godot/drivers/gles3/shaders/scene.glsl
clayjohn 51ed3aef63 Vertex and attribute compression to reduce the size of the vertex format.
This allows Godot to automatically compress meshes to save a lot of bandwidth.

In general, this requires no interaction from the user and should result in
no noticable quality loss.

This scheme is not backwards compatible, so we have provided an upgrade
mechanism, and a mesh versioning mechanism.

Existing meshes can still be used as a result, but users can get a
performance boost by reimporting assets.
2023-10-05 12:02:23 -06:00

1813 lines
53 KiB
GLSL

/* clang-format off */
#[modes]
mode_color =
mode_color_instancing = \n#define USE_INSTANCING
mode_depth = #define MODE_RENDER_DEPTH
mode_depth_instancing = #define MODE_RENDER_DEPTH \n#define USE_INSTANCING
#[specializations]
DISABLE_LIGHTMAP = false
DISABLE_LIGHT_DIRECTIONAL = false
DISABLE_LIGHT_OMNI = false
DISABLE_LIGHT_SPOT = false
DISABLE_FOG = false
USE_RADIANCE_MAP = true
USE_MULTIVIEW = false
RENDER_SHADOWS = false
RENDER_SHADOWS_LINEAR = false
SHADOW_MODE_PCF_5 = false
SHADOW_MODE_PCF_13 = false
LIGHT_USE_PSSM2 = false
LIGHT_USE_PSSM4 = false
LIGHT_USE_PSSM_BLEND = false
BASE_PASS = true
USE_ADDITIVE_LIGHTING = false
// We can only use one type of light per additive pass. This means that if USE_ADDITIVE_LIGHTING is defined, and
// these are false, we are doing a directional light pass.
ADDITIVE_OMNI = false
ADDITIVE_SPOT = false
#[vertex]
#define M_PI 3.14159265359
#define SHADER_IS_SRGB true
#include "stdlib_inc.glsl"
#if !defined(MODE_RENDER_DEPTH) || defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) ||defined(LIGHT_CLEARCOAT_USED)
#ifndef NORMAL_USED
#define NORMAL_USED
#endif
#endif
#ifdef MODE_UNSHADED
#ifdef USE_ADDITIVE_LIGHTING
#undef USE_ADDITIVE_LIGHTING
#endif
#endif // MODE_UNSHADED
/*
from RenderingServer:
ARRAY_VERTEX = 0, // RGB32F or RGBA16
ARRAY_NORMAL = 1, // RG16 octahedral compression or RGBA16 normal + angle
ARRAY_TANGENT = 2, // RG16 octahedral compression, sign stored in sign of G
ARRAY_COLOR = 3, // RGBA8
ARRAY_TEX_UV = 4, // RG32F
ARRAY_TEX_UV2 = 5, // RG32F
ARRAY_CUSTOM0 = 6, // Depends on ArrayCustomFormat.
ARRAY_CUSTOM1 = 7,
ARRAY_CUSTOM2 = 8,
ARRAY_CUSTOM3 = 9,
ARRAY_BONES = 10, // RGBA16UI (x2 if 8 weights)
ARRAY_WEIGHTS = 11, // RGBA16UNORM (x2 if 8 weights)
*/
/* INPUT ATTRIBS */
// Always contains vertex position in XYZ, can contain tangent angle in W.
layout(location = 0) in highp vec4 vertex_angle_attrib;
/* clang-format on */
#ifdef NORMAL_USED
// Contains Normal/Axis in RG, can contain tangent in BA.
layout(location = 1) in vec4 axis_tangent_attrib;
#endif
// location 2 is unused.
#if defined(COLOR_USED)
layout(location = 3) in vec4 color_attrib;
#endif
#ifdef UV_USED
layout(location = 4) in vec2 uv_attrib;
#endif
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
layout(location = 5) in vec2 uv2_attrib;
#endif
#if defined(CUSTOM0_USED)
layout(location = 6) in vec4 custom0_attrib;
#endif
#if defined(CUSTOM1_USED)
layout(location = 7) in vec4 custom1_attrib;
#endif
#if defined(CUSTOM2_USED)
layout(location = 8) in vec4 custom2_attrib;
#endif
#if defined(CUSTOM3_USED)
layout(location = 9) in vec4 custom3_attrib;
#endif
#if defined(BONES_USED)
layout(location = 10) in uvec4 bone_attrib;
#endif
#if defined(WEIGHTS_USED)
layout(location = 11) in vec4 weight_attrib;
#endif
vec3 oct_to_vec3(vec2 e) {
vec3 v = vec3(e.xy, 1.0 - abs(e.x) - abs(e.y));
float t = max(-v.z, 0.0);
v.xy += t * -sign(v.xy);
return normalize(v);
}
void axis_angle_to_tbn(vec3 axis, float angle, out vec3 tangent, out vec3 binormal, out vec3 normal) {
float c = cos(angle);
float s = sin(angle);
vec3 omc_axis = (1.0 - c) * axis;
vec3 s_axis = s * axis;
tangent = omc_axis.xxx * axis + vec3(c, -s_axis.z, s_axis.y);
binormal = omc_axis.yyy * axis + vec3(s_axis.z, c, -s_axis.x);
normal = omc_axis.zzz * axis + vec3(-s_axis.y, s_axis.x, c);
}
#ifdef USE_INSTANCING
layout(location = 12) in highp vec4 instance_xform0;
layout(location = 13) in highp vec4 instance_xform1;
layout(location = 14) in highp vec4 instance_xform2;
layout(location = 15) in highp uvec4 instance_color_custom_data; // Color packed into xy, Custom data into zw.
#endif
layout(std140) uniform GlobalShaderUniformData { //ubo:1
vec4 global_shader_uniforms[MAX_GLOBAL_SHADER_UNIFORMS];
};
layout(std140) uniform SceneData { // ubo:2
highp mat4 projection_matrix;
highp mat4 inv_projection_matrix;
highp mat4 inv_view_matrix;
highp mat4 view_matrix;
vec2 viewport_size;
vec2 screen_pixel_size;
mediump vec4 ambient_light_color_energy;
mediump float ambient_color_sky_mix;
bool material_uv2_mode;
float emissive_exposure_normalization;
bool use_ambient_light;
bool use_ambient_cubemap;
bool use_reflection_cubemap;
float fog_aerial_perspective;
float time;
mat3 radiance_inverse_xform;
uint directional_light_count;
float z_far;
float z_near;
float IBL_exposure_normalization;
bool fog_enabled;
float fog_density;
float fog_height;
float fog_height_density;
vec3 fog_light_color;
float fog_sun_scatter;
float shadow_bias;
float pad;
uint camera_visible_layers;
bool pancake_shadows;
}
scene_data;
#ifdef USE_ADDITIVE_LIGHTING
#if defined(ADDITIVE_OMNI) || defined(ADDITIVE_SPOT)
struct PositionalShadowData {
highp mat4 shadow_matrix;
highp vec3 light_position;
highp float shadow_normal_bias;
vec3 pad;
highp float shadow_atlas_pixel_size;
};
layout(std140) uniform PositionalShadows { // ubo:9
PositionalShadowData positional_shadows[MAX_LIGHT_DATA_STRUCTS];
};
uniform lowp uint positional_shadow_index;
#else // ADDITIVE_DIRECTIONAL
struct DirectionalShadowData {
highp vec3 direction;
highp float shadow_atlas_pixel_size;
highp vec4 shadow_normal_bias;
highp vec4 shadow_split_offsets;
highp mat4 shadow_matrix1;
highp mat4 shadow_matrix2;
highp mat4 shadow_matrix3;
highp mat4 shadow_matrix4;
mediump float fade_from;
mediump float fade_to;
mediump vec2 pad;
};
layout(std140) uniform DirectionalShadows { // ubo:10
DirectionalShadowData directional_shadows[MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS];
};
uniform lowp uint directional_shadow_index;
#endif // !(defined(ADDITIVE_OMNI) || defined(ADDITIVE_SPOT))
#endif // USE_ADDITIVE_LIGHTING
#ifdef USE_MULTIVIEW
layout(std140) uniform MultiviewData { // ubo:8
highp mat4 projection_matrix_view[MAX_VIEWS];
highp mat4 inv_projection_matrix_view[MAX_VIEWS];
highp vec4 eye_offset[MAX_VIEWS];
}
multiview_data;
#endif
uniform highp mat4 world_transform;
uniform highp vec3 compressed_aabb_position;
uniform highp vec3 compressed_aabb_size;
uniform highp vec4 uv_scale;
/* Varyings */
out highp vec3 vertex_interp;
#ifdef NORMAL_USED
out vec3 normal_interp;
#endif
#if defined(COLOR_USED)
out vec4 color_interp;
#endif
#if defined(UV_USED)
out vec2 uv_interp;
#endif
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
out vec2 uv2_interp;
#endif
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
out vec3 tangent_interp;
out vec3 binormal_interp;
#endif
#ifdef USE_ADDITIVE_LIGHTING
out highp vec4 shadow_coord;
#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4)
out highp vec4 shadow_coord2;
#endif
#ifdef LIGHT_USE_PSSM4
out highp vec4 shadow_coord3;
out highp vec4 shadow_coord4;
#endif //LIGHT_USE_PSSM4
#endif
#ifdef MATERIAL_UNIFORMS_USED
/* clang-format off */
layout(std140) uniform MaterialUniforms { // ubo:3
#MATERIAL_UNIFORMS
};
/* clang-format on */
#endif
/* clang-format off */
#GLOBALS
/* clang-format on */
invariant gl_Position;
void main() {
highp vec3 vertex = vertex_angle_attrib.xyz * compressed_aabb_size + compressed_aabb_position;
highp mat4 model_matrix = world_transform;
#ifdef USE_INSTANCING
highp mat4 m = mat4(instance_xform0, instance_xform1, instance_xform2, vec4(0.0, 0.0, 0.0, 1.0));
model_matrix = model_matrix * transpose(m);
#endif
#ifdef NORMAL_USED
vec3 normal = oct_to_vec3(axis_tangent_attrib.xy * 2.0 - 1.0);
#endif
highp mat3 model_normal_matrix = mat3(model_matrix);
#if defined(NORMAL_USED) || defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
vec3 binormal;
float binormal_sign;
vec3 tangent;
if (axis_tangent_attrib.z > 0.0 || axis_tangent_attrib.w < 1.0) {
// Uncompressed format.
