godot/thirdparty/icu4c/common/edits.cpp
bruvzg b64df2bf74
Update HarfBuzz, ICU and FreeType
HarfBuzz: Update to version 7.3.0
ICU4C: Update to version 73.1
FreeType: Update to version 2.13.0
2023-05-23 03:26:16 +03:00

805 lines
28 KiB
C++

// © 2017 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
// edits.cpp
// created: 2017feb08 Markus W. Scherer
#include "unicode/edits.h"
#include "unicode/unistr.h"
#include "unicode/utypes.h"
#include "cmemory.h"
#include "uassert.h"
#include "util.h"
U_NAMESPACE_BEGIN
namespace {
// 0000uuuuuuuuuuuu records u+1 unchanged text units.
const int32_t MAX_UNCHANGED_LENGTH = 0x1000;
const int32_t MAX_UNCHANGED = MAX_UNCHANGED_LENGTH - 1;
// 0mmmnnnccccccccc with m=1..6 records ccc+1 replacements of m:n text units.
const int32_t MAX_SHORT_CHANGE_OLD_LENGTH = 6;
const int32_t MAX_SHORT_CHANGE_NEW_LENGTH = 7;
const int32_t SHORT_CHANGE_NUM_MASK = 0x1ff;
const int32_t MAX_SHORT_CHANGE = 0x6fff;
// 0111mmmmmmnnnnnn records a replacement of m text units with n.
// m or n = 61: actual length follows in the next edits array unit.
// m or n = 62..63: actual length follows in the next two edits array units.
// Bit 30 of the actual length is in the head unit.
// Trailing units have bit 15 set.
const int32_t LENGTH_IN_1TRAIL = 61;
const int32_t LENGTH_IN_2TRAIL = 62;
} // namespace
void Edits::releaseArray() noexcept {
if (array != stackArray) {
uprv_free(array);
}
}
Edits &Edits::copyArray(const Edits &other) {
if (U_FAILURE(errorCode_)) {
length = delta = numChanges = 0;
return *this;
}
if (length > capacity) {
uint16_t *newArray = (uint16_t *)uprv_malloc((size_t)length * 2);
if (newArray == nullptr) {
length = delta = numChanges = 0;
errorCode_ = U_MEMORY_ALLOCATION_ERROR;
return *this;
}
releaseArray();
array = newArray;
capacity = length;
}
if (length > 0) {
uprv_memcpy(array, other.array, (size_t)length * 2);
}
return *this;
}
Edits &Edits::moveArray(Edits &src) noexcept {
if (U_FAILURE(errorCode_)) {
length = delta = numChanges = 0;
return *this;
}
releaseArray();
if (length > STACK_CAPACITY) {
array = src.array;
capacity = src.capacity;
src.array = src.stackArray;
src.capacity = STACK_CAPACITY;
src.reset();
return *this;
}
array = stackArray;
capacity = STACK_CAPACITY;
if (length > 0) {
uprv_memcpy(array, src.array, (size_t)length * 2);
}
return *this;
}
Edits &Edits::operator=(const Edits &other) {
if (this == &other) { return *this; } // self-assignment: no-op
length = other.length;
delta = other.delta;
numChanges = other.numChanges;
errorCode_ = other.errorCode_;
return copyArray(other);
}
Edits &Edits::operator=(Edits &&src) noexcept {
length = src.length;
delta = src.delta;
numChanges = src.numChanges;
errorCode_ = src.errorCode_;
return moveArray(src);
}
Edits::~Edits() {
releaseArray();
}
void Edits::reset() noexcept {
length = delta = numChanges = 0;
errorCode_ = U_ZERO_ERROR;
}
void Edits::addUnchanged(int32_t unchangedLength) {
if(U_FAILURE(errorCode_) || unchangedLength == 0) { return; }
if(unchangedLength < 0) {
errorCode_ = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
// Merge into previous unchanged-text record, if any.
