godot/thirdparty/bullet/BulletSoftBody/poly34.cpp
Rémi Verschelde b7901c773c
bullet: Sync with upstream 3.17
Stop include Bullet headers using `-isystem` for GCC/Clang as it misleads
SCons into not properly rebuilding all files when headers change.

This means we also need to make sure Bullet builds without warning, and
current version fares fairly well, there were just a couple to fix (patch
included).

Increase minimum version for distro packages to 2.90 (this was never released
as the "next" version after 2.89 was 3.05... but that covers it too).
2021-09-29 16:30:34 +02:00

448 lines
11 KiB
C++

// poly34.cpp : solution of cubic and quartic equation
// (c) Khashin S.I. http://math.ivanovo.ac.ru/dalgebra/Khashin/index.html
// khash2 (at) gmail.com
// Thanks to Alexandr Rakhmanin <rakhmanin (at) gmail.com>
// public domain
//
#include <math.h>
#include "poly34.h" // solution of cubic and quartic equation
#define TwoPi 6.28318530717958648
const btScalar eps = SIMD_EPSILON;
//=============================================================================
// _root3, root3 from http://prografix.narod.ru
//=============================================================================
static SIMD_FORCE_INLINE btScalar _root3(btScalar x)
{
btScalar s = 1.;
while (x < 1.)
{
x *= 8.;
s *= 0.5;
}
while (x > 8.)
{
x *= 0.125;
s *= 2.;
}
btScalar r = 1.5;
r -= 1. / 3. * (r - x / (r * r));
r -= 1. / 3. * (r - x / (r * r));
r -= 1. / 3. * (r - x / (r * r));
r -= 1. / 3. * (r - x / (r * r));
r -= 1. / 3. * (r - x / (r * r));
r -= 1. / 3. * (r - x / (r * r));
return r * s;
}
btScalar SIMD_FORCE_INLINE root3(btScalar x)
{
if (x > 0)
return _root3(x);
else if (x < 0)
return -_root3(-x);
else
return 0.;
}
// x - array of size 2
// return 2: 2 real roots x[0], x[1]
// return 0: pair of complex roots: x[0]i*x[1]
int SolveP2(btScalar* x, btScalar a, btScalar b)
{ // solve equation x^2 + a*x + b = 0
btScalar D = 0.25 * a * a - b;
if (D >= 0)
{
D = sqrt(D);
x[0] = -0.5 * a + D;
x[1] = -0.5 * a - D;
return 2;
}
x[0] = -0.5 * a;
x[1] = sqrt(-D);
return 0;
}
//---------------------------------------------------------------------------
// x - array of size 3
// In case 3 real roots: => x[0], x[1], x[2], return 3
// 2 real roots: x[0], x[1], return 2
// 1 real root : x[0], x[1] i*x[2], return 1
int SolveP3(btScalar* x, btScalar a, btScalar b, btScalar c)
{ // solve cubic equation x^3 + a*x^2 + b*x + c = 0
btScalar a2 = a * a;
btScalar q = (a2 - 3 * b) / 9;
if (q < 0)
q = eps;
btScalar r = (a * (2 * a2 - 9 * b) + 27 * c) / 54;
// equation x^3 + q*x + r = 0
btScalar r2 = r * r;
btScalar q3 = q * q * q;
btScalar A, B;
if (r2 <= (q3 + eps))
{ //<<-- FIXED!
btScalar t = r / sqrt(q3);
if (t < -1)
t = -1;
if (t > 1)
t = 1;
t = acos(t);
a /= 3;
q = -2 * sqrt(q);
x[0] = q * cos(t / 3) - a;
x[1] = q * cos((t + TwoPi) / 3) - a;
x[2] = q * cos((t - TwoPi) / 3) - a;
return (3);
}
else
{
//A =-pow(fabs(r)+sqrt(r2-q3),1./3);
A = -root3(fabs(r) + sqrt(r2 - q3));
if (r < 0)
A = -A;
B = (A == 0 ? 0 : q / A);
a /= 3;
x[0] = (A + B) - a;
x[1] = -0.5 * (A + B) - a;
x[2] = 0.5 * sqrt(3.) * (A - B);
if (fabs(x[2]) < eps)
{
x[2] = x[1];
return (2);
}
return (1);
}
} // SolveP3(btScalar *x,btScalar a,btScalar b,btScalar c) {
//---------------------------------------------------------------------------
// a>=0!
