godot/drivers/gles3/rasterizer_storage_gles3.cpp

2307 lines
69 KiB
C++

/*************************************************************************/
/* rasterizer_storage_gles3.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "rasterizer_storage_gles3.h"
#ifdef GLES3_ENABLED
#include "core/config/project_settings.h"
#include "core/math/transform_3d.h"
// #include "rasterizer_canvas_gles3.h"
#include "rasterizer_scene_gles3.h"
#include "servers/rendering/shader_language.h"
GLuint RasterizerStorageGLES3::system_fbo = 0;
void RasterizerStorageGLES3::bind_quad_array() const {
//glBindBuffer(GL_ARRAY_BUFFER, resources.quadie);
//glVertexAttribPointer(RS::ARRAY_VERTEX, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 4, 0);
//glVertexAttribPointer(RS::ARRAY_TEX_UV, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 4, CAST_INT_TO_UCHAR_PTR(8));
//glEnableVertexAttribArray(RS::ARRAY_VERTEX);
//glEnableVertexAttribArray(RS::ARRAY_TEX_UV);
}
RID RasterizerStorageGLES3::sky_create() {
Sky *sky = memnew(Sky);
sky->radiance = 0;
return sky_owner.make_rid(sky);
}
void RasterizerStorageGLES3::sky_set_texture(RID p_sky, RID p_panorama, int p_radiance_size) {
}
/* MESH API */
RID RasterizerStorageGLES3::mesh_allocate() {
return RID();
}
void RasterizerStorageGLES3::mesh_initialize(RID p_rid) {
}
void RasterizerStorageGLES3::mesh_set_blend_shape_count(RID p_mesh, int p_blend_shape_count) {
}
bool RasterizerStorageGLES3::mesh_needs_instance(RID p_mesh, bool p_has_skeleton) {
return false;
}
RID RasterizerStorageGLES3::mesh_instance_create(RID p_base) {
return RID();
}
void RasterizerStorageGLES3::mesh_instance_set_skeleton(RID p_mesh_instance, RID p_skeleton) {
}
void RasterizerStorageGLES3::mesh_instance_set_blend_shape_weight(RID p_mesh_instance, int p_shape, float p_weight) {
}
void RasterizerStorageGLES3::mesh_instance_check_for_update(RID p_mesh_instance) {
}
void RasterizerStorageGLES3::update_mesh_instances() {
}
void RasterizerStorageGLES3::reflection_probe_set_mesh_lod_threshold(RID p_probe, float p_ratio) {
}
float RasterizerStorageGLES3::reflection_probe_get_mesh_lod_threshold(RID p_probe) const {
return 0.0;
}
void RasterizerStorageGLES3::mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface) {
}
int RasterizerStorageGLES3::mesh_get_blend_shape_count(RID p_mesh) const {
return 0;
}
void RasterizerStorageGLES3::mesh_set_blend_shape_mode(RID p_mesh, RS::BlendShapeMode p_mode) {
}
RS::BlendShapeMode RasterizerStorageGLES3::mesh_get_blend_shape_mode(RID p_mesh) const {
return RS::BLEND_SHAPE_MODE_NORMALIZED;
}
void RasterizerStorageGLES3::mesh_surface_update_vertex_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
}
void RasterizerStorageGLES3::mesh_surface_update_attribute_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
}
void RasterizerStorageGLES3::mesh_surface_update_skin_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
}
void RasterizerStorageGLES3::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material) {
}
RID RasterizerStorageGLES3::mesh_surface_get_material(RID p_mesh, int p_surface) const {
return RID();
}
RS::SurfaceData RasterizerStorageGLES3::mesh_get_surface(RID p_mesh, int p_surface) const {
return RS::SurfaceData();
}
int RasterizerStorageGLES3::mesh_get_surface_count(RID p_mesh) const {
return 1;
}
void RasterizerStorageGLES3::mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) {
}
AABB RasterizerStorageGLES3::mesh_get_custom_aabb(RID p_mesh) const {
return AABB();
}
AABB RasterizerStorageGLES3::mesh_get_aabb(RID p_mesh, RID p_skeleton) {
return AABB();
}
void RasterizerStorageGLES3::mesh_set_shadow_mesh(RID p_mesh, RID p_shadow_mesh) {
}
void RasterizerStorageGLES3::mesh_clear(RID p_mesh) {
}
/* MULTIMESH API */
RID RasterizerStorageGLES3::multimesh_allocate() {
return RID();
}
void RasterizerStorageGLES3::multimesh_initialize(RID p_rid) {
}
void RasterizerStorageGLES3::multimesh_allocate_data(RID p_multimesh, int p_instances, RS::MultimeshTransformFormat p_transform_format, bool p_use_colors, bool p_use_custom_data) {
}
int RasterizerStorageGLES3::multimesh_get_instance_count(RID p_multimesh) const {
return 0;
}
void RasterizerStorageGLES3::multimesh_set_mesh(RID p_multimesh, RID p_mesh) {
}
void RasterizerStorageGLES3::multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform3D &p_transform) {
}
void RasterizerStorageGLES3::multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) {
}
void RasterizerStorageGLES3::multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) {
}
void RasterizerStorageGLES3::multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color) {
}
RID RasterizerStorageGLES3::multimesh_get_mesh(RID p_multimesh) const {
return RID();
}
AABB RasterizerStorageGLES3::multimesh_get_aabb(RID p_multimesh) const {
return AABB();
}
Transform3D RasterizerStorageGLES3::multimesh_instance_get_transform(RID p_multimesh, int p_index) const {
return Transform3D();
}
Transform2D RasterizerStorageGLES3::multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const {
return Transform2D();
}
Color RasterizerStorageGLES3::multimesh_instance_get_color(RID p_multimesh, int p_index) const {
return Color();
}
Color RasterizerStorageGLES3::multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const {
return Color();
}
void RasterizerStorageGLES3::multimesh_set_buffer(RID p_multimesh, const Vector<float> &p_buffer) {
}
Vector<float> RasterizerStorageGLES3::multimesh_get_buffer(RID p_multimesh) const {
return Vector<float>();
}
void RasterizerStorageGLES3::multimesh_set_visible_instances(RID p_multimesh, int p_visible) {
}
int RasterizerStorageGLES3::multimesh_get_visible_instances(RID p_multimesh) const {
return 0;
}
/* SKELETON API */
RID RasterizerStorageGLES3::skeleton_allocate() {
return RID();
}
void RasterizerStorageGLES3::skeleton_initialize(RID p_rid) {
}
void RasterizerStorageGLES3::skeleton_allocate_data(RID p_skeleton, int p_bones, bool p_2d_skeleton) {
}
void RasterizerStorageGLES3::skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform) {
}
int RasterizerStorageGLES3::skeleton_get_bone_count(RID p_skeleton) const {
return 0;
}
void RasterizerStorageGLES3::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform3D &p_transform) {
}
Transform3D RasterizerStorageGLES3::skeleton_bone_get_transform(RID p_skeleton, int p_bone) const {
return Transform3D();
}
void RasterizerStorageGLES3::skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform) {
}
Transform2D RasterizerStorageGLES3::skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const {
return Transform2D();
}
/* Light API */
RID RasterizerStorageGLES3::directional_light_allocate() {
return RID();
}
void RasterizerStorageGLES3::directional_light_initialize(RID p_rid) {
}
RID RasterizerStorageGLES3::omni_light_allocate() {
return RID();
}
void RasterizerStorageGLES3::omni_light_initialize(RID p_rid) {
}
RID RasterizerStorageGLES3::spot_light_allocate() {
return RID();
}
void RasterizerStorageGLES3::spot_light_initialize(RID p_rid) {
}
RID RasterizerStorageGLES3::reflection_probe_allocate() {
return RID();
}
void RasterizerStorageGLES3::reflection_probe_initialize(RID p_rid) {
}
void RasterizerStorageGLES3::light_set_color(RID p_light, const Color &p_color) {
}
void RasterizerStorageGLES3::light_set_param(RID p_light, RS::LightParam p_param, float p_value) {
}
void RasterizerStorageGLES3::light_set_shadow(RID p_light, bool p_enabled) {
}
void RasterizerStorageGLES3::light_set_projector(RID p_light, RID p_texture) {
}
void RasterizerStorageGLES3::light_set_negative(RID p_light, bool p_enable) {
}
void RasterizerStorageGLES3::light_set_cull_mask(RID p_light, uint32_t p_mask) {
}
void RasterizerStorageGLES3::light_set_distance_fade(RID p_light, bool p_enabled, float p_begin, float p_shadow, float p_length) {
}
void RasterizerStorageGLES3::light_set_reverse_cull_face_mode(RID p_light, bool p_enabled) {
}
void RasterizerStorageGLES3::light_set_bake_mode(RID p_light, RS::LightBakeMode p_bake_mode) {
}
void RasterizerStorageGLES3::light_set_max_sdfgi_cascade(RID p_light, uint32_t p_cascade) {
}