int32_t last = lastUnit();
if(last < MAX_UNCHANGED) {
int32_t remaining = MAX_UNCHANGED - last;
if (remaining >= unchangedLength) {
setLastUnit(last + unchangedLength);
return;
}
setLastUnit(MAX_UNCHANGED);
unchangedLength -= remaining;
}
// Split large lengths into multiple units.
while(unchangedLength >= MAX_UNCHANGED_LENGTH) {
append(MAX_UNCHANGED);
unchangedLength -= MAX_UNCHANGED_LENGTH;
}
// Write a small (remaining) length.
if(unchangedLength > 0) {
append(unchangedLength - 1);
}
}
void Edits::addReplace(int32_t oldLength, int32_t newLength) {
if(U_FAILURE(errorCode_)) { return; }
if(oldLength < 0 || newLength < 0) {
errorCode_ = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
if (oldLength == 0 && newLength == 0) {
return;
}
++numChanges;
int32_t newDelta = newLength - oldLength;
if (newDelta != 0) {
if ((newDelta > 0 && delta >= 0 && newDelta > (INT32_MAX - delta)) ||
(newDelta < 0 && delta < 0 && newDelta < (INT32_MIN - delta))) {
// Integer overflow or underflow.
errorCode_ = U_INDEX_OUTOFBOUNDS_ERROR;
return;
}
delta += newDelta;
}
if(0 < oldLength && oldLength <= MAX_SHORT_CHANGE_OLD_LENGTH &&
newLength <= MAX_SHORT_CHANGE_NEW_LENGTH) {
// Merge into previous same-lengths short-replacement record, if any.
int32_t u = (oldLength << 12) | (newLength << 9);
int32_t last = lastUnit();
if(MAX_UNCHANGED < last && last < MAX_SHORT_CHANGE &&
(last & ~SHORT_CHANGE_NUM_MASK) == u &&
(last & SHORT_CHANGE_NUM_MASK) < SHORT_CHANGE_NUM_MASK) {
setLastUnit(last + 1);
return;
}
append(u);
return;
}
int32_t head = 0x7000;
if (oldLength < LENGTH_IN_1TRAIL && newLength < LENGTH_IN_1TRAIL) {
head |= oldLength << 6;
head |= newLength;
append(head);
} else if ((capacity - length) >= 5 || growArray()) {
int32_t limit = length + 1;
if(oldLength < LENGTH_IN_1TRAIL) {
head |= oldLength << 6;
} else if(oldLength <= 0x7fff) {
head |= LENGTH_IN_1TRAIL << 6;
array[limit++] = (uint16_t)(0x8000 | oldLength);
} else {
head |= (LENGTH_IN_2TRAIL + (oldLength >> 30)) << 6;
array[limit++] = (uint16_t)(0x8000 | (oldLength >> 15));
array[limit++] = (uint16_t)(0x8000 | oldLength);
}
if(newLength < LENGTH_IN_1TRAIL) {
head |= newLength;
} else if(newLength <= 0x7fff) {
head |= LENGTH_IN_1TRAIL;
array[limit++] = (uint16_t)(0x8000 | newLength);
} else {
head |= LENGTH_IN_2TRAIL + (newLength >> 30);
array[limit++] = (uint16_t)(0x8000 | (newLength >> 15));
array[limit++] = (uint16_t)(0x8000 | newLength);
}
array[length] = (uint16_t)head;
length = limit;
}
}
void Edits::append(int32_t r) {
if(length < capacity || growArray()) {
array[length++] = (uint16_t)r;
}
}
UBool Edits::growArray() {
int32_t newCapacity;
if (array == stackArray) {
newCapacity = 2000;
} else if (capacity == INT32_MAX) {
// Not U_BUFFER_OVERFLOW_ERROR because that could be confused on a string transform API
// with a result-string-buffer overflow.
