godot/core/variant/array.cpp

841 lines
23 KiB
C++

/**************************************************************************/
/* array.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "array.h"
#include "container_type_validate.h"
#include "core/math/math_funcs.h"
#include "core/object/class_db.h"
#include "core/object/script_language.h"
#include "core/templates/hashfuncs.h"
#include "core/templates/search_array.h"
#include "core/templates/vector.h"
#include "core/variant/callable.h"
#include "core/variant/dictionary.h"
#include "core/variant/variant.h"
class ArrayPrivate {
public:
SafeRefCount refcount;
Vector<Variant> array;
Variant *read_only = nullptr; // If enabled, a pointer is used to a temporary value that is used to return read-only values.
ContainerTypeValidate typed;
};
void Array::_ref(const Array &p_from) const {
ArrayPrivate *_fp = p_from._p;
ERR_FAIL_NULL(_fp); // Should NOT happen.
if (_fp == _p) {
return; // whatever it is, nothing to do here move along
}
bool success = _fp->refcount.ref();
ERR_FAIL_COND(!success); // should really not happen either
_unref();
_p = _fp;
}
void Array::_unref() const {
if (!_p) {
return;
}
if (_p->refcount.unref()) {
if (_p->read_only) {
memdelete(_p->read_only);
}
memdelete(_p);
}
_p = nullptr;
}
Array::Iterator Array::begin() {
return Iterator(_p->array.ptrw(), _p->read_only);
}
Array::Iterator Array::end() {
return Iterator(_p->array.ptrw() + _p->array.size(), _p->read_only);
}
Array::ConstIterator Array::begin() const {
return ConstIterator(_p->array.ptr(), _p->read_only);
}
Array::ConstIterator Array::end() const {
return ConstIterator(_p->array.ptr() + _p->array.size(), _p->read_only);
}
Variant &Array::operator[](int p_idx) {
if (unlikely(_p->read_only)) {
*_p->read_only = _p->array[p_idx];
return *_p->read_only;
}
return _p->array.write[p_idx];
}
const Variant &Array::operator[](int p_idx) const {
if (unlikely(_p->read_only)) {
*_p->read_only = _p->array[p_idx];
return *_p->read_only;
}
return _p->array[p_idx];
}
int Array::size() const {
return _p->array.size();
}
bool Array::is_empty() const {
return _p->array.is_empty();
}
void Array::clear() {
ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state.");
_p->array.clear();
}
bool Array::operator==(const Array &p_array) const {
return recursive_equal(p_array, 0);
}
bool Array::operator!=(const Array &p_array) const {
return !recursive_equal(p_array, 0);
}
bool Array::recursive_equal(const Array &p_array, int recursion_count) const {
// Cheap checks
if (_p == p_array._p) {
return true;
}
const Vector<Variant> &a1 = _p->array;
const Vector<Variant> &a2 = p_array._p->array;
const int size = a1.size();
if (size != a2.size()) {
return false;
}
// Heavy O(n) check
if (recursion_count > MAX_RECURSION) {
ERR_PRINT("Max recursion reached");
return true;
}
recursion_count++;
for (int i = 0; i < size; i++) {
if (!a1[i].hash_compare(a2[i], recursion_count, false)) {
return false;
}
}
return true;
}
bool Array::operator<(const Array &p_array) const {
int a_len = size();
int b_len = p_array.size();
int min_cmp = MIN(a_len, b_len);
for (int i = 0; i < min_cmp; i++) {
if (operator[](i) < p_array[i]) {
return true;
} else if (p_array[i] < operator[](i)) {
return false;
}
}
return a_len < b_len;
}
bool Array::operator<=(const Array &p_array) const {
return !operator>(p_array);
}
bool Array::operator>(const Array &p_array) const {
return p_array < *this;
}
bool Array::operator>=(const Array &p_array) const {
return !operator<(p_array);
}
uint32_t Array::hash() const {
return recursive_hash(0);
}
uint32_t Array::recursive_hash(int recursion_count) const {
if (recursion_count > MAX_RECURSION) {
