godot/thirdparty/bullet/Bullet3OpenCL/ParallelPrimitives/b3RadixSort32CL.cpp
Rémi Verschelde e12c89e8c9 bullet: Streamline bundling, remove extraneous src/ folder
Document version and how to extract sources in thirdparty/README.md.
Drop unnecessary CMake and Premake files.
Simplify SCsub, drop unused one.
2018-01-13 14:08:45 +01:00

711 lines
20 KiB
C++

#include "b3RadixSort32CL.h"
#include "b3LauncherCL.h"
#include "Bullet3OpenCL/Initialize/b3OpenCLUtils.h"
#include "b3PrefixScanCL.h"
#include "b3FillCL.h"
#define RADIXSORT32_PATH "src/Bullet3OpenCL/ParallelPrimitives/kernels/RadixSort32Kernels.cl"
#include "kernels/RadixSort32KernelsCL.h"
b3RadixSort32CL::b3RadixSort32CL(cl_context ctx, cl_device_id device, cl_command_queue queue, int initialCapacity)
:m_commandQueue(queue)
{
b3OpenCLDeviceInfo info;
b3OpenCLUtils::getDeviceInfo(device,&info);
m_deviceCPU = (info.m_deviceType & CL_DEVICE_TYPE_CPU)!=0;
m_workBuffer1 = new b3OpenCLArray<unsigned int>(ctx,queue);
m_workBuffer2 = new b3OpenCLArray<unsigned int>(ctx,queue);
m_workBuffer3 = new b3OpenCLArray<b3SortData>(ctx,queue);
m_workBuffer3a = new b3OpenCLArray<unsigned int>(ctx,queue);
m_workBuffer4 = new b3OpenCLArray<b3SortData>(ctx,queue);
m_workBuffer4a = new b3OpenCLArray<unsigned int>(ctx,queue);
if (initialCapacity>0)
{
m_workBuffer1->resize(initialCapacity);
m_workBuffer3->resize(initialCapacity);
m_workBuffer3a->resize(initialCapacity);
m_workBuffer4->resize(initialCapacity);
m_workBuffer4a->resize(initialCapacity);
}
m_scan = new b3PrefixScanCL(ctx,device,queue);
m_fill = new b3FillCL(ctx,device,queue);
const char* additionalMacros = "";
cl_int pErrNum;
const char* kernelSource = radixSort32KernelsCL;
cl_program sortProg = b3OpenCLUtils::compileCLProgramFromString( ctx, device, kernelSource, &pErrNum,additionalMacros, RADIXSORT32_PATH);
b3Assert(sortProg);
m_streamCountSortDataKernel = b3OpenCLUtils::compileCLKernelFromString( ctx, device, kernelSource, "StreamCountSortDataKernel", &pErrNum, sortProg,additionalMacros );
b3Assert(m_streamCountSortDataKernel );
m_streamCountKernel = b3OpenCLUtils::compileCLKernelFromString( ctx, device, kernelSource, "StreamCountKernel", &pErrNum, sortProg,additionalMacros );
b3Assert(m_streamCountKernel);
if (m_deviceCPU)
{
m_sortAndScatterSortDataKernel = b3OpenCLUtils::compileCLKernelFromString( ctx, device, kernelSource, "SortAndScatterSortDataKernelSerial", &pErrNum, sortProg,additionalMacros );
b3Assert(m_sortAndScatterSortDataKernel);
m_sortAndScatterKernel = b3OpenCLUtils::compileCLKernelFromString( ctx, device, kernelSource, "SortAndScatterKernelSerial", &pErrNum, sortProg,additionalMacros );
b3Assert(m_sortAndScatterKernel);
} else
{
m_sortAndScatterSortDataKernel = b3OpenCLUtils::compileCLKernelFromString( ctx, device, kernelSource, "SortAndScatterSortDataKernel", &pErrNum, sortProg,additionalMacros );