errorCode_ = U_INDEX_OUTOFBOUNDS_ERROR;
return false;
} else if (capacity >= (INT32_MAX / 2)) {
newCapacity = INT32_MAX;
} else {
newCapacity = 2 * capacity;
}
// Grow by at least 5 units so that a maximal change record will fit.
if ((newCapacity - capacity) < 5) {
errorCode_ = U_INDEX_OUTOFBOUNDS_ERROR;
return false;
}
uint16_t *newArray = (uint16_t *)uprv_malloc((size_t)newCapacity * 2);
if (newArray == nullptr) {
errorCode_ = U_MEMORY_ALLOCATION_ERROR;
return false;
}
uprv_memcpy(newArray, array, (size_t)length * 2);
releaseArray();
array = newArray;
capacity = newCapacity;
return true;
}
UBool Edits::copyErrorTo(UErrorCode &outErrorCode) const {
if (U_FAILURE(outErrorCode)) { return true; }
if (U_SUCCESS(errorCode_)) { return false; }
outErrorCode = errorCode_;
return true;
}
Edits &Edits::mergeAndAppend(const Edits &ab, const Edits &bc, UErrorCode &errorCode) {
if (copyErrorTo(errorCode)) { return *this; }
// Picture string a --(Edits ab)--> string b --(Edits bc)--> string c.
// Parallel iteration over both Edits.
Iterator abIter = ab.getFineIterator();
Iterator bcIter = bc.getFineIterator();
UBool abHasNext = true, bcHasNext = true;
// Copy iterator state into local variables, so that we can modify and subdivide spans.
// ab old & new length, bc old & new length
int32_t aLength = 0, ab_bLength = 0, bc_bLength = 0, cLength = 0;
// When we have different-intermediate-length changes, we accumulate a larger change.
int32_t pending_aLength = 0, pending_cLength = 0;
for (;;) {
// At this point, for each of the two iterators:
// Either we are done with the locally cached current edit,
// and its intermediate-string length has been reset,
// or we will continue to work with a truncated remainder of this edit.
//
// If the current edit is done, and the iterator has not yet reached the end,
// then we fetch the next edit. This is true for at least one of the iterators.
//
// Normally it does not matter whether we fetch from ab and then bc or vice versa.
// However, the result is observably different when
// ab deletions meet bc insertions at the same intermediate-string index.
// Some users expect the bc insertions to come first, so we fetch from bc first.
if (bc_bLength == 0) {
if (bcHasNext && (bcHasNext = bcIter.next(errorCode)) != 0) {
bc_bLength = bcIter.oldLength();
cLength = bcIter.newLength();
if (bc_bLength == 0) {
// insertion
if (ab_bLength == 0 || !abIter.hasChange()) {
addReplace(pending_aLength, pending_cLength + cLength);
pending_aLength = pending_cLength = 0;
} else {
pending_cLength += cLength;
}
continue;
}
}
// else see if the other iterator is done, too.
}
if (ab_bLength == 0) {
if (abHasNext && (abHasNext = abIter.next(errorCode)) != 0) {
aLength = abIter.oldLength();
ab_bLength = abIter.newLength();
if (ab_bLength == 0) {
// deletion
if (bc_bLength == bcIter.oldLength() || !bcIter.hasChange()) {
addReplace(pending_aLength + aLength, pending_cLength);
pending_aLength = pending_cLength = 0;
} else {
pending_aLength += aLength;
}
continue;
}
} else if (bc_bLength == 0) {
// Both iterators are done at the same time:
// The intermediate-string lengths match.
break;
} else {
// The ab output string is shorter than the bc input string.
if (!copyErrorTo(errorCode)) {
errorCode = U_ILLEGAL_ARGUMENT_ERROR;
}
return *this;
}
}
if (bc_bLength == 0) {
// The bc input string is shorter than the ab output string.
if (!copyErrorTo(errorCode)) {
errorCode = U_ILLEGAL_ARGUMENT_ERROR;
}
return *this;
}
// Done fetching: ab_bLength > 0 && bc_bLength > 0
// The current state has two parts:
// - Past: We accumulate a longer ac edit in the "pending" variables.
