godot/drivers/webp/dsp/lossless.h

373 lines
15 KiB
C++

// Copyright 2012 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Image transforms and color space conversion methods for lossless decoder.
//
// Authors: Vikas Arora (vikaas.arora@gmail.com)
// Jyrki Alakuijala (jyrki@google.com)
#ifndef WEBP_DSP_LOSSLESS_H_
#define WEBP_DSP_LOSSLESS_H_
#include "webp/types.h"
#include "webp/decode.h"
#include "../enc/histogram.h"
#include "../utils/utils.h"
#ifdef __cplusplus
extern "C" {
#endif
#ifdef WEBP_EXPERIMENTAL_FEATURES
#include "../enc/delta_palettization.h"
#endif // WEBP_EXPERIMENTAL_FEATURES
//------------------------------------------------------------------------------
// Decoding
typedef uint32_t (*VP8LPredictorFunc)(uint32_t left, const uint32_t* const top);
extern VP8LPredictorFunc VP8LPredictors[16];
typedef void (*VP8LProcessBlueAndRedFunc)(uint32_t* argb_data, int num_pixels);
extern VP8LProcessBlueAndRedFunc VP8LAddGreenToBlueAndRed;
typedef struct {
// Note: the members are uint8_t, so that any negative values are
// automatically converted to "mod 256" values.
uint8_t green_to_red_;
uint8_t green_to_blue_;
uint8_t red_to_blue_;
} VP8LMultipliers;
typedef void (*VP8LTransformColorFunc)(const VP8LMultipliers* const m,
uint32_t* argb_data, int num_pixels);
extern VP8LTransformColorFunc VP8LTransformColorInverse;
struct VP8LTransform; // Defined in dec/vp8li.h.
// Performs inverse transform of data given transform information, start and end
// rows. Transform will be applied to rows [row_start, row_end[.
// The *in and *out pointers refer to source and destination data respectively
// corresponding to the intermediate row (row_start).
void VP8LInverseTransform(const struct VP8LTransform* const transform,
int row_start, int row_end,
const uint32_t* const in, uint32_t* const out);
// Color space conversion.
typedef void (*VP8LConvertFunc)(const uint32_t* src, int num_pixels,
uint8_t* dst);
extern VP8LConvertFunc VP8LConvertBGRAToRGB;
extern VP8LConvertFunc VP8LConvertBGRAToRGBA;
extern VP8LConvertFunc VP8LConvertBGRAToRGBA4444;
extern VP8LConvertFunc VP8LConvertBGRAToRGB565;
extern VP8LConvertFunc VP8LConvertBGRAToBGR;
// Converts from BGRA to other color spaces.
void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels,
WEBP_CSP_MODE out_colorspace, uint8_t* const rgba);
// color mapping related functions.
static WEBP_INLINE uint32_t VP8GetARGBIndex(uint32_t idx) {
return (idx >> 8) & 0xff;
}
static WEBP_INLINE uint8_t VP8GetAlphaIndex(uint8_t idx) {
return idx;
}
static WEBP_INLINE uint32_t VP8GetARGBValue(uint32_t val) {
return val;
}
static WEBP_INLINE uint8_t VP8GetAlphaValue(uint32_t val) {
return (val >> 8) & 0xff;
}
typedef void (*VP8LMapARGBFunc)(const uint32_t* src,
const uint32_t* const color_map,
uint32_t* dst, int y_start,
int y_end, int width);
typedef void (*VP8LMapAlphaFunc)(const uint8_t* src,
const uint32_t* const color_map,
uint8_t* dst, int y_start,
int y_end, int width);
extern VP8LMapARGBFunc VP8LMapColor32b;
extern VP8LMapAlphaFunc VP8LMapColor8b;
// Similar to the static method ColorIndexInverseTransform() that is part of
// lossless.c, but used only for alpha decoding. It takes uint8_t (rather than
// uint32_t) arguments for 'src' and 'dst'.