b3Assert(m_sortAndScatterSortDataKernel);
m_sortAndScatterKernel = b3OpenCLUtils::compileCLKernelFromString( ctx, device, kernelSource, "SortAndScatterKernel", &pErrNum, sortProg,additionalMacros );
b3Assert(m_sortAndScatterKernel);
}
m_prefixScanKernel = b3OpenCLUtils::compileCLKernelFromString( ctx, device, kernelSource, "PrefixScanKernel", &pErrNum, sortProg,additionalMacros );
b3Assert(m_prefixScanKernel);
}
b3RadixSort32CL::~b3RadixSort32CL()
{
delete m_scan;
delete m_fill;
delete m_workBuffer1;
delete m_workBuffer2;
delete m_workBuffer3;
delete m_workBuffer3a;
delete m_workBuffer4;
delete m_workBuffer4a;
clReleaseKernel(m_streamCountSortDataKernel);
clReleaseKernel(m_streamCountKernel);
clReleaseKernel(m_sortAndScatterSortDataKernel);
clReleaseKernel(m_sortAndScatterKernel);
clReleaseKernel(m_prefixScanKernel);
}
void b3RadixSort32CL::executeHost(b3AlignedObjectArray<b3SortData>& inout, int sortBits /* = 32 */)
{
int n = inout.size();
const int BITS_PER_PASS = 8;
const int NUM_TABLES = (1<<BITS_PER_PASS);
int tables[NUM_TABLES];
int counter[NUM_TABLES];
b3SortData* src = &inout[0];
b3AlignedObjectArray<b3SortData> workbuffer;
workbuffer.resize(inout.size());
b3SortData* dst = &workbuffer[0];
int count=0;
for(int startBit=0; startBit<sortBits; startBit+=BITS_PER_PASS)
{
for(int i=0; i<NUM_TABLES; i++)
{
tables[i] = 0;
}
for(int i=0; i<n; i++)
{
int tableIdx = (src[i].m_key >> startBit) & (NUM_TABLES-1);
tables[tableIdx]++;
}
//#define TEST
#ifdef TEST
printf("histogram size=%d\n",NUM_TABLES);
for (int i=0;i<NUM_TABLES;i++)
{
if (tables[i]!=0)
{
printf("tables[%d]=%d]\n",i,tables[i]);
}
}
#endif //TEST
// prefix scan
int sum = 0;
for(int i=0; i<NUM_TABLES; i++)
{
int iData = tables[i];
tables[i] = sum;
sum += iData;
counter[i] = 0;
}
// distribute
for(int i=0; i<n; i++)
{
int tableIdx = (src[i].m_key >> startBit) & (NUM_TABLES-1);
dst[tables[tableIdx] + counter[tableIdx]] = src[i];
counter[tableIdx] ++;
}
b3Swap( src, dst );
count++;
}
if (count&1)
{
b3Assert(0);//need to copy
}
}
void b3RadixSort32CL::executeHost(b3OpenCLArray<b3SortData>& keyValuesInOut, int sortBits /* = 32 */)
{
b3AlignedObjectArray<b3SortData> inout;
keyValuesInOut.copyToHost(inout);
executeHost(inout,sortBits);
keyValuesInOut.copyFromHost(inout);
}
void b3RadixSort32CL::execute(b3OpenCLArray<unsigned int>& keysIn, b3OpenCLArray<unsigned int>& keysOut, b3OpenCLArray<unsigned int>& valuesIn,
b3OpenCLArray<unsigned int>& valuesOut, int n, int sortBits)
{
}
//#define DEBUG_RADIXSORT
//#define DEBUG_RADIXSORT2
void b3RadixSort32CL::execute(b3OpenCLArray<b3SortData>& keyValuesInOut, int sortBits /* = 32 */)
{
int originalSize = keyValuesInOut.size();
int workingSize = originalSize;
int dataAlignment = DATA_ALIGNMENT;
#ifdef DEBUG_RADIXSORT2
b3AlignedObjectArray<b3SortData> test2;
keyValuesInOut.copyToHost(test2);