// - Current: We have copies of the current ab/bc edits in local variables.
// At least one side is newly fetched.
// One side might be a truncated remainder of an edit we fetched earlier.
if (!abIter.hasChange() && !bcIter.hasChange()) {
// An unchanged span all the way from string a to string c.
if (pending_aLength != 0 || pending_cLength != 0) {
addReplace(pending_aLength, pending_cLength);
pending_aLength = pending_cLength = 0;
}
int32_t unchangedLength = aLength <= cLength ? aLength : cLength;
addUnchanged(unchangedLength);
ab_bLength = aLength -= unchangedLength;
bc_bLength = cLength -= unchangedLength;
// At least one of the unchanged spans is now empty.
continue;
}
if (!abIter.hasChange() && bcIter.hasChange()) {
// Unchanged a->b but changed b->c.
if (ab_bLength >= bc_bLength) {
// Split the longer unchanged span into change + remainder.
addReplace(pending_aLength + bc_bLength, pending_cLength + cLength);
pending_aLength = pending_cLength = 0;
aLength = ab_bLength -= bc_bLength;
bc_bLength = 0;
continue;
}
// Handle the shorter unchanged span below like a change.
} else if (abIter.hasChange() && !bcIter.hasChange()) {
// Changed a->b and then unchanged b->c.
if (ab_bLength <= bc_bLength) {
// Split the longer unchanged span into change + remainder.
addReplace(pending_aLength + aLength, pending_cLength + ab_bLength);
pending_aLength = pending_cLength = 0;
cLength = bc_bLength -= ab_bLength;
ab_bLength = 0;
continue;
}
// Handle the shorter unchanged span below like a change.
} else { // both abIter.hasChange() && bcIter.hasChange()
if (ab_bLength == bc_bLength) {
// Changes on both sides up to the same position. Emit & reset.
addReplace(pending_aLength + aLength, pending_cLength + cLength);
pending_aLength = pending_cLength = 0;
ab_bLength = bc_bLength = 0;
continue;
}
}
// Accumulate the a->c change, reset the shorter side,
// keep a remainder of the longer one.
pending_aLength += aLength;
pending_cLength += cLength;
if (ab_bLength < bc_bLength) {
bc_bLength -= ab_bLength;
cLength = ab_bLength = 0;
} else { // ab_bLength > bc_bLength
ab_bLength -= bc_bLength;
aLength = bc_bLength = 0;
}
}
if (pending_aLength != 0 || pending_cLength != 0) {
addReplace(pending_aLength, pending_cLength);
}
copyErrorTo(errorCode);
return *this;
}
Edits::Iterator::Iterator(const uint16_t *a, int32_t len, UBool oc, UBool crs) :
array(a), index(0), length(len), remaining(0),
onlyChanges_(oc), coarse(crs),
dir(0), changed(false), oldLength_(0), newLength_(0),
srcIndex(0), replIndex(0), destIndex(0) {}
int32_t Edits::Iterator::readLength(int32_t head) {
if (head < LENGTH_IN_1TRAIL) {
return head;
} else if (head < LENGTH_IN_2TRAIL) {
U_ASSERT(index < length);
U_ASSERT(array[index] >= 0x8000);
return array[index++] & 0x7fff;
} else {
U_ASSERT((index + 2) <= length);
U_ASSERT(array[index] >= 0x8000);
U_ASSERT(array[index + 1] >= 0x8000);
int32_t len = ((head & 1) << 30) |
((int32_t)(array[index] & 0x7fff) << 15) |
(array[index + 1] & 0x7fff);
index += 2;
return len;
}
}
void Edits::Iterator::updateNextIndexes() {
srcIndex += oldLength_;
if (changed) {
replIndex += newLength_;
}
destIndex += newLength_;
}
void Edits::Iterator::updatePreviousIndexes() {
srcIndex -= oldLength_;
if (changed) {
replIndex -= newLength_;
}
destIndex -= newLength_;
}
UBool Edits::Iterator::noNext() {
// No change before or beyond the string.
dir = 0;
changed = false;
oldLength_ = newLength_ = 0;
return false;
}
UBool Edits::Iterator::next(UBool onlyChanges, UErrorCode &errorCode) {
// Forward iteration: Update the string indexes to the limit of the current span,
// and post-increment-read array units to assemble a new span.