void VP8LColorIndexInverseTransformAlpha(
const struct VP8LTransform* const transform, int y_start, int y_end,
const uint8_t* src, uint8_t* dst);
// Expose some C-only fallback functions
void VP8LTransformColorInverse_C(const VP8LMultipliers* const m,
uint32_t* data, int num_pixels);
void VP8LConvertBGRAToRGB_C(const uint32_t* src, int num_pixels, uint8_t* dst);
void VP8LConvertBGRAToRGBA_C(const uint32_t* src, int num_pixels, uint8_t* dst);
void VP8LConvertBGRAToRGBA4444_C(const uint32_t* src,
int num_pixels, uint8_t* dst);
void VP8LConvertBGRAToRGB565_C(const uint32_t* src,
int num_pixels, uint8_t* dst);
void VP8LConvertBGRAToBGR_C(const uint32_t* src, int num_pixels, uint8_t* dst);
void VP8LAddGreenToBlueAndRed_C(uint32_t* data, int num_pixels);
// Must be called before calling any of the above methods.
void VP8LDspInit(void);
//------------------------------------------------------------------------------
// Encoding
extern VP8LProcessBlueAndRedFunc VP8LSubtractGreenFromBlueAndRed;
extern VP8LTransformColorFunc VP8LTransformColor;
typedef void (*VP8LCollectColorBlueTransformsFunc)(
const uint32_t* argb, int stride,
int tile_width, int tile_height,
int green_to_blue, int red_to_blue, int histo[]);
extern VP8LCollectColorBlueTransformsFunc VP8LCollectColorBlueTransforms;
typedef void (*VP8LCollectColorRedTransformsFunc)(
const uint32_t* argb, int stride,
int tile_width, int tile_height,
int green_to_red, int histo[]);
extern VP8LCollectColorRedTransformsFunc VP8LCollectColorRedTransforms;
// Expose some C-only fallback functions
void VP8LTransformColor_C(const VP8LMultipliers* const m,
uint32_t* data, int num_pixels);
void VP8LSubtractGreenFromBlueAndRed_C(uint32_t* argb_data, int num_pixels);
void VP8LCollectColorRedTransforms_C(const uint32_t* argb, int stride,
int tile_width, int tile_height,
int green_to_red, int histo[]);
void VP8LCollectColorBlueTransforms_C(const uint32_t* argb, int stride,
int tile_width, int tile_height,
int green_to_blue, int red_to_blue,
int histo[]);
//------------------------------------------------------------------------------
// Image transforms.
void VP8LResidualImage(int width, int height, int bits, int low_effort,
uint32_t* const argb, uint32_t* const argb_scratch,
uint32_t* const image, int near_lossless, int exact,
int used_subtract_green);
void VP8LColorSpaceTransform(int width, int height, int bits, int quality,
uint32_t* const argb, uint32_t* image);
//------------------------------------------------------------------------------
// Misc methods.
// Computes sampled size of 'size' when sampling using 'sampling bits'.
static WEBP_INLINE uint32_t VP8LSubSampleSize(uint32_t size,
uint32_t sampling_bits) {
return (size + (1 << sampling_bits) - 1) >> sampling_bits;
}
// Converts near lossless quality into max number of bits shaved off.
static WEBP_INLINE int VP8LNearLosslessBits(int near_lossless_quality) {
// 100 -> 0
// 80..99 -> 1
// 60..79 -> 2
// 40..59 -> 3
// 20..39 -> 4
// 0..19 -> 5
return 5 - near_lossless_quality / 20;
}
// -----------------------------------------------------------------------------
// Faster logarithm for integers. Small values use a look-up table.
// The threshold till approximate version of log_2 can be used.
// Practically, we can get rid of the call to log() as the two values match to
// very high degree (the ratio of these two is 0.99999x).
// Keeping a high threshold for now.
