godot/thirdparty/openssl/ssl/t1_enc.c

1378 lines
47 KiB
C

/* ssl/t1_enc.c */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2005 Nokia. All rights reserved.
*
* The portions of the attached software ("Contribution") is developed by
* Nokia Corporation and is licensed pursuant to the OpenSSL open source
* license.
*
* The Contribution, originally written by Mika Kousa and Pasi Eronen of
* Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
* support (see RFC 4279) to OpenSSL.
*
* No patent licenses or other rights except those expressly stated in
* the OpenSSL open source license shall be deemed granted or received
* expressly, by implication, estoppel, or otherwise.
*
* No assurances are provided by Nokia that the Contribution does not
* infringe the patent or other intellectual property rights of any third
* party or that the license provides you with all the necessary rights
* to make use of the Contribution.
*
* THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
* ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
* SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
* OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
* OTHERWISE.
*/
#include <stdio.h>
#include "ssl_locl.h"
#ifndef OPENSSL_NO_COMP
# include <openssl/comp.h>
#endif
#include <openssl/evp.h>
#include <openssl/hmac.h>
#include <openssl/md5.h>
#include <openssl/rand.h>
#ifdef KSSL_DEBUG
# include <openssl/des.h>
#endif
/* seed1 through seed5 are virtually concatenated */
static int tls1_P_hash(const EVP_MD *md, const unsigned char *sec,
int sec_len,
const void *seed1, int seed1_len,
const void *seed2, int seed2_len,
const void *seed3, int seed3_len,
const void *seed4, int seed4_len,
const void *seed5, int seed5_len,
unsigned char *out, int olen)
{
int chunk;
size_t j;
EVP_MD_CTX ctx, ctx_tmp, ctx_init;
EVP_PKEY *mac_key;
unsigned char A1[EVP_MAX_MD_SIZE];
size_t A1_len;
int ret = 0;
chunk = EVP_MD_size(md);
OPENSSL_assert(chunk >= 0);
EVP_MD_CTX_init(&ctx);
EVP_MD_CTX_init(&ctx_tmp);
EVP_MD_CTX_init(&ctx_init);
EVP_MD_CTX_set_flags(&ctx_init, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW);
mac_key = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL, sec, sec_len);
if (!mac_key)
goto err;
if (!EVP_DigestSignInit(&ctx_init, NULL, md, NULL, mac_key))
goto err;
if (!EVP_MD_CTX_copy_ex(&ctx, &ctx_init))
goto err;
if (seed1 && !EVP_DigestSignUpdate(&ctx, seed1, seed1_len))
goto err;
if (seed2 && !EVP_DigestSignUpdate(&ctx, seed2, seed2_len))
goto err;
if (seed3 && !EVP_DigestSignUpdate(&ctx, seed3, seed3_len))
goto err;
if (seed4 && !EVP_DigestSignUpdate(&ctx, seed4, seed4_len))
goto err;
if (seed5 && !EVP_DigestSignUpdate(&ctx, seed5, seed5_len))
goto err;
if (!EVP_DigestSignFinal(&ctx, A1, &A1_len))
goto err;
for (;;) {
/* Reinit mac contexts */
if (!EVP_MD_CTX_copy_ex(&ctx, &ctx_init))
goto err;
if (!EVP_DigestSignUpdate(&ctx, A1, A1_len))
goto err;
if (olen > chunk && !EVP_MD_CTX_copy_ex(&ctx_tmp, &ctx))
goto err;
if (seed1 && !EVP_DigestSignUpdate(&ctx, seed1, seed1_len))
goto err;
if (seed2 && !EVP_DigestSignUpdate(&ctx, seed2, seed2_len))
goto err;
if (seed3 && !EVP_DigestSignUpdate(&ctx, seed3, seed3_len))
goto err;
if (seed4 && !EVP_DigestSignUpdate(&ctx, seed4, seed4_len))
goto err;
if (seed5 && !EVP_DigestSignUpdate(&ctx, seed5, seed5_len))
goto err;
if (olen > chunk) {
if (!EVP_DigestSignFinal(&ctx, out, &j))
goto err;
out += j;
olen -= j;
/* calc the next A1 value */
if (!EVP_DigestSignFinal(&ctx_tmp, A1, &A1_len))
goto err;
} else { /* last one */
if (!EVP_DigestSignFinal(&ctx, A1, &A1_len))
goto err;
memcpy(out, A1, olen);
break;
}
}
ret = 1;
err:
EVP_PKEY_free(mac_key);
EVP_MD_CTX_cleanup(&ctx);
EVP_MD_CTX_cleanup(&ctx_tmp);
EVP_MD_CTX_cleanup(&ctx_init);
OPENSSL_cleanse(A1, sizeof(A1));
return ret;
}
/* seed1 through seed5 are virtually concatenated */
static int tls1_PRF(long digest_mask,
const void *seed1, int seed1_len,
const void *seed2, int seed2_len,
const void *seed3, int seed3_len,
const void *seed4, int seed4_len,
const void *seed5, int seed5_len,
const unsigned char *sec, int slen,
unsigned char *out1, unsigned char *out2, int olen)
{
int len, i, idx, count;
const unsigned char *S1;
long m;
const EVP_MD *md;
int ret = 0;
/* Count number of digests and partition sec evenly */
count = 0;
for (idx = 0; ssl_get_handshake_digest(idx, &m, &md); idx++) {
if ((m << TLS1_PRF_DGST_SHIFT) & digest_mask)
count++;
}
if (!count) {
/* Should never happen */
SSLerr(SSL_F_TLS1_PRF, ERR_R_INTERNAL_ERROR);
goto err;
}
len = slen / count;
if (count == 1)
slen = 0;
S1 = sec;
memset(out1, 0, olen);
for (idx = 0; ssl_get_handshake_digest(idx, &m, &md); idx++) {
if ((m << TLS1_PRF_DGST_SHIFT) & digest_mask) {
if (!md) {
SSLerr(SSL_F_TLS1_PRF, SSL_R_UNSUPPORTED_DIGEST_TYPE);
goto err;
}
if (!tls1_P_hash(md, S1, len + (slen & 1),