// Leaves the array index one after the last unit of that span.
if (U_FAILURE(errorCode)) { return false; }
// We have an errorCode in case we need to start guarding against integer overflows.
// It is also convenient for caller loops if we bail out when an error was set elsewhere.
if (dir > 0) {
updateNextIndexes();
} else {
if (dir < 0) {
// Turn around from previous() to next().
// Post-increment-read the same span again.
if (remaining > 0) {
// Fine-grained iterator:
// Stay on the current one of a sequence of compressed changes.
++index; // next() rests on the index after the sequence unit.
dir = 1;
return true;
}
}
dir = 1;
}
if (remaining >= 1) {
// Fine-grained iterator: Continue a sequence of compressed changes.
if (remaining > 1) {
--remaining;
return true;
}
remaining = 0;
}
if (index >= length) {
return noNext();
}
int32_t u = array[index++];
if (u <= MAX_UNCHANGED) {
// Combine adjacent unchanged ranges.
changed = false;
oldLength_ = u + 1;
while (index < length && (u = array[index]) <= MAX_UNCHANGED) {
++index;
oldLength_ += u + 1;
}
newLength_ = oldLength_;
if (onlyChanges) {
updateNextIndexes();
if (index >= length) {
return noNext();
}
// already fetched u > MAX_UNCHANGED at index
++index;
} else {
return true;
}
}
changed = true;
if (u <= MAX_SHORT_CHANGE) {
int32_t oldLen = u >> 12;
int32_t newLen = (u >> 9) & MAX_SHORT_CHANGE_NEW_LENGTH;
int32_t num = (u & SHORT_CHANGE_NUM_MASK) + 1;
if (coarse) {
oldLength_ = num * oldLen;
newLength_ = num * newLen;
} else {
// Split a sequence of changes that was compressed into one unit.
oldLength_ = oldLen;
newLength_ = newLen;
if (num > 1) {
remaining = num; // This is the first of two or more changes.
}
return true;
}
} else {
U_ASSERT(u <= 0x7fff);
oldLength_ = readLength((u >> 6) & 0x3f);
newLength_ = readLength(u & 0x3f);
if (!coarse) {
return true;
}
}
// Combine adjacent changes.
while (index < length && (u = array[index]) > MAX_UNCHANGED) {
++index;
if (u <= MAX_SHORT_CHANGE) {
int32_t num = (u & SHORT_CHANGE_NUM_MASK) + 1;
oldLength_ += (u >> 12) * num;
newLength_ += ((u >> 9) & MAX_SHORT_CHANGE_NEW_LENGTH) * num;
} else {
U_ASSERT(u <= 0x7fff);
oldLength_ += readLength((u >> 6) & 0x3f);
newLength_ += readLength(u & 0x3f);
}
}
return true;
}
UBool Edits::Iterator::previous(UErrorCode &errorCode) {
// Backward iteration: Pre-decrement-read array units to assemble a new span,
// then update the string indexes to the start of that span.
// Leaves the array index on the head unit of that span.
if (U_FAILURE(errorCode)) { return false; }
// We have an errorCode in case we need to start guarding against integer overflows.
// It is also convenient for caller loops if we bail out when an error was set elsewhere.
if (dir >= 0) {
if (dir > 0) {
// Turn around from next() to previous().
// Set the string indexes to the span limit and
// pre-decrement-read the same span again.
if (remaining > 0) {
// Fine-grained iterator:
// Stay on the current one of a sequence of compressed changes.