void CSqrt(btScalar x, btScalar y, btScalar& a, btScalar& b) // returns: a+i*s = sqrt(x+i*y)
{
btScalar r = sqrt(x * x + y * y);
if (y == 0)
{
r = sqrt(r);
if (x >= 0)
{
a = r;
b = 0;
}
else
{
a = 0;
b = r;
}
}
else
{ // y != 0
a = sqrt(0.5 * (x + r));
b = 0.5 * y / a;
}
}
//---------------------------------------------------------------------------
int SolveP4Bi(btScalar* x, btScalar b, btScalar d) // solve equation x^4 + b*x^2 + d = 0
{
btScalar D = b * b - 4 * d;
if (D >= 0)
{
btScalar sD = sqrt(D);
btScalar x1 = (-b + sD) / 2;
btScalar x2 = (-b - sD) / 2; // x2 <= x1
if (x2 >= 0) // 0 <= x2 <= x1, 4 real roots
{
btScalar sx1 = sqrt(x1);
btScalar sx2 = sqrt(x2);
x[0] = -sx1;
x[1] = sx1;
x[2] = -sx2;
x[3] = sx2;
return 4;
}
if (x1 < 0) // x2 <= x1 < 0, two pair of imaginary roots
{
btScalar sx1 = sqrt(-x1);
btScalar sx2 = sqrt(-x2);
x[0] = 0;
x[1] = sx1;
x[2] = 0;
x[3] = sx2;
return 0;
}
// now x2 < 0 <= x1 , two real roots and one pair of imginary root
btScalar sx1 = sqrt(x1);
btScalar sx2 = sqrt(-x2);
x[0] = -sx1;
x[1] = sx1;
x[2] = 0;
x[3] = sx2;
return 2;
}
else
{ // if( D < 0 ), two pair of compex roots
btScalar sD2 = 0.5 * sqrt(-D);
CSqrt(-0.5 * b, sD2, x[0], x[1]);
CSqrt(-0.5 * b, -sD2, x[2], x[3]);
return 0;
} // if( D>=0 )
} // SolveP4Bi(btScalar *x, btScalar b, btScalar d) // solve equation x^4 + b*x^2 d
//---------------------------------------------------------------------------
#define SWAP(a, b) \
{ \
t = b; \
b = a; \
a = t; \
}
static void dblSort3(btScalar& a, btScalar& b, btScalar& c) // make: a <= b <= c
{
btScalar t;
if (a > b)
SWAP(a, b); // now a<=b
if (c < b)
{
SWAP(b, c); // now a<=b, b<=c
if (a > b)
SWAP(a, b); // now a<=b
}
}
//---------------------------------------------------------------------------
int SolveP4De(btScalar* x, btScalar b, btScalar c, btScalar d) // solve equation x^4 + b*x^2 + c*x + d
{
//if( c==0 ) return SolveP4Bi(x,b,d); // After that, c!=0
if (fabs(c) < 1e-14 * (fabs(b) + fabs(d)))
return SolveP4Bi(x, b, d); // After that, c!=0
int res3 = SolveP3(x, 2 * b, b * b - 4 * d, -c * c); // solve resolvent
// by Viet theorem: x1*x2*x3=-c*c not equals to 0, so x1!=0, x2!=0, x3!=0
if (res3 > 1) // 3 real roots,
{
dblSort3(x[0], x[1], x[2]); // sort roots to x[0] <= x[1] <= x[2]
// Note: x[0]*x[1]*x[2]= c*c > 0
if (x[0] > 0) // all roots are positive
{
btScalar sz1 = sqrt(x[0]);
btScalar sz2 = sqrt(x[1]);
btScalar sz3 = sqrt(x[2]);
// Note: sz1*sz2*sz3= -c (and not equal to 0)
if (c > 0)
{
x[0] = (-sz1 - sz2 - sz3) / 2;
x[1] = (-sz1 + sz2 + sz3) / 2;
x[2] = (+sz1 - sz2 + sz3) / 2;
x[3] = (+sz1 + sz2 - sz3) / 2;
return 4;
}
// now: c<0
x[0] = (-sz1 - sz2 + sz3) / 2;