seed1, seed1_len, seed2, seed2_len, seed3,
seed3_len, seed4, seed4_len, seed5, seed5_len,
out2, olen))
goto err;
S1 += len;
for (i = 0; i < olen; i++) {
out1[i] ^= out2[i];
}
}
}
ret = 1;
err:
return ret;
}
static int tls1_generate_key_block(SSL *s, unsigned char *km,
unsigned char *tmp, int num)
{
int ret;
ret = tls1_PRF(ssl_get_algorithm2(s),
TLS_MD_KEY_EXPANSION_CONST,
TLS_MD_KEY_EXPANSION_CONST_SIZE, s->s3->server_random,
SSL3_RANDOM_SIZE, s->s3->client_random, SSL3_RANDOM_SIZE,
NULL, 0, NULL, 0, s->session->master_key,
s->session->master_key_length, km, tmp, num);
#ifdef KSSL_DEBUG
fprintf(stderr, "tls1_generate_key_block() ==> %d byte master_key =\n\t",
s->session->master_key_length);
{
int i;
for (i = 0; i < s->session->master_key_length; i++) {
fprintf(stderr, "%02X", s->session->master_key[i]);
}
fprintf(stderr, "\n");
}
#endif /* KSSL_DEBUG */
return ret;
}
int tls1_change_cipher_state(SSL *s, int which)
{
static const unsigned char empty[] = "";
unsigned char *p, *mac_secret;
unsigned char *exp_label;
unsigned char tmp1[EVP_MAX_KEY_LENGTH];
unsigned char tmp2[EVP_MAX_KEY_LENGTH];
unsigned char iv1[EVP_MAX_IV_LENGTH * 2];
unsigned char iv2[EVP_MAX_IV_LENGTH * 2];
unsigned char *ms, *key, *iv;
int client_write;
EVP_CIPHER_CTX *dd;
const EVP_CIPHER *c;
#ifndef OPENSSL_NO_COMP
const SSL_COMP *comp;
#endif
const EVP_MD *m;
int mac_type;
int *mac_secret_size;
EVP_MD_CTX *mac_ctx;
EVP_PKEY *mac_key;
int is_export, n, i, j, k, exp_label_len, cl;
int reuse_dd = 0;
is_export = SSL_C_IS_EXPORT(s->s3->tmp.new_cipher);
c = s->s3->tmp.new_sym_enc;
m = s->s3->tmp.new_hash;
mac_type = s->s3->tmp.new_mac_pkey_type;
#ifndef OPENSSL_NO_COMP
comp = s->s3->tmp.new_compression;
#endif
#ifdef KSSL_DEBUG
fprintf(stderr, "tls1_change_cipher_state(which= %d) w/\n", which);
fprintf(stderr, "\talg= %ld/%ld, comp= %p\n",
s->s3->tmp.new_cipher->algorithm_mkey,
s->s3->tmp.new_cipher->algorithm_auth, comp);
fprintf(stderr, "\tevp_cipher == %p ==? &d_cbc_ede_cipher3\n", c);
fprintf(stderr, "\tevp_cipher: nid, blksz= %d, %d, keylen=%d, ivlen=%d\n",
c->nid, c->block_size, c->key_len, c->iv_len);
fprintf(stderr, "\tkey_block: len= %d, data= ",
s->s3->tmp.key_block_length);
{
int i;
for (i = 0; i < s->s3->tmp.key_block_length; i++)
fprintf(stderr, "%02x", s->s3->tmp.key_block[i]);
fprintf(stderr, "\n");
}
#endif /* KSSL_DEBUG */
if (which & SSL3_CC_READ) {
if (s->s3->tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC)
s->mac_flags |= SSL_MAC_FLAG_READ_MAC_STREAM;
else
s->mac_flags &= ~SSL_MAC_FLAG_READ_MAC_STREAM;
if (s->enc_read_ctx != NULL)
reuse_dd = 1;
else if ((s->enc_read_ctx =
OPENSSL_malloc(sizeof(EVP_CIPHER_CTX))) == NULL)
goto err;
else
/*
* make sure it's intialized in case we exit later with an error
*/
EVP_CIPHER_CTX_init(s->enc_read_ctx);
dd = s->enc_read_ctx;
mac_ctx = ssl_replace_hash(&s->read_hash, NULL);
if (mac_ctx == NULL)
goto err;
#ifndef OPENSSL_NO_COMP
if (s->expand != NULL) {
COMP_CTX_free(s->expand);
s->expand = NULL;
}
if (comp != NULL) {
s->expand = COMP_CTX_new(comp->method);
if (s->expand == NULL) {
SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE,
SSL_R_COMPRESSION_LIBRARY_ERROR);
goto err2;
}
if (s->s3->rrec.comp == NULL)
s->s3->rrec.comp = (unsigned char *)
OPENSSL_malloc(SSL3_RT_MAX_ENCRYPTED_LENGTH);
if (s->s3->rrec.comp == NULL)
goto err;
}
#endif
/*
* this is done by dtls1_reset_seq_numbers for DTLS
*/
if (!SSL_IS_DTLS(s))
memset(&(s->s3->read_sequence[0]), 0, 8);
mac_secret = &(s->s3->read_mac_secret[0]);
mac_secret_size = &(s->s3->read_mac_secret_size);
} else {
if (s->s3->tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC)
s->mac_flags |= SSL_MAC_FLAG_WRITE_MAC_STREAM;
else
s->mac_flags &= ~SSL_MAC_FLAG_WRITE_MAC_STREAM;
if (s->enc_write_ctx != NULL && !SSL_IS_DTLS(s))
reuse_dd = 1;
else if ((s->enc_write_ctx = EVP_CIPHER_CTX_new()) == NULL)
goto err;
dd = s->enc_write_ctx;
if (SSL_IS_DTLS(s)) {
mac_ctx = EVP_MD_CTX_create();
if (mac_ctx == NULL)
goto err;
s->write_hash = mac_ctx;
} else {
mac_ctx = ssl_replace_hash(&s->write_hash, NULL);
if (mac_ctx == NULL)
goto err;
}
#ifndef OPENSSL_NO_COMP
if (s->compress != NULL) {
COMP_CTX_free(s->compress);
s->compress = NULL;
}
if (comp != NULL) {
s->compress = COMP_CTX_new(comp->method);
if (s->compress == NULL) {
SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE,
SSL_R_COMPRESSION_LIBRARY_ERROR);
goto err2;
}
}
#endif
/*
* this is done by dtls1_reset_seq_numbers for DTLS
*/
if (!SSL_IS_DTLS(s))
memset(&(s->s3->write_sequence[0]), 0, 8);
mac_secret = &(s->s3->write_mac_secret[0]);
mac_secret_size = &(s->s3->write_mac_secret_size);
}
if (reuse_dd)
EVP_CIPHER_CTX_cleanup(dd);
p = s->s3->tmp.key_block;
i = *mac_secret_size = s->s3->tmp.new_mac_secret_size;
cl = EVP_CIPHER_key_length(c);
j = is_export ? (cl < SSL_C_EXPORT_KEYLENGTH(s->s3->tmp.new_cipher) ?