--index; // previous() rests on the sequence unit.
dir = -1;
return true;
}
updateNextIndexes();
}
dir = -1;
}
if (remaining > 0) {
// Fine-grained iterator: Continue a sequence of compressed changes.
int32_t u = array[index];
U_ASSERT(MAX_UNCHANGED < u && u <= MAX_SHORT_CHANGE);
if (remaining <= (u & SHORT_CHANGE_NUM_MASK)) {
++remaining;
updatePreviousIndexes();
return true;
}
remaining = 0;
}
if (index <= 0) {
return noNext();
}
int32_t u = array[--index];
if (u <= MAX_UNCHANGED) {
// Combine adjacent unchanged ranges.
changed = false;
oldLength_ = u + 1;
while (index > 0 && (u = array[index - 1]) <= MAX_UNCHANGED) {
--index;
oldLength_ += u + 1;
}
newLength_ = oldLength_;
// No need to handle onlyChanges as long as previous() is called only from findIndex().
updatePreviousIndexes();
return true;
}
changed = true;
if (u <= MAX_SHORT_CHANGE) {
int32_t oldLen = u >> 12;
int32_t newLen = (u >> 9) & MAX_SHORT_CHANGE_NEW_LENGTH;
int32_t num = (u & SHORT_CHANGE_NUM_MASK) + 1;
if (coarse) {
oldLength_ = num * oldLen;
newLength_ = num * newLen;
} else {
// Split a sequence of changes that was compressed into one unit.
oldLength_ = oldLen;
newLength_ = newLen;
if (num > 1) {
remaining = 1; // This is the last of two or more changes.
}
updatePreviousIndexes();
return true;
}
} else {
if (u <= 0x7fff) {
// The change is encoded in u alone.
oldLength_ = readLength((u >> 6) & 0x3f);
newLength_ = readLength(u & 0x3f);
} else {
// Back up to the head of the change, read the lengths,
// and reset the index to the head again.
U_ASSERT(index > 0);
while ((u = array[--index]) > 0x7fff) {}
U_ASSERT(u > MAX_SHORT_CHANGE);
int32_t headIndex = index++;
oldLength_ = readLength((u >> 6) & 0x3f);
newLength_ = readLength(u & 0x3f);
index = headIndex;
}
if (!coarse) {
updatePreviousIndexes();
return true;
}
}
// Combine adjacent changes.
while (index > 0 && (u = array[index - 1]) > MAX_UNCHANGED) {
--index;
if (u <= MAX_SHORT_CHANGE) {
int32_t num = (u & SHORT_CHANGE_NUM_MASK) + 1;
oldLength_ += (u >> 12) * num;
newLength_ += ((u >> 9) & MAX_SHORT_CHANGE_NEW_LENGTH) * num;
} else if (u <= 0x7fff) {
// Read the lengths, and reset the index to the head again.
int32_t headIndex = index++;
oldLength_ += readLength((u >> 6) & 0x3f);
newLength_ += readLength(u & 0x3f);
index = headIndex;
}
}
updatePreviousIndexes();
return true;
}
int32_t Edits::Iterator::findIndex(int32_t i, UBool findSource, UErrorCode &errorCode) {
if (U_FAILURE(errorCode) || i < 0) { return -1; }
int32_t spanStart, spanLength;
if (findSource) { // find source index
spanStart = srcIndex;
spanLength = oldLength_;
} else { // find destination index
spanStart = destIndex;
spanLength = newLength_;
}
if (i < spanStart) {
if (i >= (spanStart / 2)) {
// Search backwards.
for (;;) {
UBool hasPrevious = previous(errorCode);
U_ASSERT(hasPrevious); // because i>=0 and the first span starts at 0
(void)hasPrevious; // avoid unused-variable warning
spanStart = findSource ? srcIndex : destIndex;
if (i >= spanStart) {
// The index is in the current span.
return 0;
}
if (remaining > 0) {
// Is the index in one of the remaining compressed edits?