vec2 signed_tangent_attrib = axis_tangent_attrib.zw * 2.0 - 1.0;
tangent = oct_to_vec3(vec2(signed_tangent_attrib.x, abs(signed_tangent_attrib.y) * 2.0 - 1.0));
binormal_sign = sign(signed_tangent_attrib.y);
binormal = normalize(cross(normal, tangent) * binormal_sign);
} else {
// Compressed format.
float angle = vertex_angle_attrib.w;
binormal_sign = angle > 0.5 ? 1.0 : -1.0; // 0.5 does not exist in UNORM16, so values are either greater or smaller.
angle = abs(angle * 2.0 - 1.0) * M_PI; // 0.5 is basically zero, allowing to encode both signs reliably.
vec3 axis = normal;
axis_angle_to_tbn(axis, angle, tangent, binormal, normal);
binormal *= binormal_sign;
}
#endif
#if defined(COLOR_USED)
color_interp = color_attrib;
#ifdef USE_INSTANCING
vec4 instance_color = vec4(unpackHalf2x16(instance_color_custom_data.x), unpackHalf2x16(instance_color_custom_data.y));
color_interp *= instance_color;
#endif
#endif
#if defined(UV_USED)
uv_interp = uv_attrib;
#endif
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
uv2_interp = uv2_attrib;
#endif
if (uv_scale != vec4(0.0)) { // Compression enabled
#ifdef UV_USED
uv_interp = (uv_interp - 0.5) * uv_scale.xy;
#endif
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
uv2_interp = (uv2_interp - 0.5) * uv_scale.zw;
#endif
}
#if defined(OVERRIDE_POSITION)
highp vec4 position;
#endif
#ifdef USE_MULTIVIEW
mat4 projection_matrix = multiview_data.projection_matrix_view[ViewIndex];
mat4 inv_projection_matrix = multiview_data.inv_projection_matrix_view[ViewIndex];
vec3 eye_offset = multiview_data.eye_offset[ViewIndex].xyz;
#else
mat4 projection_matrix = scene_data.projection_matrix;
mat4 inv_projection_matrix = scene_data.inv_projection_matrix;
vec3 eye_offset = vec3(0.0, 0.0, 0.0);
#endif //USE_MULTIVIEW
#ifdef USE_INSTANCING
vec4 instance_custom = vec4(unpackHalf2x16(instance_color_custom_data.z), unpackHalf2x16(instance_color_custom_data.w));
#else
vec4 instance_custom = vec4(0.0);
#endif
// Using world coordinates
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
vertex = (model_matrix * vec4(vertex, 1.0)).xyz;
#ifdef NORMAL_USED
normal = model_normal_matrix * normal;
#endif
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
tangent = model_normal_matrix * tangent;
binormal = model_normal_matrix * binormal;
#endif
#endif
float roughness = 1.0;
highp mat4 modelview = scene_data.view_matrix * model_matrix;
highp mat3 modelview_normal = mat3(scene_data.view_matrix) * model_normal_matrix;
float point_size = 1.0;
{
#CODE : VERTEX
}
gl_PointSize = point_size;
// Using local coordinates (default)
#if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED)
vertex = (modelview * vec4(vertex, 1.0)).xyz;
#ifdef NORMAL_USED
normal = modelview_normal * normal;
#endif
#endif
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
binormal = modelview_normal * binormal;
tangent = modelview_normal * tangent;
#endif
// Using world coordinates
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
vertex = (scene_data.view_matrix * vec4(vertex, 1.0)).xyz;
#ifdef NORMAL_USED
normal = (scene_data.view_matrix * vec4(normal, 0.0)).xyz;
#endif
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
binormal = (scene_data.view_matrix * vec4(binormal, 0.0)).xyz;
tangent = (scene_data.view_matrix * vec4(tangent, 0.0)).xyz;
#endif
#endif
vertex_interp = vertex;
#ifdef NORMAL_USED
normal_interp = normal;
#endif
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
tangent_interp = tangent;
binormal_interp = binormal;
#endif
// Calculate shadows.
#ifdef USE_ADDITIVE_LIGHTING
#if defined(ADDITIVE_OMNI) || defined(ADDITIVE_SPOT)
// Apply normal bias at draw time to avoid issues with scaling non-fused geometry.
vec3 light_rel_vec = positional_shadows[positional_shadow_index].light_position - vertex_interp;
float light_length = length(light_rel_vec);
float aNdotL = abs(dot(normalize(normal_interp), normalize(light_rel_vec)));
vec3 normal_offset = (1.0 - aNdotL) * positional_shadows[positional_shadow_index].shadow_normal_bias * light_length * normal_interp;
#ifdef ADDITIVE_SPOT
// Calculate coord here so we can take advantage of prefetch.
shadow_coord = positional_shadows[positional_shadow_index].shadow_matrix * vec4(vertex_interp + normal_offset, 1.0);
#endif
#ifdef ADDITIVE_OMNI
// Can't interpolate unit direction nicely, so forget about prefetch.