cl : SSL_C_EXPORT_KEYLENGTH(s->s3->tmp.new_cipher)) : cl;
/* Was j=(exp)?5:EVP_CIPHER_key_length(c); */
/* If GCM mode only part of IV comes from PRF */
if (EVP_CIPHER_mode(c) == EVP_CIPH_GCM_MODE)
k = EVP_GCM_TLS_FIXED_IV_LEN;
else
k = EVP_CIPHER_iv_length(c);
if ((which == SSL3_CHANGE_CIPHER_CLIENT_WRITE) ||
(which == SSL3_CHANGE_CIPHER_SERVER_READ)) {
ms = &(p[0]);
n = i + i;
key = &(p[n]);
n += j + j;
iv = &(p[n]);
n += k + k;
exp_label = (unsigned char *)TLS_MD_CLIENT_WRITE_KEY_CONST;
exp_label_len = TLS_MD_CLIENT_WRITE_KEY_CONST_SIZE;
client_write = 1;
} else {
n = i;
ms = &(p[n]);
n += i + j;
key = &(p[n]);
n += j + k;
iv = &(p[n]);
n += k;
exp_label = (unsigned char *)TLS_MD_SERVER_WRITE_KEY_CONST;
exp_label_len = TLS_MD_SERVER_WRITE_KEY_CONST_SIZE;
client_write = 0;
}
if (n > s->s3->tmp.key_block_length) {
SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
goto err2;
}
memcpy(mac_secret, ms, i);
if (!(EVP_CIPHER_flags(c) & EVP_CIPH_FLAG_AEAD_CIPHER)) {
mac_key = EVP_PKEY_new_mac_key(mac_type, NULL,
mac_secret, *mac_secret_size);
if (mac_key == NULL
|| EVP_DigestSignInit(mac_ctx, NULL, m, NULL, mac_key) <= 0) {
EVP_PKEY_free(mac_key);
SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
goto err2;
}
EVP_PKEY_free(mac_key);
}
#ifdef TLS_DEBUG
printf("which = %04X\nmac key=", which);
{
int z;
for (z = 0; z < i; z++)
printf("%02X%c", ms[z], ((z + 1) % 16) ? ' ' : '\n');
}
#endif
if (is_export) {
/*
* In here I set both the read and write key/iv to the same value
* since only the correct one will be used :-).
*/
if (!tls1_PRF(ssl_get_algorithm2(s),
exp_label, exp_label_len,
s->s3->client_random, SSL3_RANDOM_SIZE,
s->s3->server_random, SSL3_RANDOM_SIZE,
NULL, 0, NULL, 0,
key, j, tmp1, tmp2, EVP_CIPHER_key_length(c)))
goto err2;
key = tmp1;
if (k > 0) {
if (!tls1_PRF(ssl_get_algorithm2(s),
TLS_MD_IV_BLOCK_CONST, TLS_MD_IV_BLOCK_CONST_SIZE,
s->s3->client_random, SSL3_RANDOM_SIZE,
s->s3->server_random, SSL3_RANDOM_SIZE,
NULL, 0, NULL, 0, empty, 0, iv1, iv2, k * 2))
goto err2;
if (client_write)
iv = iv1;
else
iv = &(iv1[k]);
}
}
s->session->key_arg_length = 0;
#ifdef KSSL_DEBUG
{
int i;
fprintf(stderr, "EVP_CipherInit_ex(dd,c,key=,iv=,which)\n");
fprintf(stderr, "\tkey= ");
for (i = 0; i < c->key_len; i++)
fprintf(stderr, "%02x", key[i]);
fprintf(stderr, "\n");
fprintf(stderr, "\t iv= ");
for (i = 0; i < c->iv_len; i++)
fprintf(stderr, "%02x", iv[i]);
fprintf(stderr, "\n");
}
#endif /* KSSL_DEBUG */
if (EVP_CIPHER_mode(c) == EVP_CIPH_GCM_MODE) {
if (!EVP_CipherInit_ex(dd, c, NULL, key, NULL, (which & SSL3_CC_WRITE))
|| !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_GCM_SET_IV_FIXED, k, iv)) {
SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
goto err2;
}
} else {
if (!EVP_CipherInit_ex(dd, c, NULL, key, iv, (which & SSL3_CC_WRITE))) {
SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
goto err2;
}
}
/* Needed for "composite" AEADs, such as RC4-HMAC-MD5 */
if ((EVP_CIPHER_flags(c) & EVP_CIPH_FLAG_AEAD_CIPHER) && *mac_secret_size
&& !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_AEAD_SET_MAC_KEY,
*mac_secret_size, mac_secret)) {
SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
goto err2;
}
#ifdef OPENSSL_SSL_TRACE_CRYPTO
if (s->msg_callback) {
int wh = which & SSL3_CC_WRITE ? TLS1_RT_CRYPTO_WRITE : 0;
if (*mac_secret_size)
s->msg_callback(2, s->version, wh | TLS1_RT_CRYPTO_MAC,
mac_secret, *mac_secret_size,
s, s->msg_callback_arg);
if (c->key_len)
s->msg_callback(2, s->version, wh | TLS1_RT_CRYPTO_KEY,
key, c->key_len, s, s->msg_callback_arg);