ERR_PRINT("Max recursion reached");
return 0;
}
uint32_t h = hash_murmur3_one_32(Variant::ARRAY);
recursion_count++;
for (int i = 0; i < _p->array.size(); i++) {
h = hash_murmur3_one_32(_p->array[i].recursive_hash(recursion_count), h);
}
return hash_fmix32(h);
}
void Array::operator=(const Array &p_array) {
if (this == &p_array) {
return;
}
_ref(p_array);
}
void Array::assign(const Array &p_array) {
const ContainerTypeValidate &typed = _p->typed;
const ContainerTypeValidate &source_typed = p_array._p->typed;
if (typed == source_typed || typed.type == Variant::NIL || (source_typed.type == Variant::OBJECT && typed.can_reference(source_typed))) {
// from same to same or
// from anything to variants or
// from subclasses to base classes
_p->array = p_array._p->array;
return;
}
const Variant *source = p_array._p->array.ptr();
int size = p_array._p->array.size();
if ((source_typed.type == Variant::NIL && typed.type == Variant::OBJECT) || (source_typed.type == Variant::OBJECT && source_typed.can_reference(typed))) {
// from variants to objects or
// from base classes to subclasses
for (int i = 0; i < size; i++) {
const Variant &element = source[i];
if (element.get_type() != Variant::NIL && (element.get_type() != Variant::OBJECT || !typed.validate_object(element, "assign"))) {
ERR_FAIL_MSG(vformat(R"(Unable to convert array index %i from "%s" to "%s".)", i, Variant::get_type_name(element.get_type()), Variant::get_type_name(typed.type)));
}
}
_p->array = p_array._p->array;
return;
}
if (typed.type == Variant::OBJECT || source_typed.type == Variant::OBJECT) {
ERR_FAIL_MSG(vformat(R"(Cannot assign contents of "Array[%s]" to "Array[%s]".)", Variant::get_type_name(source_typed.type), Variant::get_type_name(typed.type)));
}
Vector<Variant> array;
array.resize(size);
Variant *data = array.ptrw();
if (source_typed.type == Variant::NIL && typed.type != Variant::OBJECT) {
// from variants to primitives
for (int i = 0; i < size; i++) {
const Variant *value = source + i;
if (value->get_type() == typed.type) {
data[i] = *value;
continue;
}
if (!Variant::can_convert_strict(value->get_type(), typed.type)) {
ERR_FAIL_MSG("Unable to convert array index " + itos(i) + " from '" + Variant::get_type_name(value->get_type()) + "' to '" + Variant::get_type_name(typed.type) + "'.");
}
Callable::CallError ce;
Variant::construct(typed.type, data[i], &value, 1, ce);
ERR_FAIL_COND_MSG(ce.error, vformat(R"(Unable to convert array index %i from "%s" to "%s".)", i, Variant::get_type_name(value->get_type()), Variant::get_type_name(typed.type)));
}
} else if (Variant::can_convert_strict(source_typed.type, typed.type)) {
// from primitives to different convertible primitives
for (int i = 0; i < size; i++) {
const Variant *value = source + i;
Callable::CallError ce;
Variant::construct(typed.type, data[i], &value, 1, ce);
ERR_FAIL_COND_MSG(ce.error, vformat(R"(Unable to convert array index %i from "%s" to "%s".)", i, Variant::get_type_name(value->get_type()), Variant::get_type_name(typed.type)));
}
} else {
ERR_FAIL_MSG(vformat(R"(Cannot assign contents of "Array[%s]" to "Array[%s]".)", Variant::get_type_name(source_typed.type), Variant::get_type_name(typed.type)));
}
_p->array = array;
}
void Array::push_back(const Variant &p_value) {
ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state.");
Variant value = p_value;
ERR_FAIL_COND(!_p->typed.validate(value, "push_back"));
_p->array.push_back(value);
}
void Array::append_array(const Array &p_array) {
ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state.");
Vector<Variant> validated_array = p_array._p->array;
for (int i = 0; i < validated_array.size(); ++i) {