shadow_coord = vec4(vertex_interp + normal_offset, 1.0);
#endif
#else // ADDITIVE_DIRECTIONAL
vec3 base_normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(directional_shadows[directional_shadow_index].direction, -normalize(normal_interp))));
vec3 normal_offset = base_normal_bias * directional_shadows[directional_shadow_index].shadow_normal_bias.x;
shadow_coord = directional_shadows[directional_shadow_index].shadow_matrix1 * vec4(vertex_interp + normal_offset, 1.0);
#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4)
normal_offset = base_normal_bias * directional_shadows[directional_shadow_index].shadow_normal_bias.y;
shadow_coord2 = directional_shadows[directional_shadow_index].shadow_matrix2 * vec4(vertex_interp + normal_offset, 1.0);
#endif
#ifdef LIGHT_USE_PSSM4
normal_offset = base_normal_bias * directional_shadows[directional_shadow_index].shadow_normal_bias.z;
shadow_coord3 = directional_shadows[directional_shadow_index].shadow_matrix3 * vec4(vertex_interp + normal_offset, 1.0);
normal_offset = base_normal_bias * directional_shadows[directional_shadow_index].shadow_normal_bias.w;
shadow_coord4 = directional_shadows[directional_shadow_index].shadow_matrix4 * vec4(vertex_interp + normal_offset, 1.0);
#endif //LIGHT_USE_PSSM4
#endif // !(defined(ADDITIVE_OMNI) || defined(ADDITIVE_SPOT))
#endif // USE_ADDITIVE_LIGHTING
#if defined(RENDER_SHADOWS) && !defined(RENDER_SHADOWS_LINEAR)
// This is an optimized version of normalize(vertex_interp) * scene_data.shadow_bias / length(vertex_interp).
float light_length_sq = dot(vertex_interp, vertex_interp);
vertex_interp += vertex_interp * scene_data.shadow_bias / light_length_sq;
#endif
#if defined(OVERRIDE_POSITION)
gl_Position = position;
#else
gl_Position = projection_matrix * vec4(vertex_interp, 1.0);
#endif
}
/* clang-format off */
#[fragment]
// Default to SPECULAR_SCHLICK_GGX.
#if !defined(SPECULAR_DISABLED) && !defined(SPECULAR_SCHLICK_GGX) && !defined(SPECULAR_TOON)
#define SPECULAR_SCHLICK_GGX
#endif
#if !defined(MODE_RENDER_DEPTH) || defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) ||defined(LIGHT_CLEARCOAT_USED)
#ifndef NORMAL_USED
#define NORMAL_USED
#endif
#endif
#ifdef MODE_UNSHADED
#ifdef USE_ADDITIVE_LIGHTING
#undef USE_ADDITIVE_LIGHTING
#endif
#endif // MODE_UNSHADED
#ifndef MODE_RENDER_DEPTH
#include "tonemap_inc.glsl"
#endif
#include "stdlib_inc.glsl"
/* texture unit usage, N is max_texture_unit-N
1-color correction // In tonemap_inc.glsl
2-radiance
3-shadow
5-screen
6-depth
*/
#define M_PI 3.14159265359
/* clang-format on */
#define SHADER_IS_SRGB true
/* Varyings */
#if defined(COLOR_USED)
in vec4 color_interp;
#endif
#if defined(UV_USED)
in vec2 uv_interp;
#endif
#if defined(UV2_USED)
in vec2 uv2_interp;
#else
#ifdef USE_LIGHTMAP
in vec2 uv2_interp;
#endif
#endif
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
in vec3 tangent_interp;
in vec3 binormal_interp;
#endif
#ifdef NORMAL_USED
in vec3 normal_interp;
#endif
in highp vec3 vertex_interp;
#ifdef USE_ADDITIVE_LIGHTING
in highp vec4 shadow_coord;
#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4)
in highp vec4 shadow_coord2;
#endif
#ifdef LIGHT_USE_PSSM4
in highp vec4 shadow_coord3;
in highp vec4 shadow_coord4;
#endif //LIGHT_USE_PSSM4
#endif
#ifdef USE_RADIANCE_MAP
#define RADIANCE_MAX_LOD 5.0
uniform samplerCube radiance_map; // texunit:-2
#endif
layout(std140) uniform GlobalShaderUniformData { //ubo:1
vec4 global_shader_uniforms[MAX_GLOBAL_SHADER_UNIFORMS];
};
/* Material Uniforms */
#ifdef MATERIAL_UNIFORMS_USED
/* clang-format off */
layout(std140) uniform MaterialUniforms { // ubo:3
#MATERIAL_UNIFORMS
};
/* clang-format on */
#endif
layout(std140) uniform SceneData { // ubo:2
highp mat4 projection_matrix;
highp mat4 inv_projection_matrix;
highp mat4 inv_view_matrix;
highp mat4 view_matrix;
vec2 viewport_size;
vec2 screen_pixel_size;
mediump vec4 ambient_light_color_energy;
mediump float ambient_color_sky_mix;
bool material_uv2_mode;
float emissive_exposure_normalization;
bool use_ambient_light;
bool use_ambient_cubemap;
bool use_reflection_cubemap;
float fog_aerial_perspective;
float time;
mat3 radiance_inverse_xform;
uint directional_light_count;
float z_far;
float z_near;
float IBL_exposure_normalization;
bool fog_enabled;
float fog_density;
float fog_height;
float fog_height_density;
vec3 fog_light_color;
float fog_sun_scatter;
float shadow_bias;
float pad;
uint camera_visible_layers;
bool pancake_shadows;
}
scene_data;
#ifdef USE_MULTIVIEW
layout(std140) uniform MultiviewData { // ubo:8
highp mat4 projection_matrix_view[MAX_VIEWS];
highp mat4 inv_projection_matrix_view[MAX_VIEWS];
highp vec4 eye_offset[MAX_VIEWS];
}
multiview_data;
#endif
/* clang-format off */
#GLOBALS
/* clang-format on */
#ifndef MODE_RENDER_DEPTH
// Directional light data.
#if !defined(DISABLE_LIGHT_DIRECTIONAL) || (!defined(ADDITIVE_OMNI) && !defined(ADDITIVE_SPOT))
struct DirectionalLightData {
mediump vec3 direction;
mediump float energy;
mediump vec3 color;
mediump float size;
mediump vec2 pad;
mediump float shadow_opacity;
mediump float specular;
};
layout(std140) uniform DirectionalLights { // ubo:7
DirectionalLightData directional_lights[MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS];
};
#if defined(USE_ADDITIVE_LIGHTING) && (!defined(ADDITIVE_OMNI) && !defined(ADDITIVE_SPOT))
// Directional shadows can be in the base pass or in the additive passes
uniform highp sampler2DShadow directional_shadow_atlas; // texunit:-3
#endif // defined(USE_ADDITIVE_LIGHTING) && (!defined(ADDITIVE_OMNI) && !defined(ADDITIVE_SPOT))
#endif // !DISABLE_LIGHT_DIRECTIONAL
// Omni and spot light data.
#if !defined(DISABLE_LIGHT_OMNI) || !defined(DISABLE_LIGHT_SPOT) || defined(ADDITIVE_OMNI) || defined(ADDITIVE_SPOT)
struct LightData { // This structure needs to be as packed as possible.