void RasterizerStorageGLES3::light_omni_set_shadow_mode(RID p_light, RS::LightOmniShadowMode p_mode) {
}
void RasterizerStorageGLES3::light_directional_set_shadow_mode(RID p_light, RS::LightDirectionalShadowMode p_mode) {
}
void RasterizerStorageGLES3::light_directional_set_blend_splits(RID p_light, bool p_enable) {
}
bool RasterizerStorageGLES3::light_directional_get_blend_splits(RID p_light) const {
return false;
}
void RasterizerStorageGLES3::light_directional_set_sky_mode(RID p_light, RS::LightDirectionalSkyMode p_mode) {
}
RS::LightDirectionalSkyMode RasterizerStorageGLES3::light_directional_get_sky_mode(RID p_light) const {
return RS::LIGHT_DIRECTIONAL_SKY_MODE_LIGHT_AND_SKY;
}
RS::LightDirectionalShadowMode RasterizerStorageGLES3::light_directional_get_shadow_mode(RID p_light) {
return RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL;
}
RS::LightOmniShadowMode RasterizerStorageGLES3::light_omni_get_shadow_mode(RID p_light) {
return RS::LIGHT_OMNI_SHADOW_DUAL_PARABOLOID;
}
bool RasterizerStorageGLES3::light_has_shadow(RID p_light) const {
return false;
}
bool RasterizerStorageGLES3::light_has_projector(RID p_light) const {
return false;
}
RS::LightType RasterizerStorageGLES3::light_get_type(RID p_light) const {
return RS::LIGHT_OMNI;
}
AABB RasterizerStorageGLES3::light_get_aabb(RID p_light) const {
return AABB();
}
float RasterizerStorageGLES3::light_get_param(RID p_light, RS::LightParam p_param) {
return 0.0;
}
Color RasterizerStorageGLES3::light_get_color(RID p_light) {
return Color();
}
RS::LightBakeMode RasterizerStorageGLES3::light_get_bake_mode(RID p_light) {
return RS::LIGHT_BAKE_DISABLED;
}
uint32_t RasterizerStorageGLES3::light_get_max_sdfgi_cascade(RID p_light) {
return 0;
}
uint64_t RasterizerStorageGLES3::light_get_version(RID p_light) const {
return 0;
}
/* PROBE API */
void RasterizerStorageGLES3::reflection_probe_set_update_mode(RID p_probe, RS::ReflectionProbeUpdateMode p_mode) {
}
void RasterizerStorageGLES3::reflection_probe_set_intensity(RID p_probe, float p_intensity) {
}
void RasterizerStorageGLES3::reflection_probe_set_ambient_mode(RID p_probe, RS::ReflectionProbeAmbientMode p_mode) {
}
void RasterizerStorageGLES3::reflection_probe_set_ambient_color(RID p_probe, const Color &p_color) {
}
void RasterizerStorageGLES3::reflection_probe_set_ambient_energy(RID p_probe, float p_energy) {
}
void RasterizerStorageGLES3::reflection_probe_set_max_distance(RID p_probe, float p_distance) {
}
void RasterizerStorageGLES3::reflection_probe_set_extents(RID p_probe, const Vector3 &p_extents) {
}
void RasterizerStorageGLES3::reflection_probe_set_origin_offset(RID p_probe, const Vector3 &p_offset) {
}
void RasterizerStorageGLES3::reflection_probe_set_as_interior(RID p_probe, bool p_enable) {
}
void RasterizerStorageGLES3::reflection_probe_set_enable_box_projection(RID p_probe, bool p_enable) {
}
void RasterizerStorageGLES3::reflection_probe_set_enable_shadows(RID p_probe, bool p_enable) {
}
void RasterizerStorageGLES3::reflection_probe_set_cull_mask(RID p_probe, uint32_t p_layers) {
}
void RasterizerStorageGLES3::reflection_probe_set_resolution(RID p_probe, int p_resolution) {
}
AABB RasterizerStorageGLES3::reflection_probe_get_aabb(RID p_probe) const {
return AABB();
}
RS::ReflectionProbeUpdateMode RasterizerStorageGLES3::reflection_probe_get_update_mode(RID p_probe) const {
return RenderingServer::REFLECTION_PROBE_UPDATE_ONCE;
}
uint32_t RasterizerStorageGLES3::reflection_probe_get_cull_mask(RID p_probe) const {
return 0;
}
Vector3 RasterizerStorageGLES3::reflection_probe_get_extents(RID p_probe) const {
return Vector3();
}
Vector3 RasterizerStorageGLES3::reflection_probe_get_origin_offset(RID p_probe) const {
return Vector3();
}
float RasterizerStorageGLES3::reflection_probe_get_origin_max_distance(RID p_probe) const {
return 0.0;
}
bool RasterizerStorageGLES3::reflection_probe_renders_shadows(RID p_probe) const {
return false;
}
void RasterizerStorageGLES3::base_update_dependency(RID p_base, DependencyTracker *p_instance) {
}
void RasterizerStorageGLES3::skeleton_update_dependency(RID p_base, DependencyTracker *p_instance) {
}
/* VOXEL GI API */
RID RasterizerStorageGLES3::voxel_gi_allocate() {
return RID();
}
void RasterizerStorageGLES3::voxel_gi_initialize(RID p_rid) {
}
void RasterizerStorageGLES3::voxel_gi_allocate_data(RID p_voxel_gi, const Transform3D &p_to_cell_xform, const AABB &p_aabb, const Vector3i &p_octree_size, const Vector<uint8_t> &p_octree_cells, const Vector<uint8_t> &p_data_cells, const Vector<uint8_t> &p_distance_field, const Vector<int> &p_level_counts) {
}
AABB RasterizerStorageGLES3::voxel_gi_get_bounds(RID p_voxel_gi) const {
return AABB();
}
Vector3i RasterizerStorageGLES3::voxel_gi_get_octree_size(RID p_voxel_gi) const {
return Vector3i();
}
Vector<uint8_t> RasterizerStorageGLES3::voxel_gi_get_octree_cells(RID p_voxel_gi) const {
return Vector<uint8_t>();
}
Vector<uint8_t> RasterizerStorageGLES3::voxel_gi_get_data_cells(RID p_voxel_gi) const {
return Vector<uint8_t>();
}
Vector<uint8_t> RasterizerStorageGLES3::voxel_gi_get_distance_field(RID p_voxel_gi) const {
return Vector<uint8_t>();
}
Vector<int> RasterizerStorageGLES3::voxel_gi_get_level_counts(RID p_voxel_gi) const {
return Vector<int>();
}
Transform3D RasterizerStorageGLES3::voxel_gi_get_to_cell_xform(RID p_voxel_gi) const {
return Transform3D();
}
void RasterizerStorageGLES3::voxel_gi_set_dynamic_range(RID p_voxel_gi, float p_range) {
}
float RasterizerStorageGLES3::voxel_gi_get_dynamic_range(RID p_voxel_gi) const {
return 0;
}
void RasterizerStorageGLES3::voxel_gi_set_propagation(RID p_voxel_gi, float p_range) {
}
float RasterizerStorageGLES3::voxel_gi_get_propagation(RID p_voxel_gi) const {
return 0;
}
void RasterizerStorageGLES3::voxel_gi_set_energy(RID p_voxel_gi, float p_range) {
}
float RasterizerStorageGLES3::voxel_gi_get_energy(RID p_voxel_gi) const {
return 0.0;
}
void RasterizerStorageGLES3::voxel_gi_set_bias(RID p_voxel_gi, float p_range) {
}
float RasterizerStorageGLES3::voxel_gi_get_bias(RID p_voxel_gi) const {
return 0.0;
}
void RasterizerStorageGLES3::voxel_gi_set_normal_bias(RID p_voxel_gi, float p_range) {
}
float RasterizerStorageGLES3::voxel_gi_get_normal_bias(RID p_voxel_gi) const {
return 0.0;
}
void RasterizerStorageGLES3::voxel_gi_set_interior(RID p_voxel_gi, bool p_enable) {
}
bool RasterizerStorageGLES3::voxel_gi_is_interior(RID p_voxel_gi) const {
return false;
}
void RasterizerStorageGLES3::voxel_gi_set_use_two_bounces(RID p_voxel_gi, bool p_enable) {
}
bool RasterizerStorageGLES3::voxel_gi_is_using_two_bounces(RID p_voxel_gi) const {
return false;
}
void RasterizerStorageGLES3::voxel_gi_set_anisotropy_strength(RID p_voxel_gi, float p_strength) {
}
float RasterizerStorageGLES3::voxel_gi_get_anisotropy_strength(RID p_voxel_gi) const {
return 0;
}
uint32_t RasterizerStorageGLES3::voxel_gi_get_version(RID p_voxel_gi) {
return 0;
}
/* LIGHTMAP CAPTURE */
RID RasterizerStorageGLES3::lightmap_allocate() {
return RID();
}
void RasterizerStorageGLES3::lightmap_initialize(RID p_rid) {
}
void RasterizerStorageGLES3::lightmap_set_textures(RID p_lightmap, RID p_light, bool p_uses_spherical_haromics) {
}
void RasterizerStorageGLES3::lightmap_set_probe_bounds(RID p_lightmap, const AABB &p_bounds) {
}
void RasterizerStorageGLES3::lightmap_set_probe_interior(RID p_lightmap, bool p_interior) {
}
void RasterizerStorageGLES3::lightmap_set_probe_capture_data(RID p_lightmap, const PackedVector3Array &p_points, const PackedColorArray &p_point_sh, const PackedInt32Array &p_tetrahedra, const PackedInt32Array &p_bsp_tree) {
}
PackedVector3Array RasterizerStorageGLES3::lightmap_get_probe_capture_points(RID p_lightmap) const {
return PackedVector3Array();
}
PackedColorArray RasterizerStorageGLES3::lightmap_get_probe_capture_sh(RID p_lightmap) const {
return PackedColorArray();
}
PackedInt32Array RasterizerStorageGLES3::lightmap_get_probe_capture_tetrahedra(RID p_lightmap) const {
return PackedInt32Array();
}
PackedInt32Array RasterizerStorageGLES3::lightmap_get_probe_capture_bsp_tree(RID p_lightmap) const {
return PackedInt32Array();