ERR_FAIL_COND(!_p->typed.validate(validated_array.write[i], "append_array"));
}
_p->array.append_array(validated_array);
}
Error Array::resize(int p_new_size) {
ERR_FAIL_COND_V_MSG(_p->read_only, ERR_LOCKED, "Array is in read-only state.");
Variant::Type &variant_type = _p->typed.type;
int old_size = _p->array.size();
Error err = _p->array.resize_zeroed(p_new_size);
if (!err && variant_type != Variant::NIL && variant_type != Variant::OBJECT) {
for (int i = old_size; i < p_new_size; i++) {
VariantInternal::initialize(&_p->array.write[i], variant_type);
}
}
return err;
}
Error Array::insert(int p_pos, const Variant &p_value) {
ERR_FAIL_COND_V_MSG(_p->read_only, ERR_LOCKED, "Array is in read-only state.");
Variant value = p_value;
ERR_FAIL_COND_V(!_p->typed.validate(value, "insert"), ERR_INVALID_PARAMETER);
return _p->array.insert(p_pos, value);
}
void Array::fill(const Variant &p_value) {
ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state.");
Variant value = p_value;
ERR_FAIL_COND(!_p->typed.validate(value, "fill"));
_p->array.fill(value);
}
void Array::erase(const Variant &p_value) {
ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state.");
Variant value = p_value;
ERR_FAIL_COND(!_p->typed.validate(value, "erase"));
_p->array.erase(value);
}
Variant Array::front() const {
ERR_FAIL_COND_V_MSG(_p->array.is_empty(), Variant(), "Can't take value from empty array.");
return operator[](0);
}
Variant Array::back() const {
ERR_FAIL_COND_V_MSG(_p->array.is_empty(), Variant(), "Can't take value from empty array.");
return operator[](_p->array.size() - 1);
}
Variant Array::pick_random() const {
ERR_FAIL_COND_V_MSG(_p->array.is_empty(), Variant(), "Can't take value from empty array.");
return operator[](Math::rand() % _p->array.size());
}
int Array::find(const Variant &p_value, int p_from) const {
if (_p->array.size() == 0) {
return -1;
}
Variant value = p_value;
ERR_FAIL_COND_V(!_p->typed.validate(value, "find"), -1);
int ret = -1;
if (p_from < 0 || size() == 0) {
return ret;
}
for (int i = p_from; i < size(); i++) {
if (StringLikeVariantComparator::compare(_p->array[i], value)) {
ret = i;
break;
}
}
return ret;
}
int Array::rfind(const Variant &p_value, int p_from) const {
if (_p->array.size() == 0) {
return -1;
}
Variant value = p_value;
ERR_FAIL_COND_V(!_p->typed.validate(value, "rfind"), -1);
if (p_from < 0) {
// Relative offset from the end
p_from = _p->array.size() + p_from;
}
if (p_from < 0 || p_from >= _p->array.size()) {
// Limit to array boundaries
p_from = _p->array.size() - 1;
}
for (int i = p_from; i >= 0; i--) {
if (StringLikeVariantComparator::compare(_p->array[i], value)) {
return i;
}
}
return -1;
}
int Array::count(const Variant &p_value) const {
Variant value = p_value;
ERR_FAIL_COND_V(!_p->typed.validate(value, "count"), 0);
if (_p->array.size() == 0) {
return 0;
}
int amount = 0;
for (int i = 0; i < _p->array.size(); i++) {
if (StringLikeVariantComparator::compare(_p->array[i], value)) {
amount++;
}
}
return amount;
}
bool Array::has(const Variant &p_value) const {
Variant value = p_value;
ERR_FAIL_COND_V(!_p->typed.validate(value, "use 'has'"), false);
return find(value) != -1;
}
void Array::remove_at(int p_pos) {
ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state.");
_p->array.remove_at(p_pos);
}
void Array::set(int p_idx, const Variant &p_value) {
ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state.");
Variant value = p_value;
ERR_FAIL_COND(!_p->typed.validate(value, "set"));
operator[](p_idx) = value;
}
const Variant &Array::get(int p_idx) const {
return operator[](p_idx);
}
Array Array::duplicate(bool p_deep) const {