highp vec3 position;
highp float inv_radius;
mediump vec3 direction;
highp float size;
mediump vec3 color;
mediump float attenuation;
mediump float cone_attenuation;
mediump float cone_angle;
mediump float specular_amount;
mediump float shadow_opacity;
};
#if !defined(DISABLE_LIGHT_OMNI) || defined(ADDITIVE_OMNI)
layout(std140) uniform OmniLightData { // ubo:5
LightData omni_lights[MAX_LIGHT_DATA_STRUCTS];
};
#ifdef BASE_PASS
uniform uint omni_light_indices[MAX_FORWARD_LIGHTS];
uniform uint omni_light_count;
#endif // BASE_PASS
#endif // DISABLE_LIGHT_OMNI
#if !defined(DISABLE_LIGHT_SPOT) || defined(ADDITIVE_SPOT)
layout(std140) uniform SpotLightData { // ubo:6
LightData spot_lights[MAX_LIGHT_DATA_STRUCTS];
};
#ifdef BASE_PASS
uniform uint spot_light_indices[MAX_FORWARD_LIGHTS];
uniform uint spot_light_count;
#endif // BASE_PASS
#endif // DISABLE_LIGHT_SPOT
#endif // !defined(DISABLE_LIGHT_OMNI) || !defined(DISABLE_LIGHT_SPOT)
#ifdef USE_ADDITIVE_LIGHTING
#ifdef ADDITIVE_OMNI
uniform highp samplerCubeShadow omni_shadow_texture; // texunit:-3
uniform lowp uint omni_light_index;
#endif
#ifdef ADDITIVE_SPOT
uniform highp sampler2DShadow spot_shadow_texture; // texunit:-3
uniform lowp uint spot_light_index;
#endif
#if defined(ADDITIVE_OMNI) || defined(ADDITIVE_SPOT)
struct PositionalShadowData {
highp mat4 shadow_matrix;
highp vec3 light_position;
highp float shadow_normal_bias;
vec3 pad;
highp float shadow_atlas_pixel_size;
};
layout(std140) uniform PositionalShadows { // ubo:9
PositionalShadowData positional_shadows[MAX_LIGHT_DATA_STRUCTS];
};
uniform lowp uint positional_shadow_index;
#else // ADDITIVE_DIRECTIONAL
struct DirectionalShadowData {
highp vec3 direction;
highp float shadow_atlas_pixel_size;
highp vec4 shadow_normal_bias;
highp vec4 shadow_split_offsets;
highp mat4 shadow_matrix1;
highp mat4 shadow_matrix2;
highp mat4 shadow_matrix3;
highp mat4 shadow_matrix4;
mediump float fade_from;
mediump float fade_to;
mediump vec2 pad;
};
layout(std140) uniform DirectionalShadows { // ubo:10
DirectionalShadowData directional_shadows[MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS];
};
uniform lowp uint directional_shadow_index;
#endif // !(defined(ADDITIVE_OMNI) || defined(ADDITIVE_SPOT))
#if !defined(ADDITIVE_OMNI)
float sample_shadow(highp sampler2DShadow shadow, float shadow_pixel_size, vec4 pos) {
float avg = textureProj(shadow, pos);
#ifdef SHADOW_MODE_PCF_13
pos /= pos.w;
avg += textureProj(shadow, vec4(pos.xy + vec2(shadow_pixel_size * 2.0, 0.0), pos.zw));
avg += textureProj(shadow, vec4(pos.xy + vec2(-shadow_pixel_size * 2.0, 0.0), pos.zw));
avg += textureProj(shadow, vec4(pos.xy + vec2(0.0, shadow_pixel_size * 2.0), pos.zw));
avg += textureProj(shadow, vec4(pos.xy + vec2(0.0, -shadow_pixel_size * 2.0), pos.zw));
// Early bail if distant samples are fully shaded (or none are shaded) to improve performance.
if (avg <= 0.000001) {
// None shaded at all.
return 0.0;
} else if (avg >= 4.999999) {
// All fully shaded.
return 1.0;
}
avg += textureProj(shadow, vec4(pos.xy + vec2(shadow_pixel_size, 0.0), pos.zw));
avg += textureProj(shadow, vec4(pos.xy + vec2(-shadow_pixel_size, 0.0), pos.zw));
avg += textureProj(shadow, vec4(pos.xy + vec2(0.0, shadow_pixel_size), pos.zw));
avg += textureProj(shadow, vec4(pos.xy + vec2(0.0, -shadow_pixel_size), pos.zw));
avg += textureProj(shadow, vec4(pos.xy + vec2(shadow_pixel_size, shadow_pixel_size), pos.zw));
avg += textureProj(shadow, vec4(pos.xy + vec2(-shadow_pixel_size, shadow_pixel_size), pos.zw));
avg += textureProj(shadow, vec4(pos.xy + vec2(shadow_pixel_size, -shadow_pixel_size), pos.zw));
avg += textureProj(shadow, vec4(pos.xy + vec2(-shadow_pixel_size, -shadow_pixel_size), pos.zw));
return avg * (1.0 / 13.0);
#endif
#ifdef SHADOW_MODE_PCF_5
pos /= pos.w;
avg += textureProj(shadow, vec4(pos.xy + vec2(shadow_pixel_size, 0.0), pos.zw));
avg += textureProj(shadow, vec4(pos.xy + vec2(-shadow_pixel_size, 0.0), pos.zw));
avg += textureProj(shadow, vec4(pos.xy + vec2(0.0, shadow_pixel_size), pos.zw));
avg += textureProj(shadow, vec4(pos.xy + vec2(0.0, -shadow_pixel_size), pos.zw));
return avg * (1.0 / 5.0);
#endif
return avg;
}
#endif //!defined(ADDITIVE_OMNI)
#endif // USE_ADDITIVE_LIGHTING
#endif // !MODE_RENDER_DEPTH
#ifdef USE_MULTIVIEW
uniform highp sampler2DArray depth_buffer; // texunit:-6
uniform highp sampler2DArray color_buffer; // texunit:-5
vec3 multiview_uv(vec2 uv) {
return vec3(uv, ViewIndex);
}
#else
uniform highp sampler2D depth_buffer; // texunit:-6
uniform highp sampler2D color_buffer; // texunit:-5
vec2 multiview_uv(vec2 uv) {
return uv;
}
#endif
uniform highp mat4 world_transform;
uniform mediump float opaque_prepass_threshold;
layout(location = 0) out vec4 frag_color;
vec3 F0(float metallic, float specular, vec3 albedo) {
float dielectric = 0.16 * specular * specular;
// use albedo * metallic as colored specular reflectance at 0 angle for metallic materials;
// see https://google.github.io/filament/Filament.md.html
return mix(vec3(dielectric), albedo, vec3(metallic));
}
#ifndef MODE_RENDER_DEPTH
#if !defined(DISABLE_LIGHT_DIRECTIONAL) || !defined(DISABLE_LIGHT_OMNI) || !defined(DISABLE_LIGHT_SPOT) || defined(USE_ADDITIVE_LIGHTING)
float D_GGX(float cos_theta_m, float alpha) {
float a = cos_theta_m * alpha;
float k = alpha / (1.0 - cos_theta_m * cos_theta_m + a * a);
return k * k * (1.0 / M_PI);
}
// From Earl Hammon, Jr. "PBR Diffuse Lighting for GGX+Smith Microsurfaces" https://www.gdcvault.com/play/1024478/PBR-Diffuse-Lighting-for-GGX
float V_GGX(float NdotL, float NdotV, float alpha) {
return 0.5 / mix(2.0 * NdotL * NdotV, NdotL + NdotV, alpha);
}
float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
float alpha2 = alpha_x * alpha_y;
highp vec3 v = vec3(alpha_y * cos_phi, alpha_x * sin_phi, alpha2 * cos_theta_m);
highp float v2 = dot(v, v);
float w2 = alpha2 / v2;
float D = alpha2 * w2 * w2 * (1.0 / M_PI);
return D;
}
float V_GGX_anisotropic(float alpha_x, float alpha_y, float TdotV, float TdotL, float BdotV, float BdotL, float NdotV, float NdotL) {
float Lambda_V = NdotL * length(vec3(alpha_x * TdotV, alpha_y * BdotV, NdotV));
float Lambda_L = NdotV * length(vec3(alpha_x * TdotL, alpha_y * BdotL, NdotL));
return 0.5 / (Lambda_V + Lambda_L);
}
float SchlickFresnel(float u) {
float m = 1.0 - u;
float m2 = m * m;
return m2 * m2 * m; // pow(m,5)
}
void light_compute(vec3 N, vec3 L, vec3 V, float A, vec3 light_color, bool is_directional, float attenuation, vec3 f0, float roughness, float metallic, float specular_amount, vec3 albedo, inout float alpha,
#ifdef LIGHT_BACKLIGHT_USED
vec3 backlight,
#endif
#ifdef LIGHT_RIM_USED
float rim, float rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
float clearcoat, float clearcoat_roughness, vec3 vertex_normal,
#endif
#ifdef LIGHT_ANISOTROPY_USED
vec3 B, vec3 T, float anisotropy,
#endif
inout vec3 diffuse_light, inout vec3 specular_light) {
#if defined(USE_LIGHT_SHADER_CODE)
// light is written by the light shader
highp mat4 model_matrix = world_transform;
mat4 projection_matrix = scene_data.projection_matrix;
mat4 inv_projection_matrix = scene_data.inv_projection_matrix;
vec3 normal = N;
vec3 light = L;
vec3 view = V;
/* clang-format off */
#CODE : LIGHT
/* clang-format on */
#else
float NdotL = min(A + dot(N, L), 1.0);
float cNdotL = max(NdotL, 0.0); // clamped NdotL
float NdotV = dot(N, V);
float cNdotV = max(NdotV, 1e-4);
#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
vec3 H = normalize(V + L);
#endif
#if defined(SPECULAR_SCHLICK_GGX)
float cNdotH = clamp(A + dot(N, H), 0.0, 1.0);
#endif
#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
float cLdotH = clamp(A + dot(L, H), 0.0, 1.0);
#endif
if (metallic < 1.0) {
float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
#if defined(DIFFUSE_LAMBERT_WRAP)
// Energy conserving lambert wrap shader.
