godot/tests/scene/test_curve_3d.h
2023-05-10 19:12:06 +02:00

262 lines
10 KiB
C++

/**************************************************************************/
/* test_curve_3d.h */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifndef TEST_CURVE_3D_H
#define TEST_CURVE_3D_H
#include "core/math/math_funcs.h"
#include "scene/resources/curve.h"
#include "tests/test_macros.h"
namespace TestCurve3D {
void add_sample_curve_points(Ref<Curve3D> &curve) {
Vector3 p0 = Vector3(0, 0, 0);
Vector3 p1 = Vector3(50, 0, 0);
Vector3 p2 = Vector3(50, 50, 50);
Vector3 p3 = Vector3(0, 50, 0);
Vector3 control0 = p1 - p0;
Vector3 control1 = p3 - p2;
curve->add_point(p0, Vector3(), control0);
curve->add_point(p3, control1, Vector3());
}
TEST_CASE("[Curve3D] Default curve is empty") {
const Ref<Curve3D> curve = memnew(Curve3D);
CHECK(curve->get_point_count() == 0);
}
TEST_CASE("[Curve3D] Point management") {
Ref<Curve3D> curve = memnew(Curve3D);
SUBCASE("Functions for adding/removing points should behave as expected") {
curve->set_point_count(2);
CHECK(curve->get_point_count() == 2);
curve->remove_point(0);
CHECK(curve->get_point_count() == 1);
curve->add_point(Vector3());
CHECK(curve->get_point_count() == 2);
curve->clear_points();
CHECK(curve->get_point_count() == 0);
}
SUBCASE("Functions for changing single point properties should behave as expected") {
Vector3 new_in = Vector3(1, 1, 1);
Vector3 new_out = Vector3(1, 1, 1);
Vector3 new_pos = Vector3(1, 1, 1);
real_t new_tilt = 1;
curve->add_point(Vector3());
CHECK(curve->get_point_in(0) != new_in);
curve->set_point_in(0, new_in);
CHECK(curve->get_point_in(0) == new_in);
CHECK(curve->get_point_out(0) != new_out);
curve->set_point_out(0, new_out);
CHECK(curve->get_point_out(0) == new_out);
CHECK(curve->get_point_position(0) != new_pos);
curve->set_point_position(0, new_pos);
CHECK(curve->get_point_position(0) == new_pos);
CHECK(curve->get_point_tilt(0) != new_tilt);
curve->set_point_tilt(0, new_tilt);
CHECK(curve->get_point_tilt(0) == new_tilt);
}
}
TEST_CASE("[Curve3D] Baked") {
Ref<Curve3D> curve = memnew(Curve3D);
SUBCASE("Single Point") {
curve->add_point(Vector3());
CHECK(curve->get_baked_length() == 0);
CHECK(curve->get_baked_points().size() == 1);
CHECK(curve->get_baked_tilts().size() == 1);
CHECK(curve->get_baked_up_vectors().size() == 1);
}
SUBCASE("Straight line") {
curve->add_point(Vector3());
curve->add_point(Vector3(0, 50, 0));
CHECK(Math::is_equal_approx(curve->get_baked_length(), 50));
CHECK(curve->get_baked_points().size() == 369);
CHECK(curve->get_baked_tilts().size() == 369);
CHECK(curve->get_baked_up_vectors().size() == 369);
}
SUBCASE("Beziér Curve") {
add_sample_curve_points(curve);
real_t len = curve->get_baked_length();
real_t n_points = curve->get_baked_points().size();
// Curve length should be bigger than a straight line between points
CHECK(len > 50);
SUBCASE("Increase bake interval") {
curve->set_bake_interval(10.0);
CHECK(curve->get_bake_interval() == 10.0);
// Lower resolution should imply less points and smaller length
CHECK(curve->get_baked_length() < len);
CHECK(curve->get_baked_points().size() < n_points);
CHECK(curve->get_baked_tilts().size() < n_points);
CHECK(curve->get_baked_up_vectors().size() < n_points);
}
SUBCASE("Disable up vectors") {
curve->set_up_vector_enabled(false);
CHECK(curve->is_up_vector_enabled() == false);
CHECK(curve->get_baked_up_vectors().size() == 0);
}
}
}
TEST_CASE("[Curve3D] Sampling") {
// Sampling over a simple straight line to make assertions simpler
Ref<Curve3D> curve = memnew(Curve3D);
curve->add_point(Vector3());
curve->add_point(Vector3(0, 50, 0));
SUBCASE("sample") {
CHECK(curve->sample(0, 0) == Vector3(0, 0, 0));
CHECK(curve->sample(0, 0.5) == Vector3(0, 25, 0));
CHECK(curve->sample(0, 1) == Vector3(0, 50, 0));
}
SUBCASE("samplef") {
CHECK(curve->samplef(0) == Vector3(0, 0, 0));
CHECK(curve->samplef(0.5) == Vector3(0, 25, 0));
CHECK(curve->samplef(1) == Vector3(0, 50, 0));
}
SUBCASE("sample_baked, cubic = false") {
CHECK(curve->sample_baked(curve->get_closest_offset(Vector3(0, 0, 0))) == Vector3(0, 0, 0));
CHECK(curve->sample_baked(curve->get_closest_offset(Vector3(0, 25, 0))) == Vector3(0, 25, 0));
