECDSA";
break;
case SSL_aPSK:
au = "PSK";
break;
case SSL_aSRP:
au = "SRP";
break;
case SSL_aGOST94:
au = "GOST94";
break;
case SSL_aGOST01:
au = "GOST01";
break;
default:
au = "unknown";
break;
}
switch (alg_enc) {
case SSL_DES:
enc = (is_export && kl == 5) ? "DES(40)" : "DES(56)";
break;
case SSL_3DES:
enc = "3DES(168)";
break;
case SSL_RC4:
enc = is_export ? (kl == 5 ? "RC4(40)" : "RC4(56)")
: ((alg2 & SSL2_CF_8_BYTE_ENC) ? "RC4(64)" : "RC4(128)");
break;
case SSL_RC2:
enc = is_export ? (kl == 5 ? "RC2(40)" : "RC2(56)") : "RC2(128)";
break;
case SSL_IDEA:
enc = "IDEA(128)";
break;
case SSL_eNULL:
enc = "None";
break;
case SSL_AES128:
enc = "AES(128)";
break;
case SSL_AES256:
enc = "AES(256)";
break;
case SSL_AES128GCM:
enc = "AESGCM(128)";
break;
case SSL_AES256GCM:
enc = "AESGCM(256)";
break;
case SSL_CAMELLIA128:
enc = "Camellia(128)";
break;
case SSL_CAMELLIA256:
enc = "Camellia(256)";
break;
case SSL_SEED:
enc = "SEED(128)";
break;
case SSL_eGOST2814789CNT:
enc = "GOST89(256)";
break;
default:
enc = "unknown";
break;
}
switch (alg_mac) {
case SSL_MD5:
mac = "MD5";
break;
case SSL_SHA1:
mac = "SHA1";
break;
case SSL_SHA256:
mac = "SHA256";
break;
case SSL_SHA384:
mac = "SHA384";
break;
case SSL_AEAD:
mac = "AEAD";
break;
case SSL_GOST89MAC:
mac = "GOST89";
break;
case SSL_GOST94:
mac = "GOST94";
break;
default:
mac = "unknown";
break;
}
if (buf == NULL) {
len = 128;
buf = OPENSSL_malloc(len);
if (buf == NULL)
return ("OPENSSL_malloc Error");
} else if (len < 128)
return ("Buffer too small");
#ifdef KSSL_DEBUG
BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac,
exp_str, alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl);
#else
BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac,
exp_str);
#endif /* KSSL_DEBUG */
return (buf);
}
char *SSL_CIPHER_get_version(const SSL_CIPHER *c)
{
int i;
if (c == NULL)
return ("(NONE)");
i = (int)(c->id >> 24L);
if (i == 3)
return ("TLSv1/SSLv3");
else if (i == 2)
return ("SSLv2");
else
return ("unknown");
}
/* return the actual cipher being used */
const char *SSL_CIPHER_get_name(const SSL_CIPHER *c)
{
if (c != NULL)
return (c->name);
return ("(NONE)");
}
/* number of bits for symmetric cipher */
int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits)
{
int ret = 0;
if (c != NULL) {
if (alg_bits != NULL)
*alg_bits = c->alg_bits;
ret = c->strength_bits;
}
return (ret);
}
unsigned long SSL_CIPHER_get_id(const SSL_CIPHER *c)
{
return c->id;
}
SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n)
{
SSL_COMP *ctmp;
int i, nn;
if ((n == 0) || (sk == NULL))
return (NULL);
nn = sk_SSL_COMP_num(sk);
for (i = 0; i < nn; i++) {
ctmp = sk_SSL_COMP_value(sk, i);
if (ctmp->id == n)
return (ctmp);
}
return (NULL);
}
#ifdef OPENSSL_NO_COMP
void *SSL_COMP_get_compression_methods(void)
{
return NULL;
}
int SSL_COMP_add_compression_method(int id, void *cm)
{
return 1;
}
const char *SSL_COMP_get_name(const void *comp)
{
return NULL;
}
#else
STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
{
load_builtin_compressions();
return (ssl_comp_methods);