}
AABB RasterizerStorageGLES3::lightmap_get_aabb(RID p_lightmap) const {
return AABB();
}
void RasterizerStorageGLES3::lightmap_tap_sh_light(RID p_lightmap, const Vector3 &p_point, Color *r_sh) {
}
bool RasterizerStorageGLES3::lightmap_is_interior(RID p_lightmap) const {
return false;
}
void RasterizerStorageGLES3::lightmap_set_probe_capture_update_speed(float p_speed) {
}
float RasterizerStorageGLES3::lightmap_get_probe_capture_update_speed() const {
return 0;
}
/* OCCLUDER */
void RasterizerStorageGLES3::occluder_set_mesh(RID p_occluder, const PackedVector3Array &p_vertices, const PackedInt32Array &p_indices) {
}
/* PARTICLES */
RID RasterizerStorageGLES3::particles_allocate() {
return RID();
}
void RasterizerStorageGLES3::particles_initialize(RID p_rid) {
}
void RasterizerStorageGLES3::particles_set_mode(RID p_particles, RS::ParticlesMode p_mode) {
}
void RasterizerStorageGLES3::particles_emit(RID p_particles, const Transform3D &p_transform, const Vector3 &p_velocity, const Color &p_color, const Color &p_custom, uint32_t p_emit_flags) {
}
void RasterizerStorageGLES3::particles_set_emitting(RID p_particles, bool p_emitting) {
}
void RasterizerStorageGLES3::particles_set_amount(RID p_particles, int p_amount) {
}
void RasterizerStorageGLES3::particles_set_lifetime(RID p_particles, double p_lifetime) {
}
void RasterizerStorageGLES3::particles_set_one_shot(RID p_particles, bool p_one_shot) {
}
void RasterizerStorageGLES3::particles_set_pre_process_time(RID p_particles, double p_time) {
}
void RasterizerStorageGLES3::particles_set_explosiveness_ratio(RID p_particles, real_t p_ratio) {
}
void RasterizerStorageGLES3::particles_set_randomness_ratio(RID p_particles, real_t p_ratio) {
}
void RasterizerStorageGLES3::particles_set_custom_aabb(RID p_particles, const AABB &p_aabb) {
}
void RasterizerStorageGLES3::particles_set_speed_scale(RID p_particles, double p_scale) {
}
void RasterizerStorageGLES3::particles_set_use_local_coordinates(RID p_particles, bool p_enable) {
}
void RasterizerStorageGLES3::particles_set_process_material(RID p_particles, RID p_material) {
}
RID RasterizerStorageGLES3::particles_get_process_material(RID p_particles) const {
return RID();
}
void RasterizerStorageGLES3::particles_set_fixed_fps(RID p_particles, int p_fps) {
}
void RasterizerStorageGLES3::particles_set_interpolate(RID p_particles, bool p_enable) {
}
void RasterizerStorageGLES3::particles_set_fractional_delta(RID p_particles, bool p_enable) {
}
void RasterizerStorageGLES3::particles_set_subemitter(RID p_particles, RID p_subemitter_particles) {
}
void RasterizerStorageGLES3::particles_set_view_axis(RID p_particles, const Vector3 &p_axis, const Vector3 &p_up_axis) {
}
void RasterizerStorageGLES3::particles_set_collision_base_size(RID p_particles, real_t p_size) {
}
void RasterizerStorageGLES3::particles_set_transform_align(RID p_particles, RS::ParticlesTransformAlign p_transform_align) {
}
void RasterizerStorageGLES3::particles_set_trails(RID p_particles, bool p_enable, double p_length) {
}
void RasterizerStorageGLES3::particles_set_trail_bind_poses(RID p_particles, const Vector<Transform3D> &p_bind_poses) {
}
void RasterizerStorageGLES3::particles_restart(RID p_particles) {
}
void RasterizerStorageGLES3::particles_set_draw_order(RID p_particles, RS::ParticlesDrawOrder p_order) {
}
void RasterizerStorageGLES3::particles_set_draw_passes(RID p_particles, int p_count) {
}
void RasterizerStorageGLES3::particles_set_draw_pass_mesh(RID p_particles, int p_pass, RID p_mesh) {
}
void RasterizerStorageGLES3::particles_request_process(RID p_particles) {
}
AABB RasterizerStorageGLES3::particles_get_current_aabb(RID p_particles) {
return AABB();
}
AABB RasterizerStorageGLES3::particles_get_aabb(RID p_particles) const {
return AABB();
}
void RasterizerStorageGLES3::particles_set_emission_transform(RID p_particles, const Transform3D &p_transform) {
}
bool RasterizerStorageGLES3::particles_get_emitting(RID p_particles) {
return false;
}
int RasterizerStorageGLES3::particles_get_draw_passes(RID p_particles) const {
return 0;
}
RID RasterizerStorageGLES3::particles_get_draw_pass_mesh(RID p_particles, int p_pass) const {
return RID();
}
void RasterizerStorageGLES3::particles_add_collision(RID p_particles, RID p_instance) {
}
void RasterizerStorageGLES3::particles_remove_collision(RID p_particles, RID p_instance) {
}
void RasterizerStorageGLES3::particles_set_canvas_sdf_collision(RID p_particles, bool p_enable, const Transform2D &p_xform, const Rect2 &p_to_screen, RID p_texture) {
}
void RasterizerStorageGLES3::update_particles() {
}
bool RasterizerStorageGLES3::particles_is_inactive(RID p_particles) const {
return false;
}
/* PARTICLES COLLISION */
RID RasterizerStorageGLES3::particles_collision_allocate() {
return RID();
}
void RasterizerStorageGLES3::particles_collision_initialize(RID p_rid) {
}
void RasterizerStorageGLES3::particles_collision_set_collision_type(RID p_particles_collision, RS::ParticlesCollisionType p_type) {
}
void RasterizerStorageGLES3::particles_collision_set_cull_mask(RID p_particles_collision, uint32_t p_cull_mask) {
}
void RasterizerStorageGLES3::particles_collision_set_sphere_radius(RID p_particles_collision, real_t p_radius) {
}
void RasterizerStorageGLES3::particles_collision_set_box_extents(RID p_particles_collision, const Vector3 &p_extents) {
}
void RasterizerStorageGLES3::particles_collision_set_attractor_strength(RID p_particles_collision, real_t p_strength) {
}
void RasterizerStorageGLES3::particles_collision_set_attractor_directionality(RID p_particles_collision, real_t p_directionality) {
}
void RasterizerStorageGLES3::particles_collision_set_attractor_attenuation(RID p_particles_collision, real_t p_curve) {
}
void RasterizerStorageGLES3::particles_collision_set_field_texture(RID p_particles_collision, RID p_texture) {
}
void RasterizerStorageGLES3::particles_collision_height_field_update(RID p_particles_collision) {
}
void RasterizerStorageGLES3::particles_collision_set_height_field_resolution(RID p_particles_collision, RS::ParticlesCollisionHeightfieldResolution p_resolution) {
}
AABB RasterizerStorageGLES3::particles_collision_get_aabb(RID p_particles_collision) const {
return AABB();
}
bool RasterizerStorageGLES3::particles_collision_is_heightfield(RID p_particles_collision) const {
return false;
}
RID RasterizerStorageGLES3::particles_collision_get_heightfield_framebuffer(RID p_particles_collision) const {
return RID();
}
RID RasterizerStorageGLES3::particles_collision_instance_create(RID p_collision) {
return RID();
}
void RasterizerStorageGLES3::particles_collision_instance_set_transform(RID p_collision_instance, const Transform3D &p_transform) {
}
void RasterizerStorageGLES3::particles_collision_instance_set_active(RID p_collision_instance, bool p_active) {
}
RID RasterizerStorageGLES3::fog_volume_allocate() {
return RID();
}
void RasterizerStorageGLES3::fog_volume_initialize(RID p_rid) {
}
void RasterizerStorageGLES3::fog_volume_set_shape(RID p_fog_volume, RS::FogVolumeShape p_shape) {
}
void RasterizerStorageGLES3::fog_volume_set_extents(RID p_fog_volume, const Vector3 &p_extents) {
}
void RasterizerStorageGLES3::fog_volume_set_material(RID p_fog_volume, RID p_material) {
}
AABB RasterizerStorageGLES3::fog_volume_get_aabb(RID p_fog_volume) const {
return AABB();
}
RS::FogVolumeShape RasterizerStorageGLES3::fog_volume_get_shape(RID p_fog_volume) const {
return RS::FOG_VOLUME_SHAPE_BOX;
}
/* VISIBILITY NOTIFIER */
RID RasterizerStorageGLES3::visibility_notifier_allocate() {
return RID();
}
void RasterizerStorageGLES3::visibility_notifier_initialize(RID p_notifier) {
}
void RasterizerStorageGLES3::visibility_notifier_set_aabb(RID p_notifier, const AABB &p_aabb) {
}
void RasterizerStorageGLES3::visibility_notifier_set_callbacks(RID p_notifier, const Callable &p_enter_callbable, const Callable &p_exit_callable) {
}
AABB RasterizerStorageGLES3::visibility_notifier_get_aabb(RID p_notifier) const {
return AABB();
}
void RasterizerStorageGLES3::visibility_notifier_call(RID p_notifier, bool p_enter, bool p_deferred) {
}