printf("numElem = %d\n",test2.size());
for (int i=0;i<test2.size();i++)
{
printf("test2[%d].m_key=%d\n",i,test2[i].m_key);
printf("test2[%d].m_value=%d\n",i,test2[i].m_value);
}
#endif //DEBUG_RADIXSORT2
b3OpenCLArray<b3SortData>* src = 0;
if (workingSize%dataAlignment)
{
workingSize += dataAlignment-(workingSize%dataAlignment);
m_workBuffer4->copyFromOpenCLArray(keyValuesInOut);
m_workBuffer4->resize(workingSize);
b3SortData fillValue;
fillValue.m_key = 0xffffffff;
fillValue.m_value = 0xffffffff;
#define USE_BTFILL
#ifdef USE_BTFILL
m_fill->execute((b3OpenCLArray<b3Int2>&)*m_workBuffer4,(b3Int2&)fillValue,workingSize-originalSize,originalSize);
#else
//fill the remaining bits (very slow way, todo: fill on GPU/OpenCL side)
for (int i=originalSize; i<workingSize;i++)
{
m_workBuffer4->copyFromHostPointer(&fillValue,1,i);
}
#endif//USE_BTFILL
src = m_workBuffer4;
} else
{
src = &keyValuesInOut;
m_workBuffer4->resize(0);
}
b3Assert( workingSize%DATA_ALIGNMENT == 0 );
int minCap = NUM_BUCKET*NUM_WGS;
int n = workingSize;
m_workBuffer1->resize(minCap);
m_workBuffer3->resize(workingSize);
// ADLASSERT( ELEMENTS_PER_WORK_ITEM == 4 );
b3Assert( BITS_PER_PASS == 4 );
b3Assert( WG_SIZE == 64 );
b3Assert( (sortBits&0x3) == 0 );
b3OpenCLArray<b3SortData>* dst = m_workBuffer3;
b3OpenCLArray<unsigned int>* srcHisto = m_workBuffer1;
b3OpenCLArray<unsigned int>* destHisto = m_workBuffer2;
int nWGs = NUM_WGS;
b3ConstData cdata;
{
int blockSize = ELEMENTS_PER_WORK_ITEM*WG_SIZE;//set at 256
int nBlocks = (n+blockSize-1)/(blockSize);
cdata.m_n = n;
cdata.m_nWGs = NUM_WGS;
cdata.m_startBit = 0;
cdata.m_nBlocksPerWG = (nBlocks + cdata.m_nWGs - 1)/cdata.m_nWGs;
if( nBlocks < NUM_WGS )
{
cdata.m_nBlocksPerWG = 1;
nWGs = nBlocks;
}
}
int count=0;
for(int ib=0; ib<sortBits; ib+=4)
{
#ifdef DEBUG_RADIXSORT2
keyValuesInOut.copyToHost(test2);
printf("numElem = %d\n",test2.size());
for (int i=0;i<test2.size();i++)
{
if (test2[i].m_key != test2[i].m_value)
{
printf("test2[%d].m_key=%d\n",i,test2[i].m_key);
printf("test2[%d].m_value=%d\n",i,test2[i].m_value);
}
}
#endif //DEBUG_RADIXSORT2
cdata.m_startBit = ib;
if (src->size())
{
b3BufferInfoCL bInfo[] = { b3BufferInfoCL( src->getBufferCL(), true ), b3BufferInfoCL( srcHisto->getBufferCL() ) };
b3LauncherCL launcher(m_commandQueue, m_streamCountSortDataKernel,"m_streamCountSortDataKernel");
launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) );
launcher.setConst( cdata );
int num = NUM_WGS*WG_SIZE;
launcher.launch1D( num, WG_SIZE );
}
#ifdef DEBUG_RADIXSORT
b3AlignedObjectArray<unsigned int> testHist;
srcHisto->copyToHost(testHist);
printf("ib = %d, testHist size = %d, non zero elements:\n",ib, testHist.size());
for (int i=0;i<testHist.size();i++)
{
if (testHist[i]!=0)
printf("testHist[%d]=%d\n",i,testHist[i]);
}
#endif //DEBUG_RADIXSORT
//fast prefix scan is not working properly on Mac OSX yet