if (k) {
if (EVP_CIPHER_mode(c) == EVP_CIPH_GCM_MODE)
wh |= TLS1_RT_CRYPTO_FIXED_IV;
else
wh |= TLS1_RT_CRYPTO_IV;
s->msg_callback(2, s->version, wh, iv, k, s, s->msg_callback_arg);
}
}
#endif
#ifdef TLS_DEBUG
printf("which = %04X\nkey=", which);
{
int z;
for (z = 0; z < EVP_CIPHER_key_length(c); z++)
printf("%02X%c", key[z], ((z + 1) % 16) ? ' ' : '\n');
}
printf("\niv=");
{
int z;
for (z = 0; z < k; z++)
printf("%02X%c", iv[z], ((z + 1) % 16) ? ' ' : '\n');
}
printf("\n");
#endif
OPENSSL_cleanse(tmp1, sizeof(tmp1));
OPENSSL_cleanse(tmp2, sizeof(tmp1));
OPENSSL_cleanse(iv1, sizeof(iv1));
OPENSSL_cleanse(iv2, sizeof(iv2));
return (1);
err:
SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_MALLOC_FAILURE);
err2:
return (0);
}
int tls1_setup_key_block(SSL *s)
{
unsigned char *p1, *p2 = NULL;
const EVP_CIPHER *c;
const EVP_MD *hash;
int num;
SSL_COMP *comp;
int mac_type = NID_undef, mac_secret_size = 0;
int ret = 0;
#ifdef KSSL_DEBUG
fprintf(stderr, "tls1_setup_key_block()\n");
#endif /* KSSL_DEBUG */
if (s->s3->tmp.key_block_length != 0)
return (1);
if (!ssl_cipher_get_evp
(s->session, &c, &hash, &mac_type, &mac_secret_size, &comp)) {
SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, SSL_R_CIPHER_OR_HASH_UNAVAILABLE);
return (0);
}
s->s3->tmp.new_sym_enc = c;
s->s3->tmp.new_hash = hash;
s->s3->tmp.new_mac_pkey_type = mac_type;
s->s3->tmp.new_mac_secret_size = mac_secret_size;
num =
EVP_CIPHER_key_length(c) + mac_secret_size + EVP_CIPHER_iv_length(c);
num *= 2;
ssl3_cleanup_key_block(s);
if ((p1 = (unsigned char *)OPENSSL_malloc(num)) == NULL) {
SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, ERR_R_MALLOC_FAILURE);
goto err;
}
s->s3->tmp.key_block_length = num;
s->s3->tmp.key_block = p1;
if ((p2 = (unsigned char *)OPENSSL_malloc(num)) == NULL) {
SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, ERR_R_MALLOC_FAILURE);
OPENSSL_free(p1);
goto err;
}
#ifdef TLS_DEBUG
printf("client random\n");
{
int z;
for (z = 0; z < SSL3_RANDOM_SIZE; z++)
printf("%02X%c", s->s3->client_random[z],
((z + 1) % 16) ? ' ' : '\n');
}
printf("server random\n");
{
int z;
for (z = 0; z < SSL3_RANDOM_SIZE; z++)
printf("%02X%c", s->s3->server_random[z],
((z + 1) % 16) ? ' ' : '\n');
}
printf("pre-master\n");
{
int z;
for (z = 0; z < s->session->master_key_length; z++)
printf("%02X%c", s->session->master_key[z],
((z + 1) % 16) ? ' ' : '\n');
}
#endif
if (!tls1_generate_key_block(s, p1, p2, num))
goto err;
#ifdef TLS_DEBUG
printf("\nkey block\n");
{
int z;
for (z = 0; z < num; z++)
printf("%02X%c", p1[z], ((z + 1) % 16) ? ' ' : '\n');
}
#endif
if (!(s->options & SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS)
&& s->method->version <= TLS1_VERSION) {
/*
* enable vulnerability countermeasure for CBC ciphers with known-IV
* problem (http://www.openssl.org/~bodo/tls-cbc.txt)
*/
s->s3->need_empty_fragments = 1;
if (s->session->cipher != NULL) {
if (s->session->cipher->algorithm_enc == SSL_eNULL)
s->s3->need_empty_fragments = 0;
#ifndef OPENSSL_NO_RC4
if (s->session->cipher->algorithm_enc == SSL_RC4)
s->s3->need_empty_fragments = 0;
#endif
}
}
ret = 1;
err:
if (p2) {
OPENSSL_cleanse(p2, num);
OPENSSL_free(p2);
}
return (ret);
}
/*-
* tls1_enc encrypts/decrypts the record in |s->wrec| / |s->rrec|, respectively.
*
* Returns:
* 0: (in non-constant time) if the record is publically invalid (i.e. too
* short etc).
* 1: if the record's padding is valid / the encryption was successful.
* -1: if the record's padding/AEAD-authenticator is invalid or, if sending,
* an internal error occured.