/* RENDER TARGET */
void RasterizerStorageGLES3::_set_current_render_target(RID p_render_target) {
GLES3::RenderTarget *rt = render_target_owner.get_or_null(p_render_target);
if (rt) {
if (rt->allocate_is_dirty) {
rt->allocate_is_dirty = false;
_render_target_allocate(rt);
}
frame.current_rt = rt;
ERR_FAIL_COND(!rt);
frame.clear_request = false;
glViewport(0, 0, rt->width, rt->height);
_dims.rt_width = rt->width;
_dims.rt_height = rt->height;
_dims.win_width = rt->width;
_dims.win_height = rt->height;
} else {
frame.current_rt = nullptr;
frame.clear_request = false;
bind_framebuffer_system();
}
}
void RasterizerStorageGLES3::_render_target_allocate(GLES3::RenderTarget *rt) {
// do not allocate a render target with no size
if (rt->width <= 0 || rt->height <= 0) {
return;
}
// do not allocate a render target that is attached to the screen
if (rt->flags[RENDER_TARGET_DIRECT_TO_SCREEN]) {
rt->fbo = RasterizerStorageGLES3::system_fbo;
return;
}
GLuint color_internal_format;
GLuint color_format;
GLuint color_type = GL_UNSIGNED_BYTE;
Image::Format image_format;
if (rt->flags[RendererStorage::RENDER_TARGET_TRANSPARENT]) {
#ifdef GLES_OVER_GL
color_internal_format = GL_RGBA8;
#else
color_internal_format = GL_RGBA;
#endif
color_format = GL_RGBA;
image_format = Image::FORMAT_RGBA8;
} else {
#ifdef GLES_OVER_GL
color_internal_format = GL_RGB8;
#else
color_internal_format = GL_RGB;
#endif
color_format = GL_RGB;
image_format = Image::FORMAT_RGB8;
}
rt->used_dof_blur_near = false;
rt->mip_maps_allocated = false;
{
/* Front FBO */
GLES3::Texture *texture = GLES3::TextureStorage::get_singleton()->get_texture(rt->texture);
ERR_FAIL_COND(!texture);
// framebuffer
glGenFramebuffers(1, &rt->fbo);
bind_framebuffer(rt->fbo);
// color
glGenTextures(1, &rt->color);
glBindTexture(GL_TEXTURE_2D, rt->color);
glTexImage2D(GL_TEXTURE_2D, 0, color_internal_format, rt->width, rt->height, 0, color_format, color_type, nullptr);
if (texture->flags & GLES3::TEXTURE_FLAG_FILTER) {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
} else {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rt->color, 0);
// depth
if (config->support_depth_texture) {
glGenTextures(1, &rt->depth);
glBindTexture(GL_TEXTURE_2D, rt->depth);
glTexImage2D(GL_TEXTURE_2D, 0, config->depth_internalformat, rt->width, rt->height, 0, GL_DEPTH_COMPONENT, config->depth_type, nullptr);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, rt->depth, 0);
} else {
glGenRenderbuffers(1, &rt->depth);
glBindRenderbuffer(GL_RENDERBUFFER, rt->depth);
glRenderbufferStorage(GL_RENDERBUFFER, config->depth_buffer_internalformat, rt->width, rt->height);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rt->depth);
}
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE) {
glDeleteFramebuffers(1, &rt->fbo);
if (config->support_depth_texture) {
glDeleteTextures(1, &rt->depth);
} else {
glDeleteRenderbuffers(1, &rt->depth);
}
glDeleteTextures(1, &rt->color);
rt->fbo = 0;
rt->width = 0;
rt->height = 0;
rt->color = 0;
rt->depth = 0;
texture->tex_id = 0;
texture->active = false;
WARN_PRINT("Could not create framebuffer!!");
return;
}
texture->format = image_format;
texture->gl_format_cache = color_format;
texture->gl_type_cache = GL_UNSIGNED_BYTE;
texture->gl_internal_format_cache = color_internal_format;
texture->tex_id = rt->color;
texture->width = rt->width;
texture->alloc_width = rt->width;
texture->height = rt->height;
texture->alloc_height = rt->height;
texture->active = true;
GLES3::TextureStorage::get_singleton()->texture_set_flags(rt->texture, texture->flags);
}
/* BACK FBO */
/* For MSAA */
#ifndef JAVASCRIPT_ENABLED
if (rt->msaa >= RS::VIEWPORT_MSAA_2X && rt->msaa <= RS::VIEWPORT_MSAA_8X) {
rt->multisample_active = true;
static const int msaa_value[] = { 0, 2, 4, 8, 16 };
int msaa = msaa_value[rt->msaa];
int max_samples = 0;
glGetIntegerv(GL_MAX_SAMPLES, &max_samples);
if (msaa > max_samples) {
WARN_PRINT("MSAA must be <= GL_MAX_SAMPLES, falling-back to GL_MAX_SAMPLES = " + itos(max_samples));
msaa = max_samples;
}
//regular fbo
glGenFramebuffers(1, &rt->multisample_fbo);
bind_framebuffer(rt->multisample_fbo);
glGenRenderbuffers(1, &rt->multisample_depth);
glBindRenderbuffer(GL_RENDERBUFFER, rt->multisample_depth);
glRenderbufferStorageMultisample(GL_RENDERBUFFER, msaa, config->depth_buffer_internalformat, rt->width, rt->height);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rt->multisample_depth);
glGenRenderbuffers(1, &rt->multisample_color);
glBindRenderbuffer(GL_RENDERBUFFER, rt->multisample_color);
glRenderbufferStorageMultisample(GL_RENDERBUFFER, msaa, color_internal_format, rt->width, rt->height);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, rt->multisample_color);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE) {
// Delete allocated resources and default to no MSAA
WARN_PRINT_ONCE("Cannot allocate back framebuffer for MSAA");
printf("err status: %x\n", status);
rt->multisample_active = false;
glDeleteFramebuffers(1, &rt->multisample_fbo);
rt->multisample_fbo = 0;
glDeleteRenderbuffers(1, &rt->multisample_depth);
rt->multisample_depth = 0;
glDeleteRenderbuffers(1, &rt->multisample_color);
rt->multisample_color = 0;
}
glBindRenderbuffer(GL_RENDERBUFFER, 0);
bind_framebuffer(0);
} else
#endif // JAVASCRIPT_ENABLED
{
rt->multisample_active = false;
}
glClearColor(0, 0, 0, 0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// copy texscreen buffers
// if (!(rt->flags[RendererStorage::RENDER_TARGET_NO_SAMPLING])) {
if (true) {
glGenTextures(1, &rt->copy_screen_effect.color);
glBindTexture(GL_TEXTURE_2D, rt->copy_screen_effect.color);
if (rt->flags[RendererStorage::RENDER_TARGET_TRANSPARENT]) {
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, rt->width, rt->height, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
} else {
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, rt->width, rt->height, 0, GL_RGB, GL_UNSIGNED_BYTE, nullptr);
}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glGenFramebuffers(1, &rt->copy_screen_effect.fbo);
bind_framebuffer(rt->copy_screen_effect.fbo);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rt->copy_screen_effect.color, 0);
glClearColor(0, 0, 0, 0);
glClear(GL_COLOR_BUFFER_BIT);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE) {
_render_target_clear(rt);
ERR_FAIL_COND(status != GL_FRAMEBUFFER_COMPLETE);
}
}
// Allocate mipmap chains for post_process effects
// if (!rt->flags[RendererStorage::RENDER_TARGET_NO_3D] && rt->width >= 2 && rt->height >= 2) {
if (rt->width >= 2 && rt->height >= 2) {
for (int i = 0; i < 2; i++) {
ERR_FAIL_COND(rt->mip_maps[i].sizes.size());
int w = rt->width;
int h = rt->height;
if (i > 0) {
w >>= 1;
h >>= 1;
}
int level = 0;
int fb_w = w;
int fb_h = h;
while (true) {
GLES3::RenderTarget::MipMaps::Size mm;
mm.width = w;
mm.height = h;
rt->mip_maps[i].sizes.push_back(mm);
w >>= 1;
h >>= 1;
if (w < 2 || h < 2) {
break;
}
level++;
}
GLsizei width = fb_w;
GLsizei height = fb_h;
if (config->render_to_mipmap_supported) {
glGenTextures(1, &rt->mip_maps[i].color);
glBindTexture(GL_TEXTURE_2D, rt->mip_maps[i].color);
for (int l = 0; l < level + 1; l++) {
glTexImage2D(GL_TEXTURE_2D, l, color_internal_format, width, height, 0, color_format, color_type, nullptr);
width = MAX(1, (width / 2));
height = MAX(1, (height / 2));
}
#ifdef GLES_OVER_GL
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, level);
#endif
} else {
// Can't render to specific levels of a mipmap in ES 2.0 or Webgl so create a texture for each level
for (int l = 0; l < level + 1; l++) {
glGenTextures(1, &rt->mip_maps[i].sizes.write[l].color);
glBindTexture(GL_TEXTURE_2D, rt->mip_maps[i].sizes[l].color);
glTexImage2D(GL_TEXTURE_2D, 0, color_internal_format, width, height, 0, color_format, color_type, nullptr);
width = MAX(1, (width / 2));
height = MAX(1, (height / 2));
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
}
glDisable(GL_SCISSOR_TEST);
glColorMask(1, 1, 1, 1);
glDepthMask(GL_TRUE);
for (int j = 0; j < rt->mip_maps[i].sizes.size(); j++) {
GLES3::RenderTarget::MipMaps::Size &mm = rt->mip_maps[i].sizes.write[j];