#ifdef __APPLE__
bool fastScan=false;
#else
bool fastScan=!m_deviceCPU;//only use fast scan on GPU
#endif
if (fastScan)
{// prefix scan group histogram
b3BufferInfoCL bInfo[] = { b3BufferInfoCL( srcHisto->getBufferCL() ) };
b3LauncherCL launcher( m_commandQueue, m_prefixScanKernel,"m_prefixScanKernel" );
launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) );
launcher.setConst( cdata );
launcher.launch1D( 128, 128 );
destHisto = srcHisto;
}else
{
//unsigned int sum; //for debugging
m_scan->execute(*srcHisto,*destHisto,1920,0);//,&sum);
}
#ifdef DEBUG_RADIXSORT
destHisto->copyToHost(testHist);
printf("ib = %d, testHist size = %d, non zero elements:\n",ib, testHist.size());
for (int i=0;i<testHist.size();i++)
{
if (testHist[i]!=0)
printf("testHist[%d]=%d\n",i,testHist[i]);
}
for (int i=0;i<testHist.size();i+=NUM_WGS)
{
printf("testHist[%d]=%d\n",i/NUM_WGS,testHist[i]);
}
#endif //DEBUG_RADIXSORT
#define USE_GPU
#ifdef USE_GPU
if (src->size())
{// local sort and distribute
b3BufferInfoCL bInfo[] = { b3BufferInfoCL( src->getBufferCL(), true ), b3BufferInfoCL( destHisto->getBufferCL(), true ), b3BufferInfoCL( dst->getBufferCL() )};
b3LauncherCL launcher( m_commandQueue, m_sortAndScatterSortDataKernel,"m_sortAndScatterSortDataKernel" );
launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) );
launcher.setConst( cdata );
launcher.launch1D( nWGs*WG_SIZE, WG_SIZE );
}
#else
{
#define NUM_TABLES 16
//#define SEQUENTIAL
#ifdef SEQUENTIAL
int counter2[NUM_TABLES]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
int tables[NUM_TABLES];
int startBit = ib;
destHisto->copyToHost(testHist);
b3AlignedObjectArray<b3SortData> srcHost;
b3AlignedObjectArray<b3SortData> dstHost;
dstHost.resize(src->size());
src->copyToHost(srcHost);
for (int i=0;i<NUM_TABLES;i++)
{
tables[i] = testHist[i*NUM_WGS];
}
// distribute
for(int i=0; i<n; i++)
{
int tableIdx = (srcHost[i].m_key >> startBit) & (NUM_TABLES-1);
dstHost[tables[tableIdx] + counter2[tableIdx]] = srcHost[i];
counter2[tableIdx] ++;
}
#else
int counter2[NUM_TABLES]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
int tables[NUM_TABLES];
b3AlignedObjectArray<b3SortData> dstHostOK;
dstHostOK.resize(src->size());
destHisto->copyToHost(testHist);
b3AlignedObjectArray<b3SortData> srcHost;
src->copyToHost(srcHost);
int blockSize = 256;
int nBlocksPerWG = cdata.m_nBlocksPerWG;
int startBit = ib;
{
for (int i=0;i<NUM_TABLES;i++)
{
tables[i] = testHist[i*NUM_WGS];
}
// distribute
for(int i=0; i<n; i++)
{
int tableIdx = (srcHost[i].m_key >> startBit) & (NUM_TABLES-1);
dstHostOK[tables[tableIdx] + counter2[tableIdx]] = srcHost[i];
counter2[tableIdx] ++;
}
}
b3AlignedObjectArray<b3SortData> dstHost;
dstHost.resize(src->size());
int counter[NUM_TABLES]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
for (int wgIdx=0;wgIdx<NUM_WGS;wgIdx++)
{