return recursive_duplicate(p_deep, 0);
}
Array Array::recursive_duplicate(bool p_deep, int recursion_count) const {
Array new_arr;
new_arr._p->typed = _p->typed;
if (recursion_count > MAX_RECURSION) {
ERR_PRINT("Max recursion reached");
return new_arr;
}
if (p_deep) {
recursion_count++;
int element_count = size();
new_arr.resize(element_count);
for (int i = 0; i < element_count; i++) {
new_arr[i] = get(i).recursive_duplicate(true, recursion_count);
}
} else {
new_arr._p->array = _p->array;
}
return new_arr;
}
Array Array::slice(int p_begin, int p_end, int p_step, bool p_deep) const {
Array result;
result._p->typed = _p->typed;
ERR_FAIL_COND_V_MSG(p_step == 0, result, "Slice step cannot be zero.");
const int s = size();
if (s == 0 || (p_begin < -s && p_step < 0) || (p_begin >= s && p_step > 0)) {
return result;
}
int begin = CLAMP(p_begin, -s, s - 1);
if (begin < 0) {
begin += s;
}
int end = CLAMP(p_end, -s - 1, s);
if (end < 0) {
end += s;
}
ERR_FAIL_COND_V_MSG(p_step > 0 && begin > end, result, "Slice step is positive, but bounds are decreasing.");
ERR_FAIL_COND_V_MSG(p_step < 0 && begin < end, result, "Slice step is negative, but bounds are increasing.");
int result_size = (end - begin) / p_step + (((end - begin) % p_step != 0) ? 1 : 0);
result.resize(result_size);
for (int src_idx = begin, dest_idx = 0; dest_idx < result_size; ++dest_idx) {
result[dest_idx] = p_deep ? get(src_idx).duplicate(true) : get(src_idx);
src_idx += p_step;
}
return result;
}
Array Array::filter(const Callable &p_callable) const {
Array new_arr;
new_arr.resize(size());
new_arr._p->typed = _p->typed;
int accepted_count = 0;
const Variant *argptrs[1];
for (int i = 0; i < size(); i++) {
argptrs[0] = &get(i);
Variant result;
Callable::CallError ce;
p_callable.callp(argptrs, 1, result, ce);
if (ce.error != Callable::CallError::CALL_OK) {
ERR_FAIL_V_MSG(Array(), "Error calling method from 'filter': " + Variant::get_callable_error_text(p_callable, argptrs, 1, ce));
}
if (result.operator bool()) {
new_arr[accepted_count] = get(i);
accepted_count++;
}
}
new_arr.resize(accepted_count);
return new_arr;
}
Array Array::map(const Callable &p_callable) const {
Array new_arr;
new_arr.resize(size());
const Variant *argptrs[1];
for (int i = 0; i < size(); i++) {
argptrs[0] = &get(i);
Variant result;
Callable::CallError ce;
p_callable.callp(argptrs, 1, result, ce);
if (ce.error != Callable::CallError::CALL_OK) {
ERR_FAIL_V_MSG(Array(), "Error calling method from 'map': " + Variant::get_callable_error_text(p_callable, argptrs, 1, ce));
}
new_arr[i] = result;
}
return new_arr;
}
Variant Array::reduce(const Callable &p_callable, const Variant &p_accum) const {
int start = 0;
Variant ret = p_accum;
if (ret == Variant() && size() > 0) {
ret = front();
start = 1;
}
const Variant *argptrs[2];
for (int i = start; i < size(); i++) {
argptrs[0] = &ret;
argptrs[1] = &get(i);
Variant result;
Callable::CallError ce;
p_callable.callp(argptrs, 2, result, ce);
if (ce.error != Callable::CallError::CALL_OK) {
ERR_FAIL_V_MSG(Variant(), "Error calling method from 'reduce': " + Variant::get_callable_error_text(p_callable, argptrs, 2, ce));
}
ret = result;
}
return ret;
}
bool Array::any(const Callable &p_callable) const {
const Variant *argptrs[1];
for (int i = 0; i < size(); i++) {
argptrs[0] = &get(i);
Variant result;
Callable::CallError ce;
p_callable.callp(argptrs, 1, result, ce);
if (ce.error != Callable::CallError::CALL_OK) {
ERR_FAIL_V_MSG(false, "Error calling method from 'any': " + Variant::get_callable_error_text(p_callable, argptrs, 1, ce));
}
if (result.operator bool()) {
// Return as early as possible when one of the conditions is `true`.