glGenFramebuffers(1, &mm.fbo);
bind_framebuffer(mm.fbo);
if (config->render_to_mipmap_supported) {
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rt->mip_maps[i].color, j);
} else {
glBindTexture(GL_TEXTURE_2D, rt->mip_maps[i].sizes[j].color);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rt->mip_maps[i].sizes[j].color, 0);
}
bool used_depth = false;
if (j == 0 && i == 0) { //use always
if (config->support_depth_texture) {
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, rt->depth, 0);
} else {
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rt->depth);
}
used_depth = true;
}
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE) {
WARN_PRINT_ONCE("Cannot allocate mipmaps for 3D post processing effects");
bind_framebuffer_system();
return;
}
glClearColor(1.0, 0.0, 1.0, 0.0);
glClear(GL_COLOR_BUFFER_BIT);
if (used_depth) {
glClearDepth(1.0);
glClear(GL_DEPTH_BUFFER_BIT);
}
}
rt->mip_maps[i].levels = level;
if (config->render_to_mipmap_supported) {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
}
rt->mip_maps_allocated = true;
}
bind_framebuffer_system();
}
void RasterizerStorageGLES3::_render_target_clear(GLES3::RenderTarget *rt) {
// there is nothing to clear when DIRECT_TO_SCREEN is used
if (rt->flags[RENDER_TARGET_DIRECT_TO_SCREEN]) {
return;
}
if (rt->fbo) {
glDeleteFramebuffers(1, &rt->fbo);
glDeleteTextures(1, &rt->color);
rt->fbo = 0;
}
if (rt->external.fbo != 0) {
// free this
glDeleteFramebuffers(1, &rt->external.fbo);
// clean up our texture
GLES3::Texture *t = GLES3::TextureStorage::get_singleton()->get_texture(rt->external.texture);
t->alloc_height = 0;
t->alloc_width = 0;
t->width = 0;
t->height = 0;
t->active = false;
GLES3::TextureStorage::get_singleton()->texture_free(rt->external.texture);
memdelete(t);
rt->external.fbo = 0;
}
if (rt->depth) {
if (config->support_depth_texture) {
glDeleteTextures(1, &rt->depth);
} else {
glDeleteRenderbuffers(1, &rt->depth);
}
rt->depth = 0;
}
GLES3::Texture *tex = GLES3::TextureStorage::get_singleton()->get_texture(rt->texture);
tex->alloc_height = 0;
tex->alloc_width = 0;
tex->width = 0;
tex->height = 0;
tex->active = false;
if (rt->copy_screen_effect.color) {
glDeleteFramebuffers(1, &rt->copy_screen_effect.fbo);
rt->copy_screen_effect.fbo = 0;
glDeleteTextures(1, &rt->copy_screen_effect.color);
rt->copy_screen_effect.color = 0;
}
for (int i = 0; i < 2; i++) {
if (rt->mip_maps[i].sizes.size()) {
for (int j = 0; j < rt->mip_maps[i].sizes.size(); j++) {
glDeleteFramebuffers(1, &rt->mip_maps[i].sizes[j].fbo);
glDeleteTextures(1, &rt->mip_maps[i].sizes[j].color);
}
glDeleteTextures(1, &rt->mip_maps[i].color);
rt->mip_maps[i].sizes.clear();
rt->mip_maps[i].levels = 0;
rt->mip_maps[i].color = 0;
}
}
if (rt->multisample_active) {
glDeleteFramebuffers(1, &rt->multisample_fbo);
rt->multisample_fbo = 0;
glDeleteRenderbuffers(1, &rt->multisample_depth);
rt->multisample_depth = 0;
glDeleteRenderbuffers(1, &rt->multisample_color);
rt->multisample_color = 0;
}
}
RID RasterizerStorageGLES3::render_target_create() {
GLES3::RenderTarget *rt = memnew(GLES3::RenderTarget);
GLES3::Texture *t = memnew(GLES3::Texture);
t->type = RenderingDevice::TEXTURE_TYPE_2D;
t->flags = 0;
t->width = 0;
t->height = 0;
t->alloc_height = 0;
t->alloc_width = 0;
t->format = Image::FORMAT_R8;
t->target = GL_TEXTURE_2D;
t->gl_format_cache = 0;
t->gl_internal_format_cache = 0;
t->gl_type_cache = 0;
t->data_size = 0;
t->total_data_size = 0;
t->ignore_mipmaps = false;
t->compressed = false;
t->mipmaps = 1;
t->active = true;
t->tex_id = 0;
t->render_target = rt;
rt->texture = GLES3::TextureStorage::get_singleton()->make_rid(t);
return render_target_owner.make_rid(rt);
}
void RasterizerStorageGLES3::render_target_set_position(RID p_render_target, int p_x, int p_y) {
GLES3::RenderTarget *rt = render_target_owner.get_or_null(p_render_target);
ERR_FAIL_COND(!rt);
rt->x = p_x;
rt->y = p_y;
}
void RasterizerStorageGLES3::render_target_set_size(RID p_render_target, int p_width, int p_height, uint32_t p_view_count) {
GLES3::RenderTarget *rt = render_target_owner.get_or_null(p_render_target);
ERR_FAIL_COND(!rt);
if (p_width == rt->width && p_height == rt->height) {
return;
}
_render_target_clear(rt);
rt->width = p_width;
rt->height = p_height;
// print_line("render_target_set_size " + itos(p_render_target.get_id()) + ", w " + itos(p_width) + " h " + itos(p_height));
rt->allocate_is_dirty = true;
//_render_target_allocate(rt);
}
// TODO: convert to Size2i internally
Size2i RasterizerStorageGLES3::render_target_get_size(RID p_render_target) {
GLES3::RenderTarget *rt = render_target_owner.get_or_null(p_render_target);
ERR_FAIL_COND_V(!rt, Size2());
return Size2i(rt->width, rt->height);
}
RID RasterizerStorageGLES3::render_target_get_texture(RID p_render_target) {
GLES3::RenderTarget *rt = render_target_owner.get_or_null(p_render_target);
ERR_FAIL_COND_V(!rt, RID());
if (rt->external.fbo == 0) {
return rt->texture;
} else {
return rt->external.texture;
}
}
void RasterizerStorageGLES3::render_target_set_external_texture(RID p_render_target, unsigned int p_texture_id) {
GLES3::RenderTarget *rt = render_target_owner.get_or_null(p_render_target);
ERR_FAIL_COND(!rt);
if (p_texture_id == 0) {
if (rt->external.fbo != 0) {
// free this
glDeleteFramebuffers(1, &rt->external.fbo);
// and this
if (rt->external.depth != 0) {
glDeleteRenderbuffers(1, &rt->external.depth);
}
// clean up our texture
GLES3::Texture *t = GLES3::TextureStorage::get_singleton()->get_texture(rt->external.texture);
t->alloc_height = 0;
t->alloc_width = 0;
t->width = 0;
t->height = 0;
t->active = false;
GLES3::TextureStorage::get_singleton()->texture_free(rt->external.texture);
memdelete(t);
rt->external.fbo = 0;
rt->external.color = 0;
rt->external.depth = 0;
}
} else {
GLES3::Texture *t;
if (rt->external.fbo == 0) {
// create our fbo
glGenFramebuffers(1, &rt->external.fbo);
bind_framebuffer(rt->external.fbo);
// allocate a texture
t = memnew(GLES3::Texture);
t->type = RenderingDevice::TEXTURE_TYPE_2D;
t->flags = 0;
t->width = 0;
t->height = 0;
t->alloc_height = 0;
t->alloc_width = 0;
t->format = Image::FORMAT_RGBA8;
t->target = GL_TEXTURE_2D;
t->gl_format_cache = 0;
t->gl_internal_format_cache = 0;
t->gl_type_cache = 0;
t->data_size = 0;
t->compressed = false;
t->srgb = false;
t->total_data_size = 0;
t->ignore_mipmaps = false;
t->mipmaps = 1;
t->active = true;
t->tex_id = 0;
t->render_target = rt;
rt->external.texture = GLES3::TextureStorage::get_singleton()->make_rid(t);
} else {
// bind our frame buffer
bind_framebuffer(rt->external.fbo);
// find our texture
t = GLES3::TextureStorage::get_singleton()->get_texture(rt->external.texture);
}
// set our texture
t->tex_id = p_texture_id;
rt->external.color = p_texture_id;
// size shouldn't be different
t->width = rt->width;
t->height = rt->height;
t->alloc_height = rt->width;
t->alloc_width = rt->height;
// Switch our texture on our frame buffer
{
// set our texture as the destination for our framebuffer
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, p_texture_id, 0);
// seeing we're rendering into this directly, better also use our depth buffer, just use our existing one :)
if (config->support_depth_texture) {
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, rt->depth, 0);
} else {
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rt->depth);
}
}
// check status and unbind
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
bind_framebuffer_system();
if (status != GL_FRAMEBUFFER_COMPLETE) {
printf("framebuffer fail, status: %x\n", status);
}
ERR_FAIL_COND(status != GL_FRAMEBUFFER_COMPLETE);
}
}
void RasterizerStorageGLES3::render_target_set_flag(RID p_render_target, RenderTargetFlags p_flag, bool p_value) {
GLES3::RenderTarget *rt = render_target_owner.get_or_null(p_render_target);
ERR_FAIL_COND(!rt);
// When setting DIRECT_TO_SCREEN, you need to clear before the value is set, but allocate after as
// those functions change how they operate depending on the value of DIRECT_TO_SCREEN
if (p_flag == RENDER_TARGET_DIRECT_TO_SCREEN && p_value != rt->flags[RENDER_TARGET_DIRECT_TO_SCREEN]) {