int counter[NUM_TABLES]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
int nBlocks = (n)/blockSize - nBlocksPerWG*wgIdx;
for(int iblock=0; iblock<b3Min(cdata.m_nBlocksPerWG, nBlocks); iblock++)
{
for (int lIdx = 0;lIdx < 64;lIdx++)
{
int addr = iblock*blockSize + blockSize*cdata.m_nBlocksPerWG*wgIdx + ELEMENTS_PER_WORK_ITEM*lIdx;
// MY_HISTOGRAM( localKeys.x ) ++ is much expensive than atomic add as it requires read and write while atomics can just add on AMD
// Using registers didn't perform well. It seems like use localKeys to address requires a lot of alu ops
// AMD: AtomInc performs better while NV prefers ++
for(int j=0; j<ELEMENTS_PER_WORK_ITEM; j++)
{
if( addr+j < n )
{
// printf ("addr+j=%d\n", addr+j);
int i = addr+j;
int tableIdx = (srcHost[i].m_key >> startBit) & (NUM_TABLES-1);
int destIndex = testHist[tableIdx*NUM_WGS+wgIdx] + counter[tableIdx];
b3SortData ok = dstHostOK[destIndex];
if (ok.m_key != srcHost[i].m_key)
{
printf("ok.m_key = %d, srcHost[i].m_key = %d\n", ok.m_key,srcHost[i].m_key );
printf("(ok.m_value = %d, srcHost[i].m_value = %d)\n", ok.m_value,srcHost[i].m_value );
}
if (ok.m_value != srcHost[i].m_value)
{
printf("ok.m_value = %d, srcHost[i].m_value = %d\n", ok.m_value,srcHost[i].m_value );
printf("(ok.m_key = %d, srcHost[i].m_key = %d)\n", ok.m_key,srcHost[i].m_key );
}
dstHost[destIndex] = srcHost[i];
counter[tableIdx] ++;
}
}
}
}
}
#endif //SEQUENTIAL
dst->copyFromHost(dstHost);
}
#endif//USE_GPU
#ifdef DEBUG_RADIXSORT
destHisto->copyToHost(testHist);
printf("ib = %d, testHist size = %d, non zero elements:\n",ib, testHist.size());
for (int i=0;i<testHist.size();i++)
{
if (testHist[i]!=0)
printf("testHist[%d]=%d\n",i,testHist[i]);
}
#endif //DEBUG_RADIXSORT
b3Swap(src, dst );
b3Swap(srcHisto,destHisto);
#ifdef DEBUG_RADIXSORT2
keyValuesInOut.copyToHost(test2);
printf("numElem = %d\n",test2.size());
for (int i=0;i<test2.size();i++)
{
if (test2[i].m_key != test2[i].m_value)
{
printf("test2[%d].m_key=%d\n",i,test2[i].m_key);
printf("test2[%d].m_value=%d\n",i,test2[i].m_value);
}
}
#endif //DEBUG_RADIXSORT2
count++;
}
if (count&1)
{
b3Assert(0);//need to copy from workbuffer to keyValuesInOut
}
if (m_workBuffer4->size())
{
m_workBuffer4->resize(originalSize);
keyValuesInOut.copyFromOpenCLArray(*m_workBuffer4);
}
#ifdef DEBUG_RADIXSORT
keyValuesInOut.copyToHost(test2);
printf("numElem = %d\n",test2.size());
for (int i=0;i<test2.size();i++)
{
printf("test2[%d].m_key=%d\n",i,test2[i].m_key);
printf("test2[%d].m_value=%d\n",i,test2[i].m_value);
}
#endif
}
void b3RadixSort32CL::execute(b3OpenCLArray<unsigned int>& keysInOut, int sortBits /* = 32 */)
{
int originalSize = keysInOut.size();
int workingSize = originalSize;
int dataAlignment = DATA_ALIGNMENT;
b3OpenCLArray<unsigned int>* src = 0;
if (workingSize%dataAlignment)
{
workingSize += dataAlignment-(workingSize%dataAlignment);