// This improves performance compared to relying on `filter(...).size() >= 1`.
return true;
}
}
return false;
}
bool Array::all(const Callable &p_callable) const {
const Variant *argptrs[1];
for (int i = 0; i < size(); i++) {
argptrs[0] = &get(i);
Variant result;
Callable::CallError ce;
p_callable.callp(argptrs, 1, result, ce);
if (ce.error != Callable::CallError::CALL_OK) {
ERR_FAIL_V_MSG(false, "Error calling method from 'all': " + Variant::get_callable_error_text(p_callable, argptrs, 1, ce));
}
if (!(result.operator bool())) {
// Return as early as possible when one of the inverted conditions is `false`.
// This improves performance compared to relying on `filter(...).size() >= array_size().`.
return false;
}
}
return true;
}
struct _ArrayVariantSort {
_FORCE_INLINE_ bool operator()(const Variant &p_l, const Variant &p_r) const {
bool valid = false;
Variant res;
Variant::evaluate(Variant::OP_LESS, p_l, p_r, res, valid);
if (!valid) {
res = false;
}
return res;
}
};
void Array::sort() {
ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state.");
_p->array.sort_custom<_ArrayVariantSort>();
}
void Array::sort_custom(const Callable &p_callable) {
ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state.");
_p->array.sort_custom<CallableComparator, true>(p_callable);
}
void Array::shuffle() {
ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state.");
const int n = _p->array.size();
if (n < 2) {
return;
}
Variant *data = _p->array.ptrw();
for (int i = n - 1; i >= 1; i--) {
const int j = Math::rand() % (i + 1);
const Variant tmp = data[j];
data[j] = data[i];
data[i] = tmp;
}
}
int Array::bsearch(const Variant &p_value, bool p_before) const {
Variant value = p_value;
ERR_FAIL_COND_V(!_p->typed.validate(value, "binary search"), -1);
SearchArray<Variant, _ArrayVariantSort> avs;
return avs.bisect(_p->array.ptrw(), _p->array.size(), value, p_before);
}
int Array::bsearch_custom(const Variant &p_value, const Callable &p_callable, bool p_before) const {
Variant value = p_value;
ERR_FAIL_COND_V(!_p->typed.validate(value, "custom binary search"), -1);
return _p->array.bsearch_custom<CallableComparator>(value, p_before, p_callable);
}
void Array::reverse() {
ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state.");
_p->array.reverse();
}
void Array::push_front(const Variant &p_value) {
ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state.");
Variant value = p_value;
ERR_FAIL_COND(!_p->typed.validate(value, "push_front"));
_p->array.insert(0, value);
}
Variant Array::pop_back() {
ERR_FAIL_COND_V_MSG(_p->read_only, Variant(), "Array is in read-only state.");
if (!_p->array.is_empty()) {
const int n = _p->array.size() - 1;
const Variant ret = _p->array.get(n);
_p->array.resize(n);
return ret;
}
return Variant();
}
Variant Array::pop_front() {
ERR_FAIL_COND_V_MSG(_p->read_only, Variant(), "Array is in read-only state.");
if (!_p->array.is_empty()) {
const Variant ret = _p->array.get(0);
_p->array.remove_at(0);
return ret;
}
return Variant();
}
Variant Array::pop_at(int p_pos) {
ERR_FAIL_COND_V_MSG(_p->read_only, Variant(), "Array is in read-only state.");
if (_p->array.is_empty()) {
// Return `null` without printing an error to mimic `pop_back()` and `pop_front()` behavior.