// https://web.archive.org/web/20210228210901/http://blog.stevemcauley.com/2011/12/03/energy-conserving-wrapped-diffuse/
diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness))) * (1.0 / M_PI);
#elif defined(DIFFUSE_TOON)
diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL) * (1.0 / M_PI);
#elif defined(DIFFUSE_BURLEY)
{
float FD90_minus_1 = 2.0 * cLdotH * cLdotH * roughness - 0.5;
float FdV = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotV);
float FdL = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotL);
diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL;
}
#else
// Lambert
diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
#endif
diffuse_light += light_color * diffuse_brdf_NL * attenuation;
#if defined(LIGHT_BACKLIGHT_USED)
diffuse_light += light_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * backlight * attenuation;
#endif
#if defined(LIGHT_RIM_USED)
// Epsilon min to prevent pow(0, 0) singularity which results in undefined behavior.
float rim_light = pow(max(1e-4, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0));
diffuse_light += rim_light * rim * mix(vec3(1.0), albedo, rim_tint) * light_color;
#endif
}
if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely
// D
#if defined(SPECULAR_TOON)
vec3 R = normalize(-reflect(L, N));
float RdotV = dot(R, V);
float mid = 1.0 - roughness;
mid *= mid;
float intensity = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid;
diffuse_light += light_color * intensity * attenuation * specular_amount; // write to diffuse_light, as in toon shading you generally want no reflection
#elif defined(SPECULAR_DISABLED)
// none..
#elif defined(SPECULAR_SCHLICK_GGX)
// shlick+ggx as default
float alpha_ggx = roughness * roughness;
#if defined(LIGHT_ANISOTROPY_USED)
float aspect = sqrt(1.0 - anisotropy * 0.9);
float ax = alpha_ggx / aspect;
float ay = alpha_ggx * aspect;
float XdotH = dot(T, H);
float YdotH = dot(B, H);
float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH);
float G = V_GGX_anisotropic(ax, ay, dot(T, V), dot(T, L), dot(B, V), dot(B, L), cNdotV, cNdotL);
#else
float D = D_GGX(cNdotH, alpha_ggx);
float G = V_GGX(cNdotL, cNdotV, alpha_ggx);
#endif // LIGHT_ANISOTROPY_USED
// F
float cLdotH5 = SchlickFresnel(cLdotH);
// Calculate Fresnel using cheap approximate specular occlusion term from Filament:
// https://google.github.io/filament/Filament.html#lighting/occlusion/specularocclusion
float f90 = clamp(50.0 * f0.g, 0.0, 1.0);
vec3 F = f0 + (f90 - f0) * cLdotH5;
vec3 specular_brdf_NL = cNdotL * D * F * G;
specular_light += specular_brdf_NL * light_color * attenuation * specular_amount;
#endif
#if defined(LIGHT_CLEARCOAT_USED)
// Clearcoat ignores normal_map, use vertex normal instead
float ccNdotL = max(min(A + dot(vertex_normal, L), 1.0), 0.0);
float ccNdotH = clamp(A + dot(vertex_normal, H), 0.0, 1.0);
float ccNdotV = max(dot(vertex_normal, V), 1e-4);
#if !defined(SPECULAR_SCHLICK_GGX)
float cLdotH5 = SchlickFresnel(cLdotH);
#endif
float Dr = D_GGX(ccNdotH, mix(0.001, 0.1, clearcoat_roughness));
float Gr = 0.25 / (cLdotH * cLdotH);
float Fr = mix(.04, 1.0, cLdotH5);
float clearcoat_specular_brdf_NL = clearcoat * Gr * Fr * Dr * cNdotL;
specular_light += clearcoat_specular_brdf_NL * light_color * attenuation * specular_amount;
// TODO: Clearcoat adds light to the scene right now (it is non-energy conserving), both diffuse and specular need to be scaled by (1.0 - FR)
// but to do so we need to rearrange this entire function
#endif // LIGHT_CLEARCOAT_USED
}
#ifdef USE_SHADOW_TO_OPACITY
alpha = min(alpha, clamp(1.0 - attenuation, 0.0, 1.0));
#endif
#endif // USE_LIGHT_SHADER_CODE
}
float get_omni_spot_attenuation(float distance, float inv_range, float decay) {
float nd = distance * inv_range;
nd *= nd;
nd *= nd; // nd^4
nd = max(1.0 - nd, 0.0);
nd *= nd; // nd^2
return nd * pow(max(distance, 0.0001), -decay);
}
#if !defined(DISABLE_LIGHT_OMNI) || defined(ADDITIVE_OMNI)
void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 f0, float roughness, float metallic, float shadow, vec3 albedo, inout float alpha,
#ifdef LIGHT_BACKLIGHT_USED
vec3 backlight,
#endif
#ifdef LIGHT_RIM_USED
float rim, float rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
float clearcoat, float clearcoat_roughness, vec3 vertex_normal,
#endif
#ifdef LIGHT_ANISOTROPY_USED
vec3 binormal, vec3 tangent, float anisotropy,
#endif
inout vec3 diffuse_light, inout vec3 specular_light) {
vec3 light_rel_vec = omni_lights[idx].position - vertex;
float light_length = length(light_rel_vec);
float omni_attenuation = get_omni_spot_attenuation(light_length, omni_lights[idx].inv_radius, omni_lights[idx].attenuation);
vec3 color = omni_lights[idx].color;
float size_A = 0.0;
if (omni_lights[idx].size > 0.0) {
float t = omni_lights[idx].size / max(0.001, light_length);
size_A = max(0.0, 1.0 - 1.0 / sqrt(1.0 + t * t));
}
omni_attenuation *= shadow;
light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color, false, omni_attenuation, f0, roughness, metallic, omni_lights[idx].specular_amount, albedo, alpha,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
#ifdef LIGHT_RIM_USED
rim * omni_attenuation, rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
clearcoat, clearcoat_roughness, vertex_normal,
#endif
#ifdef LIGHT_ANISOTROPY_USED
binormal, tangent, anisotropy,
#endif
diffuse_light,
specular_light);
}
#endif // !DISABLE_LIGHT_OMNI
#if !defined(DISABLE_LIGHT_SPOT) || defined(ADDITIVE_SPOT)
void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 f0, float roughness, float metallic, float shadow, vec3 albedo, inout float alpha,
#ifdef LIGHT_BACKLIGHT_USED
vec3 backlight,
#endif
#ifdef LIGHT_RIM_USED
float rim, float rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
float clearcoat, float clearcoat_roughness, vec3 vertex_normal,
#endif
#ifdef LIGHT_ANISOTROPY_USED
vec3 binormal, vec3 tangent, float anisotropy,
#endif
inout vec3 diffuse_light,
inout vec3 specular_light) {
vec3 light_rel_vec = spot_lights[idx].position - vertex;
float light_length = length(light_rel_vec);
float spot_attenuation = get_omni_spot_attenuation(light_length, spot_lights[idx].inv_radius, spot_lights[idx].attenuation);
vec3 spot_dir = spot_lights[idx].direction;