_render_target_clear(rt);
rt->flags[p_flag] = p_value;
_render_target_allocate(rt);
}
rt->flags[p_flag] = p_value;
switch (p_flag) {
case RENDER_TARGET_TRANSPARENT:
/*
case RENDER_TARGET_HDR:
case RENDER_TARGET_NO_3D:
case RENDER_TARGET_NO_SAMPLING:
case RENDER_TARGET_NO_3D_EFFECTS: */
{
//must reset for these formats
_render_target_clear(rt);
_render_target_allocate(rt);
}
break;
default: {
}
}
}
bool RasterizerStorageGLES3::render_target_was_used(RID p_render_target) {
GLES3::RenderTarget *rt = render_target_owner.get_or_null(p_render_target);
ERR_FAIL_COND_V(!rt, false);
return rt->used_in_frame;
}
void RasterizerStorageGLES3::render_target_clear_used(RID p_render_target) {
GLES3::RenderTarget *rt = render_target_owner.get_or_null(p_render_target);
ERR_FAIL_COND(!rt);
rt->used_in_frame = false;
}
void RasterizerStorageGLES3::render_target_set_msaa(RID p_render_target, RS::ViewportMSAA p_msaa) {
GLES3::RenderTarget *rt = render_target_owner.get_or_null(p_render_target);
ERR_FAIL_COND(!rt);
if (rt->msaa == p_msaa) {
return;
}
_render_target_clear(rt);
rt->msaa = p_msaa;
_render_target_allocate(rt);
}
//RasterizerStorageGLES3::GLES3::RenderTarget * RasterizerStorageGLES3::render_target_get(RID p_render_target)
//{
// return render_target_owner.get_or_null(p_render_target);
//}
void RasterizerStorageGLES3::render_target_set_use_fxaa(RID p_render_target, bool p_fxaa) {
GLES3::RenderTarget *rt = render_target_owner.get_or_null(p_render_target);
ERR_FAIL_COND(!rt);
rt->use_fxaa = p_fxaa;
}
void RasterizerStorageGLES3::render_target_set_use_debanding(RID p_render_target, bool p_debanding) {
GLES3::RenderTarget *rt = render_target_owner.get_or_null(p_render_target);
ERR_FAIL_COND(!rt);
if (p_debanding) {
WARN_PRINT_ONCE("Debanding is not supported in the OpenGL backend. Switch to the Vulkan backend and make sure HDR is enabled.");
}
rt->use_debanding = p_debanding;
}
void RasterizerStorageGLES3::render_target_request_clear(RID p_render_target, const Color &p_clear_color) {
GLES3::RenderTarget *rt = render_target_owner.get_or_null(p_render_target);
ERR_FAIL_COND(!rt);
rt->clear_requested = true;
rt->clear_color = p_clear_color;
// ERR_FAIL_COND(!frame.current_rt);
// frame.clear_request = true;
// frame.clear_request_color = p_color;
}
bool RasterizerStorageGLES3::render_target_is_clear_requested(RID p_render_target) {
GLES3::RenderTarget *rt = render_target_owner.get_or_null(p_render_target);
ERR_FAIL_COND_V(!rt, false);
return rt->clear_requested;
}
Color RasterizerStorageGLES3::render_target_get_clear_request_color(RID p_render_target) {
GLES3::RenderTarget *rt = render_target_owner.get_or_null(p_render_target);
ERR_FAIL_COND_V(!rt, Color());
return rt->clear_color;
}
void RasterizerStorageGLES3::render_target_disable_clear_request(RID p_render_target) {
GLES3::RenderTarget *rt = render_target_owner.get_or_null(p_render_target);
ERR_FAIL_COND(!rt);
rt->clear_requested = false;
}
void RasterizerStorageGLES3::render_target_do_clear_request(RID p_render_target) {
}
void RasterizerStorageGLES3::render_target_set_sdf_size_and_scale(RID p_render_target, RS::ViewportSDFOversize p_size, RS::ViewportSDFScale p_scale) {
}
Rect2i RasterizerStorageGLES3::render_target_get_sdf_rect(RID p_render_target) const {
return Rect2i();
}
void RasterizerStorageGLES3::render_target_mark_sdf_enabled(RID p_render_target, bool p_enabled) {
}
/* CANVAS SHADOW */
RID RasterizerStorageGLES3::canvas_light_shadow_buffer_create(int p_width) {
CanvasLightShadow *cls = memnew(CanvasLightShadow);
if (p_width > config->max_texture_size) {
p_width = config->max_texture_size;
}
cls->size = p_width;
cls->height = 16;
glActiveTexture(GL_TEXTURE0);
glGenFramebuffers(1, &cls->fbo);
bind_framebuffer(cls->fbo);
glGenRenderbuffers(1, &cls->depth);
glBindRenderbuffer(GL_RENDERBUFFER, cls->depth);
glRenderbufferStorage(GL_RENDERBUFFER, config->depth_buffer_internalformat, cls->size, cls->height);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, cls->depth);
glGenTextures(1, &cls->distance);
glBindTexture(GL_TEXTURE_2D, cls->distance);
if (config->use_rgba_2d_shadows) {
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, cls->size, cls->height, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
} else {
#ifdef GLES_OVER_GL
glTexImage2D(GL_TEXTURE_2D, 0, GL_R32F, cls->size, cls->height, 0, _RED_OES, GL_FLOAT, nullptr);
#else
glTexImage2D(GL_TEXTURE_2D, 0, GL_FLOAT, cls->size, cls->height, 0, _RED_OES, GL_FLOAT, NULL);
#endif
}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, cls->distance, 0);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
//printf("errnum: %x\n",status);
bind_framebuffer_system();
if (status != GL_FRAMEBUFFER_COMPLETE) {
memdelete(cls);
ERR_FAIL_COND_V(status != GL_FRAMEBUFFER_COMPLETE, RID());
}
return canvas_light_shadow_owner.make_rid(cls);
}
/* LIGHT SHADOW MAPPING */
/*
RID RasterizerStorageGLES3::canvas_light_occluder_create() {
CanvasOccluder *co = memnew(CanvasOccluder);
co->index_id = 0;
co->vertex_id = 0;
co->len = 0;
return canvas_occluder_owner.make_rid(co);
}
void RasterizerStorageGLES3::canvas_light_occluder_set_polylines(RID p_occluder, const PoolVector<Vector2> &p_lines) {
CanvasOccluder *co = canvas_occluder_owner.get(p_occluder);
ERR_FAIL_COND(!co);
co->lines = p_lines;
if (p_lines.size() != co->len) {
if (co->index_id) {
glDeleteBuffers(1, &co->index_id);
} if (co->vertex_id) {
glDeleteBuffers(1, &co->vertex_id);
}
co->index_id = 0;
co->vertex_id = 0;
co->len = 0;
}
if (p_lines.size()) {
PoolVector<float> geometry;
PoolVector<uint16_t> indices;
int lc = p_lines.size();
geometry.resize(lc * 6);
indices.resize(lc * 3);
PoolVector<float>::Write vw = geometry.write();
PoolVector<uint16_t>::Write iw = indices.write();
PoolVector<Vector2>::Read lr = p_lines.read();
const int POLY_HEIGHT = 16384;
for (int i = 0; i < lc / 2; i++) {
vw[i * 12 + 0] = lr[i * 2 + 0].x;
vw[i * 12 + 1] = lr[i * 2 + 0].y;
vw[i * 12 + 2] = POLY_HEIGHT;
vw[i * 12 + 3] = lr[i * 2 + 1].x;
vw[i * 12 + 4] = lr[i * 2 + 1].y;
vw[i * 12 + 5] = POLY_HEIGHT;
vw[i * 12 + 6] = lr[i * 2 + 1].x;
vw[i * 12 + 7] = lr[i * 2 + 1].y;
vw[i * 12 + 8] = -POLY_HEIGHT;
vw[i * 12 + 9] = lr[i * 2 + 0].x;
vw[i * 12 + 10] = lr[i * 2 + 0].y;
vw[i * 12 + 11] = -POLY_HEIGHT;
iw[i * 6 + 0] = i * 4 + 0;
iw[i * 6 + 1] = i * 4 + 1;
iw[i * 6 + 2] = i * 4 + 2;
iw[i * 6 + 3] = i * 4 + 2;
iw[i * 6 + 4] = i * 4 + 3;
iw[i * 6 + 5] = i * 4 + 0;
}
//if same buffer len is being set, just use BufferSubData to avoid a pipeline flush
if (!co->vertex_id) {
glGenBuffers(1, &co->vertex_id);
glBindBuffer(GL_ARRAY_BUFFER, co->vertex_id);
glBufferData(GL_ARRAY_BUFFER, lc * 6 * sizeof(real_t), vw.ptr(), GL_STATIC_DRAW);
} else {
glBindBuffer(GL_ARRAY_BUFFER, co->vertex_id);
glBufferSubData(GL_ARRAY_BUFFER, 0, lc * 6 * sizeof(real_t), vw.ptr());
}
glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
if (!co->index_id) {
glGenBuffers(1, &co->index_id);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, co->index_id);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, lc * 3 * sizeof(uint16_t), iw.ptr(), GL_DYNAMIC_DRAW);
} else {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, co->index_id);
glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, lc * 3 * sizeof(uint16_t), iw.ptr());
}
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind
co->len = lc;
}
}
*/
RS::InstanceType RasterizerStorageGLES3::get_base_type(RID p_rid) const {
return RS::INSTANCE_NONE;
/*
if (mesh_owner.owns(p_rid)) {
return RS::INSTANCE_MESH;
} else if (light_owner.owns(p_rid)) {
return RS::INSTANCE_LIGHT;
} else if (multimesh_owner.owns(p_rid)) {
return RS::INSTANCE_MULTIMESH;
} else if (immediate_owner.owns(p_rid)) {
return RS::INSTANCE_IMMEDIATE;
} else if (reflection_probe_owner.owns(p_rid)) {
return RS::INSTANCE_REFLECTION_PROBE;
} else if (lightmap_capture_data_owner.owns(p_rid)) {
return RS::INSTANCE_LIGHTMAP_CAPTURE;
} else {
return RS::INSTANCE_NONE;
}
*/
}
bool RasterizerStorageGLES3::free(RID p_rid) {
if (render_target_owner.owns(p_rid)) {
GLES3::RenderTarget *rt = render_target_owner.get_or_null(p_rid);