m_workBuffer4a->copyFromOpenCLArray(keysInOut);
m_workBuffer4a->resize(workingSize);
unsigned int fillValue = 0xffffffff;
m_fill->execute(*m_workBuffer4a,fillValue,workingSize-originalSize,originalSize);
src = m_workBuffer4a;
} else
{
src = &keysInOut;
m_workBuffer4a->resize(0);
}
b3Assert( workingSize%DATA_ALIGNMENT == 0 );
int minCap = NUM_BUCKET*NUM_WGS;
int n = workingSize;
m_workBuffer1->resize(minCap);
m_workBuffer3->resize(workingSize);
m_workBuffer3a->resize(workingSize);
// ADLASSERT( ELEMENTS_PER_WORK_ITEM == 4 );
b3Assert( BITS_PER_PASS == 4 );
b3Assert( WG_SIZE == 64 );
b3Assert( (sortBits&0x3) == 0 );
b3OpenCLArray<unsigned int>* dst = m_workBuffer3a;
b3OpenCLArray<unsigned int>* srcHisto = m_workBuffer1;
b3OpenCLArray<unsigned int>* destHisto = m_workBuffer2;
int nWGs = NUM_WGS;
b3ConstData cdata;
{
int blockSize = ELEMENTS_PER_WORK_ITEM*WG_SIZE;//set at 256
int nBlocks = (n+blockSize-1)/(blockSize);
cdata.m_n = n;
cdata.m_nWGs = NUM_WGS;
cdata.m_startBit = 0;
cdata.m_nBlocksPerWG = (nBlocks + cdata.m_nWGs - 1)/cdata.m_nWGs;
if( nBlocks < NUM_WGS )
{
cdata.m_nBlocksPerWG = 1;
nWGs = nBlocks;
}
}
int count=0;
for(int ib=0; ib<sortBits; ib+=4)
{
cdata.m_startBit = ib;
if (src->size())
{
b3BufferInfoCL bInfo[] = { b3BufferInfoCL( src->getBufferCL(), true ), b3BufferInfoCL( srcHisto->getBufferCL() ) };
b3LauncherCL launcher(m_commandQueue, m_streamCountKernel,"m_streamCountKernel");
launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) );
launcher.setConst( cdata );
int num = NUM_WGS*WG_SIZE;
launcher.launch1D( num, WG_SIZE );
}
//fast prefix scan is not working properly on Mac OSX yet
#ifdef __APPLE__
bool fastScan=false;
#else
bool fastScan=!m_deviceCPU;
#endif
if (fastScan)
{// prefix scan group histogram
b3BufferInfoCL bInfo[] = { b3BufferInfoCL( srcHisto->getBufferCL() ) };
b3LauncherCL launcher( m_commandQueue, m_prefixScanKernel,"m_prefixScanKernel" );
launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) );
launcher.setConst( cdata );
launcher.launch1D( 128, 128 );
destHisto = srcHisto;
}else
{
//unsigned int sum; //for debugging
m_scan->execute(*srcHisto,*destHisto,1920,0);//,&sum);
}
if (src->size())
{// local sort and distribute
b3BufferInfoCL bInfo[] = { b3BufferInfoCL( src->getBufferCL(), true ), b3BufferInfoCL( destHisto->getBufferCL(), true ), b3BufferInfoCL( dst->getBufferCL() )};
b3LauncherCL launcher( m_commandQueue, m_sortAndScatterKernel ,"m_sortAndScatterKernel");
launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) );
launcher.setConst( cdata );
launcher.launch1D( nWGs*WG_SIZE, WG_SIZE );
}
b3Swap(src, dst );
b3Swap(srcHisto,destHisto);
count++;
}
if (count&1)
{
b3Assert(0);//need to copy from workbuffer to keyValuesInOut
}
if (m_workBuffer4a->size())
{
m_workBuffer4a->resize(originalSize);
keysInOut.copyFromOpenCLArray(*m_workBuffer4a);
}
}