float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_lights[idx].cone_angle);
float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_lights[idx].cone_angle));
spot_attenuation *= 1.0 - pow(spot_rim, spot_lights[idx].cone_attenuation);
vec3 color = spot_lights[idx].color;
float size_A = 0.0;
if (spot_lights[idx].size > 0.0) {
float t = spot_lights[idx].size / max(0.001, light_length);
size_A = max(0.0, 1.0 - 1.0 / sqrt(1.0 + t * t));
}
spot_attenuation *= shadow;
light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color, false, spot_attenuation, f0, roughness, metallic, spot_lights[idx].specular_amount, albedo, alpha,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
#ifdef LIGHT_RIM_USED
rim * spot_attenuation, rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
clearcoat, clearcoat_roughness, vertex_normal,
#endif
#ifdef LIGHT_ANISOTROPY_USED
binormal, tangent, anisotropy,
#endif
diffuse_light, specular_light);
}
#endif // !defined(DISABLE_LIGHT_SPOT) || defined(ADDITIVE_SPOT)
#endif // !defined(DISABLE_LIGHT_DIRECTIONAL) || !defined(DISABLE_LIGHT_OMNI) || !defined(DISABLE_LIGHT_SPOT)
vec4 fog_process(vec3 vertex) {
vec3 fog_color = scene_data.fog_light_color;
#ifdef USE_RADIANCE_MAP
/*
if (scene_data.fog_aerial_perspective > 0.0) {
vec3 sky_fog_color = vec3(0.0);
vec3 cube_view = scene_data.radiance_inverse_xform * vertex;
// mip_level always reads from the second mipmap and higher so the fog is always slightly blurred
float mip_level = mix(1.0 / MAX_ROUGHNESS_LOD, 1.0, 1.0 - (abs(vertex.z) - scene_data.z_near) / (scene_data.z_far - scene_data.z_near));
sky_fog_color = textureLod(radiance_map, cube_view, mip_level * RADIANCE_MAX_LOD).rgb;
fog_color = mix(fog_color, sky_fog_color, scene_data.fog_aerial_perspective);
}
*/
#endif
#ifndef DISABLE_LIGHT_DIRECTIONAL
if (scene_data.fog_sun_scatter > 0.001) {
vec4 sun_scatter = vec4(0.0);
float sun_total = 0.0;
vec3 view = normalize(vertex);
for (uint i = uint(0); i < scene_data.directional_light_count; i++) {
vec3 light_color = directional_lights[i].color * directional_lights[i].energy;
float light_amount = pow(max(dot(view, directional_lights[i].direction), 0.0), 8.0);
fog_color += light_color * light_amount * scene_data.fog_sun_scatter;
}
}
#endif // !DISABLE_LIGHT_DIRECTIONAL
float fog_amount = 1.0 - exp(min(0.0, -length(vertex) * scene_data.fog_density));
if (abs(scene_data.fog_height_density) >= 0.0001) {
float y = (scene_data.inv_view_matrix * vec4(vertex, 1.0)).y;
float y_dist = y - scene_data.fog_height;
float vfog_amount = 1.0 - exp(min(0.0, y_dist * scene_data.fog_height_density));
fog_amount = max(vfog_amount, fog_amount);
}
return vec4(fog_color, fog_amount);
}
#endif // !MODE_RENDER_DEPTH
void main() {
//lay out everything, whatever is unused is optimized away anyway
vec3 vertex = vertex_interp;
#ifdef USE_MULTIVIEW
vec3 eye_offset = multiview_data.eye_offset[ViewIndex].xyz;
vec3 view = -normalize(vertex_interp - eye_offset);
mat4 projection_matrix = multiview_data.projection_matrix_view[ViewIndex];
mat4 inv_projection_matrix = multiview_data.inv_projection_matrix_view[ViewIndex];
#else
vec3 eye_offset = vec3(0.0, 0.0, 0.0);
vec3 view = -normalize(vertex_interp);
mat4 projection_matrix = scene_data.projection_matrix;
mat4 inv_projection_matrix = scene_data.inv_projection_matrix;
#endif
highp mat4 model_matrix = world_transform;
vec3 albedo = vec3(1.0);
vec3 backlight = vec3(0.0);
vec4 transmittance_color = vec4(0.0, 0.0, 0.0, 1.0);
float transmittance_depth = 0.0;
float transmittance_boost = 0.0;
float metallic = 0.0;
float specular = 0.5;
vec3 emission = vec3(0.0);
float roughness = 1.0;
float rim = 0.0;
float rim_tint = 0.0;
float clearcoat = 0.0;
float clearcoat_roughness = 0.0;
float anisotropy = 0.0;
vec2 anisotropy_flow = vec2(1.0, 0.0);
#ifndef FOG_DISABLED
vec4 fog = vec4(0.0);
#endif // !FOG_DISABLED
#if defined(CUSTOM_RADIANCE_USED)
vec4 custom_radiance = vec4(0.0);
#endif
#if defined(CUSTOM_IRRADIANCE_USED)
vec4 custom_irradiance = vec4(0.0);
#endif
float ao = 1.0;
float ao_light_affect = 0.0;
float alpha = 1.0;
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
vec3 binormal = normalize(binormal_interp);
vec3 tangent = normalize(tangent_interp);
#else
vec3 binormal = vec3(0.0);
vec3 tangent = vec3(0.0);
#endif
#ifdef NORMAL_USED
vec3 normal = normalize(normal_interp);
#if defined(DO_SIDE_CHECK)
if (!gl_FrontFacing) {
normal = -normal;
}
#endif
#endif //NORMAL_USED
#ifdef UV_USED
vec2 uv = uv_interp;
#endif
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
vec2 uv2 = uv2_interp;
#endif
#if defined(COLOR_USED)
vec4 color = color_interp;
#endif
#if defined(NORMAL_MAP_USED)
vec3 normal_map = vec3(0.5);
#endif
float normal_map_depth = 1.0;
vec2 screen_uv = gl_FragCoord.xy * scene_data.screen_pixel_size;
float sss_strength = 0.0;
#ifdef ALPHA_SCISSOR_USED
float alpha_scissor_threshold = 1.0;
#endif // ALPHA_SCISSOR_USED
#ifdef ALPHA_HASH_USED
float alpha_hash_scale = 1.0;
#endif // ALPHA_HASH_USED
#ifdef ALPHA_ANTIALIASING_EDGE_USED
float alpha_antialiasing_edge = 0.0;
vec2 alpha_texture_coordinate = vec2(0.0, 0.0);
#endif // ALPHA_ANTIALIASING_EDGE_USED
{
#CODE : FRAGMENT
}
#ifndef USE_SHADOW_TO_OPACITY
#if defined(ALPHA_SCISSOR_USED)
if (alpha < alpha_scissor_threshold) {
discard;
}
#else
#ifdef MODE_RENDER_DEPTH
#ifdef USE_OPAQUE_PREPASS
if (alpha < opaque_prepass_threshold) {
discard;
}
#endif // USE_OPAQUE_PREPASS
#endif // MODE_RENDER_DEPTH
#endif // !ALPHA_SCISSOR_USED
#endif // !USE_SHADOW_TO_OPACITY
#ifdef NORMAL_MAP_USED
normal_map.xy = normal_map.xy * 2.0 - 1.0;
normal_map.z = sqrt(max(0.0, 1.0 - dot(normal_map.xy, normal_map.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc.
normal = normalize(mix(normal, tangent * normal_map.x + binormal * normal_map.y + normal * normal_map.z, normal_map_depth));
#endif
#ifdef LIGHT_ANISOTROPY_USED
if (anisotropy > 0.01) {
//rotation matrix
mat3 rot = mat3(tangent, binormal, normal);
//make local to space
tangent = normalize(rot * vec3(anisotropy_flow.x, anisotropy_flow.y, 0.0));
binormal = normalize(rot * vec3(-anisotropy_flow.y, anisotropy_flow.x, 0.0));
}
#endif
#ifndef MODE_RENDER_DEPTH
#ifndef FOG_DISABLED
#ifndef CUSTOM_FOG_USED
#ifndef DISABLE_FOG
// fog must be processed as early as possible and then packed.