#define APPROX_LOG_WITH_CORRECTION_MAX 65536
#define APPROX_LOG_MAX 4096
#define LOG_2_RECIPROCAL 1.44269504088896338700465094007086
#define LOG_LOOKUP_IDX_MAX 256
extern const float kLog2Table[LOG_LOOKUP_IDX_MAX];
extern const float kSLog2Table[LOG_LOOKUP_IDX_MAX];
typedef float (*VP8LFastLog2SlowFunc)(uint32_t v);
extern VP8LFastLog2SlowFunc VP8LFastLog2Slow;
extern VP8LFastLog2SlowFunc VP8LFastSLog2Slow;
static WEBP_INLINE float VP8LFastLog2(uint32_t v) {
return (v < LOG_LOOKUP_IDX_MAX) ? kLog2Table[v] : VP8LFastLog2Slow(v);
}
// Fast calculation of v * log2(v) for integer input.
static WEBP_INLINE float VP8LFastSLog2(uint32_t v) {
return (v < LOG_LOOKUP_IDX_MAX) ? kSLog2Table[v] : VP8LFastSLog2Slow(v);
}
// -----------------------------------------------------------------------------
// Huffman-cost related functions.
typedef double (*VP8LCostFunc)(const uint32_t* population, int length);
typedef double (*VP8LCostCombinedFunc)(const uint32_t* X, const uint32_t* Y,
int length);
typedef float (*VP8LCombinedShannonEntropyFunc)(const int X[256],
const int Y[256]);
extern VP8LCostFunc VP8LExtraCost;
extern VP8LCostCombinedFunc VP8LExtraCostCombined;
extern VP8LCombinedShannonEntropyFunc VP8LCombinedShannonEntropy;
typedef struct { // small struct to hold counters
int counts[2]; // index: 0=zero steak, 1=non-zero streak
int streaks[2][2]; // [zero/non-zero][streak<3 / streak>=3]
} VP8LStreaks;
typedef VP8LStreaks (*VP8LCostCombinedCountFunc)(const uint32_t* X,
const uint32_t* Y, int length);
extern VP8LCostCombinedCountFunc VP8LHuffmanCostCombinedCount;
typedef struct { // small struct to hold bit entropy results
double entropy; // entropy
uint32_t sum; // sum of the population
int nonzeros; // number of non-zero elements in the population
uint32_t max_val; // maximum value in the population
uint32_t nonzero_code; // index of the last non-zero in the population
} VP8LBitEntropy;
void VP8LBitEntropyInit(VP8LBitEntropy* const entropy);
// Get the combined symbol bit entropy and Huffman cost stats for the
// distributions 'X' and 'Y'. Those results can then be refined according to
// codec specific heuristics.
void VP8LGetCombinedEntropyUnrefined(const uint32_t* const X,
const uint32_t* const Y, int length,
VP8LBitEntropy* const bit_entropy,
VP8LStreaks* const stats);
// Get the entropy for the distribution 'X'.
void VP8LGetEntropyUnrefined(const uint32_t* const X, int length,
VP8LBitEntropy* const bit_entropy,
VP8LStreaks* const stats);
void VP8LBitsEntropyUnrefined(const uint32_t* const array, int n,
VP8LBitEntropy* const entropy);
typedef void (*GetEntropyUnrefinedHelperFunc)(uint32_t val, int i,
uint32_t* const val_prev,
int* const i_prev,
VP8LBitEntropy* const bit_entropy,
VP8LStreaks* const stats);
// Internal function used by VP8LGet*EntropyUnrefined.
extern GetEntropyUnrefinedHelperFunc VP8LGetEntropyUnrefinedHelper;
typedef void (*VP8LHistogramAddFunc)(const VP8LHistogram* const a,
const VP8LHistogram* const b,
VP8LHistogram* const out);
extern VP8LHistogramAddFunc VP8LHistogramAdd;
// -----------------------------------------------------------------------------
// PrefixEncode()
typedef int (*VP8LVectorMismatchFunc)(const uint32_t* const array1,
const uint32_t* const array2, int length);
// Returns the first index where array1 and array2 are different.
extern VP8LVectorMismatchFunc VP8LVectorMismatch;
static WEBP_INLINE int VP8LBitsLog2Ceiling(uint32_t n) {
const int log_floor = BitsLog2Floor(n);
if (n == (n & ~(n - 1))) // zero or a power of two.