_render_target_clear(rt);
GLES3::Texture *t = GLES3::TextureStorage::get_singleton()->get_texture(rt->texture);
if (t) {
GLES3::TextureStorage::get_singleton()->texture_free(rt->texture);
memdelete(t);
}
render_target_owner.free(p_rid);
memdelete(rt);
return true;
} else if (GLES3::TextureStorage::get_singleton()->owns_texture(p_rid)) {
GLES3::TextureStorage::get_singleton()->texture_free(p_rid);
return true;
} else if (GLES3::CanvasTextureStorage::get_singleton()->owns_canvas_texture(p_rid)) {
GLES3::CanvasTextureStorage::get_singleton()->canvas_texture_free(p_rid);
return true;
} else if (sky_owner.owns(p_rid)) {
Sky *sky = sky_owner.get_or_null(p_rid);
sky_set_texture(p_rid, RID(), 256);
sky_owner.free(p_rid);
memdelete(sky);
return true;
} else if (GLES3::MaterialStorage::get_singleton()->owns_shader(p_rid)) {
GLES3::MaterialStorage::get_singleton()->shader_free(p_rid);
return true;
} else if (GLES3::MaterialStorage::get_singleton()->owns_material(p_rid)) {
GLES3::MaterialStorage::get_singleton()->material_free(p_rid);
return true;
} else {
return false;
}
/*
} else if (skeleton_owner.owns(p_rid)) {
Skeleton *s = skeleton_owner.get_or_null(p_rid);
if (s->update_list.in_list()) {
skeleton_update_list.remove(&s->update_list);
}
for (Set<InstanceBaseDependency *>::Element *E = s->instances.front(); E; E = E->next()) {
E->get()->skeleton = RID();
}
skeleton_allocate(p_rid, 0, false);
if (s->tex_id) {
glDeleteTextures(1, &s->tex_id);
}
skeleton_owner.free(p_rid);
memdelete(s);
return true;
} else if (mesh_owner.owns(p_rid)) {
Mesh *mesh = mesh_owner.get_or_null(p_rid);
mesh->instance_remove_deps();
mesh_clear(p_rid);
while (mesh->multimeshes.first()) {
MultiMesh *multimesh = mesh->multimeshes.first()->self();
multimesh->mesh = RID();
multimesh->dirty_aabb = true;
mesh->multimeshes.remove(mesh->multimeshes.first());
if (!multimesh->update_list.in_list()) {
multimesh_update_list.add(&multimesh->update_list);
}
}
mesh_owner.free(p_rid);
memdelete(mesh);
return true;
} else if (multimesh_owner.owns(p_rid)) {
MultiMesh *multimesh = multimesh_owner.get_or_null(p_rid);
multimesh->instance_remove_deps();
if (multimesh->mesh.is_valid()) {
Mesh *mesh = mesh_owner.get_or_null(multimesh->mesh);
if (mesh) {
mesh->multimeshes.remove(&multimesh->mesh_list);
}
}
multimesh_allocate(p_rid, 0, RS::MULTIMESH_TRANSFORM_3D, RS::MULTIMESH_COLOR_NONE);
update_dirty_multimeshes();
multimesh_owner.free(p_rid);
memdelete(multimesh);
return true;
} else if (immediate_owner.owns(p_rid)) {
Immediate *im = immediate_owner.get_or_null(p_rid);
im->instance_remove_deps();
immediate_owner.free(p_rid);
memdelete(im);
return true;
} else if (light_owner.owns(p_rid)) {
Light *light = light_owner.get_or_null(p_rid);
light->instance_remove_deps();
light_owner.free(p_rid);
memdelete(light);
return true;
} else if (reflection_probe_owner.owns(p_rid)) {
// delete the texture
ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_rid);
reflection_probe->instance_remove_deps();
reflection_probe_owner.free(p_rid);
memdelete(reflection_probe);
return true;
} else if (lightmap_capture_data_owner.owns(p_rid)) {
// delete the texture
LightmapCapture *lightmap_capture = lightmap_capture_data_owner.get_or_null(p_rid);
lightmap_capture->instance_remove_deps();
lightmap_capture_data_owner.free(p_rid);
memdelete(lightmap_capture);
return true;
} else if (canvas_occluder_owner.owns(p_rid)) {
CanvasOccluder *co = canvas_occluder_owner.get_or_null(p_rid);
if (co->index_id) {
glDeleteBuffers(1, &co->index_id);
}
if (co->vertex_id) {
glDeleteBuffers(1, &co->vertex_id);
}
canvas_occluder_owner.free(p_rid);
memdelete(co);
return true;
} else if (canvas_light_shadow_owner.owns(p_rid)) {
CanvasLightShadow *cls = canvas_light_shadow_owner.get_or_null(p_rid);
glDeleteFramebuffers(1, &cls->fbo);
glDeleteRenderbuffers(1, &cls->depth);
glDeleteTextures(1, &cls->distance);
canvas_light_shadow_owner.free(p_rid);
memdelete(cls);
return true;
*/
}
bool RasterizerStorageGLES3::has_os_feature(const String &p_feature) const {
if (p_feature == "s3tc") {
return config->s3tc_supported;
}
if (p_feature == "etc") {
return config->etc_supported;
}
if (p_feature == "skinning_fallback") {
return config->use_skeleton_software;
}
return false;
}
////////////////////////////////////////////
void RasterizerStorageGLES3::set_debug_generate_wireframes(bool p_generate) {
}
//void RasterizerStorageGLES3::render_info_begin_capture() {
// info.snap = info.render;
//}
//void RasterizerStorageGLES3::render_info_end_capture() {
// info.snap.object_count = info.render.object_count - info.snap.object_count;
// info.snap.draw_call_count = info.render.draw_call_count - info.snap.draw_call_count;
// info.snap.material_switch_count = info.render.material_switch_count - info.snap.material_switch_count;
// info.snap.surface_switch_count = info.render.surface_switch_count - info.snap.surface_switch_count;
// info.snap.shader_rebind_count = info.render.shader_rebind_count - info.snap.shader_rebind_count;
// info.snap.vertices_count = info.render.vertices_count - info.snap.vertices_count;
// info.snap._2d_item_count = info.render._2d_item_count - info.snap._2d_item_count;
// info.snap._2d_draw_call_count = info.render._2d_draw_call_count - info.snap._2d_draw_call_count;
//}
//int RasterizerStorageGLES3::get_captured_render_info(RS::RenderInfo p_info) {
// switch (p_info) {
// case RS::INFO_OBJECTS_IN_FRAME: {
// return info.snap.object_count;
// } break;
// case RS::INFO_VERTICES_IN_FRAME: {
// return info.snap.vertices_count;
// } break;
// case RS::INFO_MATERIAL_CHANGES_IN_FRAME: {
// return info.snap.material_switch_count;
// } break;
// case RS::INFO_SHADER_CHANGES_IN_FRAME: {
// return info.snap.shader_rebind_count;
// } break;
// case RS::INFO_SURFACE_CHANGES_IN_FRAME: {
// return info.snap.surface_switch_count;
// } break;
// case RS::INFO_DRAW_CALLS_IN_FRAME: {
// return info.snap.draw_call_count;
// } break;
// /*
// case RS::INFO_2D_ITEMS_IN_FRAME: {
// return info.snap._2d_item_count;
// } break;
// case RS::INFO_2D_DRAW_CALLS_IN_FRAME: {
// return info.snap._2d_draw_call_count;
// } break;
// */
// default: {
// return get_render_info(p_info);
// }
// }
//}
//int RasterizerStorageGLES3::get_render_info(RS::RenderInfo p_info) {
// switch (p_info) {
// case RS::INFO_OBJECTS_IN_FRAME:
// return info.render_final.object_count;
// case RS::INFO_VERTICES_IN_FRAME:
// return info.render_final.vertices_count;
// case RS::INFO_MATERIAL_CHANGES_IN_FRAME:
// return info.render_final.material_switch_count;
// case RS::INFO_SHADER_CHANGES_IN_FRAME:
// return info.render_final.shader_rebind_count;
// case RS::INFO_SURFACE_CHANGES_IN_FRAME:
// return info.render_final.surface_switch_count;
// case RS::INFO_DRAW_CALLS_IN_FRAME:
// return info.render_final.draw_call_count;
// /*
// case RS::INFO_2D_ITEMS_IN_FRAME:
// return info.render_final._2d_item_count;
// case RS::INFO_2D_DRAW_CALLS_IN_FRAME:
// return info.render_final._2d_draw_call_count;
//*/
// case RS::INFO_USAGE_VIDEO_MEM_TOTAL:
// return 0; //no idea
// case RS::INFO_VIDEO_MEM_USED:
// return info.vertex_mem + info.texture_mem;
// case RS::INFO_TEXTURE_MEM_USED:
// return info.texture_mem;
// case RS::INFO_VERTEX_MEM_USED:
// return info.vertex_mem;
// default:
// return 0; //no idea either
// }
//}
String RasterizerStorageGLES3::get_video_adapter_name() const {
return (const char *)glGetString(GL_RENDERER);
}
String RasterizerStorageGLES3::get_video_adapter_vendor() const {
return (const char *)glGetString(GL_VENDOR);
}
RenderingDevice::DeviceType RasterizerStorageGLES3::get_video_adapter_type() const {
return RenderingDevice::DeviceType::DEVICE_TYPE_OTHER;
}
void RasterizerStorageGLES3::initialize() {
RasterizerStorageGLES3::system_fbo = 0;
config = GLES3::Config::get_singleton();
config->initialize();
//determine formats for depth textures (or renderbuffers)
if (config->support_depth_texture) {
// Will use texture for depth
// have to manually see if we can create a valid framebuffer texture using UNSIGNED_INT,
// as there is no extension to test for this.