// to maximize VGPR usage
if (scene_data.fog_enabled) {
fog = fog_process(vertex);
}
#endif // !DISABLE_FOG
#endif // !CUSTOM_FOG_USED
uint fog_rg = packHalf2x16(fog.rg);
uint fog_ba = packHalf2x16(fog.ba);
#endif // !FOG_DISABLED
// Convert colors to linear
albedo = srgb_to_linear(albedo);
emission = srgb_to_linear(emission);
// TODO Backlight and transmittance when used
#ifndef MODE_UNSHADED
vec3 f0 = F0(metallic, specular, albedo);
vec3 specular_light = vec3(0.0, 0.0, 0.0);
vec3 diffuse_light = vec3(0.0, 0.0, 0.0);
vec3 ambient_light = vec3(0.0, 0.0, 0.0);
#ifdef BASE_PASS
/////////////////////// LIGHTING //////////////////////////////
// IBL precalculations
float ndotv = clamp(dot(normal, view), 0.0, 1.0);
vec3 F = f0 + (max(vec3(1.0 - roughness), f0) - f0) * pow(1.0 - ndotv, 5.0);
#ifdef USE_RADIANCE_MAP
if (scene_data.use_reflection_cubemap) {
#ifdef LIGHT_ANISOTROPY_USED
// https://google.github.io/filament/Filament.html#lighting/imagebasedlights/anisotropy
vec3 anisotropic_direction = anisotropy >= 0.0 ? binormal : tangent;
vec3 anisotropic_tangent = cross(anisotropic_direction, view);
vec3 anisotropic_normal = cross(anisotropic_tangent, anisotropic_direction);
vec3 bent_normal = normalize(mix(normal, anisotropic_normal, abs(anisotropy) * clamp(5.0 * roughness, 0.0, 1.0)));
vec3 ref_vec = reflect(-view, bent_normal);
#else
vec3 ref_vec = reflect(-view, normal);
#endif
ref_vec = mix(ref_vec, normal, roughness * roughness);
float horizon = min(1.0 + dot(ref_vec, normal), 1.0);
ref_vec = scene_data.radiance_inverse_xform * ref_vec;
specular_light = textureLod(radiance_map, ref_vec, sqrt(roughness) * RADIANCE_MAX_LOD).rgb;
specular_light = srgb_to_linear(specular_light);
specular_light *= horizon * horizon;
specular_light *= scene_data.ambient_light_color_energy.a;
}
#endif
// Calculate Reflection probes
// Calculate Lightmaps
#if defined(CUSTOM_RADIANCE_USED)
specular_light = mix(specular_light, custom_radiance.rgb, custom_radiance.a);
#endif // CUSTOM_RADIANCE_USED
#ifndef USE_LIGHTMAP
//lightmap overrides everything
if (scene_data.use_ambient_light) {
ambient_light = scene_data.ambient_light_color_energy.rgb;
#ifdef USE_RADIANCE_MAP
if (scene_data.use_ambient_cubemap) {
vec3 ambient_dir = scene_data.radiance_inverse_xform * normal;
vec3 cubemap_ambient = textureLod(radiance_map, ambient_dir, RADIANCE_MAX_LOD).rgb;
cubemap_ambient = srgb_to_linear(cubemap_ambient);
ambient_light = mix(ambient_light, cubemap_ambient * scene_data.ambient_light_color_energy.a, scene_data.ambient_color_sky_mix);
}
#endif
}
#endif // USE_LIGHTMAP
#if defined(CUSTOM_IRRADIANCE_USED)
ambient_light = mix(ambient_light, custom_irradiance.rgb, custom_irradiance.a);
#endif // CUSTOM_IRRADIANCE_USED
{
#if defined(AMBIENT_LIGHT_DISABLED)
ambient_light = vec3(0.0, 0.0, 0.0);
#else
ambient_light *= albedo.rgb;
ambient_light *= ao;
#endif // AMBIENT_LIGHT_DISABLED
}
// convert ao to direct light ao
ao = mix(1.0, ao, ao_light_affect);
{
#if defined(DIFFUSE_TOON)
//simplify for toon, as
specular_light *= specular * metallic * albedo * 2.0;
#else
// scales the specular reflections, needs to be be computed before lighting happens,
// but after environment, GI, and reflection probes are added
// Environment brdf approximation (Lazarov 2013)
// see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);
vec4 r = roughness * c0 + c1;
float ndotv = clamp(dot(normal, view), 0.0, 1.0);
float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y;
vec2 env = vec2(-1.04, 1.04) * a004 + r.zw;
specular_light *= env.x * f0 + env.y * clamp(50.0 * f0.g, metallic, 1.0);
#endif
}
#ifndef DISABLE_LIGHT_DIRECTIONAL
for (uint i = uint(0); i < scene_data.directional_light_count; i++) {
light_compute(normal, normalize(directional_lights[i].direction), normalize(view), directional_lights[i].size, directional_lights[i].color * directional_lights[i].energy, true, 1.0, f0, roughness, metallic, 1.0, albedo, alpha,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
#ifdef LIGHT_RIM_USED
rim, rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
clearcoat, clearcoat_roughness, normalize(normal_interp),
#endif
#ifdef LIGHT_ANISOTROPY_USED
binormal,
tangent, anisotropy,
#endif
diffuse_light,
specular_light);
}
#endif // !DISABLE_LIGHT_DIRECTIONAL
#ifndef DISABLE_LIGHT_OMNI
for (uint i = 0u; i < MAX_FORWARD_LIGHTS; i++) {
if (i >= omni_light_count) {
break;
}
light_process_omni(omni_light_indices[i], vertex, view, normal, f0, roughness, metallic, 1.0, albedo, alpha,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
#ifdef LIGHT_RIM_USED
rim,
rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
clearcoat, clearcoat_roughness, normalize(normal_interp),
#endif
#ifdef LIGHT_ANISOTROPY_USED
binormal, tangent, anisotropy,
#endif
diffuse_light, specular_light);
}
#endif // !DISABLE_LIGHT_OMNI
#ifndef DISABLE_LIGHT_SPOT
for (uint i = 0u; i < MAX_FORWARD_LIGHTS; i++) {
if (i >= spot_light_count) {
break;
}
light_process_spot(spot_light_indices[i], vertex, view, normal, f0, roughness, metallic, 1.0, albedo, alpha,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
#ifdef LIGHT_RIM_USED
rim,
rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
clearcoat, clearcoat_roughness, normalize(normal_interp),
#endif
#ifdef LIGHT_ANISOTROPY_USED
tangent,
binormal, anisotropy,
#endif
diffuse_light, specular_light);
}
#endif // !DISABLE_LIGHT_SPOT
#endif // BASE_PASS
#endif // !MODE_UNSHADED
#endif // !MODE_RENDER_DEPTH
#if defined(USE_SHADOW_TO_OPACITY)
alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0));
#if defined(ALPHA_SCISSOR_USED)
if (alpha < alpha_scissor) {
discard;
}
#else
#ifdef MODE_RENDER_DEPTH
#ifdef USE_OPAQUE_PREPASS
if (alpha < opaque_prepass_threshold) {
discard;
}
#endif // USE_OPAQUE_PREPASS
#endif // MODE_RENDER_DEPTH
#endif // !ALPHA_SCISSOR_USED
#endif // USE_SHADOW_TO_OPACITY
#ifdef MODE_RENDER_DEPTH
#ifdef RENDER_SHADOWS_LINEAR
// Linearize the depth buffer if rendering cubemap shadows.