x[1] = (-sz1 + sz2 - sz3) / 2;
x[2] = (+sz1 - sz2 - sz3) / 2;
x[3] = (+sz1 + sz2 + sz3) / 2;
return 4;
} // if( x[0] > 0) // all roots are positive
// now x[0] <= x[1] < 0, x[2] > 0
// two pair of comlex roots
btScalar sz1 = sqrt(-x[0]);
btScalar sz2 = sqrt(-x[1]);
btScalar sz3 = sqrt(x[2]);
if (c > 0) // sign = -1
{
x[0] = -sz3 / 2;
x[1] = (sz1 - sz2) / 2; // x[0]i*x[1]
x[2] = sz3 / 2;
x[3] = (-sz1 - sz2) / 2; // x[2]i*x[3]
return 0;
}
// now: c<0 , sign = +1
x[0] = sz3 / 2;
x[1] = (-sz1 + sz2) / 2;
x[2] = -sz3 / 2;
x[3] = (sz1 + sz2) / 2;
return 0;
} // if( res3>1 ) // 3 real roots,
// now resoventa have 1 real and pair of compex roots
// x[0] - real root, and x[0]>0,
// x[1]i*x[2] - complex roots,
// x[0] must be >=0. But one times x[0]=~ 1e-17, so:
if (x[0] < 0)
x[0] = 0;
btScalar sz1 = sqrt(x[0]);
btScalar szr, szi;
CSqrt(x[1], x[2], szr, szi); // (szr+i*szi)^2 = x[1]+i*x[2]
if (c > 0) // sign = -1
{
x[0] = -sz1 / 2 - szr; // 1st real root
x[1] = -sz1 / 2 + szr; // 2nd real root
x[2] = sz1 / 2;
x[3] = szi;
return 2;
}
// now: c<0 , sign = +1
x[0] = sz1 / 2 - szr; // 1st real root
x[1] = sz1 / 2 + szr; // 2nd real root
x[2] = -sz1 / 2;
x[3] = szi;
return 2;
} // SolveP4De(btScalar *x, btScalar b, btScalar c, btScalar d) // solve equation x^4 + b*x^2 + c*x + d
//-----------------------------------------------------------------------------
btScalar N4Step(btScalar x, btScalar a, btScalar b, btScalar c, btScalar d) // one Newton step for x^4 + a*x^3 + b*x^2 + c*x + d
{
btScalar fxs = ((4 * x + 3 * a) * x + 2 * b) * x + c; // f'(x)
if (fxs == 0)
return x; //return 1e99; <<-- FIXED!
btScalar fx = (((x + a) * x + b) * x + c) * x + d; // f(x)
return x - fx / fxs;
}
//-----------------------------------------------------------------------------
// x - array of size 4
// return 4: 4 real roots x[0], x[1], x[2], x[3], possible multiple roots
// return 2: 2 real roots x[0], x[1] and complex x[2]i*x[3],
// return 0: two pair of complex roots: x[0]i*x[1], x[2]i*x[3],
int SolveP4(btScalar* x, btScalar a, btScalar b, btScalar c, btScalar d)
{ // solve equation x^4 + a*x^3 + b*x^2 + c*x + d by Dekart-Euler method
// move to a=0:
btScalar d1 = d + 0.25 * a * (0.25 * b * a - 3. / 64 * a * a * a - c);
btScalar c1 = c + 0.5 * a * (0.25 * a * a - b);
btScalar b1 = b - 0.375 * a * a;
int res = SolveP4De(x, b1, c1, d1);
if (res == 4)
{
x[0] -= a / 4;
x[1] -= a / 4;
x[2] -= a / 4;
x[3] -= a / 4;
}
else if (res == 2)
{
x[0] -= a / 4;
x[1] -= a / 4;
x[2] -= a / 4;
}
else
{
x[0] -= a / 4;
x[2] -= a / 4;
}
// one Newton step for each real root:
if (res > 0)
{
x[0] = N4Step(x[0], a, b, c, d);
x[1] = N4Step(x[1], a, b, c, d);