return log_floor;
else
return log_floor + 1;
}
// Splitting of distance and length codes into prefixes and
// extra bits. The prefixes are encoded with an entropy code
// while the extra bits are stored just as normal bits.
static WEBP_INLINE void VP8LPrefixEncodeBitsNoLUT(int distance, int* const code,
int* const extra_bits) {
const int highest_bit = BitsLog2Floor(--distance);
const int second_highest_bit = (distance >> (highest_bit - 1)) & 1;
*extra_bits = highest_bit - 1;
*code = 2 * highest_bit + second_highest_bit;
}
static WEBP_INLINE void VP8LPrefixEncodeNoLUT(int distance, int* const code,
int* const extra_bits,
int* const extra_bits_value) {
const int highest_bit = BitsLog2Floor(--distance);
const int second_highest_bit = (distance >> (highest_bit - 1)) & 1;
*extra_bits = highest_bit - 1;
*extra_bits_value = distance & ((1 << *extra_bits) - 1);
*code = 2 * highest_bit + second_highest_bit;
}
#define PREFIX_LOOKUP_IDX_MAX 512
typedef struct {
int8_t code_;
int8_t extra_bits_;
} VP8LPrefixCode;
// These tables are derived using VP8LPrefixEncodeNoLUT.
extern const VP8LPrefixCode kPrefixEncodeCode[PREFIX_LOOKUP_IDX_MAX];
extern const uint8_t kPrefixEncodeExtraBitsValue[PREFIX_LOOKUP_IDX_MAX];
static WEBP_INLINE void VP8LPrefixEncodeBits(int distance, int* const code,
int* const extra_bits) {
if (distance < PREFIX_LOOKUP_IDX_MAX) {
const VP8LPrefixCode prefix_code = kPrefixEncodeCode[distance];
*code = prefix_code.code_;
*extra_bits = prefix_code.extra_bits_;
} else {
VP8LPrefixEncodeBitsNoLUT(distance, code, extra_bits);
}
}
static WEBP_INLINE void VP8LPrefixEncode(int distance, int* const code,
int* const extra_bits,
int* const extra_bits_value) {
if (distance < PREFIX_LOOKUP_IDX_MAX) {
const VP8LPrefixCode prefix_code = kPrefixEncodeCode[distance];
*code = prefix_code.code_;
*extra_bits = prefix_code.extra_bits_;
*extra_bits_value = kPrefixEncodeExtraBitsValue[distance];
} else {
VP8LPrefixEncodeNoLUT(distance, code, extra_bits, extra_bits_value);
}
}
// Sum of each component, mod 256.
static WEBP_INLINE uint32_t VP8LAddPixels(uint32_t a, uint32_t b) {
const uint32_t alpha_and_green = (a & 0xff00ff00u) + (b & 0xff00ff00u);
const uint32_t red_and_blue = (a & 0x00ff00ffu) + (b & 0x00ff00ffu);
return (alpha_and_green & 0xff00ff00u) | (red_and_blue & 0x00ff00ffu);
}
// Difference of each component, mod 256.
static WEBP_INLINE uint32_t VP8LSubPixels(uint32_t a, uint32_t b) {
const uint32_t alpha_and_green =
0x00ff00ffu + (a & 0xff00ff00u) - (b & 0xff00ff00u);
const uint32_t red_and_blue =
0xff00ff00u + (a & 0x00ff00ffu) - (b & 0x00ff00ffu);
return (alpha_and_green & 0xff00ff00u) | (red_and_blue & 0x00ff00ffu);
}
void VP8LBundleColorMap(const uint8_t* const row, int width,
int xbits, uint32_t* const dst);
// Must be called before calling any of the above methods.
void VP8LEncDspInit(void);
//------------------------------------------------------------------------------
#ifdef __cplusplus
} // extern "C"
#endif
#endif // WEBP_DSP_LOSSLESS_H_