GLuint fbo;
glGenFramebuffers(1, &fbo);
bind_framebuffer(fbo);
GLuint depth;
glGenTextures(1, &depth);
glBindTexture(GL_TEXTURE_2D, depth);
glTexImage2D(GL_TEXTURE_2D, 0, config->depth_internalformat, 32, 32, 0, GL_DEPTH_COMPONENT, config->depth_type, nullptr);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, depth, 0);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
bind_framebuffer_system();
glDeleteFramebuffers(1, &fbo);
glBindTexture(GL_TEXTURE_2D, 0);
glDeleteTextures(1, &depth);
if (status != GL_FRAMEBUFFER_COMPLETE) {
// If it fails, test to see if it supports a framebuffer texture using UNSIGNED_SHORT
// This is needed because many OSX devices don't support either UNSIGNED_INT or UNSIGNED_SHORT
#ifdef GLES_OVER_GL
config->depth_internalformat = GL_DEPTH_COMPONENT16;
#else
// OES_depth_texture extension only specifies GL_DEPTH_COMPONENT.
config->depth_internalformat = GL_DEPTH_COMPONENT;
#endif
config->depth_type = GL_UNSIGNED_SHORT;
glGenFramebuffers(1, &fbo);
bind_framebuffer(fbo);
glGenTextures(1, &depth);
glBindTexture(GL_TEXTURE_2D, depth);
glTexImage2D(GL_TEXTURE_2D, 0, config->depth_internalformat, 32, 32, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_SHORT, nullptr);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, depth, 0);
status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE) {
//if it fails again depth textures aren't supported, use rgba shadows and renderbuffer for depth
config->support_depth_texture = false;
config->use_rgba_3d_shadows = true;
}
bind_framebuffer_system();
glDeleteFramebuffers(1, &fbo);
glBindTexture(GL_TEXTURE_2D, 0);
glDeleteTextures(1, &depth);
}
}
//picky requirements for these
config->support_shadow_cubemaps = config->support_depth_texture && config->support_write_depth && config->support_depth_cubemaps;
frame.count = 0;
frame.delta = 0;
frame.current_rt = nullptr;
frame.clear_request = false;
// the use skeleton software path should be used if either float texture is not supported,
// OR max_vertex_texture_image_units is zero
config->use_skeleton_software = (config->float_texture_supported == false) || (config->max_vertex_texture_image_units == 0);
{
// quad for copying stuff
glGenBuffers(1, &resources.quadie);
glBindBuffer(GL_ARRAY_BUFFER, resources.quadie);
{
const float qv[16] = {
-1,
-1,
0,
0,
-1,
1,
0,
1,
1,
1,
1,
1,
1,
-1,
1,
0,
};
glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 16, qv, GL_STATIC_DRAW);
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
{
//default textures
glGenTextures(1, &resources.white_tex);
unsigned char whitetexdata[8 * 8 * 3];
for (int i = 0; i < 8 * 8 * 3; i++) {
whitetexdata[i] = 255;
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, resources.white_tex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 8, 8, 0, GL_RGB, GL_UNSIGNED_BYTE, whitetexdata);
glGenerateMipmap(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);
glGenTextures(1, &resources.black_tex);
unsigned char blacktexdata[8 * 8 * 3];
for (int i = 0; i < 8 * 8 * 3; i++) {
blacktexdata[i] = 0;
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, resources.black_tex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 8, 8, 0, GL_RGB, GL_UNSIGNED_BYTE, blacktexdata);
glGenerateMipmap(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);
glGenTextures(1, &resources.normal_tex);
unsigned char normaltexdata[8 * 8 * 3];
for (int i = 0; i < 8 * 8 * 3; i += 3) {
normaltexdata[i + 0] = 128;
normaltexdata[i + 1] = 128;
normaltexdata[i + 2] = 255;
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, resources.normal_tex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 8, 8, 0, GL_RGB, GL_UNSIGNED_BYTE, normaltexdata);
glGenerateMipmap(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);
glGenTextures(1, &resources.aniso_tex);
unsigned char anisotexdata[8 * 8 * 3];
for (int i = 0; i < 8 * 8 * 3; i += 3) {
anisotexdata[i + 0] = 255;
anisotexdata[i + 1] = 128;
anisotexdata[i + 2] = 0;
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, resources.aniso_tex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 8, 8, 0, GL_RGB, GL_UNSIGNED_BYTE, anisotexdata);
glGenerateMipmap(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);
}
// skeleton buffer
{
resources.skeleton_transform_buffer_size = 0;
glGenBuffers(1, &resources.skeleton_transform_buffer);
}
// radical inverse vdc cache texture
// used for cubemap filtering
if (true /*||config->float_texture_supported*/) { //uint8 is similar and works everywhere
glGenTextures(1, &resources.radical_inverse_vdc_cache_tex);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, resources.radical_inverse_vdc_cache_tex);
uint8_t radical_inverse[512];
for (uint32_t i = 0; i < 512; i++) {
uint32_t bits = i;
bits = (bits << 16) | (bits >> 16);
bits = ((bits & 0x55555555) << 1) | ((bits & 0xAAAAAAAA) >> 1);
bits = ((bits & 0x33333333) << 2) | ((bits & 0xCCCCCCCC) >> 2);
bits = ((bits & 0x0F0F0F0F) << 4) | ((bits & 0xF0F0F0F0) >> 4);
bits = ((bits & 0x00FF00FF) << 8) | ((bits & 0xFF00FF00) >> 8);
float value = float(bits) * 2.3283064365386963e-10;
radical_inverse[i] = uint8_t(CLAMP(value * 255.0, 0, 255));
}
glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE, 512, 1, 0, GL_LUMINANCE, GL_UNSIGNED_BYTE, radical_inverse);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); //need this for proper sampling
glBindTexture(GL_TEXTURE_2D, 0);
}
{
glGenFramebuffers(1, &resources.mipmap_blur_fbo);
glGenTextures(1, &resources.mipmap_blur_color);
}
#ifdef GLES_OVER_GL
//this needs to be enabled manually in OpenGL 2.1
if (config->extensions.has("GL_ARB_seamless_cube_map")) {
glEnable(_EXT_TEXTURE_CUBE_MAP_SEAMLESS);
}
glEnable(GL_POINT_SPRITE);
glEnable(GL_VERTEX_PROGRAM_POINT_SIZE);
#endif
}
void RasterizerStorageGLES3::finalize() {
}
void RasterizerStorageGLES3::_copy_screen() {
bind_quad_array();
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
}
void RasterizerStorageGLES3::update_memory_info() {
}
uint64_t RasterizerStorageGLES3::get_rendering_info(RS::RenderingInfo p_info) {
return 0;
}
void RasterizerStorageGLES3::update_dirty_resources() {
GLES3::MaterialStorage::get_singleton()->update_dirty_shaders();
GLES3::MaterialStorage::get_singleton()->update_dirty_materials();
// update_dirty_skeletons();
// update_dirty_multimeshes();
}
RasterizerStorageGLES3::RasterizerStorageGLES3() {
RasterizerStorageGLES3::system_fbo = 0;
}
RasterizerStorageGLES3::~RasterizerStorageGLES3() {
}
#endif // GLES3_ENABLED