*/
int tls1_enc(SSL *s, int send)
{
SSL3_RECORD *rec;
EVP_CIPHER_CTX *ds;
unsigned long l;
int bs, i, j, k, pad = 0, ret, mac_size = 0;
const EVP_CIPHER *enc;
if (send) {
if (EVP_MD_CTX_md(s->write_hash)) {
int n = EVP_MD_CTX_size(s->write_hash);
OPENSSL_assert(n >= 0);
}
ds = s->enc_write_ctx;
rec = &(s->s3->wrec);
if (s->enc_write_ctx == NULL)
enc = NULL;
else {
int ivlen;
enc = EVP_CIPHER_CTX_cipher(s->enc_write_ctx);
/* For TLSv1.1 and later explicit IV */
if (SSL_USE_EXPLICIT_IV(s)
&& EVP_CIPHER_mode(enc) == EVP_CIPH_CBC_MODE)
ivlen = EVP_CIPHER_iv_length(enc);
else
ivlen = 0;
if (ivlen > 1) {
if (rec->data != rec->input)
/*
* we can't write into the input stream: Can this ever
* happen?? (steve)
*/
fprintf(stderr,
"%s:%d: rec->data != rec->input\n",
__FILE__, __LINE__);
else if (RAND_bytes(rec->input, ivlen) <= 0)
return -1;
}
}
} else {
if (EVP_MD_CTX_md(s->read_hash)) {
int n = EVP_MD_CTX_size(s->read_hash);
OPENSSL_assert(n >= 0);
}
ds = s->enc_read_ctx;
rec = &(s->s3->rrec);
if (s->enc_read_ctx == NULL)
enc = NULL;
else
enc = EVP_CIPHER_CTX_cipher(s->enc_read_ctx);
}
#ifdef KSSL_DEBUG
fprintf(stderr, "tls1_enc(%d)\n", send);
#endif /* KSSL_DEBUG */
if ((s->session == NULL) || (ds == NULL) || (enc == NULL)) {
memmove(rec->data, rec->input, rec->length);
rec->input = rec->data;
ret = 1;
} else {
l = rec->length;
bs = EVP_CIPHER_block_size(ds->cipher);
if (EVP_CIPHER_flags(ds->cipher) & EVP_CIPH_FLAG_AEAD_CIPHER) {
unsigned char buf[EVP_AEAD_TLS1_AAD_LEN], *seq;
seq = send ? s->s3->write_sequence : s->s3->read_sequence;
if (SSL_IS_DTLS(s)) {
unsigned char dtlsseq[9], *p = dtlsseq;
s2n(send ? s->d1->w_epoch : s->d1->r_epoch, p);
memcpy(p, &seq[2], 6);
memcpy(buf, dtlsseq, 8);
} else {
memcpy(buf, seq, 8);
for (i = 7; i >= 0; i--) { /* increment */
++seq[i];
if (seq[i] != 0)
break;
}
}
buf[8] = rec->type;
buf[9] = (unsigned char)(s->version >> 8);
buf[10] = (unsigned char)(s->version);
buf[11] = rec->length >> 8;
buf[12] = rec->length & 0xff;
pad = EVP_CIPHER_CTX_ctrl(ds, EVP_CTRL_AEAD_TLS1_AAD,
EVP_AEAD_TLS1_AAD_LEN, buf);
if (pad <= 0)
return -1;
if (send) {
l += pad;
rec->length += pad;
}
} else if ((bs != 1) && send) {
i = bs - ((int)l % bs);
/* Add weird padding of upto 256 bytes */
/* we need to add 'i' padding bytes of value j */
j = i - 1;
if (s->options & SSL_OP_TLS_BLOCK_PADDING_BUG) {
if (s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG)
j++;
}
for (k = (int)l; k < (int)(l + i); k++)
rec->input[k] = j;
l += i;
rec->length += i;
}
#ifdef KSSL_DEBUG
{
unsigned long ui;
fprintf(stderr,
"EVP_Cipher(ds=%p,rec->data=%p,rec->input=%p,l=%ld) ==>\n",
ds, rec->data, rec->input, l);
fprintf(stderr,
"\tEVP_CIPHER_CTX: %d buf_len, %d key_len [%lu %lu], %d iv_len\n",
ds->buf_len, ds->cipher->key_len, DES_KEY_SZ,
DES_SCHEDULE_SZ, ds->cipher->iv_len);
fprintf(stderr, "\t\tIV: ");
for (i = 0; i < ds->cipher->iv_len; i++)
fprintf(stderr, "%02X", ds->iv[i]);
fprintf(stderr, "\n");
fprintf(stderr, "\trec->input=");
for (ui = 0; ui < l; ui++)
fprintf(stderr, " %02x", rec->input[ui]);
fprintf(stderr, "\n");
}
#endif /* KSSL_DEBUG */
if (!send) {
if (l == 0 || l % bs != 0)
return 0;
}
i = EVP_Cipher(ds, rec->data, rec->input, l);
if ((EVP_CIPHER_flags(ds->cipher) & EVP_CIPH_FLAG_CUSTOM_CIPHER)
? (i < 0)
: (i == 0))
return -1; /* AEAD can fail to verify MAC */
if (EVP_CIPHER_mode(enc) == EVP_CIPH_GCM_MODE && !send) {
rec->data += EVP_GCM_TLS_EXPLICIT_IV_LEN;
rec->input += EVP_GCM_TLS_EXPLICIT_IV_LEN;
rec->length -= EVP_GCM_TLS_EXPLICIT_IV_LEN;
}
#ifdef KSSL_DEBUG
{
unsigned long i;
fprintf(stderr, "\trec->data=");
for (i = 0; i < l; i++)
fprintf(stderr, " %02x", rec->data[i]);