gl_FragDepth = (length(vertex) + scene_data.shadow_bias) / scene_data.z_far;
#endif
// Nothing happens, so a tree-ssa optimizer will result in no fragment shader :)
#else // !MODE_RENDER_DEPTH
#ifdef BASE_PASS
#ifdef MODE_UNSHADED
frag_color = vec4(albedo, alpha);
#else
diffuse_light *= albedo;
diffuse_light *= 1.0 - metallic;
ambient_light *= 1.0 - metallic;
frag_color = vec4(diffuse_light + specular_light, alpha);
frag_color.rgb += emission + ambient_light;
#endif //!MODE_UNSHADED
#ifndef FOG_DISABLED
fog = vec4(unpackHalf2x16(fog_rg), unpackHalf2x16(fog_ba));
#ifndef DISABLE_FOG
if (scene_data.fog_enabled) {
frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a);
}
#endif // !DISABLE_FOG
#endif // !FOG_DISABLED
// Tonemap before writing as we are writing to an sRGB framebuffer
frag_color.rgb *= exposure;
frag_color.rgb = apply_tonemapping(frag_color.rgb, white);
frag_color.rgb = linear_to_srgb(frag_color.rgb);
#ifdef USE_BCS
frag_color.rgb = apply_bcs(frag_color.rgb, bcs);
#endif
#ifdef USE_COLOR_CORRECTION
frag_color.rgb = apply_color_correction(frag_color.rgb, color_correction);
#endif
#else // !BASE_PASS
frag_color = vec4(0.0, 0.0, 0.0, alpha);
#endif // !BASE_PASS
/* ADDITIVE LIGHTING PASS */
#ifdef USE_ADDITIVE_LIGHTING
diffuse_light = vec3(0.0);
specular_light = vec3(0.0);
#if !defined(ADDITIVE_OMNI) && !defined(ADDITIVE_SPOT)
// Orthogonal shadows
#if !defined(LIGHT_USE_PSSM2) && !defined(LIGHT_USE_PSSM4)
float directional_shadow = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord);
#endif // !defined(LIGHT_USE_PSSM2) && !defined(LIGHT_USE_PSSM4)
// PSSM2 shadows
#ifdef LIGHT_USE_PSSM2
float depth_z = -vertex.z;
vec4 light_split_offsets = directional_shadows[directional_shadow_index].shadow_split_offsets;
//take advantage of prefetch
float shadow1 = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord);
float shadow2 = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord2);
float directional_shadow = 1.0;
if (depth_z < light_split_offsets.y) {
float pssm_fade = 0.0;
#ifdef LIGHT_USE_PSSM_BLEND
float directional_shadow2 = 1.0;
float pssm_blend = 0.0;
bool use_blend = true;
#endif
if (depth_z < light_split_offsets.x) {
float pssm_fade = 0.0;
directional_shadow = shadow1;
#ifdef LIGHT_USE_PSSM_BLEND
directional_shadow2 = shadow2;
pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
#endif
} else {
directional_shadow = shadow2;
pssm_fade = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
#ifdef LIGHT_USE_PSSM_BLEND
use_blend = false;
#endif
}
#ifdef LIGHT_USE_PSSM_BLEND
if (use_blend) {
directional_shadow = mix(directional_shadow, directional_shadow2, pssm_blend);
}
#endif
directional_shadow = mix(directional_shadow, 1.0, pssm_fade);
}
#endif //LIGHT_USE_PSSM2
// PSSM4 shadows
#ifdef LIGHT_USE_PSSM4
float depth_z = -vertex.z;
vec4 light_split_offsets = directional_shadows[directional_shadow_index].shadow_split_offsets;
float shadow1 = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord);
float shadow2 = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord2);
float shadow3 = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord3);
float shadow4 = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord4);
float directional_shadow = 1.0;
if (depth_z < light_split_offsets.w) {
float pssm_fade = 0.0;
#ifdef LIGHT_USE_PSSM_BLEND
float directional_shadow2 = 1.0;
float pssm_blend = 0.0;
bool use_blend = true;
#endif
if (depth_z < light_split_offsets.y) {
if (depth_z < light_split_offsets.x) {
directional_shadow = shadow1;
#ifdef LIGHT_USE_PSSM_BLEND
directional_shadow2 = shadow2;
pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
#endif
} else {
directional_shadow = shadow2;
#ifdef LIGHT_USE_PSSM_BLEND
directional_shadow2 = shadow3;
pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
#endif
}
} else {
if (depth_z < light_split_offsets.z) {
directional_shadow = shadow3;
#if defined(LIGHT_USE_PSSM_BLEND)
directional_shadow2 = shadow4;
pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z);
#endif
} else {
directional_shadow = shadow4;
pssm_fade = smoothstep(light_split_offsets.z, light_split_offsets.w, depth_z);
#if defined(LIGHT_USE_PSSM_BLEND)
use_blend = false;
#endif
}
}
#if defined(LIGHT_USE_PSSM_BLEND)
if (use_blend) {
directional_shadow = mix(directional_shadow, directional_shadow2, pssm_blend);
}
#endif
directional_shadow = mix(directional_shadow, 1.0, pssm_fade);
}
#endif //LIGHT_USE_PSSM4
directional_shadow = mix(directional_shadow, 1.0, smoothstep(directional_shadows[directional_shadow_index].fade_from, directional_shadows[directional_shadow_index].fade_to, vertex.z));
directional_shadow = mix(1.0, directional_shadow, directional_lights[directional_shadow_index].shadow_opacity);
light_compute(normal, normalize(directional_lights[directional_shadow_index].direction), normalize(view), directional_lights[directional_shadow_index].size, directional_lights[directional_shadow_index].color * directional_lights[directional_shadow_index].energy, true, directional_shadow, f0, roughness, metallic, 1.0, albedo, alpha,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
#ifdef LIGHT_RIM_USED
rim, rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
clearcoat, clearcoat_roughness, normalize(normal_interp),
#endif
#ifdef LIGHT_ANISOTROPY_USED
binormal,
tangent, anisotropy,
#endif
diffuse_light,
specular_light);
#endif // !defined(ADDITIVE_OMNI) && !defined(ADDITIVE_SPOT)
#ifdef ADDITIVE_OMNI
vec3 light_ray = ((positional_shadows[positional_shadow_index].shadow_matrix * vec4(shadow_coord.xyz, 1.0))).xyz;
float omni_shadow = texture(omni_shadow_texture, vec4(light_ray, length(light_ray) * omni_lights[omni_light_index].inv_radius));
omni_shadow = mix(1.0, omni_shadow, omni_lights[omni_light_index].shadow_opacity);
light_process_omni(omni_light_index, vertex, view, normal, f0, roughness, metallic, omni_shadow, albedo, alpha,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
#ifdef LIGHT_RIM_USED
rim,
rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
clearcoat, clearcoat_roughness, normalize(normal_interp),
#endif
#ifdef LIGHT_ANISOTROPY_USED
binormal, tangent, anisotropy,
#endif
diffuse_light, specular_light);
#endif // ADDITIVE_OMNI
#ifdef ADDITIVE_SPOT
float spot_shadow = sample_shadow(spot_shadow_texture, positional_shadows[positional_shadow_index].shadow_atlas_pixel_size, shadow_coord);
spot_shadow = mix(1.0, spot_shadow, spot_lights[spot_light_index].shadow_opacity);
light_process_spot(spot_light_index, vertex, view, normal, f0, roughness, metallic, spot_shadow, albedo, alpha,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
#ifdef LIGHT_RIM_USED
rim,
rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
clearcoat, clearcoat_roughness, normalize(normal_interp),
#endif
#ifdef LIGHT_ANISOTROPY_USED
tangent,
binormal, anisotropy,
#endif
diffuse_light, specular_light);
#endif // ADDITIVE_SPOT
diffuse_light *= albedo;
diffuse_light *= 1.0 - metallic;
vec3 additive_light_color = diffuse_light + specular_light;
#ifndef FOG_DISABLED
fog = vec4(unpackHalf2x16(fog_rg), unpackHalf2x16(fog_ba));
#ifndef DISABLE_FOG
if (scene_data.fog_enabled) {
additive_light_color *= (1.0 - fog.a);
}
#endif // !DISABLE_FOG
#endif // !FOG_DISABLED
// Tonemap before writing as we are writing to an sRGB framebuffer
additive_light_color *= exposure;
additive_light_color = apply_tonemapping(additive_light_color, white);
additive_light_color = linear_to_srgb(additive_light_color);
#ifdef USE_BCS
additive_light_color = apply_bcs(additive_light_color, bcs);
#endif
#ifdef USE_COLOR_CORRECTION
additive_light_color = apply_color_correction(additive_light_color, color_correction);
#endif
frag_color.rgb += additive_light_color;
#endif // USE_ADDITIVE_LIGHTING
#endif //!MODE_RENDER_DEPTH
}