}
STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
*meths)
{
STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods;
ssl_comp_methods = meths;
return old_meths;
}
static void cmeth_free(SSL_COMP *cm)
{
OPENSSL_free(cm);
}
void SSL_COMP_free_compression_methods(void)
{
STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods;
ssl_comp_methods = NULL;
sk_SSL_COMP_pop_free(old_meths, cmeth_free);
}
int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
{
SSL_COMP *comp;
if (cm == NULL || cm->type == NID_undef)
return 1;
/*-
* According to draft-ietf-tls-compression-04.txt, the
* compression number ranges should be the following:
*
* 0 to 63: methods defined by the IETF
* 64 to 192: external party methods assigned by IANA
* 193 to 255: reserved for private use
*/
if (id < 193 || id > 255) {
SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,
SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE);
return 0;
}
MemCheck_off();
comp = (SSL_COMP *)OPENSSL_malloc(sizeof(SSL_COMP));
comp->id = id;
comp->method = cm;
load_builtin_compressions();
if (ssl_comp_methods && sk_SSL_COMP_find(ssl_comp_methods, comp) >= 0) {
OPENSSL_free(comp);
MemCheck_on();
SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,
SSL_R_DUPLICATE_COMPRESSION_ID);
return (1);
} else if ((ssl_comp_methods == NULL)
|| !sk_SSL_COMP_push(ssl_comp_methods, comp)) {
OPENSSL_free(comp);
MemCheck_on();
SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD, ERR_R_MALLOC_FAILURE);
return (1);
} else {
MemCheck_on();
return (0);
}
}
const char *SSL_COMP_get_name(const COMP_METHOD *comp)
{
if (comp)
return comp->name;
return NULL;
}
#endif
/* For a cipher return the index corresponding to the certificate type */
int ssl_cipher_get_cert_index(const SSL_CIPHER *c)
{
unsigned long alg_k, alg_a;
alg_k = c->algorithm_mkey;
alg_a = c->algorithm_auth;
if (alg_k & (SSL_kECDHr | SSL_kECDHe)) {
/*
* we don't need to look at SSL_kEECDH since no certificate is needed
* for anon ECDH and for authenticated EECDH, the check for the auth
* algorithm will set i correctly NOTE: For ECDH-RSA, we need an ECC
* not an RSA cert but for EECDH-RSA we need an RSA cert. Placing the
* checks for SSL_kECDH before RSA checks ensures the correct cert is
* chosen.
*/
return SSL_PKEY_ECC;
} else if (alg_a & SSL_aECDSA)
return SSL_PKEY_ECC;
else if (alg_k & SSL_kDHr)
return SSL_PKEY_DH_RSA;
else if (alg_k & SSL_kDHd)
return SSL_PKEY_DH_DSA;
else if (alg_a & SSL_aDSS)
return SSL_PKEY_DSA_SIGN;
else if (alg_a & SSL_aRSA)
return SSL_PKEY_RSA_ENC;
else if (alg_a & SSL_aKRB5)
/* VRS something else here? */
return -1;
else if (alg_a & SSL_aGOST94)
return SSL_PKEY_GOST94;
else if (alg_a & SSL_aGOST01)
return SSL_PKEY_GOST01;
return -1;
}
const SSL_CIPHER *ssl_get_cipher_by_char(SSL *ssl, const unsigned char *ptr)
{
const SSL_CIPHER *c;
c = ssl->method->get_cipher_by_char(ptr);
if (c == NULL || c->valid == 0)
return NULL;
return c;
}
const SSL_CIPHER *SSL_CIPHER_find(SSL *ssl, const unsigned char *ptr)
{
return ssl->method->get_cipher_by_char(ptr);
}