fprintf(stderr, "\n");
}
#endif /* KSSL_DEBUG */
ret = 1;
if (EVP_MD_CTX_md(s->read_hash) != NULL)
mac_size = EVP_MD_CTX_size(s->read_hash);
if ((bs != 1) && !send)
ret = tls1_cbc_remove_padding(s, rec, bs, mac_size);
if (pad && !send)
rec->length -= pad;
}
return ret;
}
int tls1_cert_verify_mac(SSL *s, int md_nid, unsigned char *out)
{
unsigned int ret;
EVP_MD_CTX ctx, *d = NULL;
int i;
if (s->s3->handshake_buffer)
if (!ssl3_digest_cached_records(s))
return 0;
for (i = 0; i < SSL_MAX_DIGEST; i++) {
if (s->s3->handshake_dgst[i]
&& EVP_MD_CTX_type(s->s3->handshake_dgst[i]) == md_nid) {
d = s->s3->handshake_dgst[i];
break;
}
}
if (!d) {
SSLerr(SSL_F_TLS1_CERT_VERIFY_MAC, SSL_R_NO_REQUIRED_DIGEST);
return 0;
}
EVP_MD_CTX_init(&ctx);
if (EVP_MD_CTX_copy_ex(&ctx, d) <=0
|| EVP_DigestFinal_ex(&ctx, out, &ret) <= 0)
ret = 0;
EVP_MD_CTX_cleanup(&ctx);
return ((int)ret);
}
int tls1_final_finish_mac(SSL *s,
const char *str, int slen, unsigned char *out)
{
unsigned int i;
EVP_MD_CTX ctx;
unsigned char buf[2 * EVP_MAX_MD_SIZE];
unsigned char *q, buf2[12];
int idx;
long mask;
int err = 0;
const EVP_MD *md;
q = buf;
if (s->s3->handshake_buffer)
if (!ssl3_digest_cached_records(s))
return 0;
EVP_MD_CTX_init(&ctx);
for (idx = 0; ssl_get_handshake_digest(idx, &mask, &md); idx++) {
if (mask & ssl_get_algorithm2(s)) {
int hashsize = EVP_MD_size(md);
EVP_MD_CTX *hdgst = s->s3->handshake_dgst[idx];
if (!hdgst || hashsize < 0
|| hashsize > (int)(sizeof buf - (size_t)(q - buf))) {
/*
* internal error: 'buf' is too small for this cipersuite!
*/
err = 1;
} else {
if (!EVP_MD_CTX_copy_ex(&ctx, hdgst) ||
!EVP_DigestFinal_ex(&ctx, q, &i) ||
(i != (unsigned int)hashsize))
err = 1;
q += hashsize;
}
}
}
if (!tls1_PRF(ssl_get_algorithm2(s),
str, slen, buf, (int)(q - buf), NULL, 0, NULL, 0, NULL, 0,
s->session->master_key, s->session->master_key_length,
out, buf2, sizeof buf2))
err = 1;
EVP_MD_CTX_cleanup(&ctx);
OPENSSL_cleanse(buf, (int)(q - buf));
OPENSSL_cleanse(buf2, sizeof(buf2));
if (err)
return 0;
else
return sizeof buf2;
}
int tls1_mac(SSL *ssl, unsigned char *md, int send)
{
SSL3_RECORD *rec;
unsigned char *seq;
EVP_MD_CTX *hash;
size_t md_size, orig_len;
int i;
EVP_MD_CTX hmac, *mac_ctx;
unsigned char header[13];
int stream_mac = (send ? (ssl->mac_flags & SSL_MAC_FLAG_WRITE_MAC_STREAM)
: (ssl->mac_flags & SSL_MAC_FLAG_READ_MAC_STREAM));
int t;
if (send) {
rec = &(ssl->s3->wrec);
seq = &(ssl->s3->write_sequence[0]);
hash = ssl->write_hash;
} else {
rec = &(ssl->s3->rrec);
seq = &(ssl->s3->read_sequence[0]);
hash = ssl->read_hash;
}
t = EVP_MD_CTX_size(hash);
OPENSSL_assert(t >= 0);
md_size = t;
/* I should fix this up TLS TLS TLS TLS TLS XXXXXXXX */
if (stream_mac) {
mac_ctx = hash;
} else {
if (!EVP_MD_CTX_copy(&hmac, hash))
return -1;
mac_ctx = &hmac;
}
if (SSL_IS_DTLS(ssl)) {
unsigned char dtlsseq[8], *p = dtlsseq;
s2n(send ? ssl->d1->w_epoch : ssl->d1->r_epoch, p);
memcpy(p, &seq[2], 6);
memcpy(header, dtlsseq, 8);
} else
memcpy(header, seq, 8);
/*
* kludge: tls1_cbc_remove_padding passes padding length in rec->type
*/
orig_len = rec->length + md_size + ((unsigned int)rec->type >> 8);
rec->type &= 0xff;
header[8] = rec->type;
header[9] = (unsigned char)(ssl->version >> 8);
header[10] = (unsigned char)(ssl->version);
header[11] = (rec->length) >> 8;
header[12] = (rec->length) & 0xff;
if (!send &&
EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE &&
ssl3_cbc_record_digest_supported(mac_ctx)) {
/*
* This is a CBC-encrypted record. We must avoid leaking any
* timing-side channel information about how many blocks of data we
* are hashing because that gives an attacker a timing-oracle.