// spanStart is the start of the current span, first of the remaining ones.
spanLength = findSource ? oldLength_ : newLength_;
int32_t u = array[index];
U_ASSERT(MAX_UNCHANGED < u && u <= MAX_SHORT_CHANGE);
int32_t num = (u & SHORT_CHANGE_NUM_MASK) + 1 - remaining;
int32_t len = num * spanLength;
if (i >= (spanStart - len)) {
int32_t n = ((spanStart - i - 1) / spanLength) + 1;
// 1 <= n <= num
srcIndex -= n * oldLength_;
replIndex -= n * newLength_;
destIndex -= n * newLength_;
remaining += n;
return 0;
}
// Skip all of these edits at once.
srcIndex -= num * oldLength_;
replIndex -= num * newLength_;
destIndex -= num * newLength_;
remaining = 0;
}
}
}
// Reset the iterator to the start.
dir = 0;
index = remaining = oldLength_ = newLength_ = srcIndex = replIndex = destIndex = 0;
} else if (i < (spanStart + spanLength)) {
// The index is in the current span.
return 0;
}
while (next(false, errorCode)) {
if (findSource) {
spanStart = srcIndex;
spanLength = oldLength_;
} else {
spanStart = destIndex;
spanLength = newLength_;
}
if (i < (spanStart + spanLength)) {
// The index is in the current span.
return 0;
}
if (remaining > 1) {
// Is the index in one of the remaining compressed edits?
// spanStart is the start of the current span, first of the remaining ones.
int32_t len = remaining * spanLength;
if (i < (spanStart + len)) {
int32_t n = (i - spanStart) / spanLength; // 1 <= n <= remaining - 1
srcIndex += n * oldLength_;
replIndex += n * newLength_;
destIndex += n * newLength_;
remaining -= n;
return 0;
}
// Make next() skip all of these edits at once.
oldLength_ *= remaining;
newLength_ *= remaining;
remaining = 0;
}
}
return 1;
}
int32_t Edits::Iterator::destinationIndexFromSourceIndex(int32_t i, UErrorCode &errorCode) {
int32_t where = findIndex(i, true, errorCode);
if (where < 0) {
// Error or before the string.
return 0;
}
if (where > 0 || i == srcIndex) {
// At or after string length, or at start of the found span.
return destIndex;
}
if (changed) {
// In a change span, map to its end.
return destIndex + newLength_;
} else {
// In an unchanged span, offset 1:1 within it.
return destIndex + (i - srcIndex);
}
}
int32_t Edits::Iterator::sourceIndexFromDestinationIndex(int32_t i, UErrorCode &errorCode) {
int32_t where = findIndex(i, false, errorCode);
if (where < 0) {
// Error or before the string.
return 0;
}
if (where > 0 || i == destIndex) {
// At or after string length, or at start of the found span.
return srcIndex;
}
if (changed) {
// In a change span, map to its end.
return srcIndex + oldLength_;
} else {
// In an unchanged span, offset within it.
return srcIndex + (i - destIndex);
}
}
UnicodeString& Edits::Iterator::toString(UnicodeString& sb) const {
sb.append(u"{ src[", -1);
ICU_Utility::appendNumber(sb, srcIndex);
sb.append(u"..", -1);
ICU_Utility::appendNumber(sb, srcIndex + oldLength_);
if (changed) {
sb.append(u"] ⇝ dest[", -1);
} else {
sb.append(u"] ≡ dest[", -1);
}
ICU_Utility::appendNumber(sb, destIndex);
sb.append(u"..", -1);
ICU_Utility::appendNumber(sb, destIndex + newLength_);
if (changed) {
sb.append(u"], repl[", -1);
ICU_Utility::appendNumber(sb, replIndex);
sb.append(u"..", -1);
ICU_Utility::appendNumber(sb, replIndex + newLength_);
sb.append(u"] }", -1);
} else {
sb.append(u"] (no-change) }", -1);
}
return sb;
}
U_NAMESPACE_END