CHECK(curve->sample_baked(curve->get_closest_offset(Vector3(0, 50, 0))) == Vector3(0, 50, 0));
}
SUBCASE("sample_baked, cubic = true") {
CHECK(curve->sample_baked(curve->get_closest_offset(Vector3(0, 0, 0)), true) == Vector3(0, 0, 0));
CHECK(curve->sample_baked(curve->get_closest_offset(Vector3(0, 25, 0)), true) == Vector3(0, 25, 0));
CHECK(curve->sample_baked(curve->get_closest_offset(Vector3(0, 50, 0)), true) == Vector3(0, 50, 0));
}
SUBCASE("sample_baked_with_rotation") {
CHECK(curve->sample_baked_with_rotation(curve->get_closest_offset(Vector3(0, 0, 0))) == Transform3D(Basis(Vector3(0, 0, 1), Vector3(1, 0, 0), Vector3(0, 1, 0)), Vector3(0, 0, 0)));
CHECK(curve->sample_baked_with_rotation(curve->get_closest_offset(Vector3(0, 25, 0))) == Transform3D(Basis(Vector3(0, 0, 1), Vector3(1, 0, 0), Vector3(0, 1, 0)), Vector3(0, 25, 0)));
CHECK(curve->sample_baked_with_rotation(curve->get_closest_offset(Vector3(0, 50, 0))) == Transform3D(Basis(Vector3(0, 0, 1), Vector3(1, 0, 0), Vector3(0, 1, 0)), Vector3(0, 50, 0)));
}
SUBCASE("sample_baked_tilt") {
CHECK(curve->sample_baked_tilt(curve->get_closest_offset(Vector3(0, 0, 0))) == 0);
CHECK(curve->sample_baked_tilt(curve->get_closest_offset(Vector3(0, 25, 0))) == 0);
CHECK(curve->sample_baked_tilt(curve->get_closest_offset(Vector3(0, 50, 0))) == 0);
}
SUBCASE("sample_baked_up_vector, p_apply_tilt = false") {
CHECK(curve->sample_baked_up_vector(curve->get_closest_offset(Vector3(0, 0, 0))) == Vector3(1, 0, 0));
CHECK(curve->sample_baked_up_vector(curve->get_closest_offset(Vector3(0, 25, 0))) == Vector3(1, 0, 0));
CHECK(curve->sample_baked_up_vector(curve->get_closest_offset(Vector3(0, 50, 0))) == Vector3(1, 0, 0));
}
SUBCASE("sample_baked_up_vector, p_apply_tilt = true") {
CHECK(curve->sample_baked_up_vector(curve->get_closest_offset(Vector3(0, 0, 0)), true) == Vector3(1, 0, 0));
CHECK(curve->sample_baked_up_vector(curve->get_closest_offset(Vector3(0, 25, 0)), true) == Vector3(1, 0, 0));
CHECK(curve->sample_baked_up_vector(curve->get_closest_offset(Vector3(0, 50, 0)), true) == Vector3(1, 0, 0));
}
SUBCASE("get_closest_point") {
CHECK(curve->get_closest_point(Vector3(0, 0, 0)) == Vector3(0, 0, 0));
CHECK(curve->get_closest_point(Vector3(0, 25, 0)) == Vector3(0, 25, 0));
CHECK(curve->get_closest_point(Vector3(50, 25, 0)) == Vector3(0, 25, 0));
CHECK(curve->get_closest_point(Vector3(0, 50, 0)) == Vector3(0, 50, 0));
CHECK(curve->get_closest_point(Vector3(50, 50, 0)) == Vector3(0, 50, 0));
CHECK(curve->get_closest_point(Vector3(0, 100, 0)) == Vector3(0, 50, 0));
}
}
TEST_CASE("[Curve3D] Tessellation") {
Ref<Curve3D> curve = memnew(Curve3D);
add_sample_curve_points(curve);
const int default_size = curve->tessellate().size();
SUBCASE("Increase to max stages should increase num of points") {
CHECK(curve->tessellate(6).size() > default_size);
}
SUBCASE("Decrease to max stages should decrease num of points") {
CHECK(curve->tessellate(4).size() < default_size);
}
SUBCASE("Increase to tolerance should decrease num of points") {
CHECK(curve->tessellate(5, 5).size() < default_size);
}
SUBCASE("Decrease to tolerance should increase num of points") {
CHECK(curve->tessellate(5, 3).size() > default_size);
}
SUBCASE("Adding a straight segment should only add the last point to tessellate return array") {
curve->add_point(Vector3(0, 100, 0));
PackedVector3Array tes = curve->tessellate();
CHECK(tes.size() == default_size + 1);
CHECK(tes[tes.size() - 1] == Vector3(0, 100, 0));
CHECK(tes[tes.size() - 2] == Vector3(0, 50, 0));
}
}
TEST_CASE("[Curve3D] Even length tessellation") {
Ref<Curve3D> curve = memnew(Curve3D);
add_sample_curve_points(curve);
const int default_size = curve->tessellate_even_length().size();
// Default tessellate_even_length tolerance_length is 20.0, by adding a 100 units
// straight, we expect the total size to be increased by more than 5,
// that is, the algo will pick a length < 20.0 and will divide the straight as
// well as the curve as opposed to tessellate() which only adds the final point.
curve->add_point(Vector3(0, 150, 0));
CHECK(curve->tessellate_even_length().size() > default_size + 5);
}
} // namespace TestCurve3D
#endif // TEST_CURVE_3D_H