*/
/* Final param == not SSLv3 */
if (ssl3_cbc_digest_record(mac_ctx,
md, &md_size,
header, rec->input,
rec->length + md_size, orig_len,
ssl->s3->read_mac_secret,
ssl->s3->read_mac_secret_size, 0) <= 0) {
if (!stream_mac)
EVP_MD_CTX_cleanup(&hmac);
return -1;
}
} else {
if (EVP_DigestSignUpdate(mac_ctx, header, sizeof(header)) <= 0
|| EVP_DigestSignUpdate(mac_ctx, rec->input, rec->length) <= 0
|| EVP_DigestSignFinal(mac_ctx, md, &md_size) <= 0) {
if (!stream_mac)
EVP_MD_CTX_cleanup(&hmac);
return -1;
}
#ifdef OPENSSL_FIPS
if (!send && FIPS_mode())
tls_fips_digest_extra(ssl->enc_read_ctx,
mac_ctx, rec->input, rec->length, orig_len);
#endif
}
if (!stream_mac)
EVP_MD_CTX_cleanup(&hmac);
#ifdef TLS_DEBUG
fprintf(stderr, "seq=");
{
int z;
for (z = 0; z < 8; z++)
fprintf(stderr, "%02X ", seq[z]);
fprintf(stderr, "\n");
}
fprintf(stderr, "rec=");
{
unsigned int z;
for (z = 0; z < rec->length; z++)
fprintf(stderr, "%02X ", rec->data[z]);
fprintf(stderr, "\n");
}
#endif
if (!SSL_IS_DTLS(ssl)) {
for (i = 7; i >= 0; i--) {
++seq[i];
if (seq[i] != 0)
break;
}
}
#ifdef TLS_DEBUG
{
unsigned int z;
for (z = 0; z < md_size; z++)
fprintf(stderr, "%02X ", md[z]);
fprintf(stderr, "\n");
}
#endif
return (md_size);
}
int tls1_generate_master_secret(SSL *s, unsigned char *out, unsigned char *p,
int len)
{
unsigned char buff[SSL_MAX_MASTER_KEY_LENGTH];
const void *co = NULL, *so = NULL;
int col = 0, sol = 0;
#ifdef KSSL_DEBUG
fprintf(stderr, "tls1_generate_master_secret(%p,%p, %p, %d)\n", s, out, p,
len);
#endif /* KSSL_DEBUG */
#ifdef TLSEXT_TYPE_opaque_prf_input
if (s->s3->client_opaque_prf_input != NULL
&& s->s3->server_opaque_prf_input != NULL
&& s->s3->client_opaque_prf_input_len > 0
&& s->s3->client_opaque_prf_input_len ==
s->s3->server_opaque_prf_input_len) {
co = s->s3->client_opaque_prf_input;
col = s->s3->server_opaque_prf_input_len;
so = s->s3->server_opaque_prf_input;
/*
* must be same as col (see
* draft-rescorla-tls-opaque-prf-input-00.txt, section 3.1)
*/
sol = s->s3->client_opaque_prf_input_len;
}
#endif
tls1_PRF(ssl_get_algorithm2(s),
TLS_MD_MASTER_SECRET_CONST, TLS_MD_MASTER_SECRET_CONST_SIZE,
s->s3->client_random, SSL3_RANDOM_SIZE,
co, col,
s->s3->server_random, SSL3_RANDOM_SIZE,
so, sol, p, len, s->session->master_key, buff, sizeof buff);
OPENSSL_cleanse(buff, sizeof buff);
#ifdef SSL_DEBUG
fprintf(stderr, "Premaster Secret:\n");
BIO_dump_fp(stderr, (char *)p, len);
fprintf(stderr, "Client Random:\n");
BIO_dump_fp(stderr, (char *)s->s3->client_random, SSL3_RANDOM_SIZE);
fprintf(stderr, "Server Random:\n");
BIO_dump_fp(stderr, (char *)s->s3->server_random, SSL3_RANDOM_SIZE);
fprintf(stderr, "Master Secret:\n");
BIO_dump_fp(stderr, (char *)s->session->master_key,
SSL3_MASTER_SECRET_SIZE);
#endif
#ifdef OPENSSL_SSL_TRACE_CRYPTO
if (s->msg_callback) {
s->msg_callback(2, s->version, TLS1_RT_CRYPTO_PREMASTER,
p, len, s, s->msg_callback_arg);
s->msg_callback(2, s->version, TLS1_RT_CRYPTO_CLIENT_RANDOM,
s->s3->client_random, SSL3_RANDOM_SIZE,
s, s->msg_callback_arg);
s->msg_callback(2, s->version, TLS1_RT_CRYPTO_SERVER_RANDOM,
s->s3->server_random, SSL3_RANDOM_SIZE,
s, s->msg_callback_arg);
s->msg_callback(2, s->version, TLS1_RT_CRYPTO_MASTER,
s->session->master_key,
SSL3_MASTER_SECRET_SIZE, s, s->msg_callback_arg);
}
#endif
#ifdef KSSL_DEBUG
fprintf(stderr, "tls1_generate_master_secret() complete\n");
#endif /* KSSL_DEBUG */
return (SSL3_MASTER_SECRET_SIZE);
}
int tls1_export_keying_material(SSL *s, unsigned char *out, size_t olen,
const char *label, size_t llen,
const unsigned char *context,
size_t contextlen, int use_context)
{
unsigned char *buff;
unsigned char *val = NULL;
size_t vallen, currentvalpos;
int rv;
#ifdef KSSL_DEBUG
fprintf(stderr, "tls1_export_keying_material(%p,%p,%lu,%s,%lu,%p,%lu)\n",
s, out, olen, label, llen, context, contextlen);
#endif /* KSSL_DEBUG */
buff = OPENSSL_malloc(olen);
if (buff == NULL)
goto err2;
/*
* construct PRF arguments we construct the PRF argument ourself rather
* than passing separate values into the TLS PRF to ensure that the
* concatenation of values does not create a prohibited label.