return Variant();
}
if (p_pos < 0) {
// Relative offset from the end
p_pos = _p->array.size() + p_pos;
}
ERR_FAIL_INDEX_V_MSG(
p_pos,
_p->array.size(),
Variant(),
vformat(
"The calculated index %s is out of bounds (the array has %s elements). Leaving the array untouched and returning `null`.",
p_pos,
_p->array.size()));
const Variant ret = _p->array.get(p_pos);
_p->array.remove_at(p_pos);
return ret;
}
Variant Array::min() const {
Variant minval;
for (int i = 0; i < size(); i++) {
if (i == 0) {
minval = get(i);
} else {
bool valid;
Variant ret;
Variant test = get(i);
Variant::evaluate(Variant::OP_LESS, test, minval, ret, valid);
if (!valid) {
return Variant(); //not a valid comparison
}
if (bool(ret)) {
//is less
minval = test;
}
}
}
return minval;
}
Variant Array::max() const {
Variant maxval;
for (int i = 0; i < size(); i++) {
if (i == 0) {
maxval = get(i);
} else {
bool valid;
Variant ret;
Variant test = get(i);
Variant::evaluate(Variant::OP_GREATER, test, maxval, ret, valid);
if (!valid) {
return Variant(); //not a valid comparison
}
if (bool(ret)) {
//is less
maxval = test;
}
}
}
return maxval;
}
const void *Array::id() const {
return _p;
}
Array::Array(const Array &p_from, uint32_t p_type, const StringName &p_class_name, const Variant &p_script) {
_p = memnew(ArrayPrivate);
_p->refcount.init();
set_typed(p_type, p_class_name, p_script);
assign(p_from);
}
void Array::set_typed(uint32_t p_type, const StringName &p_class_name, const Variant &p_script) {
ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state.");
ERR_FAIL_COND_MSG(_p->array.size() > 0, "Type can only be set when array is empty.");
ERR_FAIL_COND_MSG(_p->refcount.get() > 1, "Type can only be set when array has no more than one user.");
ERR_FAIL_COND_MSG(_p->typed.type != Variant::NIL, "Type can only be set once.");
ERR_FAIL_COND_MSG(p_class_name != StringName() && p_type != Variant::OBJECT, "Class names can only be set for type OBJECT");
Ref<Script> script = p_script;
ERR_FAIL_COND_MSG(script.is_valid() && p_class_name == StringName(), "Script class can only be set together with base class name");
_p->typed.type = Variant::Type(p_type);
_p->typed.class_name = p_class_name;
_p->typed.script = script;
_p->typed.where = "TypedArray";
}
bool Array::is_typed() const {
return _p->typed.type != Variant::NIL;
}
bool Array::is_same_typed(const Array &p_other) const {
return _p->typed == p_other._p->typed;
}
uint32_t Array::get_typed_builtin() const {
return _p->typed.type;
}
StringName Array::get_typed_class_name() const {
return _p->typed.class_name;
}
Variant Array::get_typed_script() const {
return _p->typed.script;
}
void Array::make_read_only() {
if (_p->read_only == nullptr) {
_p->read_only = memnew(Variant);
}
}
bool Array::is_read_only() const {
return _p->read_only != nullptr;
}
Array::Array(const Array &p_from) {
_p = nullptr;
_ref(p_from);
}
Array::Array() {
_p = memnew(ArrayPrivate);
_p->refcount.init();
}
Array::~Array() {
_unref();
}