}
if (res > 2)
{
x[2] = N4Step(x[2], a, b, c, d);
x[3] = N4Step(x[3], a, b, c, d);
}
return res;
}
//-----------------------------------------------------------------------------
#define F5(t) (((((t + a) * t + b) * t + c) * t + d) * t + e)
//-----------------------------------------------------------------------------
btScalar SolveP5_1(btScalar a, btScalar b, btScalar c, btScalar d, btScalar e) // return real root of x^5 + a*x^4 + b*x^3 + c*x^2 + d*x + e = 0
{
int cnt;
if (fabs(e) < eps)
return 0;
btScalar brd = fabs(a); // brd - border of real roots
if (fabs(b) > brd)
brd = fabs(b);
if (fabs(c) > brd)
brd = fabs(c);
if (fabs(d) > brd)
brd = fabs(d);
if (fabs(e) > brd)
brd = fabs(e);
brd++; // brd - border of real roots
btScalar x0, f0; // less than root
btScalar x1, f1; // greater than root
btScalar x2, f2, f2s; // next values, f(x2), f'(x2)
btScalar dx = 0;
if (e < 0)
{
x0 = 0;
x1 = brd;
f0 = e;
f1 = F5(x1);
x2 = 0.01 * brd;
} // positive root
else
{
x0 = -brd;
x1 = 0;
f0 = F5(x0);
f1 = e;
x2 = -0.01 * brd;
} // negative root
if (fabs(f0) < eps)
return x0;
if (fabs(f1) < eps)
return x1;
// now x0<x1, f(x0)<0, f(x1)>0
// Firstly 10 bisections
for (cnt = 0; cnt < 10; cnt++)
{
x2 = (x0 + x1) / 2; // next point
//x2 = x0 - f0*(x1 - x0) / (f1 - f0); // next point
f2 = F5(x2); // f(x2)
if (fabs(f2) < eps)
return x2;
if (f2 > 0)
{
x1 = x2;
f1 = f2;
}
else
{
x0 = x2;
f0 = f2;
}
}
// At each step:
// x0<x1, f(x0)<0, f(x1)>0.
// x2 - next value
// we hope that x0 < x2 < x1, but not necessarily
do
{
if (cnt++ > 50)
break;
if (x2 <= x0 || x2 >= x1)
x2 = (x0 + x1) / 2; // now x0 < x2 < x1
f2 = F5(x2); // f(x2)
if (fabs(f2) < eps)
return x2;
if (f2 > 0)
{
x1 = x2;
f1 = f2;
}
else
{
x0 = x2;
f0 = f2;
}
f2s = (((5 * x2 + 4 * a) * x2 + 3 * b) * x2 + 2 * c) * x2 + d; // f'(x2)
if (fabs(f2s) < eps)
{
x2 = 1e99;
continue;
}
dx = f2 / f2s;
x2 -= dx;
} while (fabs(dx) > eps);
return x2;
} // SolveP5_1(btScalar a,btScalar b,btScalar c,btScalar d,btScalar e) // return real root of x^5 + a*x^4 + b*x^3 + c*x^2 + d*x + e = 0
//-----------------------------------------------------------------------------
int SolveP5(btScalar* x, btScalar a, btScalar b, btScalar c, btScalar d, btScalar e) // solve equation x^5 + a*x^4 + b*x^3 + c*x^2 + d*x + e = 0
{
btScalar r = x[0] = SolveP5_1(a, b, c, d, e);
btScalar a1 = a + r, b1 = b + r * a1, c1 = c + r * b1, d1 = d + r * c1;
return 1 + SolveP4(x + 1, a1, b1, c1, d1);
} // SolveP5(btScalar *x,btScalar a,btScalar b,btScalar c,btScalar d,btScalar e) // solve equation x^5 + a*x^4 + b*x^3 + c*x^2 + d*x + e = 0
//-----------------------------------------------------------------------------