*/
vallen = llen + SSL3_RANDOM_SIZE * 2;
if (use_context) {
vallen += 2 + contextlen;
}
val = OPENSSL_malloc(vallen);
if (val == NULL)
goto err2;
currentvalpos = 0;
memcpy(val + currentvalpos, (unsigned char *)label, llen);
currentvalpos += llen;
memcpy(val + currentvalpos, s->s3->client_random, SSL3_RANDOM_SIZE);
currentvalpos += SSL3_RANDOM_SIZE;
memcpy(val + currentvalpos, s->s3->server_random, SSL3_RANDOM_SIZE);
currentvalpos += SSL3_RANDOM_SIZE;
if (use_context) {
val[currentvalpos] = (contextlen >> 8) & 0xff;
currentvalpos++;
val[currentvalpos] = contextlen & 0xff;
currentvalpos++;
if ((contextlen > 0) || (context != NULL)) {
memcpy(val + currentvalpos, context, contextlen);
}
}
/*
* disallow prohibited labels note that SSL3_RANDOM_SIZE > max(prohibited
* label len) = 15, so size of val > max(prohibited label len) = 15 and
* the comparisons won't have buffer overflow
*/
if (memcmp(val, TLS_MD_CLIENT_FINISH_CONST,
TLS_MD_CLIENT_FINISH_CONST_SIZE) == 0)
goto err1;
if (memcmp(val, TLS_MD_SERVER_FINISH_CONST,
TLS_MD_SERVER_FINISH_CONST_SIZE) == 0)
goto err1;
if (memcmp(val, TLS_MD_MASTER_SECRET_CONST,
TLS_MD_MASTER_SECRET_CONST_SIZE) == 0)
goto err1;
if (memcmp(val, TLS_MD_KEY_EXPANSION_CONST,
TLS_MD_KEY_EXPANSION_CONST_SIZE) == 0)
goto err1;
rv = tls1_PRF(ssl_get_algorithm2(s),
val, vallen,
NULL, 0,
NULL, 0,
NULL, 0,
NULL, 0,
s->session->master_key, s->session->master_key_length,
out, buff, olen);
OPENSSL_cleanse(val, vallen);
OPENSSL_cleanse(buff, olen);
#ifdef KSSL_DEBUG
fprintf(stderr, "tls1_export_keying_material() complete\n");
#endif /* KSSL_DEBUG */
goto ret;
err1:
SSLerr(SSL_F_TLS1_EXPORT_KEYING_MATERIAL,
SSL_R_TLS_ILLEGAL_EXPORTER_LABEL);
rv = 0;
goto ret;
err2:
SSLerr(SSL_F_TLS1_EXPORT_KEYING_MATERIAL, ERR_R_MALLOC_FAILURE);
rv = 0;
ret:
if (buff != NULL)
OPENSSL_free(buff);
if (val != NULL)
OPENSSL_free(val);
return (rv);
}
int tls1_alert_code(int code)
{
switch (code) {
case SSL_AD_CLOSE_NOTIFY:
return (SSL3_AD_CLOSE_NOTIFY);
case SSL_AD_UNEXPECTED_MESSAGE:
return (SSL3_AD_UNEXPECTED_MESSAGE);
case SSL_AD_BAD_RECORD_MAC:
return (SSL3_AD_BAD_RECORD_MAC);
case SSL_AD_DECRYPTION_FAILED:
return (TLS1_AD_DECRYPTION_FAILED);
case SSL_AD_RECORD_OVERFLOW:
return (TLS1_AD_RECORD_OVERFLOW);
case SSL_AD_DECOMPRESSION_FAILURE:
return (SSL3_AD_DECOMPRESSION_FAILURE);
case SSL_AD_HANDSHAKE_FAILURE:
return (SSL3_AD_HANDSHAKE_FAILURE);
case SSL_AD_NO_CERTIFICATE:
return (-1);
case SSL_AD_BAD_CERTIFICATE:
return (SSL3_AD_BAD_CERTIFICATE);
case SSL_AD_UNSUPPORTED_CERTIFICATE:
return (SSL3_AD_UNSUPPORTED_CERTIFICATE);
case SSL_AD_CERTIFICATE_REVOKED:
return (SSL3_AD_CERTIFICATE_REVOKED);
case SSL_AD_CERTIFICATE_EXPIRED:
return (SSL3_AD_CERTIFICATE_EXPIRED);
case SSL_AD_CERTIFICATE_UNKNOWN:
return (SSL3_AD_CERTIFICATE_UNKNOWN);
case SSL_AD_ILLEGAL_PARAMETER:
return (SSL3_AD_ILLEGAL_PARAMETER);
case SSL_AD_UNKNOWN_CA:
return (TLS1_AD_UNKNOWN_CA);
case SSL_AD_ACCESS_DENIED:
return (TLS1_AD_ACCESS_DENIED);
case SSL_AD_DECODE_ERROR:
return (TLS1_AD_DECODE_ERROR);
case SSL_AD_DECRYPT_ERROR:
return (TLS1_AD_DECRYPT_ERROR);
case SSL_AD_EXPORT_RESTRICTION:
return (TLS1_AD_EXPORT_RESTRICTION);
case SSL_AD_PROTOCOL_VERSION:
return (TLS1_AD_PROTOCOL_VERSION);
case SSL_AD_INSUFFICIENT_SECURITY:
return (TLS1_AD_INSUFFICIENT_SECURITY);
case SSL_AD_INTERNAL_ERROR:
return (TLS1_AD_INTERNAL_ERROR);
case SSL_AD_USER_CANCELLED:
return (TLS1_AD_USER_CANCELLED);
case SSL_AD_NO_RENEGOTIATION:
return (TLS1_AD_NO_RENEGOTIATION);
case SSL_AD_UNSUPPORTED_EXTENSION:
return (TLS1_AD_UNSUPPORTED_EXTENSION);
case SSL_AD_CERTIFICATE_UNOBTAINABLE:
return (TLS1_AD_CERTIFICATE_UNOBTAINABLE);
case SSL_AD_UNRECOGNIZED_NAME:
return (TLS1_AD_UNRECOGNIZED_NAME);
case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE:
return (TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE);
case SSL_AD_BAD_CERTIFICATE_HASH_VALUE:
return (TLS1_AD_BAD_CERTIFICATE_HASH_VALUE);
case SSL_AD_UNKNOWN_PSK_IDENTITY:
return (TLS1_AD_UNKNOWN_PSK_IDENTITY);
case SSL_AD_INAPPROPRIATE_FALLBACK:
return (TLS1_AD_INAPPROPRIATE_FALLBACK);
#if 0
/* not appropriate for TLS, not used for DTLS */
case DTLS1_AD_MISSING_HANDSHAKE_MESSAGE:
return (DTLS1_AD_MISSING_HANDSHAKE_MESSAGE);
#endif
default:
return (-1);
}
}